
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003 2809

Algebraic Soft-Decision Decoding
of Reed–Solomon Codes

Ralf Koetter, Member, IEEE, and Alexander Vardy, Fellow, IEEE

Abstract—A polynomial-time soft-decision decoding algorithm
for Reed–Solomon codes is developed. This list-decoding algo-
rithm is algebraic in nature and builds upon the interpolation
procedure proposed by Guruswami and Sudan for hard-decision
decoding. Algebraic soft-decision decoding is achieved by means
of converting the probabilistic reliability information into a set of
interpolation points, along with their multiplicities. The proposed
conversion procedure is shown to be asymptotically optimal
for a certain probabilistic model. The resulting soft-decoding
algorithm significantly outperforms both the Guruswami-Sudan
decoding and the generalized minimum distance (GMD) decoding
of Reed–Solomon codes, while maintaining a complexity that is
polynomial in the length of the code. Asymptotic analysis for a
large number of interpolation points is presented, leading to a geo-
metric characterization of the decoding regions of the proposed
algorithm. It is then shown that the asymptotic performance can
be approached as closely as desired with a list size that does not
depend on the length of the code.

Index Terms—Berlekamp–Welch algorithm, Guruswami–
Sudan algorithm, list decoding, polynomial interpolation, Reed–
Solomon codes, soft-decision decoding.

I. INTRODUCTION

G
URUSWAMI and Sudan [27], [14] have recently achieved

a breakthrough in algebraic decoding of Reed–Solomon

codes. A long-standing open problem in hard-decision de-

coding of Reed–Solomon codes was that of decoding beyond the

error-correction radius. The algorithm of Guruswami and Sudan

[14] corrects any fraction of erroneous positions

for a Reed–Solomon code of rate . Thus the error-correction

capability of this algorithm exceeds the packing radius bound

for all rates in the interval .

Soft-decision decoding of Reed–Solomon codes is, however,

an entirely different matter. Although the decoder can be often

supplied with reliable soft-decision data relatively easily [5], the

high complexity of optimal soft-decision decoding makes full

utilization of such data prohibitive. Indeed, all the available op-

timal soft-decoding algorithms for Reed–Solomon codes, such

Manuscript received September 27, 2001; revised May 11, 2003. This work
was supported in part by the David and Lucile Packard Foundation and was per-
formed while both authors were on leave at Laboratoire I3S, C.N.R.S., Sophia-
Antipolis, France. The material in this paper was presented in part at the IEEE
International Symposium on Information Theory, Sorrento, Italy, June 2000.

R. Koetter is with the Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign, Urbana, IL 61801 USA (e-mail: koetter@csl.uiuc.edu).

A. Vardy is with the Department of Electrical and Computer Engineering,
the Department of Computer Science, and the Center for Wireless Communi-
cations, University of California, San Diego, La Jolla, CA 92093 USA (e-mail:
vardy@kilimanjaro.ucsd.edu).

Communicated by P. Solé, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2003.819332

as [29] and its modifications [7], [23], [24], are nonalgebraic

and run in time that scales exponentially with the length of the

code. This makes the use of such algorithms generally infeasible

in practice. An alternative approach to the problem of efficient

soft decoding is the generalized minimum distance (GMD) de-

coding of [10], [11]. While the complexity of GMD decoding

is moderate—ultimately, of the same order as that of hard-deci-

sion decoding [3], [16], [17], [26], the gains that can be realized

by GMD decoding are also moderate (cf. Fig. 1). Thus in light

of the ubiquity of Reed–Solomon codes, efficient soft-decision

decoding of Reed–Solomon codes is one of the most important

problems in coding theory and practice.

Our goal in this paper is to present a polynomial-time soft-

decision decoding algorithm for Reed–Solomon codes. This al-

gorithm significantly outperforms both the Guruswami-Sudan

list decoding [14] and the GMD-based decoding methods. For

example, Fig. 1 shows the performance of the three algorithms

for a simple coding scheme: codewords of the

Reed–Solomon code over GF are modulated using a

256-QAM signal constellation and transmitted over an AWGN

channel. We note that similar coding schemes, although with

higher rate Reed–Solomon codes, are in use today on satellite

communication channels.

The proposed algorithm is based on the algebraic interpola-

tion techniques developed by Guruswami and Sudan [14], [27].

Guruswami and Sudan also present a weighted version of their

list-decoding algorithm in [14]. As pointed out by a referee, this

version can be viewed as a soft-decoding algorithm, assuming

the interpolation weights can be set “appropriately” given the

channel observations. However, the referee also points out

that Guruswami and Sudan [14] do assume that interpolation

weights are somehow magically given to the algorithm. The

main contribution of the present paper is this: we show how the

soft-decision reliability information provided by the channel

should be translated into algebraic interpolation conditions.

Once this is done, we appeal to the interpolation-based tech-

niques of [14].

Specifically, given the channel output vector

and the a posteriori transition probabilities , we iter-

atively compute a set of interpolation points along with their

multiplicities. We show that, at each step of the computation,

this choice of interpolation points is optimal, in a certain pre-

cise sense defined in Section IV.

Notably, the algebraic interpolation and factorization tech-

niques of Guruswami and Sudan [27], [14] can be implemented

efficiently in polynomial time [1], [8], [9], [21], [20], [25], [32].

Our soft-decision decoding procedure inherits these properties

of Guruswami-Sudan decoding. In addition, one of the most

0018-9448/03$17.00 © 2003 IEEE

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

2810 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

Fig. 1. Performance comparison for a simple coding scheme. Codewords of the (255; 144;112) Reed–Solomon code are modulated using a 256-QAM signal
constellation and transmitted over an additive white Gaussian noise (AWGN) channel. At the channel output, soft decisions are quantized to 8 bits. The different
curves correspond to the performance achieved by two hard-decision decoding algorithms and two soft-decision decoding algorithms. The two hard-decision
algorithms are the conventional Berlekamp-Welch [30] decoding up to half the minimum distance and the list-decoding algorithm by Guruswami and Sudan [14].
For the latter, asymptotic performance is shown, assuming that the multiplicity of interpolation points tends to infinity (cf. Theorem 2). The two soft-decision
algorithms are Forney’s GMD decoding [10] and the algebraic soft-decision list-decoding algorithm developed here. The curve marked describes asymptotic
performance for a large number of interpolation points, and hence large list size. However, the curve marked � shows that the asymptotic performance can be
closely approached with a finite list that is guaranteed to have at most 32 codewords (cf. Section VI).

useful characteristics of our algorithm is a complexity–perfor-

mance tradeoff that can be chosen freely. In particular, the com-

plexity can be adjusted to any required level of performance

within a certain fundamental bound (cf. Theorem 12).

The rest of this paper is organized as follows. The next sec-

tion contains a brief overview of the Guruswami-Sudan list-de-

coding algorithm [14]. Section III then sets the ground for alge-

braic soft-decision decoding of Reed–Solomon codes. In par-

ticular, we define the concepts of score and cost associated with

each possible set of interpolation points. We then give a suf-

ficient condition for successful list decoding in terms of these

concepts. The core of our soft-decoding algorithm is developed

in Section IV, which deals with the computation of (the multi-

plicities of) the interpolation points. In particular, we show how

to iteratively compute the interpolation multiplicity matrix so as

to maximize the expected score in a certain probabilistic model.

Thus Section IV contains the new algorithmic component of this

paper. Section V presents an asymptotic performance analysis

for our algorithm as the the number of interpolation points ap-

proaches infinity. The analysis leads to a simple geometric char-

acterization of the (asymptotic) decoding regions of our algo-

rithm. In Section VI, we show that the asymptotic performance

can be approached arbitrarily closely with a list size that de-

pends on the rate but not on the the length of the code at hand.

We also present simulation results for various list sizes, for both

half-rate and high-rate Reed–Solomon codes. In Section VII, we

consider channels with memory, and show how the soft-decision

decoder should be adapted to deal with such channels. Finally,

we conclude with a brief discussion in Section VIII.

II. THE GURUSWAMI-SUDAN LIST-DECODING ALGORITHM

We first set up some of the notation that will be used

throughout this work. Let be the finite field with el-

ements. The ring of polynomials over in a variable

is denoted . Reed–Solomon codes are obtained by

evaluating certain subspaces of in a set of points

. Specifically, the Reed–Solomon

code of length and dimension is defined as

follows:

(1)

The set of polynomials of degree less than in is a linear

space, which together with the linearity of the evaluation map

(1) establishes that is a linear code. The minimum

Hamming distance of is , which fol-

lows from the fact that any nonzero polynomial of degree less

than evaluates to zero in less than positions.

Given an arbitrary vector , the hard-decision decod-

ing task consists of finding the codeword such that

the Hamming weight of the error vector is min-

imized. The Berlekamp–Welch algorithm [30] is a well-known

algorithm that accomplishes this task, provided .

Generalizing upon Berlekamp–Welch [30], Sudan [27] as well

as Guruswami and Sudan [14] derived a polynomial-time algo-

rithm that achieves error correction substantially beyond half the

minimum distance of the code. In the remainder of this section,

we describe the essential elements of this algorithm.

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

KOETTER AND VARDY: ALGEBRAIC SOFT-DECISION DECODING OF REED–SOLOMON CODES 2811

Fig. 2. A bound on the number of monomials of (w ;w)-weighted degree
at most �. Here, N (�) is the area under the solid line, with each
monomial X Y represented by the unit square whose lower left corner is at
the point (a; b). It is easy to see that the triangle of area � =2w w (bounded
by the dashed line) is completely enclosed by the solid line.

Definition 1: Let be a

bivariate polynomial over , and let be real num-

bers. Then, the -weighted degree of , de-

noted , is the maximum over all numbers

such that .

The -weighted degree is simply the degree of a bivariate

polynomial. The number of monomials of -weighted

degree at most is denoted . Thus

and

The following lemma provides a closed-form expression for

for the case . Similar statements can be

found in [14], [20], [25], [27], and other papers.

Lemma 1:

The lemma follows by a straightforward counting of mono-

mials; for a proof, see [14, Lemma 6]. The exact expression in

Lemma 1 can be converted into a simple lower bound

(2)

This is, in fact, a special case of the more general lower bound

. The latter bound can be easily

proved using geometric arguments, as shown in Fig. 2.

Given the channel output vector

and the corresponding point set , we con-

sider the set of pairs as

points in a two-dimensional affine space. Given a point

and a bivariate polynomial , we say that lies on

if . Equivalently, we say that

passes through the point . Here, we will be interested in

bivariate polynomials that not only pass through all the points

in but do so with high multiplicities.

Definition 2: A bivariate polynomial is said to pass

through a point with multiplicity if the shifted poly-

nomial contains a monomial of degree

and does not contain a monomial of degree less than . Equiv-

alently, the point is said to be a zero of multiplicity of

the polynomial .

Using a well-known explicit relation (cf. [14]) between the

coefficients of a bivariate polynomial and the coeffi-

cients of the shifted polynomial, we find that Definition 2 im-

poses the following linear constraints:

such that (3)

on the coefficients of . Thus passes

through a given point with multiplicity at least if and only if

satisfy the constraints specified by (3). We are

now ready to formulate the first step of the Guruswami-Sudan

[14], [27] algorithm.

Interpolation step: Given the set points in

and a positive integer , compute a nontrivial bivariate

polynomial of minimal - weighted de-

gree that passes through all the points in with multi-

plicity at least

If , then may have up to

nonzero coefficients. These coefficients should be

chosen so as to satisfy the linear constraints

of type (3), imposed by the interpolation step. This produces

a system of linear equations (not all of them nec-

essarily linearly independent) over in unknowns.

It is clear that this system has a nonzero solution as long as

(4)

For efficient algorithms to solve such a system of linear equa-

tions and, hence, accomplish the interpolation step, we refer the

reader to [9], [16], [20], [21], [25], [32].

The idea of the Guruswmi-Sudan algorithm [14], [27] is that,

under certain constraints on the weight of the error vector, we

can read off a list of decoding decisions as factors of

of type . Thus the second (and last) step of the algo-

rithm is as follows.

Factorization step: Given the bivariate polynomial

, identify all the factors of of type

with The output of the algorithm

is a list of the codewords that correspond to these factors.

Notice that full factorization of is not required to find

all the factors of type with . Efficient

algorithms to accomplish such “partial factorization” are given

in [1], [8], [9], [20], [32]. The eventual decoder output can be

taken as the codeword on the list produced at the factorization

step that is closest to the received vector .

The fundamental question is under which conditions can one

guarantee that the correct decoding decision is found on the list.

The answer to this question is given in Theorem 2.

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

2812 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

Theorem 2: Suppose that a vector and a positive integer

are given. Then the factorization step produces a list that con-

tains all codewords of at distance less than

(5)

from , where is the smallest integer such that

and .

For a proof of (5), see [14], [20]. The inequality in (5) follows

from (2). Here, we observe that Theorem 2 is a special case of

Theorem 3, which we prove in the next section. Theorem 2 is

the main result of Guruswami and Sudan in [14]. The theorem

shows that as , the algorithm of [14] corrects any frac-

tion of erroneous positions.

III. ALGEBRAIC SOFT-DECISION DECODING

In many situations [5], [29], the decoder can be supplied with

probabilistic reliability information concerning the received

symbols. A decoding algorithm that utilizes such information is

generally referred to as a soft-decision decoding algorithm. We

now specify this notion precisely, in the context of the present

paper. First, we define a memoryless channel, or simply a

channel, as a collection of a finite input alphabet , an output

alphabet , and functions

(6)

that are assumed to be known to the decoder. We think of

channel input and output as random variables and , res-

pectively, and assume that is uniformly distributed over . If

the channel is continuous (e.g., Gaussian), then is continuous

and the are probability-density functions, while if the

channel is discrete then is discrete and the are prob-

ability-mass functions. In either case, the decoder can easily

compute the probability that was transmitted given that

was observed as follows:

(7)

where the second equality follows from the assumption that is

uniform. For Reed–Solomon codes, the input alphabet is always

. Let be a fixed ordering of the elements

of ; this ordering will be implicitly assumed in the remainder

of this paper. Given the vector ob-

served at the channel output, we compute

for and (8)

according to the expression in (7). Let be the matrix

with entries defined in (8). We will refer to as the reli-

ability matrix and assume that is the input to a soft-decision

decoding algorithm. For notational convenience, we will some-

times write to refer to the entry found in the th column

of in the row indexed by .

We note that in some applications [5], [31], it is the reliability

matrix rather than the vector that is directly available

at the channel output. In many other cases, the channel output

alphabet is quite different from . Thus the first step in

hard-decision decoding is the construction of the hard-decision

vector , where

for (9)

This hard-decision vector is then taken as the channel output

(cf. Section II), thereby converting the channel at hand

into a hard-decision channel.

On the other hand, a soft-decision decoder works directly

with the probabilities compiled in the reliability matrix . If

the decoder is algebraic, it must somehow convert these prob-

abilities into algebraic conditions. The algebraic soft-decision

Reed–Solomon decoder developed in this paper converts the re-

liability matrix into a choice of interpolation points and their

multiplicities in the Guruswami–Sudan [14] list-decoding algo-

rithm.

A convenient way to keep track of the interpolation points

and their multiplicities is by means of a multiplicity matrix. A

multiplicity matrix is a matrix with nonnegative in-

teger entries . Thus the first step of our decoding algorithm

consists of computing the multiplicity matrix from the re-

liability matrix . This step is discussed in detail in the next

section. From there, the soft-decision decoder proceeds as in

the Guruswami-Sudan [14] algorithm. In particular, the second

step consists of the following.

Soft interpolation step: Given the point set and

the multiplicity matrix compute a nontrivial

bivariate polynomial of minimal -

weighted degree that has a zero of multiplicity at least

at the point for every such that

The third and final step of the algorithm is the factorization step,

which is identical to the factorization step of the Guruswami-

Sudan algorithm, described in the previous section.

In the remainder of this section, we characterize the con-

ditions under which the decoder will produce the transmitted

codeword , for a given choice of interpolation points

and their multiplicities (that is, for a given multiplicity matrix

).

Definition 3: Given a matrix with nonnegative in-

teger entries , we define the cost of as follows:

It is easy to see that the computation of is equiv-

alent to solving a system of linear equations of type (3). Since a

given zero of multiplicity imposes linear con-

straints on the coefficients of , the cost is pre-

cisely the total number of linear equations. As in (4), we can

always find a nonzero solution to the soft interpo-

lation task if the -weighted degree is large enough,

namely, if

(10)

so that the number of degrees of freedom is greater than the

number of linear constraints. Thus we define the function

(11)

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

KOETTER AND VARDY: ALGEBRAIC SOFT-DECISION DECODING OF REED–SOLOMON CODES 2813

Observe that in view of (2). Next, giv-

en two matrices and over the same field, we define

the inner product

Finally, it will be convenient to think of the codewords of the

Reed–Solomon code as matrices over the reals.

Specifically, any vector over can be

represented by the real-valued matrix defined as fol-

lows: if , and otherwise. With this

notation, we have the following definition.

Definition 4: The score of a vector over

with respect to a given multiplicity matrix is defined as

the inner product .

The following theorem characterizes the set of codewords

produced by our soft-decision decoding algorithm for a given

multiplicity matrix. Notice that Theorem 2 follows as a special

case of Theorem 3 for the multiplicity matrix .

Theorem 3: Let be the cost of a given multiplicity ma-

trix . Then the polynomial has a factor ,

where evaluates to a codeword , if the score

of is large enough compared to , namely, if

(12)

Proof: Let be a codeword of ,

and let be the polynomial that evaluates to . That is,

for all , where is the set of points that

specify as in (1). Given , we define the

polynomial as follows:

It would clearly suffice to prove that (12) implies that is

the all-zero polynomial, since then must be divisible

by . To prove that , we will show that

and yet has a factor of degree

. We write

Thus the polynomial passes through the point

with multiplicity at least , for . We

will make use of the following lemma.

Lemma 4: Suppose that a bivariate polynomial

passes through a point in with multiplicity at

least , and let be any polynomial in such that

. Then is divisible by .

This lemma is identical to [14, Lemma 4], and we omit the

proof. Since for , it follows from

Lemma 4 and the fact that are all distinct that the

polynomial is divisible by the product

whose degree is . We conclude that either

or . Since , it is easy to see

that the degree of cannot exceed the

-weighted degree of . Yet it follows from

(10) and (11) that . Thus if

then Hence, (12)

implies that .

Corollary 5: Let be the cost of a given multi-

plicity matrix. Then, has a factor , where

evaluates to , if .

Proof: Follows immediately from Theorem 3 and the fact

that by Lemma 1.

IV. FROM POSTERIOR PROBABILITIES

TO INTERPOLATION POINTS

This section developes the core contribution of our paper: an

algorithm that converts posterior probabilities derived from the

channel output into a choice of interpolation points and their

multiplicities. More specifically, given a reliability matrix , as

defined in (8), we compute the multiplicity matrix that serves

as input to the soft interpolation step. Let denote the set

of all matrices with nonnegative integer entries , and

let be the finite set of all matrices in whose cost is

equal to . Thus

In view of Theorem 3, we would like to choose so

as to maximize the score of the transmitted codeword

. However, this codeword is obviously unknown

to the decoder; only some stochastic information about

is available through the observation of the channel output

and the knowledge of the transition

probabilities . In fact, as far as the decoder

is concerned, the transmitted codeword may be thought of as

a random vector . We shall specify the

distribution of shortly (see (15) on the next page and the

discussion immediately following this equation). For the time

being, observe that, for a given multiplicity matrix , the

score of the transmitted codeword is a function of given by

.

Thus is a random variable, and the question is:

what is the best choice of a multiplicity matrix in

this probabilistic setting? We choose to compute the matrix

that maximizes the expected value of .

This choice is based on the following considerations. First,

this is a reasonable optimization criterion for the proba-

bilistic setup which is the focus of this paper. The obvious

alternative is to compute that directly maximizes

. However, this computation appears

to be extremely difficult, except for certain special cases of

simple channels.

The second reason is this. Theorem 14 of Section V-B shows

that this criterion is asymptotically optimal in the following

sense. Let denote the probability of decoding failure, defined

as the probability that the transmitted codeword is not on the

list produced by the soft-decoder. Theorem 14 implies that for

every , we have provided

(13)

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

2814 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

where is the rate of the Reed–Solomon code and

is the expected value of the score for a given

multiplicity matrix . Thus at least asymptotically

for , maximizing the expectation of the score allows

for reliable transmission at the highest possible rate. One might

argue that such asymptotic reasoning has little meaning for

Reed–Solomon codes, since . However, the proposed

soft-decoding algorithm can be generalized to algebraic-geom-

etry codes, so that makes sense for a fixed . More

importantly, the bound in (13) essentially follows from the

fact that the random variable concentrates about its

expected value as becomes large. We have observed that

does not have to be very large for this concentration to take

place.

To proceed, let us define the expected score with respect

to a probability distribution on the random vector

as follows:

(14)

where denotes the entry found in the th column of

in the row indexed by . It remains to specify . For this

purpose, we adopt the product distribution determined by the

channel output , namely

(15)

where is the reliability matrix defined in (8). It is easy to see

that this would be the a posteriori distribution of given the

channel observations, if the a priori distribution of were uni-

form over the space . However, the decoder knows that

was drawn a priori from the code rather than from the

entire space , and hence the probability model in (15) is sub-

optimal. Taking this into account results in the probability model

given in (47). This model is optimal in that it reflects precisely

all the information available to the decoder. Unfortunately, this

model leads to an intractable optimization problem, as shown in

the Appendix (cf. Theorem 20). Thus the remainder of this sec-

tion is concerned with the computation of the matrix

defined as follows:

(16)

where the expectation is taken with respect to the probability

distribution in (15). We start with the following lemma,

which gives a useful expression for the expected score.

Lemma 6: The expected score with respect to the probability

distribution in (15) is equal to the inner product of the multi-

plicity matrix and the reliability matrix, namely

Proof: It is easy to see that if is distributed according

to (15), then is precisely the componentwise expected value

of . The lemma now follows by linearity of expectation:

More explicitly, we have

We will construct iteratively, starting with the all-zero

matrix and increasing one of the entries in the matrix at each it-

eration. Referring to Lemma 6, we see that increasing from

to increases the expected score by while increasing the

cost by . If we require that passes through the same

point again (that is, increase from to), then the expected

score again grows by , but now we have to “pay” two addi-

tional linear constraints. In general, increasing from to

always increases the expected score by while intro-

ducing additional constraints of type (3). These observa-

tions lead to the following algorithm, which greedily maximizes

the ratio of the increase in the expected score to the increase in

cost at each iteration.

Algorithm A

Input: Reliability matrix � and a positive

integer s, indicating the total number of

interpolation points.

Output: Multiplicity matrix M.

Initialization step: Set �� := � and

M := all� zero matrix.

Iteration step: Find the position (i; j) of the

largest entry ��i;j in ��

, and set

�
�

i;j :=
�i;j

mi;j + 2

mi;j := mi;j + 1

s := s� 1

Control step: If s = 0, return M; otherwise go

to the iteration step.

Let denote the multiplicity matrix produced by Al-

gorithm A for a given reliability matrix and a given number

of interpolation points (counted with multiplicities). The fol-

lowing theorem shows that this matrix is optimal.

Theorem 7: The matrix maximizes the expected

score among all matrices in with the same cost. That is,

if is the cost of , then

Proof: With each position in the reliability matrix ,

we associate an infinite sequence of rectangles

indexed by the positive integers. Let denote the set of all

such rectangles. For each rectangle , we define its

, , and

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

KOETTER AND VARDY: ALGEBRAIC SOFT-DECISION DECODING OF REED–SOLOMON CODES 2815

For a multiplicity matrix , we define the correspond-

ing set of rectangles as

(17)

Observe that the number of rectangles in is given by

, which is precisely the total number of inter-

polation points imposed by the multiplicity matrix (counted

with multiplicities). Furthermore

Thus the cost of is the total length of all the rectangles in

and the expected score is the total area of all

the rectangles in . It is intuitively clear that to maximize

the total area for a given total length, one has to choose the

highest rectangles. This is precisely what Algorithm A does: the

algorithm constructs the matrix that corresponds to the

set of highest rectangles in . Indeed, it is easy to see that the

ratios with which Algorithm A operates are precisely the

heights of the rectangles. The algorithm “removes” from and

puts in the highest rectangle available at each iteration.

It is now obvious that if the highest rectangles in have total

length , then no collection of rectangles of total length at most

can have a larger total area.

Although Algorithm A produces an optimal multiplicity ma-

trix for an arbitrary number of interpolation points ,

it cannot be used to solve the optimization problem (16) for

an arbitrary value of the cost . The algorithm computes a so-

lution to (16) only for those costs that are expressible as the

total length of the highest rectangles in for some . In

other words, if is the infinite

sequence of matrices defined by (16) for then

is a subsequence of this se-

quence. This subsequence will generally suffice for our pur-

poses.

Remark: Algorithm A can be also used to generate a se-

quence of multiplicity matrices indexed by a bound on the size

of the list produced by the soft-decision decoder. Clearly, the

number of factors of of type is bounded

by , and

(18)

Thus given a bound on the desired list size, all one has to do is to

keep track of the total cost , and stop Algorithm A just before

the right-hand side of (18) exceeds this bound.

V. ASYMPTOTIC PERFORMANCE ANALYSIS

In the next subsection, we investigate the multiplicity matrix

produced by Algorithm A as . We shall see

that for this matrix becomes proportional to . Based

on this result, we derive an asymptotic condition for successful

list decoding, and provide a geometric characterization of the

asymptotic decoding regions of our algorithm. In a subsequent

subsection, we focus instead on long codes—that is, we study

the limiting performance of our algorithm as the code length

approaches infinity.

A. Asymptotic Analysis for Large Costs

We start with two simple lemmas. In all of the subsequent

analysis, we keep the reliability matrix fixed, while

ranges over the positive integers. For convenience, we define

. Let denote the set of

all such that . Let denote the entries

in the matrix produced by Algorithm A.

Lemma 8: As , every nonzero entry in grows

without bound. In other words when for

all .

Proof: Define

and

Clearly, it would suffice to show that for .

Notice that

(19)

It follows from (19) that as . Hence,

there exists an infinite integer sequence defined

by the property that and .

The iterative nature of Algorithm A implies that for all ,

there is exactly one position such that

We say that is the position updated at iteration of

Algorithm A. This position is distinguished by the property that

for all (20)

For let denote the position updated at

iteration of Algorithm A. Then it follows from (20) and

the definition of that

for all

where and .

Denoting by the ratio , we conclude from the above

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

2816 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

that . Since is a positive constant while

as , it follows that grows without bound

for .

Henceforth, let denote the position updated at itera-

tion of Algorithm A, and consider the sequence of ratios of

the increase in the expected score to the increase in cost at suc-

cessive iterations of Algorithm A, namely

It follows from (20) that the sequence is nonin-

creasing. (Indeed, this was our goal in the design of Algo-

rithm A.) Clearly, while by Lemma 8.

Lemma 9: For every positive integer , there exists a positive

constant , such that

for all (21)

Conversely, for every positive constant , there exists

a positive integer such that (21) holds.

Proof: Given , we choose so that

which is always possible as the sequence is nonin-

creasing. To prove the first inequality in (21), observe that

for all

where the last inequality follows from (20). The second in-

equality in (21) holds vacuously if , so assume that

. This assumption implies that position was

updated at least once, and we let denote the number

of the most recent iteration of Algorithm A at which position

was updated. Then

where the last equality follows from the fact that position

was not updated since iteration . Finally, given ,

we choose so that once again.

This choice is possible because the sequence is non-

increasing, , and . The proof then re-

mains exactly the same, except that the first inequality in (21)

can be now strengthened to a strict inequality.

Since (21) holds for all , both inequalities in (21)

remain valid under summation over all . Thus it fol-

lows from Lemma 9 that

(22)

These inequalities lead to upper and lower bounds on the con-

stant in Lemma 9. Since while

, we conclude from (22) that

(23)

Next, we define the normalized multiplicity matrix

and the normalized reliability matrix as

follows: and for all .

It is clear from these definitions that ,

where denotes the all-one matrix. The following theorem is

the key result of this subsection: the theorem shows that the

optimal multiplicity matrix becomes proportional to

as .

Theorem 10: As , the normalized multiplicity matrix

converges to the normalized reliability matrix

In other words, for every , there exists an such that for

all we have

for all

(24)

Proof: It follows from Lemma 9 that for all , there exists

a constant such that for all

. Dividing this inequality by , we obtain

(25)

From the bounds on in (23), we conclude that

Combining this with (25), we get

(26)

It follows that for all , the

bound in (24) holds for all . Thus .

Asymptotically, for a large number of interpolation points

(and, hence, for a large cost), a constraint on the cost

is equivalent to a constraint on the -norm of the

multiplicity matrix. Obviously, for a fixed norm ,

maximizing the expected score is equivalent to max-

imizing the correlation between and , which is clearly

achieved by letting be proportional to . This intuition

confirms the result established in Theorem 10.

Remark: Finding the optimal multiplicity matrix

can be viewed as a gambling problem. Assume that a gambler

has a certain wealth in the form of a maximal number of linear

constraints the gambler can satisfy. The matrix provides all

the information the gambler can use in order to place bets on in-

terpolation points with the goal of maximizing the return, which

is the score of the transmitted codeword. In this context, The-

orem 10 shows that proportional betting is the asymptotically

optimal gambling strategy. Proportional betting is known [6] to

be the optimal strategy in the context of a fair horse race. How-

ever, these results do not appear to be related to Theorem 10 in

an obvious way.

We conclude this section with a geometric characterization of

the (asymptotic) decoding regions of our soft-decision decoding

algorithm. To start with, the following simple lemma essentially

recasts Theorem 3 in slightly different terms.

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

KOETTER AND VARDY: ALGEBRAIC SOFT-DECISION DECODING OF REED–SOLOMON CODES 2817

Lemma 11: For a given multiplicity matrix , the algebraic

soft-decision decoding algorithm outputs a list that contains a

codeword if

(27)

The lemma follows from Corollary 5 by observing that

Theorem 10 and Lemma 11 now lead to a precise characteriza-

tion of the performance limits of our algorithm as the number

of interpolation points approaches infinity. In the following the-

orem and its corollaries, denotes a function of that tends

to zero as .

Theorem 12: The algebraic soft-decision decoding algo-

rithm outputs a list that contains a codeword if

(28)

Proof: Substituting the optimal multiplicity matrix

in (27) and normalizing (dividing by the numerator

and the denominator), we obtain the equivalent condition

(29)

It follows from Theorem 10 that for , one can re-

place in (29) by , which upon renormalization

yields (28). More explicitly, we have

where the first inequality follows from (26) after some straight-

forward manipulations. In conjunction with (29), this completes

the proof.

Note that decoding under the asymptotic condition (28) can

be directly achieved by choosing large integer multiplicities that

are in proportion to the entries of the reliability matrix . What

is particularly interesting about Theorem 12 is that it shows

that the greedy iterative algorithm (Algorithm A) asymptotically

achieves this limiting performance.

Finally, Theorem 12 has an especially nice interpretation if

the reliability matrix and the codeword are viewed as vec-

tors in the -dimensional Euclidean space .

Corollary 13: Let denote the angle in be-

tween and . Then the algebraic soft-decision decoding al-

gorithm outputs a list that contains if

Proof: Follows directly from Theorem 12 and the identity

.

Thus the asymptotic decoding regions of our algorithm are

spherical cones in the Euclidean space , extending from the

origin to the surface of a sphere of radius . The code-

word is a point of , and the line connecting the origin to

this point constitutes the central axis of the spherical cone. The

angle of each spherical cone is . Notice that since the

algorithm is a list-decoding algorithm, its decoding regions are

not disjoint: the spherical cones of angle are overlap-

ping. Also notice that we are concerned only with the positive

-part of the Euclidean space (which consists of points

with all coordinates nonengative), since all the entries of both

and are nonnegative.

It follows from Theorem 2 that the asymptotic (for)

decoding regions of the Guruswami-Sudan [14] algorithm are

spherical caps on the surface of of the same spherical angle

, but the decoding process involves projecting onto

a point on the surface of in a nonlinear fashion, according

to (9). Finally, the decoding regions of conventional Berlekamp-

Welch [30] hard-decision decoding are also spherical caps on

the surface of and the same nonlinear projection is employed,

but the spherical angle of these caps is only , and

they are nonoverlapping.

B. Asymptotic Analysis for Long Codes

As noted in Section IV, from the point of view of the receiver,

the transmitted codeword is a random vector whose a pos-

teriori probability distribution is given by (15). For notational

convenience, let us introduce two random variables

and

The key result of this subsection is the following theorem which

shows that as , the random variable converges to its

expected value.

Theorem 14: Suppose that a reliability matrix is

given, and let be an arbitrary multiplicity matrix. Then

for any , we have

(30)

Proof: Consider the random variable

and define for . Thus is the

entry found in the th column of in the row indexed by .

The distribution of , computed by marginalizing the distribu-

tion of in (15), is given by

for and

Using this distribution, we find that

and . The key observation is this: since

the random variables are independent, so are

. Hence,

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

2818 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

The theorem now follows by a straightforward application of the

Chebycheff inequality [22, p. 193] to the random variable .

Thus

Remark: The proof of Theorem 14 is essentially similar to a

well-known proof of the weak law of large numbers. We note

that using the strong law of large numbers, it is possible to show

that as , the random variable equals its expectation

with probability .

We can use Theorem 14 to derive a relationship between the

probability of list-decoding failure, the expected score, and

the rate of the Reed–Solomon code. Indeed, we have

(31)

since by defintion, and the “score condition”

is sufficient for successful decoding by

Theorem 3. It follows from (31) that

(32)

since in view of Lemma 1

and (2). In conjuction with (32), Theorem 14 immediately im-

plies the following. For all , if

then . This is precisely condition (13) relating the ex-

pected score to the probability of decoding failure, discussed in

the fourth paragraph of Section IV.

VI. PERFORMANCE ANALYSIS FOR A FIXED LIST SIZE

In this section, we study the performance achieved by our

soft-decoding algorithm under a constraint which guarantees

that the number of codewords on the list produced by the de-

coder does not exceed a given bound . The key analytical re-

sult in this section is Theorem 17. This theorem extends The-

orem 12 by providing a bound on how quickly the decoding

algorithm converges to the asymptotic performance as a func-

tion of . The analytical results are confirmed by simulations

for both high-rate and low-rate codes.

We start with two lemmas. As observed in Section IV, the

number of codewords on the list produced by the soft-deci-

sion decoder is upper-bounded by , where

is the interpolation polynomial. This leads to the

following lemma.

Lemma 15: The number of codewords on the list produced

by the soft-decision decoder for a given multiplicity matrix

does not exceed

(33)

Proof: The size of the list is at most .

By the definition of weighted-degree, we have

Now

where the first inequality follows from (10) and (11), while the

second inequality follows from Lemma 1, the definition of the

cost , and (11).

Let be a given reliability matrix, and let be the

corresponding multiplicity matrix produced by Algorithm A.

For convenience, we define as the all-zero ma-

trix. Let denote a matrix all of whose entries are non-

negative real numbers not exceeding . We write instead of

if all the entries in the matrix are strictly less than .

Lemma 16: For every positive real number , there exists

a nonnegative integer , such that the matrix can be

written as

(34)

Conversely, for every nonnegative integer , there exists a posi-

tive real such that (34) holds, possibly with replaced by .

Proof: As before, let be the largest entry in . If

, then satisfies (34). Otherwise, set

, so that . We know from Lemma 9 and its

proof that there exists a positive integer , such that

for all (35)

It follows from (35) that is of the form (34). Con-

versely, given , we take , where

is the constant derived in Lemma 9.

Given , let be a positive real constant such

that . Such a constant exists by Lemma 16. Then

(36)

We can use (36) and (33) to derive an expression for in terms

of , , and . Equating the right-hand side of (36)

to , we obtain a quadratic equation in . Since

and , this equation has one positive

root and one negative root. Solving for the unique positive root

yields

(37)

Suppose now that we are given a positive integer and would

like to guarantee that the number of codewords on the list pro-

duced by the soft-decision decoder does not exceeed . In view

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

KOETTER AND VARDY: ALGEBRAIC SOFT-DECISION DECODING OF REED–SOLOMON CODES 2819

of Lemma 15, we can do so by computing at each it-

eration of Algorithm A, and stopping the algorithm just before

equals or exceeds . At this point

(38)

and since the number of codewords on the list produced by the

decoder is an integer not exceeding , this number is at

most . We will refer to this decoding procedure1 as algebraic

soft-decoding with list size limited to .

Theorem 17: Algebraic soft-decoding with list size limited

to produces a list that contains a codeword if

(39)

where is the reliability matrix derived from the channel

output, is the rate of , and the con-

stant in depends only on and .

Proof: Writing as in Lemma 16 and using

the definition of in (33), we can recast the sufficient

condition (27) of Lemma 11 in the following way:

(40)

Using the expression for in (37), we now express the factor

multiplying on the left-hand side of (40) as

, where

(41)

(42)

and

(43)

To obtain the inequality in (42), we have used the fact that

and

To obtain the inequality in (43), we made use of the following

two observations. First, we have .

Second, if and are such that (39) holds, then a fortiori

. Since by (38), it

follows from (42) and (43), respectively, that

and

1In practice, algebraic soft-decoding with list size limited toL almost always
produces lists with much less than L codewords, most often a single codeword.

In conjunction with (41) and (40), this completes the proof of

the theorem.

We observe that Theorem 17 is a very loose bound. The actual

performance of algebraic soft-decoding with list size limited to

is usually orders of magnitude better than that predicted by

(39). In the proof of Theorem 17, we have used the inequality

, which is a weak lower bound since

for signal-to-noise ratios (SNRs) of practical interest. Replacing

on the right-hand side of (42) by the actual value ,

we obtain a somewhat stronger bound, which guarantees that

is on the list produced by the decoder, provided

(44)

This works well for large , although (44) is still a loose bound

for moderate list sizes. Nevertheless, the significance of The-

orem 17 is that it proves convergence to the asymptotic per-

formance at least as fast as . Furthermore, the theorem

shows that the size of the list required to approach the asymp-

totic performance within any given constant does not depend on

the length of the code.

In addition to the analysis of Theorem 17, we have per-

formed extensive simulations of algebraic soft-decoding with

list size limited to for various Reed–Solomon codes over

GF . As the running channel model, we have assumed

an AWGN channel with a 256-QAM signal constellation. The

256 constellation points were matched to the 256 elements of

GF in an arbitrary manner. The reliability matrix was

computed by measuring the distance from the channel output

to the four nearest constellation points. Thus only four entries

in each column of were nonzero. Moreover, all the entries

in were normalized and quantized to 8 bits of precision. The

performance curves were obtained by running Algorithm A

as discussed in the remark at the end of Section IV, then

interpolating and factoring as discussed in Section III. We note

that the same curves result by simply evaluating the sufficient

condition of Theorem 3: the difference between the two error

rates was in the second or third significant digit at all SNRs, in

all cases we have simulated.

Simulation results for the Reed–Solomon

code of rate are summarized in Fig. 3. One can see from

Fig. 3 that at codeword error rates of and lower, algebraic

soft-decision decoding provides a coding gain of about 1.5 dB,

whereas GMD decoding and Guruswami–Sudan decoding

achieve coding gains of about 0.2 and 0.4 dB, respectively,

compared to conventional hard-decision decoding. Although

the 1.5-dB coding gain corresponds to asymptotic performance

(cf. Theorem 12), it is evident from Fig. 3 that most of this

gain can be obtained with very small list sizes. A list of size

already outperforms both GMD and Guruswami–Sudan

decoding by a substantial margin, while a list of size

approaches the asymptotic performance to within 0.1 dB.

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

2820 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

Fig. 3. Performance of algebraic soft-decision decoding for the (255; 144;112) Reed–Solomon code with 256-QAM modulation on an AWGN channel.

Fig. 4. Performance of algebraic soft-decoding for the (204;188;17) shortened Reed–Solomon code with 256-QAM modulation on an AWGN channel.

Simulation results for the shortened Reed–

Solomon code of rate are presented in Fig. 4. We

observe that this code, in conjunction with a 256-QAM signal

constellation, is implemented today in certain satellite com-

munications systems. Here, algebraic soft-decision decoding

provides an ultimate coding gain of about 0.75 dB. The fact that

the asymptotic coding gain decreases with the rate of a code is

to be expected since list decoding, in general, is less effective

for high-rate codes. In fact, the asymptotic performance of

Guruswami–Sudan list decoding coincides with that of the

conventional Berlekamp–Wech decoding for the

code: the Guruswami–Sudan decoder finds all codewords

within Hamming distance of

from the (hard-decision) channel output (cf. Theorem 2). In

contrast, soft-decision list decoding does provide a significant

coding gain. As in the case of half-rate codes, most of this gain

can be achieved with small list sizes. Moreover, one can see

from Fig. 4 that the coding gain grows with SNR. Extrapo-

lating the simulation results to error rates of about (that

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

KOETTER AND VARDY: ALGEBRAIC SOFT-DECISION DECODING OF REED–SOLOMON CODES 2821

are of interest for many applications), one should expect coding

gains in excess of about 1.0 dB for high-rate as well as low-rate

Reed–Solomon codes.

VII. CHANNELS WITH MEMORY AND

CONCATENATED CODING

Throughout this paper, we have assumed that the channel

input comes from a product distribution, and that the channel

is memoryless. In other words, if and

denote the random vectors at the chan-

nel input and output, respectively, we have assumed that

are independent and identically distributed (i.i.d.)

and that depends only on , which makes the random vari-

ables i.i.d. as well. These assumptions are re-

flected in our definition of the reliability matrix in (7) and (8)

and of the expected score in (14) and (15). These are the basic

concepts that underlie our soft-decoding algorithm.

While the preceding assumptions are justified in a variety

of contexts, there are important applications of Reed–Solomon

and algebraic-geometry codes where these assumptions are not

valid. In practice, the most consequential of such applications

is the use of Reed–Solomon (and algebraic-geometry) codes as

outer codes in concatenated coding schemes [11], [15].

In the most general setup, we have to assume that the channel

input and output are governed by a -dimensional joint

probability distribution . This setup encompasses ar-

bitrary channels with memory and allows for arbitrary distribu-

tions on the channel input. For , let

be the conditional joint distribution on the channel input

given that . Then, in the most general

case, given the vector observed at the channel output

and a multiplicity matrix , we need to compute the

expected score with respect to , namely

(45)

We then need to find a multiplicity matrix that max-

imizes this expected score. In what follows, we show that the

decoding procedure of Section IV can be easily modified (in

an optimal way) to accommodate channels with memory in the

general setup of (45).

To this end, we introduce a generalized reliability matrix ,

which reduces to the reliability matrix for memoryless chan-

nels and product input distributions. In the general case,

is a matrix whose entries are defined as follows:

for and (46)

where is the observed channel output,

is the channel input, and is the th element of the input al-

phabet . The following lemma is the counterpart of

Lemma 6 for channels with memory and/or non-product input

distributions.

Lemma 18: The expected score with respect to the proba-

bility distribution is equal to the inner product of

and the multiplicity matrix, namely

Proof: Let denote the expected value of with re-

spect to the distribution , namely

Since if , and otherwise, the entry

found in row and column of the matrix is given by

Thus is precisely the generalized reliability matrix . The

theorem now follows by the linearity of expectation

The result of Lemma 18 is of exactly the same form as that of

Lemma 6. This makes it possible to apply Algorithm A, without

change, to the generalized reliability matrix to compute a

multiplicity matrix that maximizes the expected score in (45).

Corollary 19: Let denote the multiplicity matrix

produced by Algorithm A for a given generalized reliability ma-

trix and a given number of interpolation points . Let be

the cost of . Then

Corollary 19 follows immediately from Theorem 7 and

Lemma 18, and provides the basis for soft-decision decoding

on channels with memory: all the results of Sections III–VI

apply, with the reliability matrix replaced by the generalized

reliability matrix .

The remaining problem is how to compute given the

channel observations. Fortunately, a computation of this kind is

very common in communication systems.

Given a joint distribution on the channel input

and output together with a specific observation

, we have to compute the conditional probabil-

ities for all and

all positions . This is precisely the task known

as maximum a posteriori (MAP) symbol-by-symbol decoding.

General algorithms for MAP symbol-by-symbol decoding,

such as the sum–product algorithm or the forward–backward

algorithm, are well known [18].

In particular, if the channel is a finite-state machine with a

moderate number of states, then the generalized reliability ma-

trix can be computed with the Bahl–Cocke–Jelinek–Raviv

(BCJR) forward–backward algorithm [2]. Important special

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

2822 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

(a)

(b)

Fig. 5. Algebraic soft-decision coding gains on a fast Rayleigh-fading channel. Codewords of the Reed–Solomon code are binary phase-shift keying (BPSK)
modulated to produce a sequence of 255�8 bits (b ; b ; . . . ; b). This sequence is multiplied componentwise by the vector (� ; � ; . . . ; �), where � are
i.i.d. Rayleigh random variables with unit mean. The channel output is given by � b + z ; � b + z ; . . . ; � b + z , where z are zero-mean
i.i.d. Gaussian random variables. In computing the reliability matrix �, the channel states � are assumed to be unknown to the receiver. Large cost (high
interpolation multiplicity) asymptotic performance is shown for both the Guruswami–Sudan decoder and the algebraic soft-decision decoder. (a) Performance
of the (255;144;112) Reed–Solomon code. (b) Performance of the (255;191;65) Reed–Solomon code.

cases include intersymbol interference (ISI) channels and outer

channels in a concatenated coding scheme, whose memory

derives from an inner convolutional (or block) code. If the

trellis complexity of the inner code is moderate (as is the case in

practice), then the BCJR [2] algorithm is usually quite efficient

. Thus one of the key conclusions of this section is as follows:

in the context of concatenated coding, the BCJR algorithm

turns out to be an efficient means for converting a channel

with memory into a “memoryless” channel for the purposes of

algebraic soft-decision decoding.

Note Added in Proof: We point out that the coding gains

due to algebraic soft-decision decoding of Reed–Solomon

codes on certain important channels (with or without memory)

turn out to be much higher than the corresponding coding gains

on a memoryless AWGN channel. For example, simulation

results for a fast Rayleigh-fading channel are presented in

Fig. 5. We see from Fig. 5(a) that algebraic soft-decoding of

the Reed–Solomon code provides a coding

gain of about 3.0 dB over hard-decision decoding, whereas

the corresponding gain on the AWGN channel is 1.5 dB (cf.

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

KOETTER AND VARDY: ALGEBRAIC SOFT-DECISION DECODING OF REED–SOLOMON CODES 2823

Fig. 3). In Fig. 5, we assume that channel state information is

unknown to the receiver. Given the channel states, one can do

even better. For example, for the Reed–Solomon

code, we observe a soft-decision coding gain of about 2.5 dB in

Fig. 5(b), whereas Gross et al. [12], [13] assume perfect state

information and obtain a soft-decision coding gain of 3.5 dB

for the same code.

VIII. CONCLUSION

We have shown that interpolation-based decoding can be

used to devise an efficient soft-decision decoding algorithm

for Reed–Solomon codes. The soft-decoding algorithm outper-

forms both GMD decoding and Guruswami–Sudan list de-

coding by a substantial margin.

The focus of this paper has been the performance achievable

in a probabilistic setting, where the channel output is charac-

terized in terms of a posteriori probabilities rather than error

patterns. This is quite different from several recent papers [15],

[19] which focus on a combinatorial setting, and provide guar-

antees on the number (and type) of errors that can be corrected

on certain hard-decision channels. In particular, for long codes,

the criterion derived here for the computation of a multiplicity

matrix allows for reliable transmission at the highest possible

rate, although this is not necessarily the criterion that maximizes

the number of errors that one can guarantee to correct.

The asymptotic performance of the proposed soft-decoding

algorithm for a large number of interpolation points or, equiva-

lently, for large lists has been characterized in terms of simple

geometric conditions. Moreover, it has been shown that that the

asymptotic performance can be approached arbitrarily closely

with list sizes that are bounded by a constant, even as the length

of a code grows beyond all bounds.

APPENDIX

ON THE UNDERLYING PROBABILISTIC MODEL

In Section IV, in order to convert posterior probabilities (the

reliability matrix) into interpolation points (the multiplicity

matrix), we regard the transmitted codeword as a random

vector and use the following

probability distribution:

where is the vector observed at the

channel output (cf. (15) of Section IV). Recall that this distribu-

tion corresponds to the following scenario: a vector is drawn

uniformly at random from the space and transmitted over a

memoryless channel characterized by (6); thereupon the vector

is observed at the channel output. Up to certain nat-

ural assumptions, this is indeed what happens, except that the

transmitted codeword is drawn uniformly at random from

the code rather than the entire space . Thus the

a priori distribution of is , where

is the indicator function for de-

fined by

if

otherwise.

Given the channel observations one

can easily compute the true posterior probability distribution of

as follows:

(47)

The normalization constant in (47) is given by

(48)

where is the probability density function of the channel

output (we assume without loss of

generality that is continuous), and are the marginal

probability densities derived from . The expression in

(47) follows by repeated application of the Bayes rule, first to

and then to . Hence,

the precise optimization problem we would like to solve is

(49)

where, in contrast to (16), the expectation is taken with

respect to the true posterior distribution (47). While (49) gives

a natural optimality criterion for the computation of the multi-

plicity matrix, we shall see that the computation itself is likely

to be intractable.

There are two sources of difficulty in performing the max-

imization in (49). One of these has to do with the fact that

computing is difficult, even for a single input vector

. While and

are easy to evaluate, it can be shown that computing in (48) for

an arbitrary reliability matrix and an arbitrary linear code

is NP-hard. This difficulty, however, can be avoided as follows.

Let

(50)

be a density function. Given a multiplicity matrix , let us for-

mally define the expected score with respect to as follows:

(51)

Then, it is easy to see from (50) and (51) that and

differ by a factor of that does not depend on the

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

2824 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 11, NOVEMBER 2003

multiplicity matrix . Thus the knowledge of is not essential

for the computation of in (49), and we have

(52)

Unfortunately, the second difficulty in the optimization of (49)

and (52) is inherent in the presence of the indicator function

in both and . Specifically, we now show

that given a polynomial-time algorithm for the computation

of in (52), one could devise a polynomial-time

algorithm for maximum-likelihood hard-decision decoding of

. If is a general linear code, the latter task is

known [4] to be NP-hard.

More precisely, let be a fixed prime power and let

denote the Hamming distance. Then the following decision

problem:

Problem: MAXIMUM-LIKELIHOOD DECODING

Instance: Positive integers , an matrix

over , and a vector .

Question: Is there a vector such that

and ?

was shown to be NP-complete by Berlekamp, McEliece, and

van Tilborg [4]. Let denote the field of rational numbers.

In this appendix, we exhibit a polynomial transformation from

MAXIMUM-LIKELIHOOD DECODING to the following decision

problem:

Problem: OPTIMAL MULTIPLICITY MATRIX

Instance: Positive integers , , and , an matrix

over which defines a code , a reliability

matrix over , and a rational number .

Question: Is there a matrix such that

?

It is easy to see that OPTIMAL MULTIPLICITY MATRIX is just

a reformulation of the optimization problem (52) as a decision

problem. Notice that this decision problem is not necessarily

in NP, since given a putative solution , there is no

obvious way to verify that in polynomial

time.

Theorem 20: OPTIMAL MULTIPLICITY MATRIX is NP-hard.

Proof: We reduce from MAXIMUM-LIKELIHOOD DE-

CODING. Given an instance of MAXIMUM-LIKELIHOOD

DECODING, we generate an instance of OPTIMAL MULTIPLICITY

MATRIX as follows. Fix a rational number such that

and let . This

choice of and ensures that and .

In terms of , , and , we set

The fact that implies that is a valid re-

liability matrix. We take . Finally, we use the

same parity-check matrix , and set . This completes the

mapping of onto an instance of OPTIMAL

MULTIPLICITY MATRIX.

Suppose that is a “YES” instance of MAXIMUM-

LIKELIHOOD DECODING. Then there exists a codeword

such that . Let . It is easy to

see that , and so for . Furthermore

where the inequality follows by retaining a single term in the

summation over that corresponds to . With

the reliability matrix given by , we further

conclude that

where the last inequality follows from and

Therefore, if is a “YES” instance of MAXIMUM-

LIKELIHOOD DECODING then is also a “YES”

instance of OPTIMAL MULTIPLICITY MATRIX.

Now let be a “NO” instance of MAXIMUM-LIKELI-

HOOD DECODING. Then, for all .

Observe that for any matrix and any vector ,

we have . It follows that

for any . Hence, if is a “NO” instance

of MAXIMUM-LIKELIHOOD DECODING then is

a “NO” instance of OPTIMAL MULTIPLICITY MATRIX.

It follows from Theorem 20 that solving the optimization

problem (52) for an arbitrary linear code and an ar-

bitrary cost is NP-hard. It is possible to argue that the original

optimization problem (16) might be also NP-hard for arbitrary

costs; nevertheless, Algorithm A solves this problem for certain

specific costs. However, in contrast to (16), the optimization in

(52) remains NP-hard even if we restrict the cost to . Fur-

thermore, as can be seen from the proof of Theorem 20, maxi-

mizing over all multiplicity matrices such that

(this is equivalent to selecting interpolation points

regardless of the cost) is still NP-hard. The analogous problem

for , where is the distribution in (15) is trivial:

it is solved by allocating all the points at the position of the

largest entry in .

Finally, one might argue that while the OPTIMAL MULTI-

PLICITY MATRIX problem has to do with arbitrary linear codes

over , the codes involved in the optimization task (52)

are Reed–Solomon codes and thus have a lot of structure.

In this context, Theorem 20 shows that the computation of

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

KOETTER AND VARDY: ALGEBRAIC SOFT-DECISION DECODING OF REED–SOLOMON CODES 2825

in (52) subsumes maximum-likelihood hard-deci-

sion decoding of Reed–Solomon codes. No polynomial-time

algorithm for maximum-likelihood hard-decision decoding of

Reed–Solomon codes is presently known [28], and the problem

is generally considered to be hard.

ACKNOWLEDGMENT

The authors are grateful to David Forney, Marc Fossorier,

Tom Høholdt, Elias Masry, Alon Orlitsky, and Madhu Sudan for

stimulating discussions. They thank the anonymous referee for

valuable comments that improved the presentation of this paper.

REFERENCES

[1] D. Augot and L. Pecquet, “A Hensel lifting to replace factorization in
list-decoding of algebraic-geometric and Reed–Solomon codes,” IEEE

Trans. Inform. Theory, vol. 46, pp. 2605–2614, Nov. 2000.
[2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear

codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory,
vol. IT-20, pp. 284–287, Mar. 1974.

[3] E. R. Berlekamp, “Bounded distance+1 soft-decision Reed–Solomon
decoding,” IEEE Trans. Inform. Theory, vol. 42, pp. 704–721, May
1996.

[4] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the
inherent intractability of certain coding problems,” IEEE Trans. Inform.

Theory, vol. IT-24, pp. 384–386, May 1978.
[5] E. R. Berlekamp, R. E. Peile, and S. P. Pope, “The application of error

control to communications,” IEEE Commun. Mag., vol. 25, pp. 44–57,
Jan. 1987.

[6] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley Interscience, 1991.

[7] A. B. Cooper 3rd, “Soft-decision decoding of Reed-Solomon codes,”
in Reed-Solomon Codes and their Applications, S. B. Wicker and V. K.
Bhargava, Eds. New York: IEEE Press, 1994, pp. 108–124.

[8] G.-L. Feng, “A fast special factorization algorithm in the Sudan de-
coding procedure,” in Proc. 31st Allerton Conf. Communications, Con-

trol, and Computing, Oct. 2000, pp. 593–602.
[9] G.-L. Feng and X. Giraud, “Fast algorithms in Sudan decoding proce-

dure for Reed–Solomon codes,” IEEE Trans. Inform. Theory, submitted
for publication.

[10] G. D. Forney Jr., “Generalized minimum distance decoding,” IEEE

Trans. Inform. Theory, vol. IT-12, pp. 125–131, Apr. 1966.
[11] , Concatenated Codes. Cambridge, MA: MIT Press, 1966.
[12] W. J. Gross, F. R. Kschischang, R. Koetter, and P. G. Gulak, “A

VLSI architecture for interpolation in soft-decision list decoding of
Reed-Solomon codes,” Proc. IEEE Workshop on Signal Processing

Systems, pp. 39–44, Oct. 2002.

[13] , “Applications of algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Commun., submitted for publication.

[14] V. Guruswami and M. Sudan, “Improved decoding of Reed–Solomon
and algebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 45,
pp. 1757–1767, Sept. 1999.

[15] , “List decoding algorithms for certain concatenated codes,” IEEE

Trans. Inform. Theory, submitted for publication.
[16] R. Koetter, “On Algebraic Decoding of Algebraic-Geometric and Cyclic

codes,” Ph.D. dissertation, Univ. Linköping, Linköping, Sweden, 1996.
[17] , “Fast generalized minimum distance decoding of algebraic geo-

metric and Reed–Solomon codes,” IEEE Trans. Inform. Theory, vol. 42,
pp. 721–738, May 1996.

[18] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp.
498–519, Feb. 2001.

[19] R. R. Nielsen, “Decoding concatenated codes with Sudan’s algorithm,”
IEEE Trans. Inform. Theory, submitted for publication.

[20] R. R. Nielsen and T. Høholdt, “Decoding Reed-Solomon codes beyond
half the minimum distance,” preprint, 1998.

[21] V. Olshevsky and A. Shokrollahi, “A displacement structure approach
to efficient decoding of Reed-Solomon and algebraic-geometric codes,”
in Proc. 31th ACM Symp. Theory of Computing (STOC), Atlanta, GA,
May 1999, pp. 235–244.

[22] A. Papoulis, Probability, Random Variables, and Stochastic Pro-

cesses. New York: McGraw-Hill, 1984.
[23] V. Ponnampalam and B. S. Vucetic, “Soft decision decoding of Reed-

Solomon codes,” in Proc. 13th Symp. Applied Algebra, Algebraic Algo-

rithms, and Error-Correcting Codes, Honolulu, HI, Nov. 1999.
[24] S. Ray-Chaudhuri and A. H. Chan, “Bit-level parallel decoding of Reed-

Solomon codes,” in Proc. 31th Allerton Conf. Communications, Control,

and Computing, Sept. 1993.
[25] R. M. Roth and G. Ruckenstein, “Efficient decoding of Reed–Solomon

codes beyond half the minimum distance,” IEEE Trans. Inform. Theory,
vol. 46, pp. 246–258, Jan. 2000.

[26] U. Sorger, “A new Reed-Solomon decoding algorithm based on
Newton’s interpolation,” IEEE Trans. Inform. Theory, vol. 39, pp.
358–365, Mar. 1993.

[27] M. Sudan, “Decoding of Reed-Solomon codes beyond the error correc-
tion bound,” J. Complexity, vol. 12, pp. 180–193, 1997.

[28] A. Vardy, “Algorithmic complexity in coding theory and the minimum
distance problem,” in Proc. 29th Symp. Theory of Computing, El Paso,
TX, 1997, pp. 92–109.

[29] A. Vardy and Y. Be’ery, “Bit-level soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Commun., vol. 39, pp. 440–445, Mar.
1991.

[30] L. R. Welch and E. R. Berlekamp, “Error Correction for Algebraic Block
Codes,” U.S. Patent 633 470, Dec. 30, 1986.

[31] W. W. Wu, D. Haccoun, R. E. Peile, and Y. Hirata, “Coding for satellite
communication,” IEEE J. Select. Areas Commun., vol. 5, pp. 724–785,
May 1987.

[32] X.-W. Wu and P. H. Siegel, “Efficient root-finding algorithm with ap-
plication to list decoding of algebraic-geometric codes,” IEEE Trans.

Inform. Theory, vol. 47, pp. 2579–2587, Sept. 2001.

Authorized licensed use limited to: University of Ottawa. Downloaded on April 22, 2009 at 15:21 from IEEE Xplore. Restrictions apply.

