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Abstract: The paper poses the problem of minimum-time velocity planning subject to a jerk amplitude 

constraint and to arbitrary velocity/acceleration boundary conditions. This problem which is relevant in 

the field of autonomous robotic navigation and also for inertial one-dimensional mechatronics systems 

is dealt with an algebraic approach based on Pontryagin’s Maximum Principle. The exposed complete 

solution shows how this time-optimal planning can be reduced to the problem of determining the posi-

tive real roots of a quartic equation. An algorithm that is suitable for real-time applications is then pre-

sented. The paper includes detailed examples also highlighting the special cases of this planning prob-

lem. 
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1. INTRODUCTION 

 

In the field of robotics, much research has focused on 

minimum-time problems because solving them helps to 

achieve high-performance or to maximize production. 

For instance, an effective algorithm to move a robotic 

manipulator in minimum-time along a specified 

geometric path subject to input torque/force constraints 

was presented by Shin and McKay in [1]. In another 

instance, taken from autonomous robotic navigation, a 

unicycle mobile robot subject to linear and angular 

velocity bounds can be moved in minimum-time from a 

given configuration to another one by using Reeds-

Shepps curves [2,3].  

Still in the field of autonomous robotic navigation, the 

work presented in this paper faces the minimum-time 

(longitudinal) velocity planning in the context of the so-

called path-velocity decomposition [4] and the iterative 

steering technique [5-7]. The robot vehicle has to travel 

on an assigned geometric path of a given length and the 

longitudinal vehicle velocity can be planned by seeking a 

time-optimal (i.e., minimum-time) motion subject to a 

jerk amplitude constraint and to arbitrary velocity/ 

acceleration boundary conditions. The continuous-

acceleration profile with a given bound on the jerk (i.e., 

the time derivative of the acceleration) facilitates the 

implementation of the time-optimal movement and the 

interpolation of arbitrarily given velocity and acceler-

ation at the endpoints of the planned time interval 

permits the supervisor of the iterative steering strategy to 

perform real-time sensor-based navigation while 

ensuring an overall smoothness of the vehicle motion [5].  

The importance of minimum-time velocity planning 

with arbitrary boundary conditions was first pointed out 

by Koh et al. [8] in 1999 in the context of robotic and 

mechatronics systems with real-time motion planning 

applications. In subsequent years, velocity planning for 

autonomous navigation was dealt with cubic (polyno-

mial) splines schemes and parametric local optimization 

to achieve minimum-time optimality in static and 

dynamic environments [9] or minimum-jerk optimality 

when a prefixed time interval is given [10-12]. These 

approaches use fast and efficient optimization algorithms 

and can deal with velocity and acceleration constraints, 

but they all cannot achieve true optimality because the 

function space where to search the optimizer is restricted 

by the choice of the polynomial splines scheme and 

moreover, the optimization algorithms can only converge 

on local minima. An application of [10] to the velocity 

planning for autonomous passenger vehicles was 

presented in [13] to achieve travel comfort with low 

values of acceleration and jerk. For an automated 

assembly manufacturing, a fifth order splines scheme 

was adopted in [14] to obtain a velocity planning that 

minimizes the time integral of the squared jerk. A 

comprehensive reference on velocity planning for 

automatic machines and robots can be found in [15]; 

more general trajectory planning methods and algorithms 

are presented in [16]. 

The addressed minimum-time velocity planning 

problem will be easily recast into an input-constrained 

reachability control problem for the triple integrator 

system (cf. (6)), where the time-optimal control input is 

actually the second time-derivative (jerk) of the sought 
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velocity profile. Hence, by virtue of the Pontryagin’s 

Maximum Principle, the time-optimal control is a bang-

bang function with at most two switchings. The paper 

presents an algebraic approach to obtain this time-optimal 

control jerk (and then the minimum-time velocity 

profile) and an algorithm to compute it. The exposed 

algebraic solution shows that the addressed problem can 

be reduced to the problem of determining the positive 

real roots of a quartic equation whose coefficients 

depend on the problem data, i.e., the path length, the jerk 

bound, and the velocities and accelerations at the 

endpoints of the planned time interval. This implies that 

the addressed minimum-time planning is solvable in a 

few steps, and consequently real-time applications of the 

devised algorithm are practicable.  

The paper is organized as follows. Section 2 states the 

minimum-time velocity planning problem and presents 

the structure of the corresponding time-optimal jerk. The 

case of initial or final nil conditions (i.e., when velocity 

and acceleration are zero at the initial or final planning 

time) is also addressed and preliminary results are 

exposed (Proposition 1 and Corollary 1). The next 

Section 3 presents the algebraic solution of the planning 

problem. The solution set Sp associated to the nonlinear 

algebraic systems (17) is introduced and the reduction of 

this system to the single quartic equation (23) is exposed. 

Two subsections treat the special planning cases: 

subsection 3.1 considers the degenerate case (cf. 

Proposition 3) and subsection 3.2 provides a result on the 

cardinality of Sp (cf. Proposition 4) for the case of initial 

or final nil conditions. The algorithm to compute the 

time-optimal jerk solution is reported in Section 4. 

Examples are illustrated in Section 5 and final remarks 

end the paper in Section 6. The presented exposition is a 

revised and expanded version of the conference paper 

[17]. Some of the improvements over [17] are: (i) 

introduction of the case of initial or final nil conditions; 

(ii) reduction to a quartic equation instead to a fifth one; 

(iii) introduction of the (algebraic) solution set Sp; (iv) 

rigorous analysis of the degenerate case.  

Notation (piecewise C
2
-continuity): A function 

: ,f →ℝ ℝ ( )t f t→  has PC2 continuity, and we say 
2( )f t PC∈  if (1) 1( ) ( );f t C∈ ℝ  (2) 2( ) (f t C∈ −ℝ  

1 2
{ , , });t t …  (3) 2lim ( ),

it t

D f t
−

→

∃
2lim ( ),

it t

D f t
+
→

∃  

1,2,i = …  where 
1 2

{ , , }t t …  is a set of discontinuity 

instants.  

 

2. PROBLEM STATEMENT AND THE 

STRUCTURE OF THE OPTIMAL SOLUTION 

 

The problem solved in this paper is the planning of a 

minimum-time smooth velocity profile v(t)∈PC2 where 

the jerk does not exceed a given bound and the initial and 

final conditions on the velocity and acceleration are 

arbitrarily assigned. 

Formally, the Minimum-Time Velocity Planning 

(MTVP) problem can be stated as follows: 

2

min f
v PC

t

∈

                   (1) 

such that 

0
( ) ,

ft

fv d sξ ξ =∫  (2) 

0
(0) , ( ) ,f fv v v t v= =  (3) 

0
(0) , ( ) ,f fv a v t a= =ɺ ɺ  (4) 

| ( ) | [0, ] ,M fv t j t t≤ ∀ ∈ɺɺ  (5) 

where tf is the traveling time to complete a path whose 

length is sf > 0 (or also sf < 0 in case a backward 

movement is prescribed), the maximum allowed jerk 

value is jM > 0 and 0
,v ,fv ∈ℝ 0

, fa a ∈ℝ  are arbitrary 

velocities and accelerations imposed at the endpoints of 

interval [0, ]ft  (they form the boundary conditions of 

the problem). The solution of the above problem is 

denoted by v*(t)∈PC2 with associated minimum-time 

.ft
∗  

The MTVP problem can be easily recast to an input-

constrained minimum-time control problem with respect 

to the triple integrator system. Indeed consider the jerk 

( )v tɺɺ  as the control input u(t) of a cascade of three 

integrators as depicted in Fig. 1. 

Introduce the state x(t) as the column vector 

1

2

3

( ) ( )

( ) : ( )

( ) ( )

x t s t

x t v t

x t v t

   
   =   
      ɺ

 

and the triple integrator model is as follows 

0 1 0 0

( ) 0 0 1 ( ) 0 ( ) .

0 0 0 1

t t u t

   
   = +   
      

x xɺ  (6) 

Hence, the problem (1)-(5) is equivalent to find the time-

optimal control u*(t) that brings the state of system (6) 

from the initial state 
0 0 0

[0 ]
T

v a=x  to the final state 

[ ]
T

f f f fs v a=x  in minimum time ,ft
∗  while satisfying 

the input constraint 

| ( ) | [0, ] .M fu t j t t
∗ ∗

≤ ∀ ∈  (7) 

In this context, from the Pontryagin’s Maximum 

Principle it is known that there exists a unique time-

optimal u*(t) which is a classic bang-bang control 

function, i.e., a function that switches between the 

minimum and maximum allowed values (in our problem 

– jM and + jM). A relevant result of the Pontryagin’s 

Maximum Principle is the following. 

 

Theorem 1 [18]: Let be given a controllable n-th 

order system u= +x Ax bɺ  with any given amplitude 

Fig. 1. The triple integrator system for velocity plann-

ing. 
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input constraint 0.c >  Consider the unique time-

optimal bang-bang control u*(t) that brings the system 

from a given initial state 
0

(0) n

= ∈x x ℝ  to a given 

final state ( ) n
f ft
∗

= ∈x x ℝ  in minimum-time ft
∗  while 

satisfying ( )u t c
∗| |≤ [0, ].ft t

∗
∀ ∈  If all the eigenvalues 

of the system matrix A are real the time-optimal u*(t) has 

at most n –1 switching times. 

 

The following proposition, which derives from a 

Sontag’s result [19], is also relevant. 

 

Proposition 1: Let be given a controllable n-th order 

system u= +x Ax bɺ  with any given amplitude input 

constraint 0c >  and assume that all the eigenvalues of 

A are real. Consider initial and final states x0, 
n

f ∈x ℝ  

for which 
0
0=x  or 0.f =x  In both cases if a bang-

bang control u(t) (i.e., an input function that switches 

between the constant values –c and +c) with at most n –1 

switching times steers the state from x0 to xf then u(t) is 

the unique time-optimal control that steers x0 to xf in 

minimum-time. 

 

Proof: Since the system is controllable and either the 

initial or final state is 0, Proposition 10.2.9 in [19] 

guarantees that if u satisfies the maximum principle, then 

it is time-optimal. It remains to show that control u(t), 

[0, ]ft t∈  (tf is the associated steering time) satisfies 

indeed the maximum principle, i.e., there exists a vector 
n

η ∈ℝ  (the initial costate) such that 

( )( ) sign for almost all [0, ] ,T t
fu t e c t tη

−

= ∈
A
b  (8) 

where “sign” is the standard sign function. To this end, 

let 
1 2
, , , (0, )k ft t t t… ∈  be the switching times of u, with 

.k n<  In case 1,k n< −  choose additional distinct times 

1 2 1
, , ,k k n ft t t t

+ + −
… >  arbitrarily. It can be always 

assumed (0) 0.u ≠  Define the initial costate n

η ∈ℝ  as 

the unique solution of the linear system 

( )sign (0)

0, 1, , 1.
T

i

T

tT

u

e i n

η

η
−

 =

 = = … −

A

b

b

 (9) 

System (9) has indeed a solution which is unique because 

matrix 

11[ , , ]n
tt

e e
−

−−

= , …
AA

M b b b  

is nonsingular. In fact, assume by contradiction that M is 

singular, then there exist n

λ∈ℝ  such that 0,
T
λ =M  

this implies that function ( ) T t
g t eλ

−

=
A
b  satisfies 

1 1
( ) 0, 0, , , .

n
g t t t t

−

= = …  

Function g is a quasipolynomial that has n distinct real 

roots. Hence, it must be identically zero, i.e., ( ) 0,g t ≡  

because any quasipolynomial that is not identically zero 

cannot have more than n –1 distinct real roots (see [20], 

Lemma 15.1). Therefore, g and its derivatives are all 

identically zero and by explicit evaluation at t = 0 it 

follows that 

1
[ , , ] 0,

T n
λ

−

, … =b Ab A b  

which means that pair (A, b) is not controllable and this 

contradicts the hypothesis. Hence, there exists 0η ≠  

satisfying relations (9) for which function T t
eη
−A
b  is a 

quasi-polynomial that has globally n –1 distinct roots and 

over the open interval (0, )ft  it has exactly the k roots 

1 2
, , ,

k
t t t…  and no other real root. Since 

( ) ( )0
sign sign (0)T t

t
e uη
−

=
| =A
b  

it then follows that control u satisfies statement (8) and 

this completes the proof.           � 

Considering that system (6) is the triple integrator 

model that has three null eigenvalues, from Theorem 1 it 

follows that the time-optimal jerk u*(t) has at most two 

switching instants. Hence, the structure of the optimal 

u*(t) is depicted in Fig. 2 where { , }M M Mu j j∈ − +  and 

1 2 3
0 ft t t t

∗
≤ ≤ ≤ =  with 0.ft

∗
>  Once the time-optimal 

jerk could been found, the time-optimal velocity would 

be straightforwardly given by 

( )0 0
0 0

( ) ( ) , [0, ].
t

fv t v a t u d d t t
η

ξ ξ η∗ ∗ ∗
= + + ∈∫ ∫  (10) 

Corollary 1: Consider the MTVP problem with initial 

nil conditions, i.e., v0 = 0, a0 = 0, or final nil conditions, 

i.e., vf = 0, af = 0. If a bang-bang control u(t) with at most 

2 switching times steers the state of system (6) from the 

initial state 
0 0 0

[0 ]
T

v a=x  to the final state [f fs=x  

fv ]
T

fa  then u(t) is the unique time-optimal control 

that steers 
0
x  to 

f
x  in minimum-time. 

Proof: If v0 = 0, a0 = 0 then x0 = 0 so that the thesis of 

the corollary is an immediate consequence of Proposition 

1. When vf = 0, af = 0 we note that a control u(t) steers 

system (6) from 
0 0

[0 ]
T

v a  to [ 0 0]
T

fs  if and only 

if u(t) steers system (6) from 
0 0

[ ]
T

fs v a−  to [0 0 0]
T . 

Hence, application of Proposition 1 in the case 0f =x  

completes the proof.            � 

 

3. THE ALGEBRAIC SOLUTION 

 

The structure of the time-optimal control jerk u*(t) — 

associated to the MTVP problem (1)-(5) — as exposed in 

the previous section leads to the algebraic approach to 

determine it. Indeed, the problem is reduced to finding, 

by exploitation of the boundary conditions (2)-(4), the 

switching time values t1 and t2, the prospective 

minimum-time t3, and the sign of the jerk initial value uM 

(corresponding to the positive + jM or the negative – jM). 

These switching times must satisfy the ordering 

1 2 3
0 t t t≤ ≤ ≤  with 

3
0.t >  

From (6) and the initial conditions, the acceleration 

profile x3(t) can be computed according to 

3 0 3
0

( ) ( ) , [0, ],
t

x t a u d t tξ ξ= + ∈∫  

where u(t) is the prospective optimal jerk to be defined 

as follows (cf. Fig. 2): 
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Fig. 2. The minimum-time control (jerk) profile. 

 

1

1 2

2 3

if [0, ]

( ) if ( , ]

if ( , ].

M

M

M

u t t

u t u t t t

u t t t

∈


= − ∈
 ∈

 (11) 

By integration of the jerk profile, the corresponding 

acceleration is: 

0 1

3 0 1 1 2

0 1 2 2 3

[0, ]

( ) 2 [ , ]

2 2 [ , ].

M

M M

M M M

a u t t t

x t a u t u t t t t

a u t u t u t t t t

+ ∈


= + − ∈
 + − + ∈

 (12) 

From interpolation of the acceleration at the final time t3, 

i.e., 
3 3
( ) ,fx t a=  it emerges an equation which is linear 

in the unknown t1, t2, and t3: 

1 2 3 0
2 2 .M M M fu t u t u t a a− + = −  (13) 

Considering the initial condition on velocity and 

integrating the second equation of state model (6), the 

velocity profile x2(t) arises as follows: 

2

2

0 0 1

2 2

0 1 0 1 1 2

2 2

0 1 2 0 1

2 32

2

( )

1
[0, ]

2

1
2 [ , ]

2

2

[ , ].1
2

2

M

M M M

M M M

M M

x t

v a t u t t t

v u t a t u t t u t t t t

v u t u t a t u t t

t t t

u t t u t

=


+ + ∈


 − + + − ∈

 − + + +


∈
− +

 (14) 

Interpolating the final velocity with relation 
2 3
( ) fx t v=  

we obtain an equation which is quadratic in t1, t2, and t3: 

2 2 2

1 1 3 2 2 3 3

0 3 0

1
2 2

2

.

M M M M M

f

u t u t t u t u t t u t

a t v v

− + + − +

+ = −

 (15) 

The integration of the first scalar equation of (6) leads to 

1 2
0

( ) ( )
t

x t x dξ ξ= ∫  and the interpolation of the final 

distance with x1(t3) = sf gives a cubic equation in the 

unknowns t1, t2, and t3: 

3 2 2 3 2

1 1 3 1 3 2 2 3

2 3 2

2 3 3 0 3 0 3

1 1

3 3

1 1
.

6 2

M M M M M

M M f

u t u t t u t t u t u t t

u t t u t a t v t s

− + − +

− + + + =

 (16) 

Collecting equations (13), (15) and (16), the following 

system of nonlinear algebraic equations arises 

1 2 3 0

2 2

1 1 3 2 2 3

2

3 0 3 0

3 2 2 3 2

1 1 3 1 3 2 2 3

2 3 2

2 3 3 0 3 0 3

2 2

2 2

1

2

1 1

3 3

1 1
.

6 2

M M M f

M M M M

M f

M M M M M

M M f

u t u t u t a a

u t u t t u t u t t

u t a t v v

u t u t t u t t u t u t t

u t t u t a t v t s

− + = −

− + + −


 + + = −



− + − +

 − + + + =

 (17) 

Define the data of the minimum-time velocity planning 

as vector 
0 0

: ( , , , , , )f M f fs j v a v a=p  and considering 

the structure of the optimal jerk as described in Section 2, 

the solution set which is relevant for our problem can be 

introduced as follows 

3

1 2 3 1 2 3
: {( , , ) : ( , , )S t t t t t t= ∈
p

ℝ  satisfies (17) with 

1 2 3
0 ,t t t≤ ≤ ≤

3
0,t > { , }}.
M M M

u j j∈ − +  (18) 

Remark 1: A triple 
1 2 3

( , , )t t t  contained in S
p
 is 

associated to 
M M

u j= +  or .

M M
u j= −  For simplicity, 

we denote it 1 2 3 [ ]( , , )t t t
+
 or 1 2 3 [ ]( , , )t t t

−
 if it is matched 

with the former or the latter respectively. 
 

Proposition 2: Set Sp is not empty for any data set p 

and contains the solution to the MTVP problem (cf. (1)-

(5)) for which the sought minimum-time is given by 

1 2 3

3
( , , )

min .f
t t t S

t t
∗

∈

=

p

 (19) 

Proof: For any data set p, the MTVP problem is 

equivalent to a minimum-time input-constrained feedfor-

ward control problem for the triple integrator model (6) 

which is a controllable system. Hence, by Pontryagin’s 

Maximum Principle, there exists a unique solution to the 

MTVP problem (cf. Theorem 1 and (10)) for which u*(t) 

has the structure described in Fig. 2 and (11). By 

integration of model (6) and by imposition of the 

boundary conditions (2)-(4), we have deduced that 

switching times t1, t2 and final time t3 of the optimal 

solution must satisfy the algebraic system (17). Hence, Sp 

is not empty and contains the optimal solution. However, 

other non-optimal triples (t1, t2, t3) may be found in Sp — 

cf. the examples of Section 5 — so that the sought 

optimal solution needs to be determined by (19), i.e., by 

minimizing the final time t3 of all the triples in Sp.   � 

Proposition 2 shows that the original minimum-time 

velocity planning problem has been completely reduced 

to an algebraic problem. Indeed, the minimum-time ft
∗  

will be determined by a finite search among the elements 

of the solution set Sp. Construction of Sp can be 

performed by algebraic reduction of system (17). The 

first equation of (17) implies 

03

1 2
.

2 2

f

M

a at
t t

u

−

= − +  (20) 
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By substituting the expression (20) of t1 into the second 

equation of system (17) we obtain 

2 23 1 1

3 0 3 0 04 2 4

2

3 0

(3 ) ( )
,M

M f f fu

M f

u t a a t a a v v

t

u t a a

− − + − + −

=

− +

  

 (21) 

which is a valid expression for the switching time t2 

provided that 

3 0
0M fu t a a− + ≠ .  (22) 

Eventually, by substitution of (20) and (21) into the third 

equation of system (17), a quartic equation in the 

unknown t3 is obtained: 

2 4 3

3 0 3

2 2 2
0 0 0 3

3 3

0 0

0

0 0 3

4 4 2 2

0 0 02 2

02 2 2

2 2

0 0 0

1 1
( )

32 8

1 1 3
( ) ( )

2 16 8

1 1
( )

8 24

)

1 1 1
( )

96 24 16

1
( ) 0 .

2

M M f

M f f f

f f

f
M M

f f M f

f f f

f

M M M

f f f f f

u t u a a t

u v v a a a a t

a a a a

a a

u u

a v a v u s t

a a a a a a

a a

u u u

v v v v a s a s

+ −

 
+ + − + − 
 

 −
+ − −



+ − −

+
− + + −

− + + − + =

 (23) 

This quartic equation can admit four real roots at most 

that generate four solutions of (17) at most using 

relations (20), (21). Considering that uM can be jM or – jM 

we may obtain at most eight triples (t1, t2, t3) contained in 

the solution set Sp. This fact along with the property that 

the roots of any quartic equation can be found by finite 

elementary operations and root extractions (cf. e.g., [21]) 

has the remarkable consequence that the time-optimal 

velocity planning is solvable in a finite number of steps 

(cf. Section 4). 

 

3.1. The degenerate case 

The triples (t1, t2, t3) generated by the quartic equation 

(23) and expressions (20), (21) are only valid if condition 

(22) is satisfied. When this condition is not satisfied, t3 

takes the peculiar value 

0

3
.

f

M

a a

t

u

−

=  (24) 

Considering that t3 must be strictly positive, i.e., t3 > 0, it 

follows that 

0 0
and sign( ) ,f M f Ma a u a a j≠ = −  (25) 

where sign denotes the standard sign function. If (24) 

holds, the first equation of system (17) becomes 
1

2
M

u t  

2
2 0
M

u t− =  which is equivalent to t1 = t2. Therefore, 

system (17) with the imposition of (24) and (25) takes 

the form 

1 2

0 0

0

3 2

0 0 0

0 02 2

| | ( )1

2

( ) ( ) | |1 1
.

6 2

f f

f
M

f f f

f
MM M

t t

a a a a
v v

j

a a a a a a
a v s

jj j

=
 − + = −

 − − − + + =



 

 (26) 

The second and third equations of (26) do not depend on 

the unknowns t1 and t2. This shows that the case at hand 

is a degenerate one that arises only when the given 

interpolating data satisfy the particular relations: 

0

0 0

0

3 2

0 0 0

0 02 2

| | ( )1

2

( ) ( ) | |1 1
.

6 2

f

f f

f
M

f f f

f
MM M

a a

a a a a
v v

j

a a a a a a
a v s

jj j

≠


− +
= −




− − − + + =



 

 (27) 

When relations (27) hold, the solution set Sp contains a 

subset of degenerate solutions according to 

0 0
| | | |

, , : 0, .
f f

M M

a a a a
S

j j
ξ ξ ξ

 − −     
∈ ⊆   

     
p
 (28) 

From (11) it follows that all the triples ( )0| |
, ,

f

M

a a

j
ξ ξ

−

 

contained in Sp actually correspond to just one jerk 

profile defined as: 

0
( ) sign( ) ,f Mu t a a j= −

3
[0, ];t t∈

0

3

| |
.

f

M

a a
t

j

−

=  (29) 

Even when the degeneracy conditions (27) are satisfied, 

the solution set Sp may contain “standard” triples (t1, t2, 

t3), i.e., triples for which 
0| |

3
f

M

a a

j
t

−

≠  (cf. Example 4 in 

Section 5). However, these standard triples do not need 

to be determined according to this result. 
 

Proposition 3: Suppose that the degeneracy condi-

tions (27) hold. Then the time-optimal jerk profile is 

given by (29), i.e., 

0
| |

,
f

f
M

a a
t

j

∗
−

=
0

( ) sign( ) ,f Mu t a a j
∗

= − [0, ].ft t
∗

∈  (30) 

Proof: The degeneracy conditions (27) ensure the 

existence of the degenerate triples (28) all corresponding 

to the jerk constant profile u(t) defined in (29). This jerk 

is actually the time-optimal (i.e., minimum-time) u*(t) 

reported in (30). To prove this, consider a standard triple 

(t1, t2, t3) of Sp. It satisfies the inequality 

0

3

| |
.

f

M

a a
t

j

−

≠  (31) 

We will show that necessarily 

0

3

| |
.

f

M

a a
t

j

−

>  (32) 
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From the first equation of (17), the final time t3 can be 

expressed as 

0

3 2 1
2( ).

f

M

a a

t t t

u

−

= + −  (33) 

Both the values + jM and – jM can be assumed by uM, so 

that we distinctly consider the cases 

0
sign( )M f Mu a a j= −  (34) 

and 

0
sign( ) .M f Mu a a j= − −  (35) 

From the case (34), (33) becomes 

0

3 2 1

| |
2( )

f

M

a a
t t t

j

−

= + −  

and taking into account both relation t2 ≥ t1 (cf. the 

definition of Sp in (18)) and (31), we deduce (32). 

The case given by (35) implies 

0

3 2 1

| |
2( )

f

M

a a
t t t

j

−

= − + −  

and 

0

2 1 3 2 1

| |
( ) .

f

M

a a
t t t t t

j

−

− = − + +  (36) 

Considering the triple ordering 
1 2 3

0 t t t≤ ≤ ≤  the 

following relations hold: 

0

2 1

| |
,

f

M

a a
t t

j

−

− ≥
0

2

| |
,

f

M

a a
t

j

−

≥
0

3

| |
.

f

M

a a
t

j

−

≥  (37) 

The last inequality of (37) with (31) proves (32) again. 

This concludes the proof by virtue of Proposition 2.  � 
 

Remark 2: The degenerate case in the MTVP 

problem only emerges when the initial and final 

conditions, i.e., v0, a0 and vf, af, sf, satisfy the special 

expressions given in (27). An interpretation of this 

degeneracy follows. Given the initial velocity and 

acceleration v0, a0, the final conditions vf, , af, sf are the 

unique values corresponding to an extreme, constant jerk 

( )
M

u t j
∗
=  or 

M
j−  applied for a given time interval 

3
[0, ].t  Indeed, af is dictated by equation (24) and vf, sf 

by the second and third expression in (27) respectively. 

 

3.2. The case of initial or final nil conditions 

A special case of the MTVP problem (1)-(5) emerges 

when v0 = 0, a0 = 0 (initial nil conditions) or vf = 0, af = 0 

(final nil conditions). As shown by Corollary 1 in this 

case if a jerk profile u(t) defined in (11) satisfies the 

boundary conditions, then it is the unique time-optimal 

u
*(t). This fact has a consequence on the solution set’s 

cardinality as the following result presents. 
 

Proposition 4: Suppose that v0 = 0, a0 = 0 or vf = 0, 

af = 0 and the degeneracy conditions (27) do not hold. 

Then the solution set Sp has cardinality equal to 1 or 

equal to 2. In the latter case, both elements of Sp still 

correspond to a unique time-optimal u*(t) that has just 

one switching time. 

Proof: The solution set Sp (cf. (18)) contains all the 

triples (t1, t2, t3) that define a jerk profile u(t) (cf. (11)) 

satisfying the boundary conditions of the MTVP problem. 

If v0 = 0, a0 = 0 or vf = 0, af = 0 then Corollary 1 says that 

u(t) is actually the unique time-optimal u*(t). 

On the assumption that the degeneracy conditions (27) 

do not hold, by Proposition 3, u*(t) must have one 

switching time at least. Consider the case for which u*(t) 

has two distinct switching times (i.e., 
1 2 3

0 ).t t t< < <  

Then Sp can only contain the sole triple (t1, t2, t3): the 

cardinality of Sp is 1. 

On the other hand, assume that u*(t) has just one 

switching time denoted by st and the final minimum-time 

is .ft
∗  If u*(t) has positive initial jerk then both distinct 

triples [ ]( )t f fs t t
∗ ∗

+
, ,  and [ ](0 )t fs t

∗

−
, ,  belong to Sp and 

correspond to the same u*(t). No other triples can 

correspond to u*(t): hence, the cardinality of Sp is 2. 

Analogously, when u*(t) has negative initial jerk, the sole 

triples in Sp that correspond to u
*(t) are the distinct 

[ ]( )t f fs t t
∗ ∗

−
, ,  and [ ](0 )t fs t

∗

+
, , . Cardinality of Sp is 

confirmed to be 2. � 

 

4. THE MTVP ALGORITHM 

 

In this section, the Minimum-Time Velocity Planning 

(MTVP) algorithm will be presented by exploiting the 

algebraic approach exposed in Section 3. Hence, using 

pseudocode, the MTVP algorithm can be composed as 

follows. It uses the Quartic Equation (QE) procedure 

immediately defined after the main algorithm. 

 

MTVP Algorithm  

Input: v0, a0, vf, af, 0,fs ≠ 0.
M
j >  

Output: t1, t2, 0,ft
∗
>  and uM of the time-optimal jerk 

u
*(t)  
begin  

if conditions (27) are satisfied then  

0

1 2
( ) (0 0 )

f

M

a a

f j
t t t

| − |∗
, , := , , ;  

0
sign( )M f Mu a a j:= − ;  

exit  
endif  

M M
u j:= ; 0α := ;  

QE Procedure;  

if 0α =  then  

M M
u j:= − ;  

QE Procedure;  

1 2 1 2 3
( ) ( )ft t t β β β∗
, , := , , ;  

exit  
endif  

1 2 1 2 3
( ) ( )ft t t β β β∗
, , := , , ;  

if 
0 0

( 0 0) ( 0 0)f fv a v a= ∧ = ∨ = ∧ =  then 
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exit 
endif  

M M
u j:= − ; 0α := ;  

QE Procedure;  

if 0α =  then  

M M
u j:= ;  

exit  
endif  

if 
3 ftβ ∗
<  then  

1 2 1 2 3
( ) ( )ft t t β β β∗
, , := , , ;  

else  

M M
u j:= ;  

endif  
end  

 

QE Procedure  
begin 

Compute the positive real roots of equation (23),  

store them in vector 
31 32 3

( , , , ),
l

t t t:= …r ( 4)l ≤   

satisfying 
31 32 3l
t t t< < <…  and  

3 0
0 1 2M i fu t a a i l− + ≠ , = , , ,… ;  

if r  is empty then  
return  
endif  

for 1i l= , ,…  do  
2 23 1 1
3 0 3 0 04 2 4

3 0

(3 ) ( )

2

M i f i f fuM

M i f

u t a a t a a v v

i u t a a
t

− − + − + −

− +
:=  ;  

if 
2 3

0
i i

t t≤ ≤  then  

021 1

1 2 32 2

f

M

a a

i i i u
t t t

−

:= − + ;   

if 
1 2

0
i i
t t≤ ≤  then  

1α := ;  

1 2 3 1 2 3
( ) ( )

i i i
t t tβ β β, , = , , ;  

return  
endif  
endif  
endfor  
return  
end  

 

Remark 3: In the MTVP algorithm, note the roles of 

the Degeneracy Test and of the Nil Conditions Test. The 

former test is based on Proposition 3 and if it is satisfied 

the time-optimal jerk can be immediately provided 

without the need to solve the quartic equation. If the Nil 

Conditions Test is satisfied then Proposition 4 permits to 

exit the algorithm as soon as a bang-bang jerk profile 

satisfying the boundary conditions is found.  

 

5. EXAMPLES 

 

Example 1: Consider a MTVP problem where the 

distance to be traveled is 3.25fs = m, the allowed 

maximum jerk is 0.5
M
j = m/s3, the initial velocity and 

acceleration are 
0
0v = m/s and 

0
0a = m/s2, and the 

final velocity and acceleration are 2.25fv = m/s and 

1.5fa = m/s2. This data corresponds to parameter vector 

(3.25,0.5,0,0,2.25,1.5)=p  and the associated solution 

set is 

{ }[ ](1 3 7) .S
+

= , ,
p

 

Hence, the time-optimal jerk, that is associated to triple 

[ ](1 3 7) ,
+

, ,  has initial jerk value 0.5
M
u = + m/s3, 

switching times 
1
1t = s, 

2
3t = s, and final minimum-

time 7ft
∗
= s (cf. (11) and Remark 1). The correspond-

ing profiles of jerk, acceleration, velocity and distance 

are depicted in Figs. 3 and 4. 

Note that the case at hand is a non-degenerate one 

because the degeneracy conditions (27) are not satisfied 

and Sp has cardinality one according to Proposition 4 (the 

problem data corresponds to initial nil conditions, i.e., 

v0 = 0 and a0 = 0). The time-optimal triple [ ](1 3 7)
+

, ,  in 

Sp can be readily determined by setting 0 5
M
u = + .  and 

computing the positive real roots of the quartic equation 

(23): 

 

 

Fig. 3. The optimal profiles of jerk u*(t) and acceler-

ation a*(t) for Example 1. 

 

 

Fig. 4. The optimal profiles of velocity v
*(t) and 

distance s*(t) for Example 1. 
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4 3 2

3 3 3 3

1 3 27 43 273
0;

128 32 64 32 128
t t t t− + − + =  

they are t31 = 3 and t32 = 7. The first root, i.e., t31 = 3, has 

to be discarded because it violates condition (22) 

whereas the second one is acceptable. Hence, by 

applying expressions (20), (21) with t32 = 7, triple 

(1,3,7)[+] is obtained (cf. in Section 4, the QE procedure 

and the MTVP algorithm). 

Example 2: Let be the case of 13fs = m, 3
M
j =  

m/s3, 
0
0v = m/s, 

0
1a = m/s2, 1fv = m/s and 5fa = −  

m/s2. The solution set associated to this MTVP problem is 

[ ] [ ]

[ ]

2 7 16
(1,4,4) , , , , (0,1,4) .

3 3 3
p
S

+ −

−

   
=   

   
 

The time-optimal jerk is given by triple [ ](1,4,4) :
+

 

3
M
u = + m/s3, 

1
1t = s, 

2 3
4ft t t

∗
= = = s. Note that there 

is actually just one switching time and the same optimal 

jerk profile is also given by the equivalent triple 

[ ](0,1,4)
−

 (cf. (11) and Remark 1). The other third triple 

in Sp gives a jerk profile leading to a velocity planning 

that satisfies all the conditions (2)-(5), but evidently it is 

not a minimum-time planning. The optimal profiles for 

this case are reported in Figs. 5 and 6. 

Example 3: Let be given the following data: 

20fs = m, 0.75
M
j = m/s3, 

0
5v = m/s, 

0
1a = m/s2, 

vf = 10 m/s and af = 2 m/s
2. This minimum-time planning 

problem has the following solution set (triples are 

expressed up to centiseconds): 

{

}

[ ] [ ]

[ ]

(1.83,2.55,2.76) , (0.11,2.18,2.80) ,

(4.99,13.43,15.53) .

S
+ −

−

=
p

 

Triple [ ](1.83,2.55,2.76)
+
 defines the time-optimal jerk 

with minimum-time 2.76ft
∗
= s, switching times t1 = 

1.83 s, 
2

2.55t = s and initial jerk 0.75
M
u = + m/s3. The 

corresponding profiles of jerk, acceleration, velocity and 

distance are depicted in Figs. 7 and 8. 

Example 4: Consider the case of 8.25fs = m, 

0.5
M
j = m/s3, 

0
2v = m/s, 

0
1a = m/s2, 2.75fv = m/s, 

 

 

Fig. 5. The optimal profiles of jerk u*(t) and acceler-

ation a*(t) for Example 2. 

 

 

Fig. 6. The optimal profiles of velocity v*(t) and 

distance s*(t) for Example 2. 

 

 

Fig. 7. The optimal profiles of jerk u*(t) and acceler-

ation a*(t) for Example 3. 

 

 

Fig. 8. The optimal profiles of velocity v*(t) and 

distance s*(t) for Example 3. 
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and 0.5fa = − m/s2. In this instance, differently from all 

the previous examples, the degeneracy test of the MTVP 

problem is positive, i.e., conditions (27) are satisfied. By 

virtue of Proposition 3, the time-optimal jerk, that has 

constant value over its time interval, is given by 

33s, ( ) 0.5m / s , [0, ] .f ft u t t t
∗ ∗ ∗
= = − ∈  (38) 

The solution set is (cf. (28)) 

{

}

[ ] [ ]

[ ]

(0,3,3) , ( , ,3) with [0,3],

(5.46,12.39,16.86) .

p
S ξ ξ ξ

+ −

−

= ∈

 

Note that triples [ ](0,3,3)
+
 and [ ]( , ,3)ξ ξ

−

 with ξ ∈  

[0,3]  all correspond to the same optimal degenerate jerk 

defined above in (38). Also note the presence in Sp of the 

standard triple [ ](5 46 12 39 16 86)
−

. , . , .  whose final time 

3
16.86t = s is however much greater than the minimum-

time 3ft
∗
= s. The optimal profiles of this velocity 

planning are reported in Figs. 9 and 10. 

 

 

Fig. 9. The optimal profiles of jerk u*(t) and acceler-

ation a*(t) for Example 4. 

 

 

Fig. 10. The optimal profiles of velocity v*(t) and 

distance s*(t) for Example 4. 

6. CONCLUSION 

 

The paper has proposed a velocity planning scheme that 

achieves a true global minimum-time along with smooth 

motion — acceleration is continuous, jerk is bounded — 

and arbitrary boundary conditions. This planning can be 

easily executed in real-time because the devised MTVP 

algorithm relies on the solution of an algebraic quartic 

equation whose roots can be straightforwardly computed 

by well-known closed-form expressions [21]. Application 

details on using a velocity planning to permit a wheeled 

mobile robot to follow a given path with the prescribed 

velocity profile are given, for example, in [5,22].  

A possible drawback of this velocity planning is the 

lack of explicit constraints to be added in the MTVP 

problem (1)-(5) on velocities and accelerations during 

the planned time interval. These constraints, which may 

be very important from an application standpoint due to 

the inevitable limitations of physical actuators, can be 

viewed as state constraints on the triple integrator system 

(6). In such a constrained case, the time-optimal velocity 

planning cannot then lead to the standard bang-bang 

control but to a form of generalized bang-bang control 

[23]. An approximate solution to the constrained MTVP 

problem (i.e., the MTVP problem with velocity and 

acceleration constraints during the planned time interval) 

has been proposed in [24]. This solution is useful for off-

line planning but it is difficult to implement in real-time 

applications because it relies on linear programming. 

Perhaps, future research on the constrained MTVP 

problem should consider the possibility to study and 

exploit the structure of the associated time-optimal jerk 

in order to device a fast solution algorithm.  
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