
Algebraic structure of the families of compatible

frames of discernment

Fabio Cuzzolin

Computer Science Department, University of California at Los Angeles, 3811A Boelter Hall,
Los Angeles, CA 90095-1596, USA
E-mail: cuzzolin@cs.ucla.edu

One of the major ideas of Shafer’s mathematical theory of evidence is the introduction of

uncertainty descriptions on different representation domains of phenomena, called families
of compatible frames of discernment. Here we are going to analyze these families of frames

from an algebraic point of view, study the properties of minimal refinements of collections of

domains and introduce the internal operation of maximal coarsening to establish the

structure of semimodular lattice. Motivated by the search for a solution of the conflict problem
that arises in sensor fusion applications, we will show the connection between classical

independence of frames as Boolean subalgebras and independence of frames as elements of a

locally finite Birkhoff lattice. This will eventually suggest a potential algebraic solution of the

conflict problem.
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1. Introduction

The theory of evidence [21] was introduced in the late 1970s by Glenn Shafer as

a way of representing epistemic knowledge, starting from a sequence of seminal

works [7Y9] of Arthur Dempster. In this formalism the best representation of one’s

subjective belief is a belief function (b.f.) rather than a Bayesian mass distribution.

Belief functions assign probability values to sets of possibilities rather than single

events: their appeal rests on the fact they naturally encode evidence in favor of

propositions. The theory provides a simple method for combining the evidence carried

by a number of different sources (Dempster’s rule) with no need of any a-priori
distributions.

The other major pillar of the theory (strictly related to the nature of belief

functions) is the formalization of the idea of structured collection of representations of

the external world, encoded into the notion of family of compatible frames. As our

knowledge is inherently imprecise, it cannot be exhausted by any representation on

single domains. This implies, for instance, that representing ignorance in a Bayesian

setup is impossible, since any non-informative distribution is not invariant when
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passing from a domain to another one [21]. On the other side, acceptable belief

functions admit sister functions on any other frame of a family of compatible frames,

defining the class of support functions.

In sensor fusion applications to engineering or computer vision [5] we often face

situations in which several belief functions defined on different frames of a family

need to be combined to make decisions or update the knowledge state of a system.

Unfortunately, their combination is not always possible: as we prove in this paper, this

is true only when their domains are independent in a very precise way (Theorem 1).

We refer to this question with the term conflict problem. A possible naive solution

consists then in building a conflict graph whose nodes are the belief functions to

combine, and recursively detecting the most coherent set of functions (see section 3.1).

However, this a rather heuristic solution which suffers a high computational cost, and

no clear criteria for choosing a collection of b.f. instead of another are provided.

In this paper we try and pose the conflict problem in a rigorous mathematical

context, by studying the algebraic structure of the families of compatible frames as

objects obeying a small number of axioms [21]. The intuition comes from a striking

resemblance between the notion of independence of frames (see Definition 9)

!1ðA1Þ \ � � � \ !nðAnÞ 6¼ ;; 8Ai � �i

and the familiar linear independence relation for a collection of subspaces {Vi} of a

vector space V

v1 þ � � � þ vn 6¼ 0; 8vi 2 Vi:

We may wonder whether this is a simple analogy, or rather the symptom of a deeper

similarity of these structures at the algebraic level. Given a collection of arbitrary

elements of a vector space, a well known procedure called GramYSchmidt algorithm is

able to generate a new collection of independent vectors, spanning the same subspace.

It would be highly desirable to design an analogous procedure which, given a set of

belief functions defined on arbitrary elements of a family of frames, would yield

another collection of (combinable) belief functions defined on independent frames,

generating an equivalent (in some formal sense) Dempster’s combination.

In this work we prepare the mathematical ground for this ambitious goal, by studying

the monoidal and lattice structures of the families of compatible frames of discernment. As

a matter of fact, it turns out that both vector subspaces and families of frames share the

structure of Birkhoff lattice [25]. Birkhoff lattices admit the introduction of a linear

dependence relation on their atoms. We can then reasonably conjecture (as we will see

in section 7) the equivalence between the classical notion of independence of frames

as Boolean subalgebras, and their independence as elements of a locally finite Birkhoff

lattice. A formal proof of this equivalence would eventually prefigure a solution to the

conflict problem based on a Fpseudo Gram-Schmidt_ algorithm, transforming belief

functions on arbitrary frames into Fequivalent_ b.f. on independent frames.
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1.1. Paper outline

After briefly recalling the basic notions of the theory of evidence (section 2), we

give a characterization of the relationship between conflict problem and independence

of frames (section 3). As Dempster’s combination is guaranteed if and only if the
underlying frames are independent (Theorem 1), it is crucial to study independence in

more detail to provide practical solutions to real-world applications (section 3.1), in

which different measurements are fused to make decisions or compute estimates.

This can be done in a rigorous fashion by posing the problem in an algebraic

context (section 4), after finding an alternative, constructive set of axioms for families

of compatible frames. If we assume we have a finite knowledge of the problem (a

realistic assumption in practical applications) we can build the subfamily of frames of

discernment generated by any given frame.

In section 5 we first focus on these finite subfamilies of frames, showing that the

natural operator of minimal refinement � induces on them a structure of commutative

monoid with annihilator (Theorem 4). The collection of refinings of a finite subfamily

of frames is also a monoid, as one can build an isomorphism between frames and

refinings (equation (8)). More important, both frames ðF ;�Þ and refinings ðR;�Þ of a

general family of compatible frames of discernment also possess the algebraic struc-

ture of a commutative monoid (section 5.4), with finite subfamilies as submonoids.

The situation is summarized in equation (13).

As the internal operation of a monoid induces an order relation, we are tempted

to think about the problem from a lattice-theoretic point of view. As a matter of

fact, in section 6 we prove that the collection of sets of a family of compatible frames

is a Birkhoff lattice (with minimal refinement as least upper bound or sup, and the

dual operation of maximal coarsening as greatest lower bound or inf) of locally finite

length and with a smallest element. Formally, ðF ;�;�Þ is a Birkhoff lattice bounded
below.

This is where the interplay between the conflict problem and the algebraic

structure of the families of frames takes place, as Birkhoff lattices come with a notion

of independence. It is then quite natural to conjecture (section 7) that the independence

of frames as Boolean subalgebras (Definition 9), originally incorporated into the

theory of evidence, could possibly be equivalent to the independence of frames as

elements of a Birkhoff lattice (Theorem 14). This would open the way to an algebraic

solution of the conflict problem, where a pseudo Gram-Schmidt orthogonalization

procedure would be used to transform any given collection of b.f. into a new, com-

binable set by projection onto independent frames.

1.2. Previous work

Not much work has been done on the properties of the families of compatible

frames. In [22], though, an analysis of the collections of partitions of a given frame in

the context of the hierarchical representation of belief can be found. A wider ex-
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position of the algebraic properties of the families of frames is instead presented in

[14], where Chapter 7 is devoted to their lattice-theoretical interpretation and the

meaning of the concept of independence, while Chapter 8 develops the consequences

of the application of constraints to the structure of the family of compatible frames and

deepens the properties of Markov trees as a useful characterization.

Some work has been done on the conflict problem, too [10]. Murphy [16], on his

side, studied a related problem (the failure to balance multiple evidence), illustrated

the proposed solutions and described their limitations.

2. The theory of evidence

In the theory of evidence [21], subjective degrees of belief are mathematically

represented as belief functions (b.f.), which generalize finite probability distributions

in the finite case. Belief functions encoding different pieces of evidence can be

combined by means of Dempster’s rule [7]. The concept of family of compatible
frames is introduced to formalize the intuitive idea of different levels of description of

a same phenomenon.

2.1. Belief functions

2.1.1. Axiomatic definition
The reader will of course be familiar with the classical definition of probability

measure, due to Kolmogorov.

Definition 1. A probability measure over a �-field F � 2� associated with a sample

space � is a function p : F Y [0,1] such that

1. p(;) = 0;

2. p(�) = 1;

3. if A\ B = ;, A, B2 F then p(A?B) = p(A) þ p(B) (additivity).

Now, let us restrict ourselves to finite sets, and relax the third constraint allowing

the function to have the value obtained by additivity as a lower bound. We then get a

new mathematical object: a belief function.

Definition 2. Suppose � is a finite set, and let 2� denote the set of all the subsets of

�. A belief function on � is a function s : 2� ! ½0; 1� such that

1. s(;) = 0;

2. s(�) = 1;
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3. for every positive integer n and every collection A1; : : : ;An 2 2�

sðA1 [ . . . [ AnÞU
X

i

sðAiÞ �
X

i< j

sðAi \ AjÞ þ . . .þ ð�1Þnþ1sðA1 \ . . . \ AnÞ:

The third axiom is called superadditivity, and obviously reduces to standard

additivity when we replace the inequality with an equality. Belief functions can then

be seen as generalizations of the familiar probability distributions on finite domains.

� can be interpreted as the set of possible answers of a decision problem, exactly one

of which is the correct one. For each subset (proposition) A � � the quantity s(A)

measures the degree of belief that the true answer lies in A.

2.1.2. Basic probability assignment
Belief functions can be given an alternative but equivalent description in terms of

total belief committed to a set of possibilities A. Let us call the finite set of possible

outcomes for a decision problem frame1 of discernment.

Definition 3. A basic probability assignment (b.p.a.) over a frame � is a function

m : 2� ! ½0; 1� such that

mð;Þ ¼ 0;
X

A��

mðAÞ ¼ 1; mðAÞ U 0 8A � �:

Subsets of � associated with non-zero values of m are called focal elements and their

union C core. Now suppose a b.p.a. is introduced on an arbitrary frame.

Definition 4. The belief function s associated with a basic probability assignment m is

defined as (see Figure 1a):

sðAÞ ¼
X

B�A

mðBÞ:

Conversely, a basic probability assignment m associated with a given belief

function s can be uniquely recovered by means of the Moebius inversion formula2

mðAÞ ¼
X

B�A

ð�1ÞjA�BjsðBÞ ð1Þ

so that there is a 1Y1 correspondence m$ s between these two set functions. It can be

proved that Definitions 4 and 2 are equivalent.

1 For a note about the intuitionistic origin of this denomination see Rosenthal, Quantales and their
applications [20].

2 See [25] for an explanation in terms of the theory of monotone functions over partially ordered sets.
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2.2. Dempster’s rule of combination

Belief functions representing distinct bodies of evidence can be combined by

means of the so-called Dempster’s rule of combination [7, 9].

Definition 5. The orthogonal sum of two belief functions s1, s2 is a new belief

function s1 � s2 whose focal elements are all the possible non-empty intersections

Ai\Bj between focal elements Ai, Bj of s1, s2, respectively, and whose b.p.a. is given

by

mðAÞ ¼

X

i; j:Ai\Bj¼A

m1ðAiÞ �m2ðBjÞ

1�
X

i; j:Ai\Bj¼;
m1ðAiÞ �m2ðBjÞ

;A 6¼ ;: ð2Þ

The normalization constant in equation (2) measures the weight of conflict
Con(s1, s2) between the belief functions, and represents the amount of probability they

attribute to contradictory (i.e., disjoint) subsets. If all the intersections between focal

elements of s1 and s2 are empty (C1 \ C2 ¼ ;) the two belief functions are said non-
combinable.

The above definition can be easily extended to the combination of several belief

functions (figure 1b).

2.2.1. Example
Consider as an example a gray-scale image, and imagine you need to measure

the column index of the center of mass of the intensity function of the image. A naive

Figure 1. (a) Basic probability assignment and belief value. In the picture m(B) 6¼ 0, B � A only for B1

and B2 so that s(A) = m(B1) + m(B2). (b) Dempster’s rule of combination: on the y, x axes are depicted

the focal elements Ai and Bj of s1, s2, respectively, where the width of columns and rows is proportional to

the b.p.a. associated with each focal element (in a size 1 square). Each intersection is given the product of

the corresponding masses (equal to the area of the related square). Contributions of coincident

intersections are then summed. This value is finally normalized by taking into account all the empty

intersections (denominator of equation (2)).
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quantization of the column range in, say, five intervals (figure 2-left) yields a frame of

discernment {c1, . . . , c5} (figure 2-middle). On this frame we can define a belief func-

tion s1 with two focal elements A1 = {c2} and A2 = {c2, c4} through the basic proba-

bility assignment m1(A1) = 0.7, m1(A2) = 0.3. For instance, the belief values of the sets

{c4}, {c2, c5}, {c2, c3, c4} are then s1({c4}) = m1({c4}) = 0, s1({c2, c5}) = m1({c2}) þ
m1({c5}) þ m1({c2, c5}) = 0.7 þ 0 þ 0 = 0.7, s1({c2, c3, c4}) = m1({c2}) þ m1({c2,

c4}) = 0.7 þ 0.3 = 1, respectively. Now introduce another b.f. s2 with b.p.a. m2(B1) =

m2({c2, c3}) = 0.6 and m2(B2) = m2({c4, c5}) = 0.4. Their Dempster’s combination

yields a new b.f. with focal elements (figure 2-right) X1 = A1 \ B1 = A2 \ B1 = {c2} and

X2 = A2 \ B2 = {c4} and b.p.a. mðX1Þ ¼ 0:7�0:6þ0:3�0:6
1�0:7�0:4 ¼ 5=6, mðX2Þ ¼ 0:3�0:4

1�0:7�0:4 ¼ 1=6.

2.3. Random sets and belief functions

2.3.1. Multi-valued mappings
In fact, in the original approach due to Dempster belief functions are inherently

associated with multi-valued maps between frames. Let us suppose we have

probabilities (coming from arbitrary sources, for instance subjective judgement or

objective measurements) for a question Q1 and we want to derive a degree of belief for a

related question Q2. For example, Q1 could be the judgement on the reliability of a

witness, and Q2 the decision about the truth of the reported fact. Let us call X and � the

sets (frames) of possible answers of Q1 and Q2, respectively. Given a probability P(x) on

X we wish to derive a degree of belief s(A) that A � � contains the correct answer to Q2.

If we call �(x) the subset of responses to Q2 compatible with x, each element x 2
X tells us that the answer to Q2 is somewhere in A, whenever �(x) � A. The degree of

belief s(A) is then the total probability of all answers x that satisfy the above condition,

namely

sðAÞ ¼ Pfxj�ðxÞ � Ag:

The map � is called a multi-valued mapping from X to �. This mapping, together

with the probability measure on X, induces a belief function on �: (P, �) 7! s.

c
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c
4
c
5

c
1

c
2

c
3

c
4

c
5

A1
A2

B1 B2

X1

X2

Figure 2. The frame (middle) associated with a partition of the column range of an image (left). The b.f.

s1 with focal elements A1, A2 and s2 with f.e. B1, B2 (middle) can be combined through Dempster’s rule

yielding a new belief function s1 � s2 (right) with f.e. X1 and X2.
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2.3.2. Belief functions as random sets
Having a multi-valued mapping �, a straightforward step is to consider the

probability P(x) attached to the subset �(x) � �: what we obtain is a random set in �,

i.e., a probability measure on a collection of subsets (see [12, 15] for the most com-

plete introductions to the matter). The degree of belief s(A) then becomes the total

probability that the random set is contained in A.

This approach has been emphasized in particular by Nguyen [11, 17, 18] and

resumed in [22].

Consider a multi-valued mapping * : X ! 2�. We can define the lower inverse
of � as

** : 2� ! 2X

A 7! �*ðAÞ¼
: fx 2 X : �ðxÞ � A;�ðxÞ 6¼ ;g: ð3Þ

and in the dual way its upper inverse as

** : 2� ! 2X

A 7! **ðAÞ¼: fx 2 X : *ðxÞ \ A 6¼ ;g: ð4Þ

Given two �-fields A;B on X, � respectively, � is said strongly measurable iff

8B 2 B, �*ðBÞ 2 A. The lower probability measure on B is defined as P*ðBÞ¼
:

Pð�*ðBÞÞ for all B 2 B.

Nguyen proved that, if � is strongly measurable, the probability distribution P̂P of

the random set [17] coincides with the lower probability measure

P̂P½IðBÞ� ¼ P*ðBÞ 8B 2 B
and (in the finite case) the probability distribution of the random set � is precisely the

basic probability assignment associated with the lower probability (belief function) P*.

An analysis of the relations between the transferable belief model and the theory

of random sets can be found in [24].

2.4. Refinings

As belief functions are inherently associated with maps between different (but

related) domains, the theory of evidence quite naturally contemplates the impact of

evidence on different finite descriptions of the same problem. In particular, a new

amount of evidence can allow us to make decisions (by means of Dempster’s rule)

over more detailed domains. This argument is embodied into the notion of refining.

Definition 6. Given two frames � and �, a map ! : 2� ! 2� is a refining if it sat-

isfies the following properties

1. !({�}) 6¼ ; 8� 2 �,

2. !({�}) \ !({�0}) = ; when � 6¼ �0,

3. [�2�!ðf�gÞ ¼ �;
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while its value for arbitrary subsets A of � is given by

!ðAÞ ¼:
[

�2A

!ðf�gÞ:

� is called a refinement of �, while � is said a coarsening of �. Both frames

represent sets of possible outcomes for the same decision problem, but the finer one is

a more detailed description, obtained by splitting each possible answer � 2 � into a

set !({�}).

Consider for example a partition A1, . . . , An of �. If we define � = {A1, . . . , An}

the map ! : 2� ! 2� with !(Ai) = Ai is a refining.

2.4.1. Vacuous extension
Any belief function s defined on a frame � can be Fprojected_ onto any refine-

ment � of � by vacuous extension.

Definition 7. Suppose � is a refinement of �, with refining ! : 2� ! 2�. The

vacuous extension on � of a belief function s : 2� ! ½0; 1� on � is the belief function

s0 : 2� ! ½0; 1� on � defined as

s0ðAÞ ¼ max
B��; !ðBÞ�A

sðBÞ 8A � �:

s0 is a belief function on the frame � [21], whose focal elements are exactly the images

of the focal elements of s,

fB1; . . . ;Bkg 7! fA1 ¼ !ðB1Þ; . . . ;Ak ¼ !ðBkÞg

with ms0(Ai) = ms(Bi).

Recall the example of section 2.2.1, and imagine to refine each column range

c1, . . . , c5 into two subranges: !(c1) = {c11, c12}, . . . , !(c5) = {c51, c52}. The new

frame � ¼: {c11, c12, c21, c22, c31, c32, c41, c42, c51, c52} is a refinement of � ¼:
{c1, . . . , c5}. The vacuous extension of s2 defined above is then the belief function

s2
0 on � with focal elements A1

0 = {c21, c22} and A2
0 = {c21, c22, c41, c42} and prob-

ability assignment ms2
0 ðA1
0Þ ¼ 0:7, ms2

0 ðA2
0Þ ¼ 0:3.

2.5. Families of compatible frames

Now that the basis tools (refining maps between frames) have been intro-

duced, the intuitive idea of different descriptions of a same phenomenon can be

formally expressed by the concept of family of compatible frames (see [21], pages

121Y125).

Definition 8. A non-empty collection of finite non-empty sets F is a family of com-
patible frames of discernment with refinings R, where R is a non-empty collection of
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refinings between couples of frames in F , if F and R meet the following

requirements:

Axiom 1. Composition of refinings: if !1 : 2�1 ! 2�2 and !2 : 2�2 ! 2�3 are in R,

then !1 � !2 2 R.

Axiom 2. Identity of coarsenings: if !1 : 2�1 ! 2� and !2 : 2�2 ! 2� are in R and 8
�1 2 �1 9 �2 2 �2 such that !1({�1}) = !2({�2}), then �1 = �2 and !1 = !2.

Axiom 3. Identity of refinings: if !1 : 2� ! 2� and !2 : 2� ! 2� are in R, then !1 =

!2.

Axiom 4. Existence of coarsenings: if � 2 F and A1, . . . , An is a disjoint partition of

�, then there is a coarsening �0 of � in F corresponding to this partition, i.e., 8 Ai

there exists an element of �0 whose image under the appropriate refining is Ai.

Axiom 5. Existence of refinings: if � 2 � 2 F and n 2 N then there exists a refining

! : 2� ! 2� in R and � 2 F such that !({�}) has n elements.

Axiom 6. Existence of common refinements: every pair of elements in F has a com-

mon refinement in F .

By iterative application of Axiom 6 it follows that any finite collection of

compatible frames has many common refinements. One of these is particularly simple.

Proposition 1. If �1, . . . ,�n are elements of a family of compatible frames F then

there exists a unique element � 2 F such that

1. 8i 9 !i : 2�i ! 2� refining;

2. 8� 2 � 9 �i 2 �i for i = 1, . . . , n such that

f�g ¼ !1ðf�1gÞ \ : : : \ !nðf�ngÞ: ð5Þ

This unique frame is called the minimal refinement �1� � � � ��n of the col-

lection �1, . . . , �n and is the simplest space in which you can compare propositions

belonging to different compatible domains.

2.5.1. Example
In section 2.2.1 we introduced a frame �1 by partitioning the column range

into 5 intervals. The set of columns can be partitioned also into 10 intervals, yielding a

new frame �2 (remember section 2.4.1). More, the row range can also be divided in,

say, 6 intervals (�3). All those frames are clearly related to the location of the center
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of mass: as figure 3 suggests, they all belong to a family of compatible frames, with

the collection of cells D = {e1, . . . , e60} depicted in figure 3-left as common refinement.

Figure 3-right shows the refinings between them where, for instance, !1({c1}) = {c11,

c12}, !2({c11}) = {e1, e11, e21, e31, e41, e51}, !3({r1}) = {e1, . . . , e10}, etcetera.

3. Independence and evidence conflict

Belief functions carrying distinct pieces of evidence over different frames of a

family can be combined by means of Dempster’s rule. We just need to project each of

them onto their common refinement by vacuous extension, and then combine them

using Dempster’s rule. The information encoded by each belief function can then be

used to evaluate propositions in this finer, common environment.

3.1. Motivations: Sensor fusion

A natural application of these attractive features of the theory of evidence can be

found in sensor fusion, in which measurements coming from different sources have to

be combined to make decisions, in order to increase the robustness of the process.

For instance, in some recent works [5, 6] we proposed an evidential framework

for the solution of the object tracking problem. In this context, given a sequence of

images of a moving articulated object you want to reconstruct the position and con-

figuration of the body at each time instant. We represented a number of different

feature measurements extracted from the images as belief functions and combined

them to compute an estimate of the pose q̂qðtÞ 2 ~QQ, where ~QQ is a sufficiently Fgood_
finite approximation of the parameter space Q of the object.

As an example, we can think of a human hand as an articulated object with

27 degrees of freedom (its position, orientation and the values of the angles between

pairs of links of the fingers). As features we can choose indifferently the positions of
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Figure 3. An example of family of compatible frames of discernment. Different discrete quantizations of

row and column ranges of an image have a common refinement, the set of cells shown on the left. The

refinings between all those frames are shown on the right.
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the fingertips in the image plane, the center of mass of the image itself, etc. In [5] we

showed some experiments involving a simple planar robot (see figure 4).

These feature spaces �i and the approximate parameter space ~QQ form a finite

subset of a family of compatible frames of discernment, where ~QQ is a common

refinement of the collection of feature spaces (see figure 5).

3.2. Independence and conflicting evidence

Unfortunately, the combination of evidence available on different domains is

guaranteed only for trivially interacting frames.

Definition 9. Let �1, . . . , �n be compatible frames, and !i : 2�i ! 2�1������n the

corresponding refinings to their minimal refinement. They are said to be independent3

if

!1ðA1Þ \ � � � \ !nðAnÞ 6¼ ; ð6Þ

whenever ; 6¼ Ai � �i for i = 1, . . . , n.

Independence of frames and combinability of belief functions are as a matter of

fact strictly connected.

Theorem 1. Let �1, . . . , �n a set of compatible frames. The following conditions are

equivalent:

1. all the possible collections of belief functions s1, . . . , sn defined respectively over

�1, . . . , �n are combinable over their minimal refinement �1� . . .��n;

2. �1, . . . , �n are independent;

3 This definition is nothing but a formulation in the evidential language of the concept of independence of

Boolean subalgebras of a Boolean algebra [23].

Figure 4. The PantoMouse planar robot (left). Its pose is just the 2D position of its end-effector (right).
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3. there is an isomorphism �1 � � � � � �n $ �1 � � � � � �n;

4. j�1 � � � � � �n j = ki =1
n j�ij.

Proof. 1 ) 2. We know that if s1, . . . , sn are combinable then si, sj must be com-

binable 8i, j = 1, . . . , n. Hence !iðCiÞ \ !jðCjÞ 6¼ ; 8i; j where Ci is the core of si,

and !i : 2�i ! 2�1������n is the refining connecting �i with the common refinement

�1 � � � � � �n. Being si, sj arbitrary, their cores Ci; Cj can be any pair of subsets of �i,

�j, respectively, so that the condition can be rewritten as

!iðAiÞ \ !jðAjÞ 6¼ ; 8Ai � �i;Aj � �j:

2 ) 1. Since �1, . . . , �n are independent, !1(A1)\ � � � \!n(An) 6¼ ; for all non-

empty Ai � �i, 8 i = 1, . . , n. But then if we pick Ai ¼ Ci (the core of si) 8i = 1, . . . , n
we get !1ðC1Þ \ � � � \ !nðCnÞ 6¼ ;, i.e., the vacuous extensions of s1, . . . , sn onto

�1 � � � � � �n are combinable (see section 2.2).

2 ) 3. We note that

\

i

!iðf�k
i gÞ ¼

\

i

!iðf�l
igÞ , �k

i ¼ � l
i 8i ¼ 1; : : : ; n:

In fact, if 9j s.t. �i
k 6¼ �i

l then !i({�i
k}) 6¼ !i({�i

l}) for the properties of refinings:

since they are disjoint, it must be 7i !i({�i
k}) 6¼ 7i !i({�i

l}). Hence their number

~

 Θ Θ 1 Θ 2 
n

ω 
ω 

ω 1

2 

n

O

O

Figure 5. Families of feature spaces involved in the object tracking problem. The actual continuous

parameter space Q of the articulated object is unknown, while its finite approximation ~QQ is the common
refinement where the evidence extracted from the image is combined.
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coincides with the number of the n-tuples of singletons j�1j� � � � �j�nj, and since

�1 � � � � � �n is a minimal refinement each of these subsets must correspond to a

singleton.

3) 2. For Proposition 1, each � 2 �1 � � � � � �n corresponds to a subset of the

form \i !i({�i
k}). Since the singletons are j�1j � � � � � j�nj the above subsets come in

the same number, but then they all are non-empty, so that �1, . . . , �n are independent.

3 ) 4. Obvious.

4 ) 3. �1 � � � � � �n = {7i !i({�i}) : �i 2 �i}, so that if the intersections’

number is j�1j � � � � � j�nj they all must be non-empty and each of them can be

denoted by (�1, . . . , �n). Ì

For any collection of non-independent frames there exists at least a collection of

belief functions defined on them that are not combinable. Any given set of belief

functions is then characterized by a weight of conflict Con. When Con =1 there is no

way of combining all of them by means of Dempster’s rule.

3.3. The conflict problem

Going back to our sensor fusion application, since the belief functions built from

the extracted features are not always compatible, we need a method for detecting the

subset we are going to apply the rule of combination to. A basic property of the

conflict weight is

Conðs1; : : : ; snþ1Þ ¼ Conðs1; : : : ; snÞ þ Conðs1 � :::� sn; snþ1Þ;

so that if Con(si, sj) = þ1 then Con(si, sj, sk) = þ1 8sk. This suggests a bottom-up

technique.

First the level of conflict is computed for each pair of measurement functions

(si, sj), i, j = 1, . . . , n. Then a suitable threshold is chosen and a conflict graph is built,

where every node represents a belief function while an edge indicates a conflict level

below the threshold. Finally the subsets of combinable b.f. of size d + 1 are recursively

computed from those of size d, eventually detecting the most coherent set of features.

This approach obviously suffers a high computational cost when large groups of

functions turn out to be compatible. Also, there is no clear indication about how to

select a particular set of combinable belief functions.

Theorem 7 instead establishes a direct connection between conflicting evi-

dence and independence of frames. As we have discussed in the introduction, this

strongly suggests that a satisfactory, formal solution could be found in an alge-

braic context. In this perspective, it is necessary to understand the nature of the

analogy between independence of vector spaces and independence of frames. This

in turns involves a deep study of the algebraic properties of the families of compatible

frames.
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4. Axiom analysis

4.1. Constructive approach

To understand the algebraic properties of families of frames we necessarily need

to analyze the axioms of Definition 8. As we have seen in section 3.1, in real-world

applications our knowledge of a given problem is finite. We first then consider an

arbitrary finite set S, and adopting a constructive approach we check the result of the

application of the axioms of Definition 8.

Axiom A4 needs to be applied first, yielding the collection of all the possible

partitions of S and the refinings between each of them and the basis set. By applying

A4 again to the new sets all the refinings among them are achieved, while no other set

is added to the collection. Axioms 2 and 3 guarantee the uniqueness of the obtained

maps and sets.4 It is clear even at a first glance that A6 claims an existing condition but

is not constructive, i.e., it does not allow to generate new sets from a given initial

collection. Let us then introduce a new axiom

Axiom 7. Existence of the minimal refinement: for every pair of elements in F
there exists their minimal refinement in F , i.e., a set satisfying the conditions of

Proposition 1.

and consider another set of axioms by replacing A6 with A7. Let us call A1..6 and A1..5,7

these two formulations.

Theorem 2. A1..6 and A1..5,7 are equivalent formulations of the notion of family of

compatible frames.

Proof. It is necessary and sufficient to prove that (i) A7 can be obtained by using the

set of axioms A1, . . . , A6 and (ii) that A6 can be obtained from A1, . . . , A5, A7.

(i). See [21] or Proposition 1. (ii). Each refinement of a given pair of sets �1, �2

can be obtained by arbitrarily refining �1 � �2 by means of Axiom A5. Anyway, the

minimal refinement is obviously a refinement so that A7 ) A6. Ì

From now on we can then replace axiom A6 with axiom A7.

4.2. Finite knowledge

Again, if we assume our knowledge of the problem to be finite and static, Axiom

A5 cannot be used. According to the established notation let us call A1..4,7 the set of

axioms corresponding to finite knowledge.

4 Observe that axiom A1 in this situation is redundant, for it does not add any new refinings.
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Definition 10. The subfamily generated by a collection of sets �1, . . . , �n by means of

a set of axioms A is the smallest collection of frames h�1; . . . ;�niA containing

�1; . . . ;�n and closed under the application of the axioms in A.

Given their importance in concrete applications it is natural to focus first on the

properties of finite sub-families of compatible frames. We will then extend the

analysis to general abstract families to get a comprehensive picture of the matter.

Lemma 1. The minimal refinement of two coarsenings �1, �2 of a frame S is still a

coarsening of S.

Proof. From the hypothesis S is a common refinement of �1 and �2, and since the

minimal refinement is coarsening of every other refinement the thesis follows. Ì

Immediately we conclude that

Theorem 3. The subfamily of compatible frames generated by the application of the

restricted set of rules A1..4,7 to a basis set S is the collection of all the disjoint partitions

of S along with the appropriate refinings.

Note that this is not necessarily true when using Axiom A6.

5. Monoidal structure

The Fconstructive_ version of Definition 8 allows us to introduce in a family of

compatible frames the internal operation

� : F � � � � � F ! F
f�1; . . . ;�ng 7! �i�i

ð7Þ

associating each collection of frames with their minimal refinement. Equation (7) is

well defined, for Axiom A7 ensures the existence of �i�i.

5.1. Finite families as commutative monoids

Let us then consider a finite subfamily of compatible frames F0 ¼: hSiA1::4;7
for

some S 2 F , and discuss the properties of the minimal refinement.

Theorem 4. The internal operation � of minimal refinement satisfies the following

properties:

1. associativity: �1 � ð�2 ��3Þ ¼ ð�1 ��2Þ ��3; 8 �1;�2;�3 2 F0;

2. commutativity: �1 ��2 ¼ �2 ��1; 8�1;�2 2 F0;
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3. existence of unit: 91 2 F0 s.t. �� 1 ¼ �; 8� 2 F0;

4. annihilator: �� S ¼ S; 8� 2 F0

where 1 is the unique frame of F0 containing a single element.

Proof. Associativity and commutativity. If we look at equation (5), associativity and

commutativity follow from the analogous property of set-theoretic intersection.

Unit. Let us prove that there exists a unique frame 1 in F0 with cardinality 1.

Given � 2 F0 due to Axiom A4 (existence of coarsenings) there exists a coarsening

1� of � and a refining !1�� : 21��!2�. Then by Axiom A1 there exists another

refining 1! 2 R0 such that

1! : 21� �! 2S:

Now, if we consider a pair of elements of F0, say �1, �2, the above procedure

yields two pairs set-refining ð1�i
; 1!i
Þ with 1!i

: 21�i �! 2S. But if we call 1�i
the

unique element of 1�i

1!i
ðf1�i
gÞ ¼ S 8i ¼ 1; 2

so that for Axiom A2 (identity of coarsenings) uniqueness follows: 1!1
¼ 1!2

;
1�1
¼ 1�2

.

Annihilator. If � 2 F0 then obviously � is a coarsening of S, therefore their

minimal refinement coincides with S itself. Ì

In other words, a finite family of frames of discernment ðF 0;�Þ is a finite
commutative monoid with annihilator with respect to the internal operation of minimal

refinement.

However, a family of frames is not only a collection of sets, but also the

collection of refinings between these sets. Does Theorem 4 have any consequence for

these refinings?

5.2. Isomorphism framesYrefinings

Actually, a family of frames can be dually viewed as a set of refining maps with

attached their domains and codomains (perhaps the most synthetic approach as it

accounts for sets automatically, allowing to reduce the number of axioms). In the finite

case we can immediately establish the following correspondence

�  ! !�
S : 2� ! 2S ð8Þ

between an element � of a finite subfamily of compatible frames and the unique

refining from � to S (see Axiom A3).
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Definition 11. Given !1 : 2�1 ! 2S and !2 : 2�2 ! 2S their composition induced by

the operation of minimal refinement is the unique refining from �1 � �2 to S (as for

Axiom A3 there is only one refining connecting two frames of the family)

!1 � !2 : 2�1��2 ! 2S: ð9Þ

Theorem 5. The subcollection of the refinings of a finite family of compatible frames

hSiA1::4;7
with codomain S

hSi!
ð:Þ
S

A1::4;7
¼: f!�

S ; � 2 hSiA1::4;7
g

is a finite commutative monoid with annihilator with respect to equation (9).

Proof. Associativity and commutativity come from the analogous property of the

minimal refinement operator. The unit element is 1! : 21S ! 2S, as

Domð1! � !Þ ¼ 1S � Domð!Þ ¼ Domð!Þ ) 1! � ! ¼ !

for Axiom A2. On the other side if we consider 0! : 2S ! 2S the unique refining

from S onto itself (which exists by Axiom A4 with n = 1) we have

Domð0! � !Þ ¼ S� Domð!Þ ¼ S

so that 0! is an annihilator for hSi!
ð:Þ
S

A1::4;7
. Ì

It easily follows that

Proposition 2. Given a finite family of compatible frames, the bijection (8) is an isomor-

phism between commutative monoids.

5.2.1. Some remarks
It may be interesting to note that the existence of both unit element and an-

nihilator in a finite family of frames are consequences of the following proposition:

Proposition 3. ð!�
S � !�

�Þ � !�
S ¼ !�

S 8 �;�.

Proof. Codð!�
S � !�

� ¼ SÞ so the operation � can be applied. By noting that

Domð!�
S � !�

�Þ ¼ � is a coarsening of Domð!�
S Þ ¼ � we get

Domðð!�
S � !�

�Þ � !�
S Þ ¼ Domð!�

S � !�
�Þ � Domð!�

S Þ ¼ Domð!�
S Þ ¼ �

and from Axiom A3 the thesis follows. Ì

As a matter of fact, when � = 1S then !�
S � !�

� ¼ !�
S � !

1S

� ¼ 1! and we get

1! � !�
S ¼ !�

S . On the other side, when � = S then !�
S ¼ !S

S ¼ 0! and we have the

annihilation property !�
S � 0! ¼ 0!.

258 F. Cuzzolin / Algebra of compatible frames



5.3. Generators

Even if not strictly necessary in the context of the conflict problem, something

more can be said about the dual finite monoids generated by � in terms of the notion

of generator. Given a monoidM, the submonoid hMi generated by a subset M ofM
is defined as the intersection of all the submonoids of M containing M.

Definition 12. The set of generators of a monoid M is a finite collection M of

elements of M such that hMi ¼ M.

Theorem 6. The set of generators of the finite family of compatible frames hSiA1::4;7

seen as finite commutative monoid with respect to the internal operation � (minimal

refinement) is the collections of all the binary frames.

The set of generators of the associated monoid of refinings hSi!
ð:Þ
S

A1::4;7
is the

collection of refinings from all the binary partitions of S to S itself:

hSi!
ð:Þ
S

A1::4;7
¼ hf!ij : 2�ij ! 2Sj j�ijj ¼ 2; !ij 2 Rgi:

Proof. We need to prove that all the possible partitions of S can be obtained as

minimal refinement of a number of binary partitions. Let us consider a generic

partition � = {S1, . . . , Sn} and define

�1 ¼ fS1; S2 [ � � � [ Sng¼: fA1;B1g

�2 ¼ fS1 [ S2; S3 [ � � � [ Sng¼: fA2;B2g � � �
�n�1 ¼ fS1 [ � � � [ Sn�1; Sng¼: fAn�1;Bn�1g:

It is not difficult to see that every arbitrary intersection of elements of �1, . . . , �nj1 is

an element of the n-ary partition �, in fact

Ai \ Bk ¼ ;; k U i; Ai \ Ak ¼ Ai; k U i; Bi \ Bk ¼ Bk; k U i

so that 7i Ai = A1 = S1, 7i Bi = Bnj1 = Sn. If both As and Bs are present the resulting

intersection is ; whenever there exist a pair Bl, Am with l U m. Hence the only non-

empty mixed intersections in the class {X1\ � � � \ Xn} must necessarily be of the

following kind

B1\ � � � \ Bk \ Akþ1\ � � � \ An�1

and we have

B1 \ � � � \ Bk \ Akþ1 \ � � � \ An�1 ¼
¼ ðSkþ1 [ � � � [ SnÞ \ ðS1 [ � � � [ Skþ1Þ ¼ Skþ1

where k þ 1 goes from 2 to nj1. That satisfies the fundamental condition for � to be

the minimal refinement of �1, . . . , �nj1 (note that the choice of the binary frames is
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not unique). The second part of the proof, concerning the refining maps, comes

directly from the existence of the isomorphism (8). Ì

The monoids associated with finite families are then really simple, their structure

being completely determined by the binary frames and related refinings. This is not

true for complete families of compatible frames. Even if the general case is not a

copycat of the finite one, though, the analysis of finite subfamilies provides us with the

necessary intuition to cope with the general case.

5.4. General families as commutative monoids

The algebraic structure of monoid is then a direct implication of the notion of

minimal refinement. We may wonder whether a general family of compatible frames

possess the same structure. The answer is positive.

Theorem 7. F is an infinite commutative monoid with no annihilators.

Proof. The proof of Theorem 4 still holds for the first two points. Existence of unit.
Suppose there exist two frames 1 = {1} and 10 = {10} of size 1. For Axiom A6 they

have a common refinement �, with !1 : 21 ! 2� and !1
0 : 210 ! 2� refinings. But

then !1({1}) = � = !10({10}), and by Axiom A2 1 = 10. Now, for every frame � 2 F
Axiom A4 ensures that there exists a partition of � with only one element, 1�. For the

above argument, 1� ¼ 1. In conclusion there is only one monic frame in F , and since

it is a refinement of every other frame, it is the unit element with respect to �.

Annihilators. If a frame 0� would exists such that 0� �� ¼ 0� for each � we

would have, given a refinement � of 0� (built by means of Axiom A5), 0� � � ¼ �
that is a contradiction. Ì

The finite case also suggests the presence of a similar structure for the set of

refiningsR. However, in a complete family of frames whatever basis set S you choose

there are refinings with codomain distinct from S, so that it is impossible to write down

a simple correspondence between frames and maps as in equation (8).

Nevertheless, if we note that given two maps !1 and !2 their codomains �1, �2

always have a common refinement �, we can write

!1 � !2 ¼: !1
0 � !2

0 ð10Þ

where, after calling w1 (w2) the refining map between �1 (�2) and �,

!1
0 ¼ w1 � !1; !2

0 ¼ w2 � !2

and � on the right side of equation (10) stands for the composition of refinings in the

finite family of compatible frames h�iA1::4;7
generated by �. This way the operation �

is again well-defined.
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The composition of refinings can be rewritten in a more elegant way, proving its

validity for general families too.

Definition 13. Given two maps !1; !2 2 R, !1 : 2�1 ! 2�1 and !2 : 2�2 ! 2�2 we

define

!1 � !2 : 2�1��2 ! 2�1��2 : ð11Þ

This operation is again well-defined, for the correspondence

ðDomð!Þ;Codð!ÞÞ $ ! ð12Þ

(guaranteed by Axiom A3) is a bijection. It obviously reduces to Definition 11 when

applied to finite subfamilies.

Theorem 8. The set of refinings R of a complete generated family of compatible

frames is a commutative monoid with respect to the internal operation (11).

Proof. Obviously � is commutative and associative for commutativity and as-

sociativity of the operation of minimal refinement of frames. To find the unit element

1! it suffices to note that 1! is in correspondence through (12) with a pair of frames

(�, �) such that

���1 ¼ �1 8 �1 2 F ;
�� �1 ¼ �1 8 �1 2 F

but that means � = � = 1, so that 1! : 21 ! 21 and 1! turns out to be nothing but the

identity map on 1. Ì

Corollary 1. R is a submonoid of the product monoid ðF ;�Þ � ðF ;�Þ through the

map (12).

5.5. Monoidal structure of families of compatible frames

In order to summarize what we have learned about the algebraic structures

induced on families of compatible frames by the operation of minimal refinement, it is

worth to specify the missing relations among them. Clearly, ðhSi!A1::4;7
;�Þ (where

hSi!A1::4;7
is the collection of all the refinings of a finite family of frames) is a monoid,

too, and

Proposition 4. ðhSi!
ð:Þ
s

A1::4;7
;�Þ is a submonoid of ðhSi!A1::4;7

;�Þ.
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Proof. Obviously hSi!
ð:Þ
s

A1::4;7
� hSi!A1::4;7

in a set-theoretic sense. We only have to prove

that the internal operation of the first set is inherited from the second one. If !1 :
2�1 ! 2S and !2 : 2�2 ! 2S then S � S = S and

!1 �hSi! !2 : 2�1��2 ! 2S�S ¼ 2S 	 !1 �
hSi!

ð:Þ
s
!2 Ì

In turn,

Proposition 5. ðhSi!A1::4;7
;�Þ is a submonoid of ðR;�Þ.

Proof. It suffices to prove that hSi!A1::4;7
is closed with respect to the composition

operator (11). But then, given two maps !1, !2 whose domains and codomains are

both coarsening of S, Dom(!1 � !2) = Dom(!1) � Dom(!2) and Cod(!1 � !2) =

Cod(!1) � Cod(!2) are still coarsenings of S. Ì

while as far as frames are concerned,

Proposition 6. ðhSi�A1::4;7
;�Þ is a submonoid of ðF ;�Þ.

Proof. Obvious, for the finite family of compatible frames hSi�A1::4;7
is strictly included

in the complete one F , and hSi�A1::4;7
is closed with respect to �, i.e., if �1 and �2 are

coarsenings of S then their minimal refinement is still a coarsening of S. Ì

A comprehensive picture of the relations between the monoidal structures

associated with a family of compatible frames ðF ;RÞ can then be appreciated in the

following diagram:

ðhSi!
ð:Þ
s

A1::4;7
;�Þ � ðhSi!A1::4;7

;�Þ � ðR;�Þ

o o
ðhSi�A1::4;7

;�Þ � ðhSi�A1::4;7
;�Þ � ðhSi�A1::4;7

;�Þ \
¼

ðhSi�A1::4;7
;�Þ � ðF ;�Þ � ðF ;�Þ � ðF ;�Þ

ð13Þ

where õ denotes an isomorphism, and � an inclusion between monoids.

6. Lattice structure

The notion of minimal refinement is the essence of the idea of families of com-

patible frames of discernment. This fact is reflected in the elegant scheme above,

where a hidden matrioska of encapsulated monoids is depicted. It is still unclear,
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though, what is the deep root of the analogy between independence relations we

discussed in the Introduction, with its potential role in the conflict problem. Let us then

take a step further.

6.1. Minimal refinement as least upper bound

It is well-known (see [13], page 456) that the internal operation I of a monoid

M induces an order relation among the elements of M, namely bU a 	 9 c s:t: b ¼
a � c, In our case this yields

�2 U �1 	 9 �3 s:t: �2 ¼ �1 ��3 ð14Þ

K �1 � �2 = �2, i.e., �2 is a refinement of �1.5

Since both finite and general families of frames are monoids,

Proposition 7. hSiA1::4;7
and F are partially ordered set (posets) with respect to the

order relation (14).

In a poset the dual notions of least upper bound and greatest lower bound of a

pair of elements can be introduced.

Definition 14. Given two elements x,y 2 X of a poset X their least upper bound
supX(x, y) is the smallest element of X that is bigger than both x and y, i.e., supX(x, y)

U x, y and

if 9z s:t: z r supXðx; yÞ; z U x; y then z ¼ supXðx; yÞ:

Definition 15. Given two elements x,y 2 X of a poset X their greatest lower bound
infX(x, y) is the biggest element of X that is smaller than both x and y, i.e., infX(x, y) r
x, y and

if 9z s:t: z U infXðx; yÞ; z r x; y then z ¼ inf Xðx; yÞ:

The standard notation is inf(x, y) = x ^ y and sup(x,y) = x _ y. By induction sup and inf

can be defined for arbitrary finite collections too.

It must be pointed out that not any pair of elements of a poset, in general, admits

inf and/or sup.

5 It is interesting to note that Proposition (3) can be expressed in terms of the order relation !2 U !1 )
!1 � !2 = !2. Again, since !2 U !1() !2 = !1 � !3 for some !3, it can rewritten as

!1 � ð!1 � !3Þ ¼ ð!1 � !1Þ � !3 ¼ !1 � !3: ð15Þ

Hence ! � ! = ! (idempotence) is a sufficient condition.
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Definition 16. A lattice is a poset in which each pair of elements admits both inf and

sup.

Definition 17. An infinite lattice L is said complete if each arbitrary collection (even

not finite) of points in L admits both sup and inf.

In this case there exist 0 	 ^L; 1 	 _L called respectively initial and final
element of L.

The notion of lattice provides us with an alternative interpretation of the minimal

refinement operation.

Theorem 9. In a family of compatible frames F seen as a poset the sup of a finite

collection of frames coincides with the minimal refinement,

sup
F
ð�1; . . . ;�nÞ ¼ �1 � � � � ��n:

Proof. Of course �1 � � � � � �n U �i 8i = 1, . . . , n for there exists a refining

between each �i and their minimal refinement. Now, if there exists another frame �
greater than each �i, then � is a common refinement for �1, . . . , �n, hence it is a

refinement of the minimal refinement, i.e., � U �1 � � � � � �n according to the order

relation (14). Ì

At a first glance is not clear what inf{�1, . . . ,�n} should represent.

6.2. Maximal coarsening as greatest lower bound

Let us then introduce a new notion.

Definition 18. A common coarsening of two frames �1, �2 is a set � 2 F such that

9!1 : 2� ! 2�1 and !2 : 2� ! 2�2 refinings, i.e., is a coarsening of both frames.

This is well defined, as

Theorem 10. If �1;�2 2 F are elements of a family of compatible frames then they

have a common coarsening.

Proof. From the proof of Theorem 7 they have at least 1 as common coarsening. Ì

Theorem 10 is nothing but the dual of Axiom A6 (see section 2.5). This opens the

way to the introduction of a new operator acting on collections of compatible frames,

the dual of the minimal refinement.
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Theorem 11. Given a collection �1, . . . , �n of elements of a family of compatible

frames F there exists a unique element � 2 F such that:

1. 8i there exists a refining !i : 2� ! 2�i ;

2. 8� 2 � 9= A1 
 !1({�}), . . . , An 
 !n({�}) s.t. �1(A1) = ... = �n(An)

where �i : 2�i ! 2�1������n .

We first need a simple intermediate result.

Lemma 2. Suppose �1� � � � ��n is the minimal refinement of �1, . . . , �n, with re-

finings �i : 2�i ! 2�1������n , and there exist X1 � �1, . . . , Xn � �n with �1(X1) = � � � =
�n(Xn) such that 9= A1 
 X1, . . . , An 
 Xn s.t. �1(A1) = ... = �n(An). Then for every

common coarsening � of �1, . . . , �n, with refinings !i : 2� ! 2�i , there exists � 2 �
such that Xi � !i({�}) 8i = 1, . . . , n.

Proof. Let us suppose there not exists such an element �, but Xi is covered by a

subset �XX � �. If we consider one of these elements ��� 2 �XX we have

�ið!ið���Þ \ XiÞ ¼ �ið!ið���ÞÞ \ �iðXiÞ

but then �1ð!1ð���ÞÞ ¼ ::: ¼ �nð!nð���ÞÞ by definition of common coarsening, and

�1(X1) = ... = �n (Xn) for hypothesis, so that

�1ð!1ð���Þ \ X1Þ ¼ ::: ¼ �nð!nð���Þ \ XnÞ

with Ai¼: !ið���Þ \ Xi 
 Xi 8i =1, . . . , n, which is a contradiction. Ì

Now we can face the proof of Theorem 11.

Proof. Existence. The proof is constructive. Let us take an arbitrary coarsening L of

�1, . . . , �n (which exists by Theorem 10) and check for every l 2 L whether there

exists a collection of subsets {Ai 
 !i({l}), i = 1, . . . , n} such that �1(A1) = ... = �n(An).

If the answer is negative we have the desired frame. Otherwise we can build a new

common coarsening L0 of �1, . . . , �n by simply splitting {l} into a pair {l1, l2} where

!i
0ðfl1gÞ ¼ Ai; !i

0ðfl2gÞ ¼ Bi 8i ¼ 1; . . . ; n

having defined Bi = !i({l}) nAi. This can always be done, for if !i({l}) n Ai 6¼ ; for

some i then it is not void 8i.
This procedure can be iterated until there are not subsets satisfying condition 2. It

is also guaranteed to terminate, as the number of possible bijections of the images

!i({l}) is finite. More precisely, the maximum number of steps is

dlog2 max
l2L

min
i¼1;:::;n

j!iðflgÞje:
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Uniqueness. Suppose �0 is another common coarsening satisfying condition 2,

with refinings !i
0 : 2�0 ! 2�i , distinct from �. If we define Xi ¼

:
!i({�}), � 2 �, by

lemma 2 there exists �0 2 �0 such that !i({�}) � !i
0({�0}). But then condition 2 implies

!i({�}) = !i
0({�0}) for every pair �, �0 so that � = �0. Ì

Definition 19. This unique frame is denoted by �1 � ... � �n, and called maximal
coarsening of �1, . . . , �n.

Theorem 12. If � is a common coarsening of a finite set of compatible frames

�1, . . . , �n then � is a coarsening of their maximal coarsening too, i.e., there exists a

refining ! : 2� ! 2�1������n .

Proof. Let us consider another common coarsening �0 of �1, . . . , �n, with

�i : 2�0 ! 2�i . If it satisfies condition 2 of Theorem 11 then for the uniqueness of

�1 � � � � � �n it coincides with the maximal coarsening. Otherwise the procedure of

the above proof can be used to produce such a frame. Again, uniqueness guarantees

that this is the maximal coarsening and by construction it is a refinement of �0. Ì

In other words,

Corollary 2. The maximal coarsening �1 � � � � � �n of a collection of frames

�1, . . . , �n coincides with the greatest lower bound (inf) of the collection of frames as

elements of the poset ðF ;UÞ.

6.3. Birkhoff property

Proposition 1 and Theorems 9, 11 and 12 have a straightforward consequence on

the algebraic structure of F .

Corollary 3. The collection of sets F of a family of compatible frames of dis-

cernment is a lattice, with respect to the internal operations of minimal refinement and

maximal coarsening.

As we will see in this last part of the paper, the lattice-theoretic language turns

out to be the right tool for discussing the algebraic nature of the conflict problem.

From a technical point of view, it must be pointed out that F lacks the attribute

of completeness: the axioms do not guarantee the existence of a minimal refinement

for an infinite (even countable) collection of sets. A more precise characterization of

ðF ;�;�Þ can be given after introducing a few other lattice-theoretic notions (a ref-

erence can be found in [25] and [26]).

Definition 20. A lattice L is modular iff if a U b, a ^ c = b ^ c, a _ c = b _ c then

a = b.
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Definition 21. A lattice L is Birkhoff when a, b � a ^ b implies a _ b � a, b for all a,

b 2 L, where x � y (x Fcovers_ y) means that x > y and 9= z : x > z > y.

It can be proved that the Birkhoff property is weaker than modularity [25].

Definition 22. A poset is said to have finite length if the length of its chains

(collections of consecutive elements) is bounded.

Now we have the tools to precise the nature of the lattices of compatible frames.

Theorem 13. A finite family of compatible frames ðhSiA1;::;4;7
;UÞ is a complete

Birkhoff lattice of finite length.6

Proof. ðhSiA1;::;4;7
;UÞ is complete. Actually each finite lattice is complete for it does

not contain any infinite collection of elements. ðhSiA1;::;4;7
;UÞ is Birkhoff. Assume that

�1 and �2 both cover their maximal coarsening. Necessarily �1 � �2 must have rank

j�1 ��2j ¼ j�1j � 1 ¼ j�2j � 1;

so that both refinings !1 : 2�1��2! 2�1 and !2 : 2�1��2! 2�2 leave unchanged each

point of �1 � �2 but one, replaced by two new elements.

Now, on the other side �1 and �2 represent two different partitions �1,�2 of

their minimal refinement. By construction these partitions coincide but for the

elements obtained by refining these two points, as shown in figure 6.

But then, their minimal refinement must be by definition the superposition of

�1, �2: analytically

�1 ¼ ffp1; p2g; p3; . . . ; png; �2 ¼ fp1; . . . ; pn�2; fpn�1; pngg

6 For an alternative proof see [26].

Figure 6. Example of partitions like �1 (solid line) and �2 (dashed line) in Theorem 13.
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having denoted their minimal refinement by {p1, p2, . . . , pnj1, pn}. Its rank is then

equal to j�1 � �2j = j�1j þ 1 = j�2j þ 1. Hence it covers both frames, for there

cannot exist any frame with intermediate size between �1 or �2 and �1 � �2. Ì

After looking at the proof of Theorem 13 we can observe how it proves the

Birkhoff property for general families of frames, too. As a matter of fact, being

Birkhoff is a local property involving the sublattice [�1 � � � � � �n, �1 � � � � � �n].

Corollary 4. The collection of sets F of a family of compatible frames is a locally
Birkhoff lattice bounded below, i.e., is a Birkhoff lattice of locally finite length with

initial element.

Proof. It just remains to point out that, for Theorem 7, each arbitrary collection of

frames in F admits a common coarsening 1, playing the role of initial element of the

lattice. Ì

We are hence finally able to discuss the difference between vector spaces and

compatible frames in algebraic terms. As a matter of fact, it turns out that the

collection of vector subspaces of a vector space forms a modular lattice [1]. Lattices of

compatible frames, instead, are not modular: Figure 7 shows a simple counterexam-

ple. Both the pairs formed by picking one of the left-most frames and the right-

most one have the same minimal refinement and maximal coarsening (the unit

Figure 7. Non-modularity of finite families of frames: a counter-example.
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frame). However, they are different even though linked by a refining, violating

Definition 20.

7. Independence and pseudo-Gram<Schmidt algorithm

Maybe it is time for a little summary. So far we have proved that the problem of

conflicting belief functions, so important for sensor fusion applications, is inherently

related to the notion of independence of frames. This in turn is strikingly similar to the

notion of independence of vector subspaces. We have wondered whether this is more

than a simple analogy or there is instead a deep connection, possibly providing us with

a formally correct solution of the conflict problem.

We posed the question in an algebraic setup, and investigated the properties of

the axioms defining a family of frames, in particular the notion of minimal refinement.

We now know that both frames and refinings form monoids with respect to �. This

brought us to explore a possible description in terms of partially ordered sets. We

learned how to define a dual operation in the families of compatible frames of

discernment, called maximal coarsening �. These families form in fact a lattice with

respect to �,�.

The bottom line is that this particular class of lattices, called FBirkhoff,_ also

includes the lattice of the vector subspaces of a vector space. Actually, the latter is

something more (a Fmodular_ lattice). As we are going to see, Birkhoff lattices are

among the algebraic structures where the concept of independence can be introduced.

In this last Section we will discuss the possible outcomes of our algebraic analysis, and

conjecture a possible formal solution of the conflict problem.

7.1. Linear independence and Birkhoff lattices

The following definition is due to Szasz [26].

Definition 23. Consider the collection PðMÞ of all the finite subsets of a given set M
and define in the product M � PðMÞ a relation �. � is said to be a linear dependence
on the set M if it satisfies the following conditions:

1. pj � {p1, . . . , pm}, j = 1, . . . , n;

2. if p � {p1, . . . , pm} and 8j pj � {q1, . . . , qn}, then p � {q1, . . . , qn}

3. if p � {p1, . . . , pm, q} but p �0 {p1, . . . , pm}, then q � {p1, . . . , pm, p}

where �0 means Fis not in relation with._

A set provided with a linear (in)dependence relation is often called matroid [19].

Definition 23 is rather cryptic, so maybe it may be useful to give of it an alternative
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interpretation. More intuitively, a collection I of elements of a set M (matroid) is

called the independent sets of M if it meets the independence augmentation axiom: if

I1 and I2 are in I and jI1j < jI2j then there exists an element e of I2 j I1 such that

I1 [ e 2 I . Try and think at the usual vector space case, and you will realize it does

indeed satisfy this condition.

Some elements of a Birkhoff lattice do admit a linear dependence relation.

Let us call rank h(a) of an element a of a finite length semimodular lattice bounded

below L, the length of the interval I[0, a] (i.e., the sublattice {x 2 L : 0 r x r a}). In a

lattice bounded below, the elements Fcovering_ 0 (i.e., such that there are no other

elements in the chains containing them) are called atoms. It can be proved that (see

[4], Chapter 6).

Theorem 14. If L is a Birkhoff lattice bounded below, the equivalence relation LD �
L� PðLÞ defined as

p LD fp1; . . . ; png 	 hðp _ p1 _ � � � _ pnÞ < hðp1 _ � � � _ pnÞ þ hðpÞ ð16Þ

where p, p1, . . . , pn 2 A (the set of atoms) and h is the rank of the elements of the

lattice is a linear dependence relation.

In other words, the atoms of a Birkhoff lattice form a matroid. Actually, the

notion of linear independence of atoms of a semimodular lattice is due to G. Birkhoff

and H. Whitney [27], and is well known since the first half of the last century (consult

his seminal works [2], or [3]).

7.2. Equivalence of independence relations

As a family of compatible frames F is a Birkhoff lattice, it admits the lattice-

theoretic dependence relation (16) on its atoms (the binary frames). On the other side,

F is also endowed with the evidence-theoretic independence relation (6). Are they

related?

A connection between these two different notions of independence becomes clear

when we notice that the linear independence relation associated with (16) is

p LI fp1; . . . ; png 	 p LD fp1; . . . ; png 	 hðp _ p1 _ � � � _ pnÞ ¼

¼ hðp1 _ � � � _ pnÞ þ hðpÞ ¼ hðp1Þ þ . . .þ hðpnÞ þ hðpÞ ð17Þ

where for a frame lattice � _ � = � � �.

But now, condition 4 of Theorem 1 can be written as

f ð�1 � � � � ��nÞ ¼ f ð�1Þ þ . . .þ f ð�nÞ
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where f = lg(j�j) = lg(r(�)) and r = j�j is the rank of a frame � as element of the

lattice ðF ;�;�Þ. We can then conjecture that

Conjecture 1. The extension of the linear-independence relation (17) to arbitrary
elements of the frame lattice and the evidence-theoretic independence of frames (6)

are equivalent.

The necessary steps to achieve an equivalence proof become obvious:

1. proving that equation (17) defines a linear independence relation for arbitrary

elements of a Birkhoff lattice, possibly enriched with additional properties;

2. showing that this can be also true for at least a suitable class of monotone functions

of the rank (like logarithm).

To our knowledge none has yet proposed to give a matroidal structure to whole

Birkhoff lattices. Maybe a naive, straightforward implementation of (17) is not

feasible: the problem is likely to deserve a paper of its own.

7.3. Towards an algebraic solution of the conflict problem

Anyway, the above discussion suggests a way to solve the conflict among

measurement belief functions without resorting to the conflict graph mentioned in

section 3 [5, 6].

We have pointed out in the Introduction the striking similarity between in-

dependence of frames and vectors. Their formal expressions in terms of vectors (top)

and subsets (bottom), respectively, confirm this impression
P

i vi 6¼ 0 () v1 þ . . .þ vn 6¼ 0; 8vi 2 Vi~w€
T

i Vi ¼ 0 () spanfV1; . . . ;Vng ¼ Rd1 � � � � � Rdn

L
i �i ¼ 0F () �1 � � � � ��n ¼ �1 � � � � ��n~w€
T

At 6¼
V

() !1ðA1Þ \ � � � \ !nðAnÞ 6¼ ;

where 7 At 6¼
V

(with
V

the initial element of a Boolean algebra) is the independence

condition for Boolean sub-algebras [23].

This analogy has a formal root in Corollary 4. L(V) and F are both Birkhoff

lattices, admitting the notion of independent elements. Moreover, the elements of

these lattices (subspaces and frames) are commutative monoids. A vector space,

indeed, is a group with respect to the operation Fþ_ and a frame is a Boolean algebra,

i.e., a complete distributive lattice, hence they are both commutative monoids ([13]). If
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Conjecture 1 is true, independence of frames and vector spaces may be nothing but

different expressions of the matroidal structure of Birkhoff lattices.

We remember that, given a collection of arbitrary elements of a vector space, the

well known Gram-Schmidt algorithm generates another collection of independent vec-

tors, spanning the same subspace. Its basis elements are the independence condition and

the projection of vectors onto other subspaces.

Conjecture 1 suggests the concrete possibility of designing a Fpseudo GramY
Schmidt_ method resting on the shared algebraic structure of Birkhoff lattice of

commutative monoids, and the associated independence relation. This algorithm,

starting from a set of belief functions defined over a finite collection of discrete feature

spaces, would build another collection of independent frames of the same family

�1; . . . ;�n 2 F �! �1
0; . . . ;�m

0 2 F
s1; . . . ; sn 7! s1

0; . . . ; sm
0

with m 6¼ n in general, and the same minimal refinement

�1 � � � � ��n ¼ �1
0 � � � � ��m

0:

Once projected the n b.f. s1, . . . , sn onto the new set of frames we would achieve a set

of surely combinable belief functions s1
0, . . . , sm

0, equivalent, in some sense, to the

previous one. A formal definition of the equivalence of possibly non-combinable

collections of belief functions needs of course to be introduced, even if it is reasonable

to say it has to involve Dempster’s combination.

7.4. Perspectives

In this work, in conclusion, we have shown how an algebraic description of the

families of frames could open the way to a solution of the problem of conflicting

evidence by means of algebraic tools.

However, although we think the proposed method is the most elegant and

rigorous approach to cope with groups of conflicting belief functions, the fundamental

issues of Conjecture 1 and the pseudo Gram-Schmidt algorithm still need to be ad-

dressed prior to a practical application to information fusion problems (like the pose

estimation task we discussed in section 3). For instance, a precise definition of the

projection operator in the context of Birkhoff lattices of commutative monoids has to

be formulated. Furthermore, power sets are not groups, so we cannot simply subtract

the projected elements like in the original G-S algorithm. Difficult questions concern

the meaning of the obtained collection of independent frames (in the object tracking

context, we could ask whether they represent actual features), or the order in which the

input data is Forthogonalized_.
The prize of this challenging pursuit would be an elegant and definitive

arrangement of the conflict problem, and by this means a rigorous approach to sensor

fusion tasks.
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Of course the present algebraic analysis’s applications are far more extended, as

many concepts of the theory of evidence are inherently connected to the structure of

the underlying domains. For example, the notion of support function depends on the

idea of refining and could quite likely be reformulated using the algebraic language. Its

analysis in the light of the lattice structure of F can lead eventually to an alternative

solution of the canonical decomposition problem.

For a more technical point of view, other properties of the frame lattices still

need to be investigated: the presence and nature of complements and semi-comple-

ments, intervals and the relations of filters and ideals with finite and general families

of frames.
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