ALGEBRAIC SURFACES WITH \boldsymbol{k}^{*}-ACTION

BY
P. ORLIK
University of Wisconsin, Madison, Wisconsin, USA

Let k be an arbitrary algebraically closed field and let k^{*} denote the multiplicative group of k considered as an algebraic group. We give a complete classification of all non-singular projective algebraic surfaces with k^{*}-action. Moreover, for singular surfaces we provide an algorithm for finding an equivariant resolution. Explicit computations are given for hypersurfaces in P^{3}.

The topologically significant case emerges when $k=\mathbf{C}$, the complex numbers, when non-singular surfaces are smooth orientable closed 4 -manifolds with \mathbf{C}^{*}-action. This was the case studied in our earlier papers [16, 17, 18]. In order to facilitate the reading of the present paper for the reader whose main interest lies in these topological aspects, we have included geometric motivation for several of our algebraic constructions. It is clear from the naturality with which these constructions can be extended to the general case that it is appropriate to treat the problem from the point of view of algebraic geometry.

The paper is organized as follows. In section 1 the necessary tools are introduced both from transformation group theory and algebraic geometry. We prove a number of lemmas about actions in general, needed later in the paper. In section 2 we focus our attention on non-singular algebraic surfaces with k^{*}-action. The fixed points of a k^{*}-action are divided into three classes; elliptic, hyperbolic and parabolic ($\S 2.3$). A "topological" classification of non-singular surfaces with no elliptic fixed points is obtained in §2.5. The classification theorem states that the fixed point set is $F=F^{+} \cup F^{-} \cup\left\{x_{1}, \ldots, x_{r}\right\}$, where the x_{i} are hyperbolic fixed points and F^{+}and F^{-}are isomorphic complete curves. More-
(1) Both authors received partial support from NSF. During part of this research the first named author was visiting the University of Oslo, Norway.
over the surface is obtained from a $P^{1}(k)$ bundle over F^{+}with k^{*} action in the fiber, by blowing up a suitable number of fixed points of the action. A complete set of "topological" invariants is included in a labeled graph Γ associated to the surface V. Assign a vertex each to F^{+}and F^{-}with labels [g] for their genus and $-c$ and $-c^{\prime}$ respectively for their self-intersection in V. Assign a vertex to each l-dimensional orbit whose closure does not meet both F^{+}and F^{-}, with label $-b_{i j}$ for its self-intersection in V. Finally, let an edge connect two vertices if the corresponding curves meet (transversly with intersection number +1).

Theorem 2.5. Let V be a non-singular, complete algebraic surface with k^{*} action, so that $\operatorname{dim} F^{+}=\operatorname{dim} F^{-}=1$. Then we have:
(i) F^{+}is a complete curve of genus g, isomorphic to F^{-};
(ii) the graph Γ of $\left(V, k^{*}\right)$ is of the form

(iii) $b_{i j} \geqslant 1$ and the continued fraction (see the Appendix for this notation)

$$
\left[b_{i, 1}, \ldots, b_{i, s_{i}}\right]=0 \quad \text { for } \quad i=1, \ldots, r
$$

(iv) if we define the integers c_{1} by

$$
1 / c_{i}=\left[b_{i, 1}, \ldots, b_{i, s_{i}-1}\right] \text { for } i=1, \ldots, r
$$

then the following equation holds

$$
c+c^{\prime}=\sum_{i=1}^{r} c_{i}
$$

In section 3 we construct the canonical equivariant resolution of the singularities of a surface V with k^{*}-action. By this we mean a non-singular surface W with a k^{*}-action
and a k^{*} equivariant proper map $\pi: W \rightarrow V$ which is biholomorphic on the complement of the singular set of V and so that there are no elliptic fixed points on W. Note that even if V is nonsingular, W will not be equal to V if there are elliptic fixed points on V. We define in §3.2 a marked graph Γ_{V}, starting with Γ_{w} and indicating which orbits in W are identified to points in V and which orbits in W are identified to each other in V. This marked graph contains all the "topological" information about V. In particular if $k=\mathbf{C}, \Gamma_{V}$ determines V up to equivariant homeomorphism. In §3.3 we define the Seifert orbit invariants (α, β) of an orbit of dimension 1. Here α is the order of the isotropy group of a point v on the orbit and β determines the action of the isotropy group on the tangent space at v. Section 3.4 is devoted to determining the behavior of orbit invariants under "blowing up" and we use this in $\S 3.5$ to prove a relation between the continued fraction expansion of α / β and the self-intersection of certain orbits on V. Explicit formulas for determining the orbit invariants and the graph of the resolution of an elliptic fixed point on a surface in k^{3} are given. The corresponding action was called "good" in [16]. These results are an improvement over [16] since they are valid for a field of arbitrary characteristic. Moreover, the formulas are in terms of the weights and degree of the defining polynomial. In §3.7 we indicate how to find the minimal equivariant resolution of a hyperbolic or parabolic singular point, not treated in [16].

Section 4 is devoted to the diffeomorphism and algebraic classification problems. First we classify the (relatively) minimal surfaces with k^{*}-action $\S 4.1$ and apply this to determining which surfaces admit an essentially unique k^{*}-action and which k^{*}-actions extend to $k^{*} \times k^{*}$-actions $\S 4.2$. In $\S 4.3$ it is shown that a complete surface with algebraic \mathbb{C}^{*}-action is diffeomorphic to precisely one of the following
(1) $\left(R_{g} \times S^{2}\right) \# k \overline{\mathbf{C} P^{2}} \quad g \geqslant 0, \quad k \geqslant 0$,
(2) N_{g},
(3) $\mathrm{C} P^{2}$,
where R_{g} is a compact Riemann surface of genus g and N_{g} is the non-trivial S^{2} bundle over R_{g}, and $\overline{\mathbf{C}} \bar{P}^{2}$ denotes $\mathbf{C} P^{2}$ with the opposite of the usual orientation. This is applied to give examples of non standard S^{1} actions on $\mathbf{C} P^{2} \not \approx k \overline{\mathbf{C P}}^{2}, k \geqslant 3$ i.e. S^{1} actions which do not extend to $S^{1} \times S^{1}$ actions (§4.4). Finally, we give a complete list of invariants of V up to equivariant algebraic isomorphism (§4.6).

Specific examples of the resolution of singularities of hypersurfaces V in P^{3} and calculation of Γ_{V} are given in section 5 . Some facts about continued fractions have been collected in an appendix.

1. Group actions on varieties

1.1. Let G be an algebraic group. We shall not assume that G is compact. In the applications G will be k^{*}, the multiplicative group of a field k.

Let V be a algebraic variety. An action of G on V is a morphism of algebraic varieties

$$
\sigma: G \times V \rightarrow V
$$

so that $\sigma(s, \sigma(t, v))=\sigma(s t, v)$ and $\sigma(1, v)=v$. If $g \in G$ and $v \in V$ it is customary to denote the element $\sigma(g, v)$ by $g v$. The action is effective if $g v=v \forall v \in V \rightarrow g=e$, the identity element of G. For $v \in V \sigma$ induces a morphism $\sigma_{v}: G \rightarrow V$ defined by $\sigma_{v}(g)=g v$. We define the isotropy subgroup G_{v} of v to be the scheme theoretic fiber $\sigma_{v}^{-1}(v)$. If k is a field of characteristic 0 then $G_{v}=\{g \in G \mid g v=v\}$. The orbit of v is the subvariety defined by $G(v)=\{w \in V \mid \exists g \in G, g v=w\}$. This induces a natural equivalence relation on $V, x \sim y \Leftrightarrow x \in G(y)$. The quotient $V^{*}=V / \sim$ equiped with the quotient topology is called the orbit space of the action. Even if V is a complex manifold, V^{*} can be rather unpleasant, as the examples below indicate, see also [8]. Let $F=\left\{v \in V \mid G_{v}=G\right\}$ denote the fixed point set and $E=\left\{v \in V \mid G_{v}\right.$ is finite and $\left.G_{v} \neq(1)\right\}$ denote the exceptional orbits, i.e. orbits with finite non-trivial isotropy group.
1.2. Let $V=\mathbf{C}^{2}$ with the metric topology, and $G=\mathbf{C}^{*}$ and q_{1}, q_{2} integers. Consider the action $\sigma\left(t ; v_{1}, v_{2}\right)=\left(t^{a_{1}} v_{1}, t^{q_{2}} v_{2}\right)$. First assume that $q_{1}, q_{2}>0$. Then $F=(0,0)$ and E consists of two orbits: $E_{1}=\left\{v_{1}, v_{2} \mid v_{1} \neq 0, v_{2}=0\right\}$ with isotropy $\mathrm{Z}_{q_{1}}$ and $E_{2}=\left\{v_{1}, v_{2} \mid v_{1}=0, v_{2} \neq 0\right\}$ with $\mathbf{Z}_{\mathrm{q}_{2}}$. The orbit space V^{*} fails to be T_{0} at the image of the fixed point. However, if we let $V_{0}=V-F$, then V_{0}^{*} is Hausdorff, in fact by a theorem of Holmann [8] it has a natural complex structure and is easily identified as P^{1}. The situation is the same if $q_{1}, q_{2}<0$.
1.3. In the example above, if $q_{1} \neq 0, q_{2}=0$, then $F=\left\{v_{1}, v_{2} \mid v_{1}=0\right\}$ and $\left.E=\left\{v_{1}, v_{2} \mid v_{1} \neq 0\right)\right\}$ so the action is not effective unless $q_{1}= \pm 1$. In that case $E=\varnothing$. Again, V^{*} fails to be T_{0} at F, but $V_{0}=V-F$ has Hausdorff orbit space, $V_{0}^{*}=\mathbf{C}$.
1.4. If we assume $q_{1}>0, q_{2}<0$, then F and E are the same as in $\S 1.2$, but even the orbit space of V_{0} fails to be Hausdorff. The images of E_{1} and E_{2} have no disjoint neighborhoods in V_{0}^{*}. (This holds even if $q_{1}=1, q_{2}=-1$.) This phenomenon is indeed one of the crucial differences between the actions of compact and non-compact groups. The remarks above apply in the category of algebraic varieties if we replace "Hausdorff" by "separated".
1.5. A map $f: V \rightarrow W$ between G spaces V and W is equivariant if $f(g v)=g f(v)$ for all $g \in G, v \in V$. A G-space is linear if it is equivariantly isomorphic to a vector space with linear G action. Let H be a closed subgroup of G and S a linear H-space. We form $G \times_{H} S$ by identifying in $G \times S(g, s) \sim\left(g h^{-1}, h s\right)$ for all $h \in H$. Call the equivalence class of $(g, s),[g, s]$. Given a G-space V and $v \in V$ we call S_{v} a linear slice at v if it is a linear G_{v}-space and some G-invariant open neighborhood of the zero section of $G \times G_{v} S_{v}$ is equivariantly isomorphic to a G-invariant neighborhood of the orbit $G(v)$ in V by the map $[g, v] \rightarrow g v$, so that the zero section G / G_{v} maps onto the orbit $G(v)$.

It is essential for the reader to keep in mind that the standard tools of transformation groups do not always apply in our context. For holomorphic or smooth action of a compact Lie group G, the existence of slices is a classical result. In our situation with $G=k^{*}$, a slice need not exist.

We refer to Holmann [8] and Luna [10] for results on the existence of slices. These will only be used in the present paper in §5.2.
1.6. A k^{*}-action on an affine variety $V=\operatorname{Spec}(A)$ is equivalent to a grading of the ring A. The correspondence is defined as follows. If V is an affine variety with k^{*} action we define a grading on A by letting

$$
A_{i}=\left\{f \in A \mid f(t z)=t^{t} f(z), \quad \text { for all } z \in V\right\} .
$$

Then one can verify that $A=\oplus_{i \in Z} A_{i}$ and that $A_{i} A_{j} \subset A_{i+j}$. Conversely, if A is graded we can find homogeneous generators of the k-algebra A, say x_{1}, \ldots, x_{n}. The homomorphism $\varphi: k\left[X_{1}, \ldots, X_{n}\right] \rightarrow A$ defined by $\varphi\left(X_{i}\right)=x_{i}$ defines an embedding of V in k^{n}. Let $q_{i}=$ degree x_{i}. Then define an action of k^{*} on k^{n} by

$$
t\left(z_{1}, \ldots, z_{n}\right)=\left(t^{q_{1}} z_{1}, \ldots, t^{a_{n}} z_{n}\right)
$$

This action on k^{n} leaves V invariant.
We can use this correspondence to get some information about the structure of a k^{*} variety.

Lemma. If k^{*} acts effectively on V, then there exists an invariant Zariski open set U, equivariantly isomorphic to $W \times k^{*}$ where
(i) W is affine, and
(ii) k^{*} acts on $W \times k^{*}$ by translation on the second factor.

Proof. We first consider the case where $V=A_{k}^{n}$ and the action is given by
$\sigma\left(t,\left(z_{1}, \ldots, z_{n}\right)\right)=\left(t^{m_{1}} z_{1}, \ldots, t^{m_{n}} z_{n}\right)$. In this situation let $U=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid z_{i} \neq 0\right.$, for all $\left.i\right\}$. We claim that U is equivariantly isomorphic to $W \times k^{*}$ with k^{*} acting on the second factor by multiplication. Now

$$
U=\operatorname{Spec}\left(k\left[z_{1}, \ldots, z_{n}, z_{1}^{-1}, \ldots, z_{n}^{-1}\right]\right) .
$$

In this case the grading is defined by degree $z_{1}=m_{1}$. Since the action is effective, g.c.d. $\left(m_{1}, \ldots, m_{n}\right)=1$. Therefore there exist integers $a_{1}, a_{2}, \ldots, a_{n}$ so that $\sum_{i=1}^{n} a_{i} m_{i}=1$. Let $X=Z_{1}^{a_{1}} \ldots Z_{n}^{a_{n}}$, a form of degree l. Let R be the subalgebra of forms of degree 0 . Then R is an algebra of finite type over k and

$$
k\left[z_{1}, \ldots, z_{n}, z_{1}^{-1}, \ldots, z_{n}^{-1}\right]=R\left[X, X^{-1}\right] .
$$

Letting $W=\operatorname{Spec}(R)$, we have proven our claim.
Now consider the case of general V. We may assume that V is normal. Then a theorem of Sumihiro [23] asserts that an open subset of V can be equivariantly embedded in A_{k}^{n}, with an action as above. Thus we may assume that $V \subset A_{k}^{n}$ and is invariant under σ. Let $I \subset R\left[X, X^{-1}\right]$ be the (prime) ideal defining V. The fact that V is invariant under σ means that I is a graded ideal. Thus $I=\oplus_{j \in Z} I_{j}$ where I_{j}, consist of the elements of I which are homogeneous of degree j. However $f \subset I_{j} \Leftrightarrow X^{-j} f \in I_{0} \Leftrightarrow f=X^{j}\left(X^{-j} f\right) \in X^{j} I_{0}$. Thus $I=\oplus, X^{\prime} I_{0}$ and hence $V=\operatorname{Spec}\left(R / I_{0}\right) \times \operatorname{Spec}\left(k\left[X, X^{-1}\right]\right)$ which is the desired result.
1.7. Lemma. Let G be an algebraic group, V and W varieties with G action and $U \subset V$ an invariant Zariski open set. If the map $f: V \rightarrow W$ is equivariant when restricted to U, then it is equivariant on V.

Proof. The following diagram with 1 denoting the identity map

is commutative because $G \times U$ is dense in $G \times V$ and the maps $\sigma \circ(1 \times f)$ and $f \circ \sigma$ agree on $G \times U$, hence they agree on $G \times V$.
1.8. Let O_{V} denote the sheaf of rational functions on V and $I \subset \mathcal{O}_{V}$ an ideal sheaf. The monoidal transform with center I is a pair (π, V^{\prime}) with $\pi: V^{\prime} \rightarrow V$ and
(i) $I O_{V}$ is locally principal, i.e. $\forall w \in V^{\prime}$ the stalk $\left(I O_{V^{\prime}}\right)_{w}$ is generated by one function,
(ii) for every $\pi_{0}: V_{0} \rightarrow V$ satisfying " $I O_{V_{0}}$ is locally principal" there is a unique $\eta: V_{0} \rightarrow V^{\prime}$ with $\pi \circ \eta \rightarrow \pi_{0}$.

The monoidal transform exists by Hironaka [7] and it is unique by (ii). If X is a subspace of V and I_{X} is the sheaf of functions vanishing on X, then the monoidal transform with center X is defined to be the monoidal transform with center I_{X}. It is also called "blowing up of X ". For a geometric description of the blowing up of a subvariety see [22].

Lemma. Let G be an algebraic group acting on an algebraic variety V and (π, V^{\prime}) a monoidal transformation with center a G-invariant sheaf of ideals I. Then there is a unique extension of the action of G to V^{\prime} so that π is equivariant.

Proof. We first show that there is a unique map $\sigma^{\prime}: G \times V^{\prime} \rightarrow V^{\prime}$ so that the diagram below commutes.

For this it is sufficient to show that $(\sigma \circ(1 \times \pi))^{*}(I)$ is a locally principal sheaf of ideals in $O_{G \times V}$. Now I is invariant under σ so $\sigma^{*}(I)=O_{G} \otimes I$ and hence $(\sigma \circ(1 \times \pi))^{*}(I)=$ $O_{G} \otimes \pi^{*}(I)$ which is locally principal because $\pi^{*}(I)$ is locally principal. To verify that σ^{\prime} is an action, let $U=V-\operatorname{support}(I)$ and $U^{\prime}=\pi^{-1}(U)$. Since U^{\prime} is isomorphic to U, the following diagram is commutative

where m is the multiplication of G. An application of $\S 1.7$ completes the proof.
1.9. Proposition. Suppose V is a non-singular algebraic surface with k^{*}-action and $C \subset V$ is a complete curve with negative self-intersection number. Then C is invariant under the action.

Proof. Let $C_{t}=\{t x \mid x \in C\}$. Then C_{t} is rationally equivalent (homologous if $k=\mathbf{C}$) to C for all t. If C is not invariant then $(C \cdot C)=\left(C \cdot C_{t}\right)>0$, which is a contradiction. 4-772902 Acia mathematica 138. Imprimé le 5 Mai 1977

2. Non-singular surfaces with $\mathbf{k}^{\boldsymbol{*}}$-action

2.1. From now on we shall concentrate on the case $G=k^{*}$, the multiplicative group of a field, and V an algebraic surface over that field. In this section we shall determine the topological type of a non-singular algebraic surface with k^{*}-action, provided it has no elliptic fixed points.

Definition. A morphism $f: X \rightarrow Y$ of algebraic varieties is said to be birational if there is a closed subvariety $Z \subset Y$ so that $f: X-f^{-1}(Z) \rightarrow Y-Z$ is an isomorphism.

Lemma. Suppose $f: X \rightarrow V$ is a G-equivariant birational proper morphism of non-sigular surfaces. Then there exist equivariant morphisms $f_{i}: X_{i} \rightarrow X_{i-1}, i=1, \ldots, n$ so that $X_{0}=V$, $X_{n}=X$ and f_{i} is a monoidal transform with center at a fixed point of X_{i-1}.

Proof. By [9, §26] the set of points S where f^{-1} is not defined is finite. Moreover if $y \in S$, then y is a fixed point and $f^{-1}(y)$ is a divisor. Now let $S=\left\{y_{0}, y_{1}, \ldots, y_{r}\right\}$ and define h_{1} to be the blowing up of the points y_{0}, \ldots, y_{r}. Then since $f^{-1}\left(\left\{y_{0}, \ldots, y_{r}\right\}\right)$ is locally principal we have a factorization $X \xrightarrow{g_{1}} X_{1} \xrightarrow{h_{1}} Y$. Repeating the process, by [9] we reach a point so that $f=h_{1} \circ h_{2} \circ \ldots \circ h_{r}$, where $h_{i}: X_{i} \rightarrow X_{i-1}$ is a monoidal transform with center at a finite number of points. Factoring each h_{i} gives the desired result.
2.2. Definition. V is normal at $v \in V$ if the local ring O_{v} at v is integrally closed. For any variety V there is a variety \hat{V} and a proper morphism $\pi: \tilde{V} \rightarrow V$ called the normalization of V characterized by the fact that for every affine open subset U of $V, \Gamma\left(\pi^{-1}(U), O_{\tilde{v}}\right)$ is the integral closure of $\Gamma\left(I U, O_{V}\right)$ in its field of quotients [4, II. 6.3]. If $\sigma: V_{1} \rightarrow V_{2}$ is a birational morphism there exists a unique $\tilde{\sigma}: \tilde{V}_{1} \rightarrow \tilde{V}_{2}$ so that

commutes.

Definition. V is complete if the morphism $V \rightarrow \operatorname{Spec}(k)$ is proper. If $k=\mathbf{C}$ this is equivalent to V being compact in the metric topology.

Theorem. Suppose V is a complete, normal algebraic surface with k^{*} action. Then there is a complete non-singular curve C, a complete surface Z with k^{*} action and morphisms

so that
(i) the action on $C \times P^{1}(k)$ is given by

$$
t\left(x,\left[z_{0}: z_{1}\right]\right)=\left(x,\left[t z_{0}: z_{1}\right]\right)
$$

(ii) φ_{1} and φ_{2} are equivariant,
(iii) φ_{2} is a composite of monoidal transforms whose centers are fixed points of the k^{*}-action,
(iv) φ_{1} is a composite of maps, each of which is either a normalization or a blowing up of a fixed point. If V is non-singular, then each of the maps is a blowing up.

The variety of Z constructed here is not canonical.
Proof. It follows from $\S 1.6$ that there is an open invariant subset $U \subset V$ equivariantly isomorphic to $C_{0} \times k^{*}$, where C_{0} is a non-singular curve. Thus there is an equivariant open embedding $f: U \rightarrow C \times P^{1}$ where C is the (non-singular) completion of C_{0}. Now f defines a rational map $f: V \rightarrow C \times P^{1}$ and it follows from [9] that the set S of points where f is not defined is finite. If $x \in X$ is not a fixed point then f is defined at x, since for some $g \in k^{*}$, f is defined at $g x$ and $f(x)=g^{-1} f(g x)$. Thus S consists of fixed points. Let $V_{0}=V$. Define inductively $f_{i}: V_{i} \rightarrow V_{i-1}$ to be the normalization of the monoidal transform with center at the singular points and points of indeterminacy of $f \circ f_{1} \circ \ldots \circ f_{i-1}$. By [9, (26.2)] and §2.1 there is an s so that V_{s} is non-singular and $f \circ f_{1} \circ \ldots \circ f_{s}$ is defined on V_{s}. Let $Z=V_{s}$, $\varphi_{1}=f_{1} \circ \ldots \circ f_{s}$ and $\varphi_{2}=f \circ \varphi_{1}$. The f_{i} are equivariant by Lemma 1.8 and the functoriality of normalization. Moreover, φ_{2} is equivariant by §1.7. Assertion (iii) follows from §2.1.
2.3. Let V be a non-singular variety and $v \in V$ a fixed point of a k^{*}-action. The tangent space T_{v} at v has a local coordinate system in which the induced action of k^{*} is linear and given by

$$
t\left(z_{n}, \ldots, z_{m}\right)=\left(t^{q_{1}} z_{1}, \ldots, t^{g_{m}} z_{m}\right)
$$

for integers q_{1}, \ldots, q_{m} [2]. Denote by $N^{+}(v)$ the dimension of the positive eigenspace of this action $\#\left\{q_{i}>0\right\}, N^{-}(v)$ the dimension of the negative eigenspace and $N^{0}(v)$ the dimension of the subspace fixed under the action in T_{v}.

We call v an elliptic fixed point if $m=\operatorname{dim} T_{v}=N^{+}(v)$ or $m=N^{-}(v)$. It is a source in the former case and a sink in the latter.

We call v a parabolic fixed point if $N^{0}(v)>0$ and either $m=N^{+}(v)+N^{0}(v)$ or $m=N^{-}(v)+N^{0}(v)$. The former is a parabolic source, the latter a parabolic sink.

All other fixed points are called hyperbolic.
We can extend the definition of an elliptic fixed point to the singular case. Assume $v \in V$ is normal. We say v is an elliptic fixed point if there exists an invariant neighborhood U containing v so that v is in the closure of every orbit in U. Recall that we denote by F the fixed point set of V. Let $F^{+}=\left\{v \in F \mid N^{-}(v)=0\right\}$ and $F^{-}=\left\{v \in F \mid N^{+}(v)=0\right\}$. It follows from [2] that if V is non-singular then F^{+}and F^{-}are irreducible, connected components of F. If V is complete, then both F^{+}and F^{-}are non-empty.
2.4. Let V be a non-singular, complete surface with k^{*}-action and assume that $\operatorname{dim} F^{+}=\operatorname{dim} F^{-}=1$. A 1-dimensional orbit O is called ordinary if $\bar{O} \cap F^{+} \neq \varnothing$ and $\bar{O} \cap F^{-} \neq \varnothing$, where \bar{O} is the closure of O. According to Theorem 2.2 the odinary orbits form an open set in V and since V is compact, there are only a finite number of l-dimensional orbits $E_{1}, E_{2}, \ldots, E_{m}$ which are special, i.e. not ordinary. We define the weighted graph Γ of (V, G) as follows:
(i) its vertices are f^{+}for the curve F^{+}, f^{-}for F^{-}and e_{1}, \ldots, e_{m} for the closures $\bar{E}_{1}, \ldots, \bar{E}_{m}$,
(ii) each vertex carries a weight $[g]$, referring to the genus of the curve it represents, (if $g=0$ this weight is omitted),
(iii) each vertex carries a weight n, representing the self-intersection in V of the curve it represents,
(iv) two vertices are connected by an edge if and only if the respective curves intersect in V.

Clearly each point of intersection between different orbit closures is fixed under the action. It follows from $\S 2.2$ that if any two of the curves above intersect, they intersect transversely.
2.5. Theorem. Let V be a non-singular, complete algebraic surface with k^{*}-action so that $\operatorname{dim} F^{+}=\operatorname{dim} F^{-}=1$. Then we have
(i) F^{+}is a complete curve of genus g, isomorphic to \boldsymbol{F}^{-},
(ii) the graph Γ of $\left(V, k^{*}\right)$ is of the form

(iii) $\left\{b_{i, 1}, b_{i, 2}, \ldots, b_{i, s_{i}}\right\}$ is admissible (see Appendix) and the continued fraction

$$
\left[b_{i, 1}, b_{i, 2} \ldots, b_{i, s_{i}}\right]=0 \quad \text { for } \quad i=1, \ldots, r
$$

(iv) with $c_{i}=1 /\left[b_{i, 1}, \ldots, b_{i, s_{i}-1}\right]$ we have

$$
c+c^{\prime}=\sum_{i=1}^{r} c_{i} .
$$

Proof. Applying Theorem 2.2 we see that V can be obtained from $C \times P^{1}$ by blowing up fixed points and then blowing down curves. No fixed curves are blown down since $\operatorname{dim} F^{+}=\operatorname{dim} F^{-}=1$. The theorem clearly holds for $V=C \times P^{1}(k)$, since Γ is of the form

where $c=c^{\prime}=0$, and $F^{+}=F^{-}=C$. Hence it is sufficient to show that if V is a surface with $\operatorname{dim} F^{+}=\operatorname{dim} F^{-}=1$ and $\pi: V \rightarrow W$ is a monoidal transform with center x at a hyperbolic or parabolic fixed point of V, then the theorem holds for V if and only if it holds for W. This is obvious for (i) and (ii). For (iii) we have

$$
\left[b_{1}, \ldots, b_{i}, b_{i+1}, \ldots, b_{s}\right]=\left[b_{1}, \ldots, b_{i-1}, b_{i}+1,1, b_{i+1}+1, b_{i+2}, \ldots, b_{s}\right]
$$

according to A.7. Finally, the expressions of the formula of (iv) remain unchanged if x is not on F_{V}^{+}or F_{V}^{-}. Assume without loss of generality that the center of π is on F_{v}^{-}. Then $c_{W}=c_{V}$ and $c_{W}^{\prime}=c_{V}^{\prime}+1$. If x is in the closure of an ordinary orbit, then Γ_{W} is obtained from Γ_{V} by adding one new arm [1, 1] as follows

This clearly increases both sides of (iv) by l, as required. If x is not on the closure of an ordinary orbit, then W is obtained from V by blowing up a point on F^{-}which is in the closure of a special orbit. This corresponds to adding a new vertex to the i th arm of Γ_{V}. Omitting the first index for convenience, it changes as shown:

Finally, $1+1 /\left[b_{1}, \ldots, b_{s-1}\right]=1 /\left[b_{1}, \ldots, b_{s-1}, b_{s}+1\right]$ follows from Lemma (A.8) to complete the argument.
2.6. Proposition. Suppose k is an algebraically closed field. Any graph Γ satisfying (ii)-(iv) of §2.5 arises from a complete algebraic surface with k^{*}-action.

Proof. Let $V_{0}=C \times P^{1}$ where C is a non-singular complete curve of genus g and let k^{*} act on the second factor. By A. 3 and A. 7 we can obtain a surface V_{1} with the desired
weights on the arms by a sequence of monoidal transforms with centers at fixed points. The graph of V_{1} may not have the desired weights c and c^{\prime} for f^{-}and f^{+}. Let $\operatorname{elm}\left(V_{1}\right)$ be the variety obtained from V_{1} by blowing up a point x of F^{+}which lies in the closure of an ordinary orbit \bar{O}, and then blowing down the transform of \bar{O}. This surface has the same graph as V_{1} except that the weight of f^{-}is increased by 1 and the weight of f^{+}is decreased by 1. Similarly the weight of f - can be decreased. Thus in a finite number of steps we can obtain a surface V_{2} with F^{+}having self intersection $-c$. Now c^{\prime} is determined by the relation (iv) hence V_{2} has the desired graph.

3. Resolution of singularities

3.1. We shall now consider singular surfaces V with k^{*}-action. By an equivariant resultion of the singularities of V we mean a non-singular surface W and a k^{*} equivariant $\operatorname{map} \pi: W \rightarrow V$ which is proper and birational. The existence of an equivariant resolution was demonstrated in §2.2. In this section we construct a canonical equivariant resolution.
3.2. The canonical equivariant resolution. Suppose V is an irreducible normal surface. We construct the canonical equivariant resolution locally and then put the pieces together. Since V is normal, the singular set consists of a finite number of points, each of which must be fixed. Suppose v is an elliptic fixed point (singular or not). By [23], the normality of V implies there is an affine invariant neighborhood U of v and an equivariant embedding $f: U \rightarrow k^{n}$, where the action on k^{n} is given by

$$
t\left(z_{1}, \ldots, z_{n}\right)=\left(t^{q_{1}} z_{1}, \ldots, t^{a_{n}} z_{m}\right)
$$

Moreover we can assume $q_{i}>0$, for all i, if v is a source and $q_{i}<0$, for all i if v is a sink. Assume that v is a source. Now $U=\operatorname{Spec}(A)$ and $A=k\left[X_{1}, \ldots, X_{n}\right] / I$, where I is the ideal of functions vanishing on U. The invariance of U under the action is equivalent to the fact that A is a graded ring, the grading being induced by letting degree $X_{i}=q_{i}, \S 1.6$. The quotient space $X=U-\{v\} / k^{*}$ is the algebraic variety $\operatorname{Proj}(A)[4, I I, \S 2]$. We shall construct a canonical variety U_{X} and morphisms $h: U_{X} \rightarrow U$ and $\nu: U_{X} \rightarrow X$. Geometrically $v: U_{x} \rightarrow X$ is the Seifert k^{*} bundle with fiber k associated to the principal Seifert k^{*}-bundle $U-\{v\} \rightarrow X$. The map h collapes the zero section to the point v.

Let

$$
A_{[n]}=\underset{m \geqslant n}{\oplus} A_{m} \quad \text { and } \quad A \natural=\underset{n \geqslant 0}{\oplus} A_{[n]} .
$$

If we consider A as an ungraded ring then A^{\natural} is a graded A algebra under the multiplica-
tion which makes

$$
A_{[n]} A_{[m]} \subset A_{[n+m]}
$$

Let $U_{X}=\operatorname{Proj}\left(A^{\natural}\right)$. Then by [4, II, 8.3 and 8.6 .2$] U_{X}$ is a projective variety over $U=\operatorname{Spec}(A)$ and there are natural morphisms

so that
(1) $U_{X}-\varepsilon(X)$ is isomorphic to $U-\{v\}$ and v restricted to $U_{X}-\varepsilon(X)$ is the orbit map $U-\{v\} \rightarrow X$.
(2) $\nu \circ \varepsilon=i d_{X}$.

If $v \in V$ is a sink and $U=\operatorname{Spec}(A)$ is a neighborhood of v as above, then A is generated by forms of negative degree. We can define a new grading on A by letting new degree $x=-$ (old degree x). Then we can perform the same construction as above and $h: U_{X} \rightarrow U$ will again be equivariant.

Now there is a unique proper birational morphism $\pi_{1}: V_{1} \rightarrow V$ so that π_{1} agrees with the above in the neighborhood of every elliptic fixed point and π_{1} is an isomorphism elsewhere. Moreover one can show that V_{1} is normal (A.10). The only fixed points on V_{1} are hyperbolic or parabolic. Note that the definition of $\pi: V_{1} \rightarrow V$ makes sense for a variety with k^{*}-action of any dimension.

Lemma. If $v \in V$ is a singular point on a normal surface with k^{*}-action and $\pi: \vec{V} \rightarrow V$ is the minimal resolution of the singularity, then there is a unique action $\tilde{\sigma}$ on \hat{V} so that π is equivariant.

Proof. By $\S 2.2$ we know that there is an equivariant resolution $p: W \rightarrow V_{0}$. The minimal resolution is obtained stepwise by collapsing rational curves on W having selfintersection -1 . By $\S 1.8$ these curves are invariant under the action, hence there is an induced action on the minimal resolution.

Now define $\pi_{2}: \tilde{V} \rightarrow V_{1}$ to be the minimal resolution of the singularities of V_{1}. The composite $\pi=\pi_{2} \circ \pi_{1}: \tilde{V} \rightarrow V$ is called the canonical equivariant resolution of V.

If V is not normal we let $\pi_{0}: V_{0} \rightarrow V$ be the normalization of V and $\pi_{1}: \tilde{V} \rightarrow V_{0}$ the canonical equivalent resolution of V_{0}. Then $\pi=\pi_{0} \circ \pi_{1}$ is the canonical equivariant resolution of V.
3.3. Orbit invariants. Suppose V is a variety with k^{*}-action and $v \in V$ is a simple point. If v is not a fixed point then G_{v} is a proper subgroup scheme of k^{*}. All such subgroups are of the form $\mu_{\alpha}=\operatorname{Spec}\left(k[T] / T^{\alpha}-I\right)$, for some $\alpha \geqslant 1$. If the characteristic p of k does not divide α, then this is the group of α th roots of unity. If p divides α then the scheme μ_{α} has nilpotent elements. The action of k^{*} on V induces an action of G_{v} on the tangent space T_{v}. Every such action is linear and by [3, III 8.4] we can choose coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ so that the tangent space to the orbit is the x_{n} axis and the action is defined by

$$
t\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\left(t^{\gamma_{1}} x_{1}, \ldots, t^{\gamma n-1} x_{n-1}, x_{n}\right)
$$

If V is a surface the integer γ_{1} is well defined.
Definition. The Seifert invariant of the point v is the pair (α, β) where $G_{v}=\mu_{\alpha}$ and

$$
\gamma_{1} \beta \equiv 1(\bmod \alpha)
$$

$0<\beta<\alpha$, g.c.d. $(\alpha, \beta)=1$.
Warning. The definition of β adopted here corresponds to [13] and is the negative of that given in [16].

In [16] we calculated the graph of the resolution of an elliptic point from the Seifert invariants and other data. We shall generalize that result in our current context. For this we must first analyze how the orbit invariants are affected by "blowing up".
3.4. Proposition. Suppose V is a non-singular surface with k^{*}-action and $v \in V$ is a hyperbolic fixed point.

Suppose the action of k^{*} on T_{v} is given by

$$
t(x, y)=\left(t^{-a} x, t^{b} y\right)
$$

where $a, b \geqslant 0$ and $(a, b)=1$. Let $\pi: V^{\prime} \rightarrow V$ be the monoidal transform with center v and $X=\pi^{-1}(v)$. Then
(i) X is invariant under the action and there are two fixed points x_{0} and x_{∞} on X, where x_{0} is a sink and x_{∞} is a source of the action on X,
(ii) if $x \in X$ and $x \neq x_{0}, x_{\infty}$ then the Seifert invariants (α, β) of x are given by $\alpha=a+b$ and $b \beta \equiv 1(\bmod \alpha)$,
(iii) there are coordinates x, y for $T_{V, x_{0}}\left(\right.$ resp. $\left.T_{V, x_{\infty}}\right)$ so that the action of k^{*} is given by

$$
t(x, y)=\left(t^{-(a+b)} x, t^{b} y\right) \quad\left(\text { resp. } t(x, y)=\left(t^{-a} x, t^{a+b} y\right)\right)
$$

Proof. This is easy to see in the case $k=\mathbf{C}$. Near x_{0} we have coordinates (x, y) so that $\pi(x, y)=(x y, y)$ and near x_{∞} we have coordinates x, y so that $\pi(x, y)=(x, x y)$. This
implies (iii) and hence (ii). To consider the general (algebraic) case we replace V by a suitable affine neighborhood of v so that we may assume that $V=\operatorname{Spec}(A)$ and m, the maximal ideal of v, is generated by a homogeneous system of parameters x, y i.e. x and y are homogeneous and generate m / m^{2}. Then $V^{\prime}=\operatorname{Spec}\left(B_{1}\right) \cup \operatorname{Spec}\left(B_{2}\right)$ where $B_{1}=A[x / y]$ and $B_{2}=A[y / x]$. Let $x_{1}=x / y, y_{1}=y, x_{2}=x, y_{2}=y / x$. By (1.6) the action on V^{\prime} is determined by the grading of the rings B_{i}. These rings are graded in the natural way i.e. degree $x_{1}=$ degree x-degree $y=-a-b$, degree $y_{1}=$ degree $y=b$, degree $x_{2}=$ degree $x=-a$, degree $y_{2}=$ degree y-degree $x=b+a$. Now X is invariant since v is a fixed point. Moreover x_{0} is the point in Spec (B_{1}) given by $x_{1}=y_{1}=0$ and x_{∞} is the point in $\operatorname{Spec}\left(B_{2}\right)$ given by $x_{2}=y_{2}=0$. Assertion (iii) follow from the grading given above and in addition we see that x_{0} is the source on X and x_{∞} the sink. To verify (ii) we note that the (α, β) given above are the Seifert orbit invariants of any point on the line $y_{1}=0$ in $T_{V, x_{0}}$. The inclusion $k\left[x_{1}, y_{1}\right] \rightarrow B_{1}$ induces an equivariant map $f: \operatorname{Spec}\left(B_{1}\right) \rightarrow \operatorname{Spec}\left(k\left[x_{1}, y_{1}\right]\right) \approx T_{V, x_{0}}$. This map is etale at x_{0} since x_{1}, y_{1} is a system of parameters and hence it is étale in a neighborhood of x_{0}. If we choose a point x on X near x_{0}, then the Seifert invariants of x and $f(x)$ are the same hence x, and therefore any point in $G(x)$, has invariants (α, β)
3.5. Isotropy groups and the isotropy representation. (1)

Proposition. Suppose V is a non-singular surface with graph Γ. Given an "arm" of the graph

let X_{i} be the curve corresponding to the i th vertex on the arm, i.e. $\left(X_{i}, X_{i}\right)=-b_{i}$ and let

$$
\left[b_{1}, \ldots, b_{i}\right]=p_{i} / q_{i}, \text { where }\left(p_{i}, q_{i}\right)=1
$$

(1) If $v \in X_{i} \cap X_{i+1}, 0 \leqslant i \leqslant r$, then we can choose coordinates (x, y) in T_{v} so that the induced action of k^{*} on T_{v} is of the form

$$
\left(t^{-p_{i-1}} x, t^{p_{i}} y\right)
$$

(1) For the terminology of this section, see the appendix.
(2) If $v \in X_{i+1}$ is not a fixed point, then the Seifert orbit invariants at v are (α, β), where $\alpha=p_{i}$ and $\beta p_{i-1} \equiv-1\left(\bmod p_{i}\right), 0 \leqslant i \leqslant r-1$.
(3) Suppose $b_{1}, b_{2}, \ldots, b_{i} \geqslant 2$. If the Seifert orbit invariants of a non-fixed point $v \in X_{i+1}$ are (α, β), then the equation $\left[b_{1}, \ldots, b_{i}\right]=\alpha /(\alpha-\beta)$ determines the b_{i}-uniquely. Moreover $\left[b_{r}, b_{r-1}, \ldots, b_{i+2}\right]=\alpha / \beta$.

Proof. By induction on r. If $r=1$ then $b_{1}=0, p_{-1}=0, p_{0}=1$ and $p_{1}=0$. On the other hand $X_{0}=F^{+}, X_{1}$ is an ordinary principal orbit and $X_{2}=F^{-}$. The assertions are easily verified. Now suppose the statements are true for an arm with fewer than r vertices. By (A.3) and (2.5) one of the integers b_{j+1} must be equal to 1 . Let $\pi: V \rightarrow V_{0}$ be the map which collapses X_{j+1}. Then π maps X_{i} isomorphically onto a curve X_{i}^{\prime} for $i \neq j+1$. Let

$$
p_{i}^{\prime} / q_{i}^{\prime}=\left[b_{1}, \ldots, b_{j}-1, b_{j+2}-1, \ldots, b_{i+1}\right]
$$

as in the appendix. Then by A. $6 p_{i}^{\prime}=p_{i}, q_{i}^{\prime}=q_{i}$ for $i \leqslant j-1$ and $p_{i}^{\prime}=p_{i+1}, q_{i}^{\prime}=q_{i+1}$ for $i \geqslant j$. Now one can easily verify that (1) holds for $i \neq j, j+1$ and (2) holds for $i \neq j$. Let v be the point of intersection of X_{j}^{\prime} and X_{j+2}^{\prime}. By (1) we may choose coordinates (x, y) in T_{v} so that the action of k^{*} on T_{v} is of the form

$$
t(x, y)=\left(t^{p_{j}^{\prime}-1} x, t^{p_{j}^{\prime}} y\right)
$$

and $p_{j-1}^{\prime}=p_{j-1}$ and $p_{j}^{\prime}=\left(b_{j}-1\right) p_{j-1}-p_{f-2}=p_{j}-p_{j-1}=p_{j+1}$. Now by $\S 3.4, X_{i}$ has isotropy group μ_{α} where $\alpha=p_{j-1}^{\prime}+p_{j}^{\prime}=p_{j}$. Again by $\S 3.4$ there are coordinates at $X_{j} \cap X_{j+1}$ and $X_{j+1} \cap X_{j+2}$ so that the action is of the form in (1). By $\S 3.4$ (ii) we have that for any $x \in X_{j+1}$, the Seifert invariants of x are (α, β) where $p_{j+1} \beta \equiv \mathrm{l}\left(\bmod p_{j}\right)$. Now $p_{j+1}=p_{j}-p_{j-1}$ so we get the desired result for (2). To verify (3) first note that $\alpha-\beta=q_{i}$ since both are between 0 and α and $(\alpha-\beta) p_{i-1} \equiv 1\left(\bmod p_{i}\right)$ by (2) and $q_{i} p_{i-1} \equiv 1\left(\bmod p_{i}\right)$ by A.1. The uniqueness when $b_{1}, \ldots, b_{i} \geqslant 2$ is easily verified. Finally, the last equation follows from considering the inverse action and using the above argument.

3.6. Invariants of an elliptic singular point.

The determination of the invariants of an affine variety V with k^{*}-action ($k=\mathbf{C}$), having an elliptic singular point $v \in V$ was the main object of [16]. The orbit space $V^{*}=V-\{v\} / k^{*}$ of the action is a non-singular complete algebraic curve of genus g (i.e. a Riemann surface if $k=\mathbf{C}$). It has a finite number of orbits with non-trivial isotropy and Seifert invariants $\left(\alpha_{i}, \beta_{t}\right), i=1, \ldots, r$. There is an additional integer invariant b, related to the "Chern class" of the Seifert bundle $V-\{v\} \rightarrow V^{*}$. When $k=\mathrm{C}$ the invariants
$\left\{b ; g ;\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{r}, \beta_{r}\right)\right\}$ determine the neighborhood boundary K of v up to orientation preserving S^{1} equivariant diffeomorphism. The main result of [16] states that the canonical equivariant resolution of the singularity has weighted graph

where the $b_{i, 1} \geqslant 2$ are obtained from the continued fractions

$$
\alpha_{i} /\left(\alpha_{i}-\beta_{i}\right)=\left[b_{i, 1}, \ldots, b_{i, s_{1}}\right], \quad i=1, \ldots, r .
$$

Note that the definition of b here is that of [13] and differs from [16].
Thus in order to find the resolution of V at this fixed point we have to find all orbits with finite isotropy and obtain their Seifert invariants (α_{i}, β_{i}) from the action of the isotropy group in the tangent space; the genus of the orbit space, and the integer b.

This was described in principle for hypersurfaces and complete intersections in $[16,18,13]$. If $V=\operatorname{Spec}(A)$ is an affine variety with k^{*}-action, there is a k^{*}-action on k^{n} defined by

$$
t\left(z_{1}, \ldots, z_{n}\right)=\left(t^{q_{1}} z_{1}, \ldots, t^{a_{n}} z_{n}\right)
$$

and an embedding of V in k^{n} so that V is invariant under this action. If $v \in V$ is an elliptic fixed point we can choose the embedding so that $q_{i}>0$ for all i. The ideal of functions I vanishing on V is generated by polynomials which are homogeneous with respect to the grading given by degree $\left(X_{i}\right)=q_{i}$. Thus we can choose generators f_{i} for I so that

$$
f_{t}\left(t^{q_{1}} z_{1}, \ldots, t^{a_{n}} z_{n}\right)=t^{d_{4}} f_{t}\left(z_{1}, \ldots, z_{n}\right)
$$

We say that a polynomial satisfying the above is weighted homogeneous of degree d_{i} relative to the exponents q_{1}, \ldots, q_{n}. The rational numbers $w_{i j}=d_{i} / q_{j}$ are called the weights of f_{1}.

An explicit computation of the Seifert invariants of an isolated elliptic singularity of a hypersurface in \mathbf{C}^{3} defined by a single weighted homogeneous polynomial was given in [16, 18, 13]. Unfortunately, there is an omission in [16], where it is claimed that if the singularity of a weighted homogeneous polynomial in three variables is isolated, then it is essentially one of six classes:
(i) $z_{0}^{a_{0}}+z_{1}^{\alpha_{1}}+z_{2}^{a_{2}}$,
(ii) $z_{0}^{a_{0}}+z_{1}^{a_{1}}+z_{1} z_{2}^{a_{2}}, \quad a_{1}>1$
(iii) $z_{0}^{a_{0}}+z_{1}^{a_{1}} z_{2}+z_{2}^{a_{2}} z_{1}, \quad a_{1}>1, a_{2}>1$
(iv) $z_{0}^{a_{0}}+z_{0} z_{1}^{a_{1}}+z_{1} z_{2}^{a_{2}}, \quad a_{0}>1$
(v) $z_{0}^{a_{0}} z_{1}+z_{1}^{a_{1}} z_{2}+z_{0} z_{2}^{a_{3}}$,
(vi) $z_{0}^{a_{0}}+z_{1} z_{2}$.

The correct description of weighted homogeneous polynomials in general [14] shows that there are two more classes to consider (see also Arnold [1]):
(vii) $z_{0}^{a_{0}}+z_{0} z_{1}^{a_{1}}+z_{0} z_{2}^{a_{2}}+z_{1}^{b_{1}} z_{2}^{b_{2}}, \quad\left(a_{0}-1\right)\left(a_{1} b_{2}+a_{2} b_{1}\right) / a_{0} a_{1} a_{2}=1$
(viii) $z_{0}^{a_{0}} z_{1}+z_{0} z_{1}^{a_{1}}+z_{0} z_{2}^{a_{2}}+z_{1}^{b_{1}} z_{2}^{b_{3}}, \quad\left(a_{0}-1\right)\left(a_{1} b_{2}+a_{2} b_{1}\right) / a_{2}\left(a_{0} a_{1}-1\right)=1$.

We could amend the discussion of $[16, \S 3]$ to give the Seifert invariants of the corresponding classes. However, we now have a new method of obtaining these Seifert invariants directly from d and the q_{i}, making it unnecessary to list all the classes above.

For integers a_{1}, \ldots, a_{r} let $\left\langle a_{1}, \ldots, a_{r}\right\rangle$ denote their least common multiple and (a_{1}, \ldots, a_{r}) their greatest common divisor.

Let $f\left(z_{0}, z_{1}, z_{2}\right)$ be a weighted homogeneous polynomial whose locus is V in k^{3}. In order for a point $\left(z_{0}, z_{1}, z_{2}\right) \in V$ to have non-trivial isotropy, at least one of the z_{1} must be zero. The number of orbits so that say $z_{0}=0$ is equal to the number of factors of the polynomial $f\left(0, z_{1}, z_{2}\right)$. The following lemma lets us determine this number easily.

Lemma. Suppose $g\left(z_{1}, z_{2}\right)$ is a weighted homogeneous polynomial so that $g\left(t^{a_{1}} z_{1}, t^{a_{2}} z_{2}\right)=$ $t^{\tau} g\left(z_{1}, z_{2}\right)$. Then the irreducible factors g_{i} of g satisfy $g_{i}\left(t^{q_{1}} z_{1}, t^{q_{3}} z_{2}\right)=t^{n_{i}} g_{i}\left(z_{1}, z_{2}\right)$ and each g_{i} is one of the following forms
(i) $g_{i}\left(z_{1}, z_{2}\right)=c z_{1}, \quad c \neq 0$
(ii) $g_{i}\left(z_{1}, z_{2}\right)=c z_{2}, \quad c \neq 0$
(iii) $g_{i}\left(z_{1}, z_{2}\right)=c_{1} z_{1}^{p_{8}}+c_{2} z_{2}^{p_{1}}$ where $c_{1} c_{2} \neq 0$ and $p_{i}=q_{i} /\left(q_{1}, q_{2}\right)$.

In particular, if z_{1} and z_{2} do not divide g, then g has $r\left(q_{1}, q_{2}\right) / q_{1} q_{2}=r /\left\langle q_{1}, q_{2}\right\rangle$ factors.

Proof. The fact that the g_{i} are weighted homogeneous is a general fact about factorization in graded rings. If g_{i} is irreducible then the variety $\left\{g_{i}\left(z_{1}, z_{2}\right)=0\right\}$ must be the closure of an orbit of the action $t\left(z_{1}, z_{2}\right)=\left(t^{\alpha_{1}} z_{1}, t^{a_{s}} z_{2}\right)$. This action has the same orbits as the effective action $t\left(z_{1}, z_{2}\right)=\left(t^{p_{1}} z_{1}, t^{p_{2}} z_{2}\right)$. The closures of the orbits are precisely $\left\{z_{1}=0\right\},\left\{z_{2}=0\right\}$ and $\left\{z_{1}^{p_{2}}+c z_{2}^{p_{1}}=0\right\}$, where $c \neq 0$.

We apply the lemma above to show that in the case of isolated singularities the orbit invariants are determined by d and the q_{i}. Let $w_{i}=d / q_{i}=u_{i} / v_{i}$ where g.c.d. $\left(u_{i}, v_{i}\right)=1$ and $u_{i}, v_{i} \geqslant 1$.

Proposition 1. Suppose V has an isolated singularity at 0 . Assume $1 \leqslant v_{0} \leqslant v_{1} \leqslant v_{2}$. Then the table below indicates the number of orbits of each type.

	$\alpha=\left(q_{1}, q_{2}\right)$	$\alpha=\left(q_{0}, q_{2}\right)$	$\alpha=\left(q_{0}, q_{1}\right)$	$\begin{aligned} & \stackrel{N}{1} \\ & \frac{1}{8} \end{aligned}$	$\begin{array}{ll}\text { F } \\ \\ 4 & 8 \\ 8 & 8\end{array}$
$1=v_{0}=v_{1}=v_{2}$	$d /\left\langle q_{1}, q_{2}\right\rangle$	$d /\left\langle q_{0}, q_{2}\right\rangle$	$d /\left\langle q_{0}, q_{1}\right\rangle$		
$\mathrm{I}=v_{0}=v_{1}<v_{2}$	$\left(d-q_{1}\right) /\left\langle q_{1}, q_{2}\right\rangle$	$\left(d-q_{0}\right) /\left\langle q_{0}, q_{2}\right\rangle$	$d /\left\langle q_{0}, q_{2}\right\rangle$	1	
$\mathrm{l}=v_{0}<v_{1} \leqslant v_{2}$	$\left(d-q_{1}-q_{2}\right) /\left\langle q_{1}, q_{2}\right\rangle$	$\left(d-q_{0}\right) /\left\langle q_{0}, q_{2}\right\rangle$	$\left(d-q_{0}\right) /\left\langle q_{0}, q_{1}\right\rangle$	1	1
$\mathrm{l}<v_{0} \leqslant v_{1} \leqslant v_{2}$	$\left(d-q_{1}-q_{2}\right) /\left\langle q_{1}, q_{2}\right\rangle$	$\left(d-q_{0}-q_{2}\right) /\left\langle q_{0}, q_{2}\right\rangle$	$\left(d-q_{0}-q_{1}\right) /\left\langle q_{0}, q_{1}\right\rangle$	1	11

The blank entries are zero if q_{i} does not divide q_{j} for $j \neq i$. If $q_{i} \mid q_{j}$, then $\left(q_{i}, q_{j}\right)=q_{i}$ and we list those orbits under the column headed (q_{i}, q_{f}).

Proof. The exceptional orbits are in the hyperplanes $z_{i}=0$. Suppose $v_{0}=v_{1}=v_{2}=1$. The exceptional orbits contained in $\left\{z_{0}=0\right\}$ are given by $\left\{f\left(0, z_{1}, z_{2}\right)=0\right\}$ We write $f\left(0, z_{1}, z_{2}\right)=z_{1}^{\varepsilon_{1}} z_{2}^{\varepsilon_{2}} \prod_{i=1}^{s} g_{i}\left(z_{1}, z_{2}\right)$ a product of irreducible factors. The factors must be distinct since otherwise the curve $z_{0}=g_{i}\left(z_{1}, z_{2}\right)=0$ would be a singular curve on V. By Lemma 3.6; each g_{1} has weighted degree $q_{1} q_{2} /\left(q_{1}, q_{2}\right)=\left\langle q_{1}, q_{2}\right\rangle$ so we have

$$
\begin{equation*}
\varepsilon_{1} q_{1}+\varepsilon_{2} q_{2}+s\left\langle q_{1}, q_{2}\right\rangle=d \tag{1}
\end{equation*}
$$

where $\varepsilon_{1}=0$ or I. If $\varepsilon_{1}=\varepsilon_{2}=0$ then $s=d /\left\langle q_{1}, q_{2}\right\rangle$ which is the desired result. If say $\varepsilon_{1}=1$ then $q_{1} \equiv 0 \bmod q_{2}$ so that $q_{2}=\left(q_{2}, q_{1}\right)$. One can easily verify that the number of orbits in $\left\{z_{0}=0\right\}$ is $d / q_{1}=d /\left\langle q_{1}, q_{2}\right\rangle$.

Suppose $1=v_{0}=v_{1}<v_{2}$. Then $q_{0}\left|d, q_{1}\right| d$ and $q_{2} \mid d$. If we write $f\left(0, z_{1}, z_{2}\right)$ as a product of irreducible factors as above, then the equation (1) gives us $\varepsilon_{1} \neq 0 \bmod q_{2}$, hence $\varepsilon_{1}=1$. Thus there must be an orbit $\left\{z_{0}=z_{2}=0\right\}$ with isotropy $q_{2}>\left(q_{1}, q_{2}\right)$. If $\varepsilon_{2}==1$ then $q_{2} \equiv 0$ $\left(\bmod q_{1}\right)$ so $\left\langle q_{1}, q_{2}\right\rangle=q_{2}$. Thus the orbits contained in $\left\{z_{0}=0\right\}$ with isotropy precisely $\left(q_{1}, q_{2}\right)$ correspond to the factors of $z_{2}^{\varepsilon_{1}} \prod_{i=1}^{s} g_{i}\left(z_{1}, z_{2}\right)$. If $\varepsilon_{2}=0$ then $s=\left\langle d-q_{1}\right\rangle /\left\langle q_{1}, q_{2}\right\rangle$. If $\varepsilon_{2}=1$ then $s+1=\left(d-q_{1}\right) / q_{2}$ which is the desired result.

Suppose $1=v_{0}<v_{1} \leqslant v_{2}$. Then again we have the factorization of $f\left(0, z_{1}, z_{2}\right)$ which gives us the equation (1). Now

$$
\begin{aligned}
& \varepsilon_{1} q_{1} \equiv d \equiv 0 \bmod q_{2} \\
& \varepsilon_{2} q_{2} \equiv d \equiv 0 \bmod q_{1}
\end{aligned}
$$

hence $\varepsilon_{1}=\varepsilon_{2}=1$. This gives us $s=\left(d-q_{1}-q_{2}\right) /\left\langle q_{1}, q_{2}\right\rangle$. The calculation of exceptional orbits contained in $\left\{z_{i}=0\right\}, i=1,2$ is similar to those above.

Proposition 2. Under the hypotheses of Proposition 1, the values of β are computed as follows.

For $\alpha=\left(q_{1}, q_{2}\right), q_{0} \beta \equiv 1 \bmod \alpha, 0<\beta<\alpha$.
For an orbit of the form $\left\{z_{0}=z_{1}=0\right\}$ we have $\alpha=q_{2}$. In this case
(i) if there is an $x \in Z^{+}$so that

$$
\frac{1}{w_{0}}+\frac{x}{w_{2}}=1
$$

then $q_{1} \beta \equiv 1(\bmod \alpha)$
(ii) if there is a $y \in Z^{+}$so that

$$
\frac{1}{w_{1}}+\frac{y}{w_{2}}=1
$$

then $q_{0} \beta \equiv 1(\bmod \alpha)$.
Cyclic permutation of the indices $0,1,2$ permits calculation of all the required β.
Proof. For $\alpha=\left(q_{1}, q_{2}\right)$ the action of μ_{α} on k^{3} is $\xi\left(z_{0}, z_{1}, z_{2}\right)=\left(\xi^{q_{0}} z_{0}, z_{1}, z_{2}\right)$. This implies that the action of μ_{α} on the tangent plane, an affine subspace of k^{3}, must have $v \equiv q_{0}(\bmod \alpha)$.

For an orbit of the form $\left\{z_{0}=z_{1}=0\right\}$ we calculate the action of μ_{α} on the tangent space T_{v}, with $v=(0,0,1)$. The action of μ_{α} on k^{3} is $\xi\left(z_{0}, z_{1}, z_{2}\right)=\left(\xi^{q_{0}} z_{0}, \xi^{q_{1}} z_{1}, z_{2}\right)$. The tangent plane at v is $\left(\partial f / \partial z_{0}\right)(v) z_{0}+\left(\partial f / \partial z_{1}\right)(v) z_{1}=0$, since $\left(\partial f / \partial z_{2}\right)(v)=0$. If $\left(\partial f / \partial z_{0}\right)(v) \neq 0$ then the action of μ_{α} on the tangent plane must have $\nu \equiv q_{1}(\bmod \alpha)$. If $\left(\partial f / \partial z_{1}\right)(v) \neq 0$ then the action of μ_{α} on the tangent plane must have $\nu \equiv q_{0}(\bmod \alpha)$. Thus $q_{1} \beta \equiv 1(\bmod \alpha)$ in the former case and $q_{0} \beta \equiv 1(\bmod \alpha)$ in the latter. Now if $\left(\partial f / \partial z_{0}\right)(v) \neq 0$ there must be a monomial of the form $z_{0} z_{2}^{x}$ in f, hence $\left(1 / w_{0}\right)+\left(x / w_{2}\right)=1$. If $\left(\partial f / \partial z_{1}\right)(v) \neq 0$ then there is a monomial of the form $z_{1} z_{2}^{\nu}$ in f so $\left(1 / w_{1}\right)+\left(y / w_{2}\right)=1$. Finally, if both $\left(1 / w_{0}\right)+\left(x / w_{2}\right)=1$ and $\left(1 / w_{1}\right)+\left(y / w_{2}\right)=1$ then we claim that $q_{0} \equiv q_{1}(\bmod \alpha)$. From the two equations we obtain

$$
\begin{array}{lll}
x=\left(u_{0}-v_{0}\right) u_{2} / u_{0} v_{2} & \text { hence } & u_{0} \equiv v_{0} \bmod v_{2}, \\
y=\left(u_{1}-v_{1}\right) u_{2} / u_{1} v_{2} & \text { hence } & u_{1} \equiv v_{1} \bmod v_{2}
\end{array}
$$

Also, u_{0} and u_{1} divide u_{2} and $d=\left\langle u_{0}, u_{1}, u_{2}\right\rangle$ so $d=u_{2}$ and $\alpha=q_{2}=v_{2}$. By definition $q_{0}=d v_{0} / u_{0}, q_{1}=d v_{1} / u_{1}$ so $q_{0} \equiv q_{1} \bmod v_{2} \Leftrightarrow u_{0} v_{1} \equiv u_{1} v_{0} \bmod v_{2}$ and the latter follows from the above congruences.

Corollary. For an orbit of the form $\left\{z_{0}=z_{1}=0\right\}$ we have $\alpha=q_{2}$. In this case
(i) if

$$
\frac{\partial f}{\partial z_{0}}(0,0,1) \neq 0 \quad \text { then } q_{1} \beta \equiv 1 \bmod \alpha
$$

(ii) if

$$
\frac{\partial f}{\partial z_{0}}(0,0,1) \neq 0 \quad \text { then } q_{0} \beta \equiv 1 \bmod \alpha
$$

Proposition 3. The formulas for g and b are given $b y$

$$
\begin{gathered}
2 g=\frac{d^{2}}{q_{0} q_{1} q_{2}}-\frac{d\left(q_{0}, q_{1}\right)}{q_{0} q_{1}}-\frac{d\left(q_{1}, q_{2}\right)}{q_{1} q_{2}}-\frac{d\left(q_{2}, q_{0}\right)}{q_{2} q_{0}}+\frac{\left(d, q_{0}\right)}{q_{0}}+\frac{\left(d, q_{1}\right)}{q_{1}}+\frac{\left(d, q_{2}\right)}{q_{2}}-1 \\
b=\frac{d}{q_{0} q_{1} q_{2}}-\sum_{i=1}^{r} \frac{\beta_{3}}{\alpha_{i}}
\end{gathered}
$$

Proof. A formula for the genus is given in [17, 5.3]. The proof there is valid under the hypotheses of this paper. The formula reduces to the formula above once we verify that for any hypersurface in k^{3} with an elliptic isolated singular point, for each i either $d \equiv 0$ $\left(\bmod q_{i}\right)$ or $d \equiv q_{j}\left(\bmod q_{i}\right)$ and $\left(q_{i}, q_{k}\right)=1$ for some $j \neq k \neq i$, see $[17,5.4]$. To verify this for $i=0$ we first note that $\left(q_{1}, q_{j}\right) \mid d$ for $i \neq j$ because there must be some monomial in f which does not involve z_{k}. Moreover there must be come monomial $M=\alpha z_{0}^{i_{0}} z_{1}^{i_{1}} z_{2}^{i_{1}}$ in f so that $\alpha \neq 0, i_{1}+i_{2} \leqslant 1$, since otherwise $z_{1}=z_{2}=0$ would be a singular line on the surface. If $i_{1}+i_{2}=0$ we get $d \equiv 0\left(\bmod q_{0}\right)$ and if, say $i_{1}=1$ we get $i_{0} q_{0}+q_{1}=d$ so $d \equiv q_{1}\left(\bmod q_{0}\right)$ and $\left(q_{0}, q_{2}\right)=1$. By symmetry, we get the result for $i=1,2$. The formula for b was proven in [16, 3.6.1]. The proof there generalizes to our case.

This completes the computation of the weighted graph of the resolution of V from the integers d, q_{0}, q_{1}, q_{2}. In the case that $k=\mathbf{C},\left\{b ; g ;\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{r}, \beta_{r}\right)\right\}$ are the Seifert invariants of the neighborhood boundary K, and hence K is determined up to S^{1}-equivariant diffeomorphism by these invariants [13].
3.7. Non-elliptic singular points. Suppose $v \in V$ is a normal non-elliptic singular point on a variety V with k^{*}-action. If $\pi: \tilde{V} \rightarrow V$ is the canonical equivariant resolution ($=$ minimal resolution) of V, then none of the curves in $\pi^{-1}(v)$ can be fixed curves, otherwise v would
be elliptic. The graph Γ of the resolution must be a connected subgraph of the graph in $\S 2.5$, since \tilde{V} has a non-singular equivariant completion [23]. Thus Γ must be of the form

Let A (resp. B) be the orbit on \tilde{V} (and V) which is not contained in $\pi^{-1}(v)$ so that \bar{A} intersects the closure of the orbit corresponding to the first (resp. r th) vertex. The Seifert orbit invariants of the orbits, $\left(\alpha_{1}, \beta_{1}\right)$ for A and $\left(\alpha_{2}, \beta_{2}\right)$ for B determine the n_{1} as follows.

With the notation in the appendix, $\alpha_{1} / \beta_{1}=\left[m_{1}, m_{2}, \ldots, m_{s}\right], m_{1} \geqslant 2$. Let m_{s+1} be the self intersection of \bar{A}. By $\S 3.5, \alpha_{2} / \beta_{2}=\left[m_{1}, m_{2}, \ldots, m_{s}, m_{s+1}, n_{1}, \ldots, n_{t}\right]$. Now $n_{i} \geqslant 2$ and $m_{s+1} \geqslant 1$, hence by A. 9 the n_{i} and m_{s+1} are uniquely determined.

4. Diffeomorphism and algebraic classification

4.1. Minimal models. A non-singular surface V with k^{*}-action is said to be relatively minimal if there is no curve $X \subset V$ so that $(X \cdot X)=-1$ and X is isomorphic to P^{1}. If such a curve does exist it must be invariant under the action (1.8) and hence there is a contraction of $X, \pi: V \rightarrow V_{0}$ which is equivariant.

Proposition. If V is a non-singular complete relatively minimal surface with k^{*} action, then V is equivariantly isomorphic to one of the following
(i) a P^{1}-bundle of degree d over a complete curve of genus g (the degree is the selfintersection of the fixed curve F^{+}), $g>0$.
(ii) a P1-bundle E of degree $d \neq \pm 1$ over P^{1} with an action subordinate to the standard $k^{*} \times k^{*}$ action $\sigma_{1} \times \sigma_{2}$ on V i.e. σ_{1} acts in the fiber and σ_{2} acts on the base.
(iii) P^{2} with an action subordinate to the standard $k^{*} \times k^{*}$ action on V

$$
\sigma\left(\left(t_{1}, t_{2}\right),\left(z_{0}: z_{1}: z_{2}\right)\right)=\left(z_{0}: t_{1} z_{1}: t_{2} z_{2}\right)
$$

Proof. If there is no elliptic point on V then $\S 2.5, \mathrm{~A} .3$ and the minimality of V imply that Γ_{V} is of the form

Hence V is a P^{1} bundle over a complete curve of genus g, and if $g=0$ then c and $-c \neq-1$. 5-772902 Acta mathematica 138. Imprimé le 5 Mai 1977

If there is an elliptic point on V, then the non-singularity of V implies $g=0$. By a theorem of Nagata [6] a relatively minimal rational surface is isomorphic to P^{2} or a P^{1} bundle E_{d} of degree $d \neq \pm 1$ over P^{1}. It remains to show that any k^{*}-action on P^{2} or E_{α} can be extended to the standard $k^{*} \times k^{*}$-action on P^{2} (resp. E_{d}). Now a k^{*}-action on V is equivalent to an injective algebraic group homomorphism $k^{*} \rightarrow \operatorname{Aut}(V)$. In our case Aut $\left(P^{2}\right)=$ $P G L(3, k)$ and $\operatorname{Aut}\left(E_{d}\right)=P G L(2) \times k^{*}$. Each of these (linear algebraic groups) has a maximal torus of dimension 2, i.e. every subgroup isomorphic to k^{*} is contained in a subgroup isomorphic to $k^{*} \times k^{*}$ and any two subgroups isomorphic to $k^{*} \times k^{*}$ are conjugate [3, IV. 11.3]. This implies the desired result.
4.2. Definition. Call a k^{*}-action σ on V essentially unique if the only other k^{*}-action on V is $\tau(t, v)=\sigma\left(t^{-1}, v\right)$.

Proposition. Suppose V is a non-singular surface with k^{*}-action σ_{1}. Then the following are equivalent.
(i) $g=0$ and any fixed curve intersects at most two invariant curves which have negative self-intersection.
(ii) the action σ_{1} extends to an effective $k^{*} \times k^{*}$-action $\sigma_{1} \times \sigma_{2}$.
(iii) the action σ_{1} is not essentially unique.

Proof. The group of automorphisms of a projective variety Aut (V), is a reduced algebraic group [11], and a G-action on V is equivalent to a homomorphism $\sigma: G \rightarrow \operatorname{Aut}(V)$. Hence it is sufficient to show that if (i) holds the maximal torus of Aut (V) is $k^{*} \times k^{*}$, and if (i) does not hold then $\operatorname{Aut}_{0}(V)=k^{*}$. Here $\operatorname{Aut}_{0}(V)$ denotes the component of the identity in Aut (V).

We may assume $V \neq P^{2}$. Then there is a birational equivariant morphism $f: V \rightarrow V_{0}$ so that V_{0} is a P^{1} bundle over a curve $X(4.1)$. By an argument analogous to that in $\S 1.9$ we can show that any element of $\mathrm{Aut}_{0}(V)$ leaves a curve with negative self-intersection invariant. Hence there is an injective homomorphism $f_{*}: \operatorname{Aut}_{0}(V) \rightarrow \operatorname{Aut}_{0}\left(V_{0}\right)$. Moreover Aut $\left(V_{0}\right)=\operatorname{Aut}(X) \times \boldsymbol{k}^{*}$. Now if $g>0$, then $\operatorname{Aut}(X)$ is finite and therefore $\operatorname{Aut}_{0}(V)=$ $\operatorname{Aut}_{0}\left(V_{0}\right)=k^{*}$. If $g=0$ then any element of $\operatorname{Aut}_{0}\left(V_{0}\right)$ which is in the image of $\mathrm{Aut}_{0}(V)$, leaves the points of X which lie on curves with negative self-intersection, fixed. Thus $A u t_{0}(V)=k^{*}$ if there are more than two such points, and $\mathrm{Aut}_{0}(V)$ has a maximal torus isomorphic to $k^{*} \times k^{*}$ otherwise.
4.3. Theorem. A complex algebraic surface V with $\mathbf{C}^{\mathbf{*}}$ action is diffeomorphic to one, and only one, of the following
(i) $M_{g . k}=\left(R_{g} \times S^{2}\right) \# k \overline{\mathbf{C P}}{ }^{2} \quad g \geqslant 0, k \geqslant 0$,
(ii) N_{g}, the non-trivial S^{2} bundle over $R_{g} g \geqslant 0$,
(iii) $\mathbf{C} P^{2}$,
where R_{g} is a compact Riemann surface of genus g and $\overline{\mathbf{C} P^{2}}$ denotes $\mathbf{C} P^{\mathbf{2}}$ with the opposite orientation.

Proof. Blowing up a point on a non-singular complex surface is equivalent to taking connected sum with $\overline{\mathbf{C P}}{ }^{2}$. Hence the proposition implies that V is diffeomorphic to $W \nRightarrow k \overline{\mathbf{C}} \ddot{P}^{2}$ where $W=\mathbf{C} P^{2}$ or a $\mathbf{C} P^{1}$ bundle E_{d} of degree d over a Riemann surface R_{g}. Now $E_{d} \# \overline{\mathbf{C} P^{2}}$ is diffeomorphic to $E_{d+\mathbf{1}} \nRightarrow \overline{\mathbf{C}} P^{2}$. In fact, one can construct an equivariant diffeomorphism by blowing up a point on F^{+}in E_{d} and a point on F^{-}in E_{d+1}. Both give us a surface with graph

We can conclude that if $W=E_{d}$ and $k>0$ then V is diffeomorphic to $M_{o, k}$. Now suppose $V=E_{d}$. There are two S^{2} bundles over a compact Riemann surface, the trivial one and a non-trivial one. Thus E_{d} is diffeomorphic to $E_{\bar{d}}$ where $0 \leqslant d \leqslant 1$, is the residue of d modulo 2 . E_{0} is not diffeomorphic to E_{1} since the former has an even quadratic form (intersection form) and the latter does not. Finally suppose $V=\mathbf{C} P^{2} \# k-\overline{\mathbf{C}} P^{2}$. It is well known that $\mathbf{C} P^{\mathbf{2}} \# \overline{\mathbf{C} P^{\mathbf{2}}}$ is diffeomorphic to the $\mathbf{C} \boldsymbol{P}^{1}$ bundle of degree 1 over $\mathbf{C P} \boldsymbol{P}^{1}$.

Thus $V=M_{0, k}$, if $k \geqslant 2$ and $V=N_{0}$ if $k=1$. The manifolds $M_{g . k}, N_{g}$ and $\mathbf{C} P^{2}$ can be shown to be distinct by comparing the ranks of their homology groups, H_{1} and H_{2}, and the parity of the quadratic form given by cup product.
4.4. S^{1}-actions on 4-manifolds. It is an open question whether all S^{1}-actions on $\mathbf{C} P^{2}$ are orthogonal i.e. of the form

$$
t\left(z_{0}: z_{1}: z_{2}\right)=\left(t^{\alpha_{0}} z_{0}: t^{q_{1}} z_{1}: t^{\sigma_{2}} z_{2}\right)
$$

for $t \in S^{1}$. Orlik and Raymond [15] classified $T^{2}=S^{1} \times S^{1}$ actions on 4-manifolds and have proven that every smooth T^{2} action on $\mathbf{C} P^{2}$ is orthogonal. Thus we can rephrase the question to ask whether every smooth effective S^{1} action extends to a smooth effective T^{2} action. We have the following related non-extension result.

Theorem. If $k \geqslant 3$ there is a smooth effective S^{1} action on $\mathbf{C} P^{2} \not \approx k \overline{\mathbf{C}}^{2}$ which does not extend to a smooth effective $S^{1} \times S^{1}$ action.

Proof. It follows from [15, §5] that if the S^{1} action extends to a T^{2} action the graph Γ_{V} must have $\leqslant 2$ arms. The surface V_{1} with graph

is diffeomorphic to $\mathbf{C P} P^{2} \# 4 \mathbf{C P} P^{2}$ and has $\mathbf{3}$ arms, thus the \mathbf{C}^{*}-action induces an S^{1}-action σ_{1} which does not extend to a T^{2} action. If we collapse the curve corresponding to the left hand vertex we get a surface V_{2} diffeomorphic to $\mathbf{C} P^{2} \# 3 \mathbf{C P}^{2}$. If the S^{1} action σ_{1} extends to $\sigma_{1} \times \sigma_{2}, \sigma_{2}$ must leave the fixed points of σ_{1} fixed and hence $\sigma_{1} \times \sigma_{2}$ extends to V_{1}. This is a contradiction, hence the action does not extend. We can get non-extendable actions on $\mathbf{C} P^{2} \# k \overline{\mathrm{C}} P^{2}, k \geqslant 4$, by blowing up fixed points on V_{1}.

We do not know if such actions can be obtained for $k \leqslant 2$.
4.5. We can now list invariants which give an equivariant algebraic classification of normal surfaces V with k^{*}-action. Let $\pi: \tilde{V} \rightarrow V$ be the canonical equivariant resolution of V and $\Gamma_{\tilde{v}}$, the graph of \tilde{V}. We would like to describe the topology of V using $\Gamma_{\tilde{v}}$ and some additional data. The map π induces an equivalence relation in \tilde{V}. There are two kinds of identifications; certain curves are identified to points and certain curves are identified to each other. If a collection of curves is mapped to a single point by π we enclose the corresponding vertices of Γ by a solid line. If curves X_{1}, \ldots, X_{r} on \bar{V} are all mapped onto the same curve Y in V and d_{i} is the degree of $\pi \mid X_{i}$ then we enclose the corresponding vertices with a dotted line and indicate the degree d_{i} above the vertex. This diagram is denoted by Γ_{V}. See $\S 5$ for examples.

Suppose V is a complete non-singular surface with k^{*}-action and no elliptic fixed points, Γ_{V} is the graph of V, and the arms of Γ_{V} are numbered $1,2, \ldots, r$. Define the contraction of $V, f: V \rightarrow \operatorname{cont}(V)$, to be the contraction of that orbit X which lies on the r th arm, has a self-intersection -1 and is the orbit closest to F^{+}having the first two properties (i.e. the vertex corresponding to X is closest to f^{+}). If we apply the contraction
operator repeatedly we finally arrive at a surface B_{V} whose graph has no arms, i.e. B_{V} is a $P^{\mathbf{1}}$ bundle over F^{+}. Let

$$
\varphi: V \rightarrow B_{V}
$$

be the contraction map. We say (V, B_{V}, φ) is the canonical relatively minimal model of V. One can easily see that (V, B_{V}, φ) is independent of the numbering of the arms of Γ. Let $p: B_{V} \rightarrow F^{+}$be the structure morphism of the bundle. If V is an arbitrary complete normal surface we define $B_{V}=B_{\tilde{V}}$.

Let x_{1}, \ldots, x_{r} be the points of F^{+}which are in the closures of non-ordinary orbits. The algebraic invariants of (V, σ) are $\left\{F^{+} ; x_{1}, \ldots, x_{r} ; \Gamma_{V} ;\left(B_{V}, p\right)\right\}$ together with a numbering of the arms of Γ_{v} so that x_{i} is in the closure of an orbit on the i th arm. Two sets of invariants $\left\{F_{i}^{+} ; x_{1}^{(i)}, \ldots, x_{r_{i}}^{(i)} ; \Gamma_{i} ;\left(B_{V_{i}}, p_{i}\right)\right\} i=1,2$ are equivalent if $r_{1}=r_{2}$ and there is an isomorphism $\sigma: F_{1}^{+} \rightarrow F_{2}^{+}$and a permutation π so that $\sigma\left(x_{i}^{(1)}\right)=x_{\pi(t)}^{(2)} \sigma^{*}\left(B_{V_{2}}\right)=B_{V_{1}}$ and $\Gamma_{2}=\Gamma_{1}$ with its arms reordered by π.
4.6. Theorem. Suppose V_{1} and V_{2} are complete normal surfaces with k^{*}-action. Then V_{1} and V_{2} are equivariantly isomorphic if and only if their respective invariants

$$
\left\{F^{+} ; x_{1}, \ldots, x_{r} ; \Gamma_{V} ;\left(B_{V}, p\right)\right\}
$$

are equivalent.
Proof. Since V_{1} and V_{2} are normal, V_{i} is determined by \tilde{V}_{1} and that part of the graph Γ_{i} which indicates which curves are contracted. Thus we may assume $V_{i}=\tilde{V}_{i}$. The equivalence of invariants is certainly a necessary condition. Finally the sufficiency is easily seen by induction on the number of vertices of Γ and the uniqueness of blowing up (down).

5. Examples and remarks

6.1. Consider the homogeneous polynomial

$$
f(z)=z_{0} z_{1} z_{2}+z_{3}^{3}
$$

which defines a hypersurface V in P^{3}, invariant under the k^{*}-action

$$
t\left[z_{0}: z_{1}: z_{2}: z_{3}\right]=\left[z_{0}: t^{3} z_{1}: t^{3} z_{2}: t^{2} z_{3}\right] .
$$

The partials of f show that V is singular at $[0: 0: 1: 0],[0: 1: 0: 0]$ and $[1: 0: 0: 0]$. The closures of the exceptional orbits are $L_{1}=\left\{z_{0}=z_{3}=0\right\}$ with isotropy $k^{*}, L_{2}=\left\{z_{2}=z_{3}=0\right\}$ and $L_{3}=\left\{z_{1}=z_{3}=0\right\}$ with isotropy μ_{3}. In the diagram below a line indicates a curve; a
non-singular point of intersection is denoted by a dot, a singular one by a small circle. We have therefore

The elliptic singularity $[1: 0: 0: 0]$. The affine piece of V where $z_{0} \neq 0$ is the surface defined by the weighted homogeneous polynomial $z_{1} z_{2}+z_{3}^{3}=0$ with $q_{1}=q_{2}=3, q_{3}=2, d=6$. We see from (3.6.2) that the Seifert orbit invariants of the orbits L_{2} and L_{3} are (3,2). Now by (3.6.3) $g=0$ and $b=-1$. Thus if we resolve the singular point at $[1: 0: 0: 0]$ we get

The points [0:1:0:0] and [0:0:1:0] are parabolic singular points. The minimal resolution of these two points gives us the canonical equivariant resolution \hat{V}. The corresponding diagram is of the form below

The dual graph (as defined in 2.4) with weights is the following

Now by $\$ 3.6$ the missing vertices are given by the continued fraction expansion of $\alpha / \beta=3 / 2$. Finally, the self-intersection of L_{2} and L_{3} must by -1 by A. 3 and hence $c^{\prime}=1$ by $\S 2.5$, (iv). Thus the graph associated to V is:

Note that we have made no assumptions about the characteristic of k. We leave it an exercise to find the canonical equivariant resolution of this singularity under the action $t\left[z_{0}: z_{1}: z_{2}: z_{3}\right]=\left[t z_{0}: t^{-1} z_{1}: z_{2}: z_{3}\right]$.
5.2. Let us now turn to an example with singular lines. Consider the hypersurface in P^{3} defined by the zeros of the homogeneous polynomial
with action

$$
f(z)=z_{0}^{4} z_{1} z_{3}^{3}+z_{1}^{3} z_{2}^{2} z_{3}^{3}+z_{0}^{7} z_{2}
$$

$$
\sigma\left(t ;\left[z_{0}: z_{1}: z_{2}: z_{3}\right]\right)=\left[t^{2} z_{0}: t^{5} z_{1}: t^{-1} z_{2}: z_{3}\right] .
$$

Computing the partials of f shows that:

$$
\begin{aligned}
& L_{1}=\left\{z_{0}=z_{3}=0\right\} \text { is a singular line with isotropy } \mu_{6}, \\
& L_{2}=\left\{z_{0}=z_{1}=0\right\} \text { is a singular line without isotropy, } \\
& L_{3}=\left\{z_{0}=z_{2}=0\right\} \text { is a singular line with isotropy } \mu_{5}, \\
& L_{4}=\left\{z_{2}=z_{3}=0\right\} \text { is a non-singular line with isotropy } \mu_{3}, \\
& L_{5}=\left\{z_{1}=z_{2}=0\right\} \text { is a non-singular line with isotropy } \mu_{2} .
\end{aligned}
$$

As above we draw a diagram with line segments representing orbits with isotropy. A double (resp. triple) line segment represents a singular orbit with two (resp. three) sheets passing through it i.e. two (resp. three) orbits on \hat{V} are identified to one on V.

In the following we shall assume that $k=C$ so that we can use slices. For details of the following analysis consult [17]. The same result is valid for arbitrary k by a slight additional analysis.

The elliptic singularity at [0:0:1:0]

At $z_{2}=1$ the equation is $z_{0}^{4} z_{1} z_{3}^{3}+z_{1}^{3} z_{3}^{3}+z_{0}^{7}=0$ with $q_{0}=3, q_{1}=6, q_{3}=1$ and $d=21$. Call V^{\prime} the corresponding affine hypersurface.
L_{1} is singular with slice at $z_{1}=1$:

$$
z_{0}^{4} z_{3}^{3}+z_{3}^{3}+z_{0}^{7}=0
$$

which is locally irreducible, hence L_{1} is covered by one orbit. With $\xi=\exp (2 \pi / 6)$ the slice action on V^{\prime} is $\xi\left(z_{0}, z_{3}\right)=\left(\xi^{3} z_{0}, \xi z_{3}\right)$. If t is a local coordinate for the slice on \tilde{V} then $z_{0}=t^{3}$,
 tional orbit of type $(6,1)$.
L_{2} is singular with slice at $z_{3}=1: z_{0}^{4} z_{1}+z_{1}^{3}+z_{0}^{7}=0$. One can see that this curve has 3 branches through 0 (for example by blowing up once), thus L_{2} is covered by three principal orbits.

From (3.6.3) we get $b=21 / 3 \cdot 6-1 / 6=1$ and we use [17, §5] to compute the genus of the resolution of the curve $X^{\prime}=\left(V^{\prime}-O\right) / \mathbf{C}^{*}$.

Its arithmetic genus is given by the formula

$$
\begin{aligned}
p_{a}=1 & +\frac{d^{2}}{2 q_{0} q_{1} q_{2}}-\frac{d\left(q_{0}, q_{1}\right)}{2 q_{0} q_{1}}-\frac{d\left(q_{1}, q_{2}\right)}{2 q_{1} q_{2}}-\frac{d\left(q_{2}, q_{0}\right)}{2 q_{2} q_{0}} \\
& -\varrho\left(q_{0} ; q_{1}, q_{2} ; d\right)-\varrho\left(q_{1} ; q_{2}, q_{0} ; d\right)-\varrho\left(q_{2} ; q_{0}, q_{1} ; d\right)
\end{aligned}
$$

where by definition

$$
\varrho\left(k ; n_{1}, n_{2} ; d\right)=\frac{1}{k} \sum_{j \in I} \frac{1-\xi^{\xi d}}{\left(1-\xi^{j n_{1}}\right)\left(1-\xi^{j n_{2}}\right)}
$$

for $\xi=\exp (2 \pi i / k)$ and

$$
I=\left\{j \mid 0<j<k, j n_{1} \equiv 0(\bmod k), j n_{2} \equiv 0(\bmod k)\right\} .
$$

We compute directly that

$$
\varrho(3 ; 6,1 ; 21)=\varrho(1 ; 6,3 ; 21)=0 \quad \text { and } \quad \varrho(6 ; 3,1 ; 21)=1 / 4,
$$

so from the formula above, $\boldsymbol{p}_{a}=6$. Finally,

$$
g=p_{a}-\sum_{x \in X^{\prime}} \delta_{x}
$$

where δ_{x} is an invariant of the point x defined in [12, § 10] (see also [17]).
The image of L_{1}, say $x_{1} \in X$ has $\delta_{x_{1}}=0$, since X is non-singular at x_{1}. The image of L_{2}, say $x_{2} \in X$ has $\delta_{x_{2}}=6$ by [12, p. 93]. Thus $g=0$ and we have that the neighborhood boundary at $[0: 0: 1: 0]$ has Seifert invariants

$$
K[0: 0: 1: 0]=\{1 ; 0 ;(6,1) \sim 6 ;(1,0) \approx(1,0) \approx(1,0) \sim 1\} .
$$

See Orlik-Wagreich [17, 3.5] for this notation.
The elliptic singularity at $[0: 1: 0: 0]$
At $z_{1}=1$ we have $z_{0}^{4} z_{3}^{3}+z_{2}^{2} z_{3}^{3}+z_{0}^{7} z_{2}=0$ with $q_{0}=-3, q_{2}=-6, q_{3}=-5$ and $d=-27 . W e$ impose the inverse action by letting

$$
q_{0}=3, \quad q_{2}=6, \quad q_{3}=5, \quad d=27 .
$$

L_{1} is singular with slice at $z_{2}=1: z_{0}^{4} z_{3}^{3}+z_{3}^{3}+z_{0}^{7}=0$ covered by one orbit of type (6,5).
L_{3} is singular with slice at $z_{3}=1: z_{0}^{4}+z_{2}^{2}+z_{0}^{7} z_{2}=0$. This has two non-singular branches each of which is tangent to the line $\left\{z_{2}=0\right\}$. The action in the tangent space is $\xi\left(z_{0}, z_{2}\right)=$ $\left(\xi^{3} z_{0}, \xi z_{2}\right)$ so $3 \beta \equiv 1(5), \beta=2$, and L_{3} is covered by two orbits of type (5,2).
L_{4} is non-singular. The action in the tangent space at [1:1:0:0] $\in L_{4}$ is $\xi\left(z_{2}, z_{3}\right)=$ $\left(z_{2}, \xi^{2} z_{3}\right)$. Thus $2 \beta \equiv 1(3)$ and $\beta=2$.

From (3.6.3) we get $b=27 / 3 \cdot 6 \cdot 5-5 / 6-2 / 5-2 / 5-2 / 3=-2$. We know that $g=0$ since g is zero at the other elliptic singular point. Hence

$$
K[0: 1: 0: 0]=\{-2 ; 0 ;(6,5) \sim 6,(5,2) \approx(5,2) \sim 5,(3,2)\}
$$

Comparing orientations in W shows that the orientation given here for $K[0: 1: 0: 0]$ is correct.

We now know that the (dual) graph Γ of V (as defined in 2.4) is of the form below:

Recall here that the integer above a vertex enclosed by dotted lines denotes the degree of the map $\pi: \tilde{V} \rightarrow V$ on the corresponding curve, see $\S 4.5$.

Applying $\S 3.5$ we see that the fact that L_{5} has isotropy μ_{2} implies that L_{4} has self intersection -1 and the branch of L_{2} intersecting L_{5} has self intersection -2 . But
then L_{5} must have self intersection -2 . In order to calculate the missing part of the middle two arms we note that the orbit invariants of L_{3} are $(5,2)$. The vertices are determined by the continued fraction expansion of $5 / 2=[3,2]$ if we know that there are no vertices with self intersection -1 . Now the vertices inside the curve come from a minimal resolution, so they do not have self intersection -1 . On the other hand, if one of the branches of L_{2} had self intersection -1 the relation $\S 2.5$ (iv) would not hold. Thus, the graph of V is as follows.

5.3. Let V be a complex surface with \mathbf{C}^{*} action and with only isolated singular points. Let V_{0} denote the compact 4-manifold with boundary obtained by removing an open S^{1}-invariant tubular neighborhood of the fixed point set. Then V_{0} may be viewed as a fixed-point-free S^{1}-cobordism between its various boundary components. This relates our paper to the results of Ossa [19]. As an example, consider the hypersurface V in $\mathbf{c} P^{3}$ defined by the zeros of the homogeneous polynomial

$$
f(z)=z_{0} z_{1}^{2}+z_{2}^{3}+z_{3}^{3}
$$

with \mathbf{C}^{*} action $t\left[z_{0}: z_{1}: z_{2}: z_{3}\right]=\left[t^{-2} z_{0}: t z_{1}: z_{2}: z_{3}\right]$. It has five fixed points. [1:0:0:0], [0:1:0:0] and $z_{0}=z_{1}=0, z_{2}^{3}+z_{3}^{3}=0$. The first one is singular.

We leave it to the reader to show that

$$
\begin{aligned}
& K[1: 0: 0: 0]=\{-1 ; 0 ;(2,1),(2,1),(2,1)\} \\
& K[0: 1: 0: 0]=\{1 ; 0\} \\
& K\left[0: 0: z_{2}^{3}+z_{3}^{3}=0\right]=\{0 ; 0 ;(2,1)\}
\end{aligned}
$$

so V_{0}, the complement of open S^{1}-invariant tubular neighborhoods of the fixed points, is a fixed point free S^{1}-cobordism between $K[1: 0: 0: 0]$ and its decomposition as a linear combination of the generators in the cobordism group $O_{3}(\infty)$, see [19].

Appendix

We recall a few elementary facts about continued fractions, see e.g. [20]. Let a_{1}, \ldots, a_{n} be positive integers and let $\left[a_{1}, \ldots, a_{n}\right]$ denote the continued fraction

$$
\left[a_{1}, \ldots, a_{n}\right]=a_{1}-\frac{1}{a_{2}-\frac{1}{a_{3}-\frac{1}{\ddots}}}
$$

provided none of the denominators equals zero. Define

$$
\begin{aligned}
p_{-1}=0, & p_{0}=1, \quad p_{1}=a_{1}, \quad p_{i}=a_{i} p_{i-1}-p_{i-2}, \quad i \geqslant 2 \\
& q_{0}=0, \quad q_{1}=1, \quad q_{i}=a_{i} q_{i-1}-q_{i-2}, \quad i \geqslant 2 .
\end{aligned}
$$

Definition. Call $\left\{a_{1}, \ldots, a_{n}\right\}$ admissible if $p_{i}>0$ for $i=0, \ldots, n-1$.
Consider the symmetric matrix

$$
\left[\begin{array}{lllll}
a_{1} & -1 & & & \\
-1 & a_{2} & -1 & & \\
& -1 & a_{3} & & \\
& & \ddots & & -1 \\
& & & -1 & a_{n}
\end{array}\right]
$$

If we diagonalize the matrix over the rational numbers starting in the upper left hand corner we get a matrix with diagonal elements $\left[a_{1}\right],\left[a_{2}, a_{1}\right],\left[a_{3}, a_{2}, a_{1}\right] \ldots$.

$$
\left[\begin{array}{lllll}
a_{1} & & & \\
& a_{2}-\frac{1}{a_{1}} & & \\
& & a_{3}-\frac{1}{a_{2}-\frac{1}{a_{1}}} & \\
& & & & \ddots
\end{array}\right]
$$

One can easily prove by induction that the i th entry is p_{i} / p_{i-1} and $\left\{a_{1}, \ldots, a_{n}\right\}$ is admissible if and only if the matrix is positive semi-definite of rank $\geqslant n-1$. From this one can see that if $\left\{a_{1}, \ldots, a_{n}\right\}$ is admissible then $\left\{a_{n}, \ldots, a_{1}\right\}$ is admissible and $\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$ is admissible for any $1 \leqslant i \leqslant j \leqslant n$. If we diagonalize the matrix starting at the lower right hand corner we can see that if $\left\{a_{1}, \ldots, a_{n}\right\}$ is admissible then the denominators in the expression

$$
a_{1}-\frac{1}{a_{2}-\frac{1}{\cdot \cdot}}
$$

are not zero. Hence $\left[a_{1}, \ldots, a_{n}\right]$ makes sense if $\left\{a_{1}, \ldots, a_{n}\right\}$ is admissible.
Henceforth we will always assume that $\left\{a_{1}, \ldots, a_{n}\right\}$ is admissible.
It is shown in [20], that if p_{i} and q_{i} are defined as above then $\left[a_{1}, \ldots, a_{i}\right]=p_{i} / q_{i}$.
Lemma Al. $p_{i} q_{i-1}-p_{i-1} q_{i}=-1$ for $0<i \leqslant n$.
Proof. Use induction. By definition $p_{1} q_{0}-p_{0} q_{1}=-1$. Assuming the statement for $i=r$ we have $p_{r+1} q_{r}-p_{r} q_{r+1}=\left(a_{r+1} p_{r}-p_{r-1}\right) q_{r}-p_{r}\left(a_{r+1} q_{r}-q_{r-1}\right)=p_{r} q_{r-1}-p_{r-1} q_{r}=-1$.

From this we see that $\left(p_{i}, q_{i}\right)=1,\left(p_{i}, p_{i-1}\right)=1$ and $\left(q_{i}, q_{i-1}\right)=1$. In particular the fraction p_{i} / q_{i} is in reduced form for all i. Also, $p_{i-1} q_{i} \equiv l\left(p_{i}\right)$.

Lemma A2. If for each $i, a_{i} \geqslant 2$, then $p_{i}>p_{i-1}, q_{i}>q_{i-1}$ and $p_{i}>q_{i}$, so in particular $p_{i} / q_{i}>0$ for all i.

Proof. We shall only prove the first assertion using induction: $p_{1}=a_{1}>p_{0}=1$. Assuming $p_{i}>p_{i-1}$ we have $p_{i+1}=a_{i+1} p_{i}-p_{i-1}>\left(a_{i+1}-1\right) p_{i} \geqslant p_{i}$.

Corollary A3. If $\left[a_{1}, \ldots, a_{n}\right]=0$, then for at least one $i, a_{i}=1$.
Lemma A4. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be admissible and $p_{i}, 1 \leqslant i \leqslant n$, as defined above. Then the continued fraction $\left[a_{i}, a_{i-1}, \ldots, a_{1}\right]=p_{i} / p_{i-1}$.

Proof. From $p_{i}=a_{i} p_{i-1}-p_{i-2}$ we have $p_{i} / p_{i-1}=a_{i}-\left(1 /\left(p_{i-1} / p_{i-2}\right)\right)$ and repeated application gives the desired result.

Lemma A5. Let $\left[a_{1}, \ldots, a_{n}\right]=0$. Consider the two continued fractions $\left[a_{r-1}, \ldots, a_{1}\right]=u / v$ and $\left[a_{r+1}, \ldots, a_{n}\right]=u^{\prime} \mid v^{\prime}$. Then we have that $u=u^{\prime}$ and $v+v^{\prime}=a_{r} u$.

Proof. Since $\left[a_{1}, \ldots, a_{n}\right]=0$, also $\left[a_{n}, \ldots, a_{1}\right]=0$. By a repeated application of the following calculation

$$
\begin{gathered}
a_{n}=\frac{1}{p_{n-1} / p_{n-2}} \\
\frac{a_{n-1} p_{n-2}-p_{n-3}}{p_{n-2}}=\frac{1}{a_{n}} \\
a_{n-1}-\frac{1}{a_{n}}=\frac{1}{p_{n-2} / p_{n-3}}
\end{gathered}
$$

we obtain

$$
\begin{gathered}
u^{\prime} / v^{\prime}=\left[a_{r+1}, \ldots, a_{n}\right]=\frac{1}{p_{r} / p_{r-1}} \\
u^{\prime} / v^{\prime}=\frac{1}{a_{r}-\frac{1}{p_{r-1} / p_{r-2}}}
\end{gathered}
$$

Using Lemma 4 we have $p_{r-1} / p_{r-2}=u i v$ so

$$
\left(u^{\prime} / v^{\prime}\right)\left(a_{r}-\frac{v}{u}\right)=1
$$

and hence

$$
a_{r}=\frac{v}{u}+\frac{v^{\prime}}{u^{\prime}} .
$$

Since both $(u, v)=1$ and $\left(u^{\prime}, v^{\prime}\right)=1$, we conclude that $u=u^{\prime}$ and $v+v^{\prime}=a_{r} u$ as desired.

Lemma A6. Let $\left[a_{1}, \ldots, a_{r-1}, 1, a_{r+1}, \ldots, a_{n}\right]$ be a continued fraction with p_{i} and q_{1} defined above. Let $\left[a_{1}, \ldots, a_{r-1}-1, a_{r+1}-1, a_{r+2}, \ldots, a_{n}\right]$ have corresponding values p_{i}^{\prime} and q_{i}^{\prime}. Then

$$
\begin{array}{ll}
p_{i}^{\prime}=p_{i}, q_{i}^{\prime}=q_{i} & \text { for } \quad i \leqslant r-2 \\
p_{i}^{\prime}=p_{i+1}, q_{i}^{\prime}=q_{i+1} & \text { for } \quad i \geqslant r-1 .
\end{array}
$$

Proof. The first half of the assertion is obvious. Now $p_{r-1}^{\prime}=\left(a_{r-1}-1\right) p_{r-2}^{\prime}-\boldsymbol{p}_{r-3}^{\prime}=$ $\left(a_{r-1}-1\right) p_{r-2}-p_{r-3}=1\left(a_{r-1} p_{r-2}-p_{r-3}\right)-p_{r-2}=a_{r} p_{r-1}-p_{r-2}=p_{r}$.

The argument is the same for q_{r-1}.

$$
\begin{aligned}
p_{r}^{\prime} & =\left(a_{r+1}-1\right) p_{r-1}^{\prime}-p_{r-2}^{\prime}=\left(a_{r+1}-1\right) p_{r}-p_{r-2} \\
& =a_{r+1} p_{r}-p_{r}-p_{r-2}=a_{r+1} p_{r}-\left(1 p_{r-1}-p_{r-2}\right)-p_{r-2} \\
& =a_{r+1} p_{r}-p_{r-1}=p_{r+1}
\end{aligned}
$$

Again, the same holds for q_{r}^{\prime} and clearly, for $i>r$ the conclusion is trivially true.
Definition. Given $\left\{a_{1}, \ldots, a_{r-1}, a_{r}, a_{r+1}, \ldots, a_{r}\right\}$ and $a_{r}=1$ we say that we have "blown down a_{r} " to obtain $\left\{a_{1}, \ldots, a_{r-2}, a_{r-1}-1, a_{r+1}-1, a_{r+2}, \ldots, a_{n}\right\}$. The reverse process is called "blowing up".

Definition. $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{m}\right\}$ are called equivalent if a series of blowing up and blowing down of $\left\{a_{1}, \ldots, a_{n}\right\}$ makes it equal to $\left\{b_{1}, \ldots, b_{m}\right\}$. This is clearly an equivalence relation.

Lemma A7. $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{m}\right\}$ are equivalent if and only if $\left[a_{1}, \ldots, a_{n}\right]=$ $\left[b_{1}, \ldots, b_{m}\right]$.

Proof. Repeated application of A3 blows both sequences down to $[1,1]$ (if $\left[a_{1}, \ldots, a_{n}\right]=0$) or a sequence with no ones (otherwise). But every positive rational number has a unique representation in the form $\left[c_{1}, \ldots, c_{r}\right], c_{i} \geqslant 2$.

Lemma A8. Let $\left[a_{1}, \ldots, a_{s}\right]=0$. Then

$$
\left[a_{1}, \ldots, a_{s-1}\right]=1 / q_{s-1}
$$

Moreover $\left\{a_{1}, \ldots, a_{s-1}, a_{s}+1,1\right\}$ is also admissible, and

$$
\left[a_{1}, \ldots, a_{s-1}, a_{s}+1\right]=1 /\left(q_{s-1}+1\right)
$$

Proof. The first part is obvious. Let

$$
\left[a_{1}, \ldots, a_{s-1}, a_{s}+1\right]=u / v
$$

Now $q_{s}=1$ by A. 1 hence we have

$$
\begin{aligned}
& u=\left(a_{s}+1\right) p_{s-1}-p_{s-2}=a_{s} p_{s-1}-p_{s-2}+p_{s-1}=p_{s}+p_{s-1}=p_{s-1}=1 \\
& v=\left(a_{s}+1\right) q_{s-1}-q_{s-2}=a_{s} q_{s-1}-q_{s-2}+q_{s-1}=q_{s}+q_{s-1}=1+q_{s-1}
\end{aligned}
$$

Lemma A9. Suppose $\alpha>\beta \geqslant 1$ are integers and $\alpha / \beta=\left[m_{1}, \ldots, m_{s}, m_{s+1}, n_{1}, \ldots, n_{t}\right]=$ $\left[m_{1}, \ldots, m_{s}, m_{s+1}, n_{1}^{\prime}, \ldots, n_{t}^{\prime}\right]$, where $m_{i} \geqslant 2$, for $i=1, \ldots, s, n_{i}$ and $n_{i} \geqslant 2$ for all $i, m_{s+1} \geqslant 1$, $m_{s+1}^{\prime} \geqslant 1$ and both sequences are admissible. Then $m_{s+1}=m_{s+1}^{\prime}$, and $n_{i}^{\prime}=n_{i}$, for all i.

Proof. It follows easily from the definition of continued fractions that we may assume $s=0$. Proceeding by induction on t, if $t=0$ the assertion is trivial. If $t>0$ and m_{s+1} and $m_{s+1}^{\prime} \geqslant 2$ the lemma follows from the uniqueness of continued fraction expansions with entries $\geqslant 2$. If $m_{s+1}=1$ then the first sequence can be blown down to a shorter sequence. Thus $m_{s+1}^{\prime}=1$ and the lemma follows by blowing down and applying the inductive hypothesis.

Proposition Alo. Suppose A is a graded ring and define

$$
A^{\natural}=\underset{n \geqslant 0}{(+1} A_{[n]}
$$

as in (3.2). If A is an integrally closed domain then A^{\natural} is an integrally closed domain.
Proof. We define a grading on the polynomial ring $A[t]$ by defining degree $t=1$ and the degree of the coefficients to be 0 . Then A^{\natural} is isomorphic as a graded ring to

$$
\underset{n \geqslant 0}{\oplus} A_{[n]} t^{n} \subset A[t] .
$$

Clearly A^{4} is a domain and if we let B be the integral closure of $A^{\text {b }}$ then it follows from Bourbaki (Commutative Algebra, V, § 1, no. 8, Prop. 20 and no. 3, Prop. 13, Cor. 2) that B is a graded subring of $A[t]$.

Suppose $b \in B_{n}$. Then $b=a t^{n}$, where $a \in A$. It is sufficient to show $a \in A_{[n]}$. Since b is integral over $A^{\#}$ there exist $a_{i} \in A_{[n i]}$ so that

$$
\left(a t^{n}\right)^{m}+a_{1} t^{n}\left(a t^{n}\right)^{m-1}+\ldots+a_{m} t^{n m}=0
$$

Thus

$$
\begin{equation*}
a^{m}=-\left(a_{1} a^{m-1}+\ldots+a_{m}\right) \tag{2}
\end{equation*}
$$

in A. Suppose $a \notin A_{[n]}$. Then we can write

$$
a=\alpha_{i}+\alpha_{i+1}+\ldots
$$

where $\alpha_{j} \in A$, for all $j, \alpha_{j} \neq 0$ and $i<n$. Now $a_{j} a^{m-j} \in A_{[j n+(m-j)[]}$, for $j=1, \ldots, m$, and hence the right hand side of equation (2) lies in $A_{[m i+n-1]}$. This contradicts the fact that $a^{m}=\left(\alpha_{i}\right)^{m}+y$ where y is a sum of forms of higher degree.

References

[1]. Arnold, V. I., Normal forms of functions in neighborhoods of degenerate critical points. Russian Math. Surveys, 29 (1975), 10-50. Translated from Usp. Math. Nauk., 29 (1974), 11-49.
[2]. Bialynicki-Birula, A., Some theorems on actions of algebraic groups. Ann. of Math., 98 (1973), 480-497.
[3]. Borel, A., Linear Algebraic Groups. V. A. Benjamin, New York, 1969.
[4]. Grothendieck, A., Eléments de Géometrie Algébrique, Publ. Math. I.H.E.S., nos 4, 8, 11, 17, 20, 24 etc. 1964.
[5]. - Séminaire de géométrie algébrique, vol. I, Lecture Notes in Mathematics, no. 224, Springer Verlag 1971.
[6]. Hartshorne, R., Curves with high self-intersection on algebraic surfaces. Publ. Math. I.H.E.S., 36, 111-125.
[7]. Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. of Math., 79 (1964), 109-326.
[8]. Holmann, H., Quotientenräume komplexer Mannigfaltigkeiten nach komplexen Lieschen Automorphismengruppen. Math. Ann., 139 (1960), 383-402.
[9]. Lipman, J., Rational singularities with applications to algebraic surfaces and unique factorization, Publ. Math. I.H.E.S., 36, 195-280.
[10]. Luna, D., Slices étales, Bull. Soc. math. France, Mémoire, 33 (1973), 81-105.
[11]. Matsumura, H. \& Oort, F., Representability of Group Functors and Automorphisms of Algebraic schemes. Inventiones Math., 4 (1967), 1-25.
[12]. Milnor, J., Isolated singularities of complex hypersurfaces. Princeton Univ. Press, 1968.
[13]. Orlik, P., Seifert Manifolds. Lecture Notes in Mathematics, no. 291, Springer Verlag 1972.
[14]. Orlik, P. \& Randell, R., The monodromy of a weighted homogeneous variety. Inventiones Math., to appear.
[15]. Orlik, P. \& Raymond, F., Actions of the torus on 4-manifolds, I. Trans. Amer. Math. Soc., 152 (1970), 531-559.
[16]. Orlik, P. \& Wagreich, P., Isolated singularities of algebraic surfaces with \mathbf{C}^{*}-action. Ann. of Math., 93 (1971), 205-226.
[17]. —— Singularities of algebraic surfaces with C*-action. Math. Ann., 193 (1971), 121-135.
[18]. - Equivariant resolution of surfaces with \mathbf{C}^{*}-action. Lecture Notes in Mathematics, no. 298, 270-290. Springer Verlag 1972.
[19]. Ossa, E., Cobordismustheorie von fixpunktfreien und semifreien \mathbf{S}^{1}-Mannigfaltigkeiten. Thesis, Bonn 1969.
[20]. von Randow, R., Zur Topologie von dreidimensionalen Baummannigfaltigkeiten. Bonner Math. Schriften 14, 1962.
[21]. Selfert, H., Topologie dreidimensionaler gefaserter Räume. Acta. Math., 60 (1933), 147-238.
[22]. Shafarevich, I. R., Basic Algebraic Geometry, Springer-Verlag, 1974.
[23]. Sumiriro, H., Equivariant Completion, J. Math Kyoto Univ., 14 (1974), 1-28.
Received December 15, 1975

