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Let k be an arbitrary algebraically closed field and let k* denote the multiplicative 

group of k considered as an algebraic group. We give a complete classification of all 

non-singular projective algebraic surfaces with k*-action. Moreover, for singular surfaces 

we provide an algorithm for finding an equivariant resolution. Explicit computations are 

given for hypersurfaces in pa. 

The topologically significant case emerges when k = C, the complex numbers, when 

non-singular surfaces are smooth orientable closed 4-manifolds with C*-action. This was 

the case studied in our earlier papers [16, 17, 18]. In order to facilitate the reading of the 

present paper for the reader whose main interest lies in these topological aspects, we have 

included geometric motivation for several of our algebraic constructions. I t  is clear from 

the naturality with which these constructions can be extended to the general case that  

it is appropriate to treat the problem from the point of view of algebraic geometry. 

The paper is organized as follows. In section I the necessary tools are introduced 

both from transformation group theory and algebraic geometry. We prove a number of 

lemmas about actions in general, needed later in the paper. In  section 2 we focus our 

attention on non-singular algebraic surfaces with k*-aetion. The fixed points of a k*-action 

are divided into three classes; elliptic, hyperbolic and parabolic (w A "topological" 

classification of non-singular surfaces with no elliptic fixed points is obtained in w 2.5. The 

classification theorem states that  the fixed point set is F = F  + U F-U {x 1 ..... xr} , where 

the x, are hyperbolic fixed points and F + and F -  are isomorphic complete curves. More- 
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over the  surface is ob ta ined  f rom a Pl(k)  bundle  over  F + wi th  k* ac t ion  in the  fiber,  b y  

blowing up  a su i tab le  number  of f ixed po in t s  of the  act ion.  A comple te  set  of " topo-  

logical"  i nva r i an t s  is inc luded  in a labe led  g raph  F associa ted  to  the  surface V. Assign a 

ve r t ex  each to  F + and  F -  wi th  labels [g] for the i r  genus a n d  - c  and  - c '  r e spec t ive ly  

for the i r  self - intersect ion in V. Assign a ve r t ex  to  each 1-dimensional  o rb i t  whose closure 

does no t  mee t  bo th  F + and  F - ,  wi th  label  -b~j  for i ts  self- intersect ion in V. F ina l ly ,  

let  an  edge connect  two ver t ices  if the  corresponding curves  meet  ( t ransvers ly  wi th  

in tersect ion n u m b e r  § 1). 

THEOREM 2.5. Let V be a non-singular, complete algebraic sur/ace with lc* action, so 

that dim F + = d im F - =  1. Then we have: 

(i) F + is a complete curve o/ genus g, isomorphic to F-; 

(ii) the graph F o/ (V, k*) is o / the /orm 

(iii) b~j>~l and the continued/faction (see the Appendix /or this notation) 

[bt.i  . . . . .  b~.~] = 0  for i = 1 ,  ..., r; 

(iv) i/ we define the integers c~ by 

1/c~=[b~.~ .... ,b~.s~-l] for i = 1  . . . . .  r 

then the/ollowing equation holds 

C§ ~ ~ Ct. 
|~1 

I n  sect ion 3 we cons t ruc t  the  canonical  equ iva r i an t  resolut ion  of the  s ingular i t ies  

of a surface V wi th  k*-action. By  this  we mean  a non-s ingular  surface W wi th  a k*-action 
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and a k* equivariant proper map ~: W-~ V which is biholomorphic on the complement of 

the singular set of V and so that there are no elliptic fixed points on W. Note that  even if 

V is nonsingular, W will not be equal to V if there are elliptic fixed points on V. We 

define in w a marked graph Fv, starting with Fw and indicating which orbits in W are 

identified to points in V and which orbits in W are identified to each other in V. This 

marked graph contains all the "topological" information about V. In  particular if 

k = C, F v determines V up to equivariant homeomorphism. In  w 3.3 we define the Seifert 

orbit invariants (:r fl) of an orbit of dimension 1. Here a is the order of the isotropy group 

of a point v on the orbit and fl determines the action of the isotropy group on the tangent 

space at v. Section 3.4 is devoted to determining the behavior of orbit invariants under 

"blowing up" and we use this in w to prove a relation between the continued fraction 

expansion of ~/fl and the self-intersection of certain orbits on V. Explicit formulas for 

determining the orbit invariants and the graph of the resolution of an elliptic fixed point 

on a surface in k 3 are given. The corresponding action was called "good" in [16]. These 

results are an improvement over [16] since they are valid for a field of arbitrary charac- 

teristic. Moreover, the formulas are in terms of the weights and degree of the defining 

polynomial. In w 3.7 we indicate how to find the minimal equivariant resolution of a hyper- 

bolic or parabolic singular point, not treated in [16]. 

Section 4 is devoted to the diffeomorphism and algebraic classification problems. First 

we classify the (relatively) minimal surfaces with k*-action w and apply this to deter- 

mining which surfaces admit an essentially unique k*-action and which k*-actions extend 

to k* • k*-actions w 4.2. In  w 4.3 it is shown that  a complete surface with algebraic C*-action 

is diffeomorphic to precisely one of the following 

(1) (Rg•  ~ g>~0, k~>0, 

(2) Na, 

(3) CP 2, 

where Rg is a compact Riemann surface of genus g and Ng is the non-trivial S 2 bundle over 

Rg, and CP ~ denotes CP ~ with the opposite of the usual orientation. This is applied to 

give examples of non standard S 1 actions on CP 2 #kCP ~, k ~>3 i.e. S 1 actions which do 

not extend to S 1 • S 1 actions (w Finally, we give a complete list of invariants of V 

up to equivariant algebraic isomorphism (w 

Specific examples of the resolution of singularities of hypersurfaces V in p3 and 

calculation of Fv are given in section 5. Some facts about continued fractions have been 

collected in an appendix. 
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1. Group actions on varieties 

1.1. Let  G be an algebraic group. We shall not  assume tha t  G is compact .  I n  the 

applications G will be It*, the multiplicative group of a field /c. 

Let  V be a algebraic variety.  An  action of G on V is a morphism of algebraic varieties 

a:G•  V-~ V 

so t h a t  a(s, a(t, v))=~(st, v) and (~(1, v )=v .  I f  gEG and  vE V it is cus tomary  to denote  the  

element g(g, v) by  gv. The action is e//ective if gv = v V v E V -*g = e, the ident i ty  element of G. 

For  vE V a induces a morphism av: G-~ V defined by  av(g) =gv. We define the isotropy 

subgroup G v of v to be the scheme theoretic fiber a~ l(v). I f  k is a field of characteristic 0 then 

Gv = (g E G]gv = v}. The orbit  of v is the subvar ie ty  defined by  G(v) = {w E V [ 3 g e G, gv = w}. 

This induces a natural  equivalence relation on V, x . .~y~xEG(y) .  The quotient  V* = V/,~ 

equiped with the quot ient  topology is called the orbit space of the action. Even  if V 

is a complex manifold, V* can be ra ther  unpleasant,  as the examples below indicate, 

see also [8]. Let  F = { v e V  I G , = G }  denote  the fixed point  set and E = { v E V [ G , i s  

finite and G ~ ( 1 ) )  denote  the exceptional orbits, i.e. orbits with finite non-trivial  

isotropy group. 

1.2. Let  V = C 2 with the metric topology, and G = C* and ql, q~ integers. Consider the 

action a(t; vl, v2)=(tq'vl, tq2V2). First  assume tha t  ql, q~>0. Then F=(O,  0) and E consists 

of two orbits: E1=(Vl,  v~[vl~0,  v~=0)  with isotropy Zq, and E2=(v l ,  v21vl=0, v2~=0 } 

with Zq,. The orbi t  space V* fails to be T o a t  the image of the  fixed point. However ,  

if we let V 0 = V - F ,  then V* is Hausdorff ,  in fact  by  a theorem of Holmann  [8] it has a 

natural  complex structure and is easily identified as p1. The si tuation is the same 

if ql, q~ <0-  

1.3. I n  the example above, if q1:4=0, q2 = 0, then F = (Vl, v 2 Iv 1 = 0} and E = {Vl, v 2 Iv 1 ~0)}  

so the act ion is not  effective unless ql = - 1 .  I n  t ha t  case E = O. Again, V* fails to be 

T O at  F,  bu t  V 0 = V -  F has Hausdorff  orbit  space, V~ = C. 

1.4. If  we assume q l > 0 ,  q2<0,  then F and E are the same as in w 1.2, bu t  even the 

orbit  space of V0 fails to be Hausdorff .  The images of E 1 and E 2 have no disjoint  

neighborhoods in V~. (This holds even if ql = 1, q~ = - 1 . )  This phenomenon is indeed one 

of the crucial differences between the actions of compact  and non-compac t  groups. The 

remarks above apply in the category of algebraic varieties if we replace "Hausdor f f "  by  

"separated".  
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1.5. A m a p / :  V-+W between G spaces V and W is equivariant i f / (gv)=g/ (v)  for all 

g EG, v E V. A G-space is linear if it is equivar iant ly  isomorphic to  a vector  space with 

linear G action. Le t  H be a closed subgroup of G and S a linear H-space. We form 

G • H S by  identifying in G • S (g, s)... (gh -1, hs) for all h E H. Call the equivalence class of 

(g,s), [g,s]. Given a G-space V and v E V  we call S v a linear slice at v if it is a linear 

Gv-space and some G-invariant open neighborhood of the zero section of G •  is 

equivar iant ly  isomorphic to a G-invariant  neighborhood of the orbit  G(v) in V by  the map 

[g, v]-*gv, so t h a t  the zero section G/G v maps onto the orbit  G(v). 

I t  is essential for the reader to keep in mind tha t  the s tandard  tools of t ransformat ion 

groups do not  always apply in our context.  For  holomorphic or smooth  act ion of a 

compact Lie group G, the existence of slices is a classical result. I n  our si tuat ion with 

G = k*, a slice need not  exist. 

We refer to  Ho lmann  [8] and Luna  [I0] for results on the existence of slices. These 

will only be used in the present paper  in w 

1.6. A k*-action on an affine var ie ty  V = S p e e  (A) is equivalent  to a grading of the 

r ing A. The correspondence is defined as follows. I f  V is an affine var ie ty  with k* action 

we define a grading on A by  letting 

A~ = {~CA I/(tz) = t'/(z), for all zE V}. 

Then  one can verify tha t  A =  (DtEzA~ and tha t  A ~ A j c A t +  j. Conversely, if A is graded 

we can find homogeneous generators of the k-algebra A, say x 1 .. . . .  xn. The bomomorphism 

~: k[X1, ..., X n ] ~ A  defined by ~0(X~)=xt defines an embedding of V in k n. Let  q~= 

degree x~. Then define an action of k* on k" by  

t ( z  1 . . . . .  Zn) = ( t  q'  Z 1 . . . . .  t qnZn)  

This action on k n leaves V invariant .  

We can use this correspondence to  get some information about  the s t ructure  of a 

k* variety.  

LE~MA. I /  k* acts e/fectively on V, then there exists an invariant Zariski open set U, 

equivariantly isomorphic to W x k* where 

(i) W is a]/ine, and 

(ii) k* acts on W • k* by translation on the second/actor. 

Proo/. We first consider the case where V = A ~  and the act ion is given by  
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~(t, (zl, ..., zn) ) =(tmlzl ..... tmnzn). In  this si tuation let U = { ( z  1 .. . . .  zn)[z~=O, for all i}. We 

claim tha t  U is equivar iant ly  isomorphic to W x k* with k* act ing on the second factor  by  

multiplication. Now 

U = Spec (k[zl, ..., z~, zi -1 ..... z~l]). 

I n  this case the grading is defined by  degree z~=m~. Since the act ion is effective, g.c.d. 

(m I ..... mn)=l .  Therefore there exist integers al, a 2 ..... a n so t h a t  ~ _ l a , m , = l .  Let  

X =Z~'  ... Z~% a form of degree 1. Le t  R be the subalgebra of forms of degree 0. Then R is 

an algebra of finite type  over k and 

k[Z 1 . . . . .  Zn, Zl 1 . . . . .  Zn 1] = R [ X ,  X - l ] .  

Lett ing W = Spec (R), we have proven our claim. 

Now consider the case of general V. We m a y  assume tha t  V is normal. Then a 

theorem of Sumihiro [23] asserts t ha t  an open subset of V can be equivar iant ly  embedded 

in A~, with an act ion as above. Thus we m a y  assume tha t  V c A ~  and is invar iant  

under  g. Let  I c  R[X,  X -1] be the (prime) ideal defining V. The fact  tha t  V is invar iant  

under  ~ means tha t  I is a graded ideal. Thus I =  |  where I j  consist of the elements 

of I which are homogeneous of degree j. However  / c  I j ~ X - J / E I o ~ / = X j ( X - j / ) E X j l o .  

Thus I =  | XJIo and hence V =Spec  (R/Io) • Spec (k[X, X- l ] )  which is the desired result. 

1.7. LEMMA. Let G be an algebraic group, V and W varieties with G action and U c  V 

an invariant ZarisIci open set. I / t h e  map ]: V ~ W is equivariant when restricted to U, then 

it is equivariant on V. 

Proof. The following diagram with 1 denot ing the ident i ty  map  

G •  I • 2 1 5  

V / , W  

is commuta t ive  because G • U is dense in G x V and the maps  0o(1 x ] )  and [oo" agree on 

G • U, hence they  agree on G • V. 

1.8. Let  Ov denote the sheaf of rat ional  functions on V and I c  Ov an ideal sheaf. 

The monoidal trar~[orm with center I is a pair  (~, V') with ~: V ' ~ V  and 

(i) IOv, is locally principal, i.e. u  the stalk (IOv,)w is generated by  one 

function, 
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(ii) for every ~0: V0~ V satisfying "IOv, is locally principal" there is a unique 

~/: Vo-~ V' with ~ro~/-~vr o. 

The monoidal transform exists by Itironaka [7] and it is unique by (ii). If X is a subspaee 

of V and I x is the sheaf of functions vanishing on X, then the monoidal transform with 

center X is defined to be the monoidal transform with center Ix. I t  is also called 

"blowing up of X".  For a geometric description of the blowing up of a subvariety see [22]. 

Lv,~II~A. Let G be an algebraic group acting on an algebraic variety V and (zt, V') a 

monoidal trans/ormation with center a G-invariant shea/ o/ ideals I. Then there is a unique 

extension o] the action o/ G to V' so that zt is equivariant. 

Pro@ We first show that  there is a unique map a': G x V'-* V' so that  the diagram 

below commutes. 

G x v ' l X ~ , G x V  

1 
V' , V  

For this it is sufficient to show that  (oo(1 x~))* (I) is a locally principal sheaf of ideals in 

Oo• Now I is invariant under a so a*(I )=Oo|  and hence ( ao (1 x ~) )* ( I )=  

Oa| which is locally principal because z~*(I) is locally principal. To verify that  0' is 

an action, let U= V-suppor t  ( I ) and  U' =~-I(U).  Since U' is isomorphic to U, the follow- 

ing diagram is commutative 

G x ( G x  U') m x  1 G x  U' 

G x U '  , U' 

where m is the multiplication of G. An application of w 1.7 completes the proof. 

1.9. PROPOSITXON. Suppose V is a non.singular algebraic sur/ace with k*-action and 

C~ V is a complete curve with negative sel/-intersection number. Then C is invariant under 

the action. 

Pro@ Let Ct = {tx I x E C}. Then Ct is rationally equivalent (homologous if k = C) to 

C for all t. If C is not invariant then (C. C)=(C.C~)>0, which is a contradiction. 

4-772902 Acta mathematica 138. Imprim6 le 5 Mai 1977 
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2. Non-singular  surfaces with k*-ar  

2.1. From now on we shall concentrate on the case G = ]r the multiplicative group of 

a field, and V an algebraic surface over tha t  field. In  this section we shall determine the 

topological type of a non-singular algebraic surface with k*-aetion, provided it has no 

elliptic fixed points. 

De/inition. A morphism/ :  X--> Y of algebraic varieties is said to be birational if there 

is a closed subvariety Z =  Y so t h a t / :  X - / - I ( Z ) ~  Y - Z  is an isomorphism. 

LEMMA. Suppose/: X--* V is a G-equivariant birational proper morphism o/non-sigular 

sur/aces. Then there exist equivariant morphisms /~: X ~ X ~ _ I ,  i =  1 .. . .  , n so that X 0 =  V, 

X n = X  and/~ is a monoidal trans/orm with center at a /ixed point o/ Xf_ 1. 

Proo/. By [9, w 26] the set of points S where / -1  is not defined is finite. Moreover if 

yES,  then y is a fixed point a n d / - l ( y )  is a divisor. Now let S=(yo,  Yl ..... Yr} and define 

h I to be the blowing up of the points Y0 ..... Yr- Then since /-l({y 0 ..... Yr}) is locally 

principal we have a factorization X gl , X1 h~ , y .  Repeating the process, by  [9] we 

reach a point so that  /=hloh2o...ohr, where h,: X ~ X ~ _  1 is a monoidal transform with 

center at  a finite number  of points. Factoring each h~ gives the desired result. 

2.2. De/inition. V is normal at  v E V if the local ring Ov at  v is integrally closed. For 

any variety V there is a variety l~ and a proper morphism ~: l~-~ V called the normaliza- 

tion of V characterized by the fact that  for every affine open subset U of V, F(~-I(U), O~) 

is the integral closure of F ( IU ,  Ov) in its field of quotients [4, I I .  6.3]. If  a: VI-~ V2 is 

a birational morphism there exists a unique ~: ~1-~ l~ so tha t  

commutes. 

1.1 
V1 ' V2 

Definition. V is complete if the morphism V-~Spec (k) is proper. I f  k- -C this is 

equivalent to V being compact in the metric topology. 

THEOREM. Suppose V is a complete, normal algebraic sur/ace with k* action. Then 

there is a complete non-sinilular curve C, a complete sur]ace Z with k* action and morphisms 
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V C x  p1 

so that 

(i) the action on C • pl(k) is given by 

t(x, [Zo: zl]) = (x, [tZo: zl]), 

(ii) q~x and q~2 are equivariant, 

(iii) q9 2 is a composite o] monoidal transforms whose centers are fixed points of the 

k*-action, 

(iv) ql is a composite o] maps, each o] which is either a normalization or a blowing up 

o] a ]ixed point. I] V is non-singular, then each o/ the maps is a blowing up. 

The variety o] Z constructed here is not canonical. 

Proo]. I t  follows from w 1.6 tha t  there is an open invariant  subset U =  V equivariantly 

isomorphic to C o • k*, where C o is a non-singular curve. Thus there is an equivariant  open 

embedding ]: U ~ C  • where C is the (non-singular) completion of C 0. Now ] defines a 

rational map ]: V ~ C  • and it follows from [9] tha t  the set S of points where ] is not 

defined is finite. I f  x E X  is not a fixed point then ] is defined at  x, since for some gEk*, 

] is defined a t  gx and 1(x)=g-1](gx). Thus S consists of fixed points. Let  V 0 = V. Define 

inductively It: Vt -+ Vt-1 to be the normalization of the monoidal transform with center at  

the singular points and points of indeterminacy of ]O]lO...o]t_ 1. By [9, (26.2)] and w 

there is an 8 so tha t  Vs is non-singular and /tOtlO...o]8 is defined on Vs. Let  Z =  Vs, 

~l=]lO.. .o]s  and ~ = ] O ~ r  The ]~ are equivariant by Lemma 1.8 and the funetoriality of 

normalization. Moreover, q2 is equivariant by  w 1.7. Assertion (iii) follows from w 

2.3. Let  V be a non-singular var iety and v E V a fixed point of a k*-action. The tangent  

space T~ at v has a local coordinate system in which the induced action of k* is linear and 

given by  

tCz. . . . . .  z,,,) = (tq'zl . . . . .  t q" Zm) 

for integers ql, -.., qm [2]. Denote by  N+(v) the dimension of the positive eigenspace of this 

action # {q~ > 0}, N-(v) the dimension of the negative eigenspace and N~ the dimension 

of the subspace fixed under the action in Tv. 

We call v an elliptic ]ixed point if r e = d i m  T~=N+(v) or m=N-(v ) .  I t  is a source in 

the former case and a sink in the latter. 
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We call v a parabolic fixed point if N~ and either m=N+(v)+N~ or 

m=N-(v)+N~ The former is a parabolic source, the latter a parabolic sink. 

All other fixed points are called hyperbolic. 

We can extend the definition of an elliptic fixed point to the singular case. Assume 

v E V is normal. We say v is an elliptic fixed point if there exists an invariant neighborhood 

U containing v so that  v is in the closure of every orbit in U. Recall that  we denote by 

F the fixed point set of V. Let F+={veFIN-(v)=O } and F-={veFIN+(v)=O}. I t  

follows from [2] that if V is non-singular then F+ and F -  are irreducible, connected 

components of F. If  V is complete, then both F+ and F -  are non-empty. 

2.4. Let V be a non-singular, complete surface with k*-action and assume that  

dim F + - ~ d i m F - = l .  A 1-dimensional orbit O is called ordinary if 0 f l l V + ~  and 

(~ n F - ~ ,  where 0 is the closure of 0. According to Theorem 2.2 the odinary orbits 

form an open set in V and since V is compact, there are only a finite number of 1-dimen- 

sional orbits El, E~ ..... Em which are special, i.e. not ordinary. We define the weighted 

graph F of (V, G) as follows: 

(i) its vertices are /+ for the curve F +, / -  for F -  and e 1 ..... em for the closures 

(ii) each vertex carries a weight [g], referring to the genus of the curve it represents, 

(if g=O this weight is omitted), 

(iii) each vertex carries a weight n, representing the self-intersection in V of the 

curve it represents, 

(iv) two vertices are connected by an edge if and only if the respective curves 

intersect in V. 

Clearly each point of intersection between different orbit closures is fixed under the 

action. I t  follows from w 2.2 that  if any two of the curves above intersect, they intersect 

transversely. 

2.5. T~EOREM. Let V be a non-singular, complete algebraic sur/ace with k*-action so 

that dim F+ = dim F - =  1. Then we have 

(i) F + is a complete curve o/genus g, isomorphic to F-,  

(ii) the graph F o/ (V, k*) is o/the/orm 
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(iii) {b~, l ,  bt ,  ~ . . . . .  b~,~} is admissible (see Appendix) and the continued/raction 

[bt.,,b~.~ .... b ~ . ~ ] = 0  for i = l  . . . . .  r, 

(iv) with c~ = 1/[b~, 1 . . . . .  b~.~_l] we have 

Proo/. Apply ing  Theorem 2.2 we see t h a t  V can be ob ta ined  from C • p1 by  blowing 

up  f ixed po in t s  and  then  blowing down curves.  No f ixed curves are blown down since 

d im F + = d i m  F - = I .  The theorem clear ly  holds  for V = C  •162 since F is of the  form 

Q Q 
where c = c ' =  0, and  F+  = F - =  C. Hence  i t  is suff icient  to  show t h a t  if V is a surface wi th  

d im F + . = d i m  F -  = 1 and  g:  V-+ W is a monoida l  t r ans fo rm wi th  center  x a t  a hyperbol ic  

or pa rabo l ic  f ixed  po in t  of V, then  the  theorem holds for  V if and  only  if i t  holds  for W. 

This  is obvious for (i) and  (ii). Fo r  (iii) we have  

[b, . . . .  , b~, b~+ 1 . . . . .  bs] = [b, . . . . .  b~_l, b t + l  , 1, b~+l+ 1 , bt+ ~ . . . . .  b~] 

according  to  A.7. F ina l ly ,  the  expressions of the  formula  of (iv) r emain  unchanged  if x is 

no t  on F ~  or F~ .  Assume wi thou t  loss of genera l i ty  t h a t  the  center  of ~ is on F~ .  Then  

Cw=Cv and  Cw =C'v+ 1. I f  x is in  the  closure of an  o r d i n a r y  orbi t ,  t hen  Fw is ob ta ined  f rom 

Fv  b y  add ing  one new a rm [1, 1] as follows 
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This clearly increases both sides of (iv) by 1, as required. If  x is not on the closure of an 

ordinary orbit, then W is obtained from V by blowing up a point on F -  which is in the 

closure of a special orbit. This corresponds to adding a new vertex to the ith arm of Fv. 

Omitting the first index for convenience, it changes as shown: 

�9 eee �9 �9 �9 ee �9 
i " i i . 

Finally, 1 + 1/[b I . . . . .  bs_l] = 1/[bl . . . . .  bs-1, bs+ 1] follows from Lemma (A.8) to complete 

the argument. 

2.6. PROPOSITIOn. Suppose k is an algebraically closed/ield. Any graph F satis/ying 

(ii)-(iv) o] w 2.5 arises/tom a complete algebraic sur/ace with k*-action. 

Proo/. Let V 0 = C x p1 where C is a non-singular complete curve of genus g and let k* 

act on the second factor. By A.3 and A.7 we can obtain a surface V 1 with the desired 
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weights on the arms by a sequence of monoidal transforms with centers at  fixed points. 

The graph of V1 may not have the desired weights c and c' f o r / -  a n d / %  Let  elm(V1) 

be the variety obtained from V 1 by  blowing up a point x of F + which lies in the closure 

of an ordinary orbit  (~, and then blowing down the transform of 0. This surface has the 

same graph as V 1 except tha t  the weight o f / -  is increased by  1 and the weight of /+ is 

decreased by  1. Similarly the weight o f / -  can be decreased. Thus in a finite number  of 

steps we can obtain a surface V~ with F + having self intersection - c. Now c' is determined 

by the relation (iv) hence V2 has the desired graph. 

3. Resolution of singularities 

3.1. We shall now consider singular surfaces V with k*-action. By  an equivariant 

resultion of the singularities of V we mean a non-singular surface W and a k* equivariant 

map ~: W ~  V which is proper and birational. The existence of an equivariant resolution 

was demonstrated in w 2.2. In  this section we construct a canonical equivariant resolution. 

3.2. The canonical equivariant resolution. Suppose V is an irreducible normal surface. 

We construct the canonical equivariant resolution locally and then put  the pieces 

together. Since V is normal, the singular set consists of a finite number  of points, each 

of which must be fixed. Suppose v is an elliptic fixed point (singular or not). By [23], the 

normality of V implies there is an affine invariant  neighborhood U of v and an equivariant 

embedding ]: U-~k n, where the action on k n is given by 

t(Z 1 . . . . .  Zn) = (tq~Zl . . . . .  tq"Zm) .  

Moreover we can assume qt>0,  for all i, if v is a source and q~<0, for all i if v is a sink. 

Assume that  v is a source. Now U =Spee (A) and A =k[X 1 . . . . .  Xn]/I, where I is the ideal of 

functions vanishing on U. The invariance of U under the action is equivalent to the fact 

tha t  A is a graded ring, the grading being induced by  letting degree X~=q~, w 1.6. The 

quotient space X =  U-~v}/k* is the algebraic variety Pro] (A) [4, I I ,  w 2]. We shall 

construct a canonical variety Ux and morphisms h: Ux-~ U and ~: U x ~ X  .Geometrically 

1,: U x ~ X  is the Seifert k* bundle with fiber k associated to the principal Seifert k*-bundle 

U - ( v } ~ X .  The map h eollapes the zero section to the point v. 

Le t  

AEn j=  | A~ and A ~ =  | AE~ ]. 
m>~ n n>~O 

I f  we consider A as an ungraded ring then A~ is a graded A algebra under the multiplica- 
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tion which makes 

A[nl A[,~j= A[n+m ]. 

Let Ux=Proj  (Ate). Then by [4, II ,  8.3 and 8.6.2] Ux is a projective variety over 

U = Spec (A) and there are natural morphisms 

vx " u -  (v) 

X 

so that  

(1) U x - e ( X )  is isomorphic to U -  (v) and v restricted to U x - ~ ( X )  is the orbit map 

(2) ~oe=idx. 

If vE V is a sink and U =Spec (A) is a neighborhood of v as above, then A is generated 

by forms of negative degree. We can define a new grading on A by letting new degree 

x -  - (o ld  degree x). Then we can perform the same construction as above and h: U x ~  U 

will again be equivariant. 

Now there is a unique proper birational morphism :~1:V1 ~ V so that  re 1 agrees with 

the above in the neighborhood of every elliptic fixed point and zt 1 is an isomorphism 

elsewhere. Moreover one can show that V x is normal (A.10). The only fixed points on V 1 

are hyperbolic or parabolic. Note that  the definition of g: VI~  V makes sense for a 

variety with k*-action of any dimension. 

LEMMA. I /  VE V is a singular point on a normal sur/ace with k*-action and ~: ~ ~ V 

is the minimal resolution o/the singularity, then there is a unique action ~ on ~ so that ~ is 

equivariant. 

Proo/. By w we know that  there is an equivariant resolution p: W-~ V 0. The 

minimal resolution is obtained stepwise by collapsing rational curves on W having self- 

intersection - 1 .  By w 1.8 these curves are invariant under the action, hence there is an 

induced action on the minimal resolution. 

Now define ~ :  ]~-+ V 1 to be the minimal resolution of the singularities of V 1. The 

composite :z =~o:zx:  l ~  V is called the canonical equivariant resolution o/ V. 

If V is not normal we let :~0: V0-* V be the normalization of V and :~1: ~-~ V0 the 

canonical equivalent resolution of V 0. Then ~r =g0O:~l is the canonical equivariant resolution 

o / V .  
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3.3. Orbit invariants. Suppose V is a var ie ty  with k*-action and v E V is a simple point.  

I f  v is not  a fixed point  then Gv is a proper subgroup scheme of k*. All such subgroups are 

of the f o r m / ~ = S p e e  ( k [ T ] / T ~ - I ) ,  for some a>~l. I f  the characteristic p of k does not  

divide a, then this is the group of a th  roots of uni ty.  I f  p divides a then the scheme #a 

has ni lpotent  elements. The act ion of k* on V induces an act ion of G v on the tangent  

space T~. Eve ry  such act ion is linear and by  [3, I I I  8.4] we can choose coordinates 

(x 1, x.,, ..., xn) so tha t  the tangent  space to the orbit  is the x.  axis and the act ion is defined by  

t(Xl . . . . .  Xn-1, ~n) = (t~'l~l . . . . .  tYn- lxn-1, ~n)" 

I f  V is a sur/ace the integer ~21 is well defined. 

De/inition. The Seifert invar iant  of the point  v is the pair  (a, 8) where Gv = / ~  and 

~1 fl ---- 1 ( m o d  ~) 

0 < f l < g ,  g.c.d. ( ~ , ~ ) = l .  

Warning. The definition of fl adopted here corresponds to [13] and is the negative of 

t ha t  given in [16]. 

I n  [16] we calculated the graph of the resolution of an elliptic point  f rom the Seifert 

invariants  and other data.  We shall generalize tha t  result in our current  context.  For  this 

we must  first analyze how the orbit  invariants  are affected by  "blowing up" .  

3.4, PROPOSITION. Suppose V is a non-singular sur/ace with k*-action and vE V is a 

hyperbolic fixed point. 

Suppose the action o/ k* on T~ is given by 

t(x, y) = (t-ax, tby) 

where a, b>~O and (a ,b)- -1 .  Let re: V ' o V  be the monoidal trans/orm with center v and 

X=re-l(v) .  Then 

(i) X is invariant under the action and there are two /ixed points x o and xoo on X ,  

where x o is a sink and x~o is a source o/ the  action on X ,  

(ii) i/  x E X  and x ~ x  o, x~ then the Sei]ert invariants (a, fl) o / x  are given by a = a  +b 

and b f l -  1 (mod oc), 

(iii) there are coordinates x, y / o r  Tv. x~ (resp. Tv .  z~) so that the action o] k* is given by 

t(x, y) = (t-(a+b)x, tby) (resp. t(x, y) = (t-ax, ta+by)). 

Proo/. This is easy to  see in the  case k---C. Near x 0 we have coordinates (x, y) so tha t  

re(x, y)-~(xy, y) and near x~o we have coordinates x, y so t h a t  re(x, y )= (x ,  xy). This 
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impl ies  (iii) and  hence (ii). To consider  the  general  (algebraic) case we replace  V b y  a 

su i tab le  affine ne ighborhood  of v so t h a t  we m a y  assume t h a t  V = S p e c  (A) and  m, the  

m a x i m a l  ideal  of v, is genera ted  b y  a homogeneous  sys tem of p a r a m e t e r s  x, y i.e. x and  y 

are  homogeneous  and  genera te  m/m S. Then  V' = S p e e  (BI)tJ Spec (B2) where  Bl=A[x]y  ] 

and  B2=A[y/x]. Let  x l=x /y  , y l=y ,  x~=x, y2=y/x. B y  (1.6) the  ac t ion  on V' is deter -  

mined  b y  the  g rad ing  of the  r ings B~. These r ings are  g raded  in  the  n a t u r a l  w a y  i.e. 

degree x 1 = degree x - degree y = - a - b, degree Yl = degree y = b, degree x z = degree x = - a, 

degree Y2 = d e g r e e  y - degree x =b § Now X is i n v a r i a n t  since v is a f ixed point .  Moreover  

x o is the  po in t  in  Spee (B1) given b y  x 1 =Yl = 0  a n d  x~  is t he  po in t  in Spee (B2) g iven  b y  

x z = y 2 = 0 .  Asser t ion  (iii) follow from the  g rad ing  given above  and  in  a d d i t i o n  we see t h a t  

x o is the  source on X and  x~ the  sink. To ver i fy  (ii) we no te  t h a t  t he  (a, fl) given above  are  

the  Seifert  o rb i t  i nva r i an t s  of a n y  po in t  on the  l ine y 1 = 0  in Tv.x0. The  inclusion 

k[xl, y l ]~B1 induces  an  equ iva r i an t  m a p  /: Spec (B1)-~Spee (k[xl, Yl]) ~ Tv.x~ This  m a p  

is e ta le  a t  x 0 since xl, Yl is a sys tem of pa r a me te r s  and  hence i t  is dtale in a ne ighborhood  

of x 0. I f  we choose a po in t  x on X near  xo, t hen  the  Seifert  i nva r i an t s  of x and  ](x) are  

the  same hence x, and  therefore  a n y  po in t  in G(x), has i nva r i an t s  (~, fl) 

3.5. Isotropy groups and the isotropy representation. (1) 

PROPOSITION.  Suppose V is a non-singular surface with graph F. Given an "arm" 

of the graph 

(3-o-o- -o-Q 
/ f-  

source sink 

let X ,  be the curve corresponding to the i th  vertex on the arm, i.e. (Xt, X , ) =  - b ,  and  /et 

[b 1 . . . . .  b,] =pJq,, where ( p ,  q t )=  1. 

(1) I /  vEX ,  N X~+I, O~i<~r~ then we can choose coordinates (x, y) in T ,  so that the 

induced action of k* on Tv is o/ the form 

(t-~- 1 x, troy). 

(~) For the terminology of this section, see the appendix. 
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(2) I / vEXt+ l  is not a/ ixed point, then the Sei/ert orbit invariants at v are (~,/7), where 

r  and/ip~_l = - 1  (modp~), O < i < r - 1 .  

(3) Suppose b 1, b2, ..., bi>~2. I] the Sei/ert orbit invariants o/ a non-/ixed point 

veXi+ 1 are (g,/7), then the equation [b I . . . . .  b i ] = a / ( a - / 7 )  determines the bi-uniquely. More- 

over [b~, b~-i . . . . .  bl+~] =g//7. 

Proo/. By induct ion on r. I f  r = 1 then b~ = 0, p_~ = 0, P0 = 1 and p~ = 0. On the other  

hand  X 0 = F +, X 1 is an ordinary  principal orbit  and X 2 =  F - .  The assertions are easily 

verified. Now suppose the s ta tements  are true for an a rm with fewer than  r vertices. By  

(A.3) and (2.5) one of the integers bj+ 1 mus t  be equal to  1. Le t  :t: V ~  V 0 be the  map  which 

collapses Xj+ 1. Then ~ maps  Xf isomorphically onto a curve X'i for i~=~+1. Let  

p;lq~ = [hi . . . . .  b j -  1, bj+2 - 1 . . . . .  b~+~] 

as in the appendix.  Then by  A.6 p'~ =p~, q'~ =q~ for i <7"-1  and p~ =p~+l, q'~ =q~+~ for i >~7". 

Now one can easily verify tha t  (1) holds for i#7", j + l  and (2) holds for i # j .  Le t  v be the 

point  of intersection of X'~ and X'j+9. By  (1) we m a y  choose coordinates (x, y) in Tv so t h a t  

the action of k* on Tv is of the form 

t(x, y) = (t r -~x, tCJy) 

and P~I-1 =Pt-1 and P's = (bj -  1)p j_ 1 - P s - z  = - P J - P ) - I  =P/+I.  Now by  w 3.4, X~ has isotropy 

group /xa where a=p's_l+p' j=pr Again by  w there are coordinates at  X j r /Xj+I  and 

Xj+lf~ Xj+~ so t h a t  the act ion is of the form in (1). By w (ii) we have t h a t  for any  

x E X j+l, the Seifert invariants  of x are (zr where PJ+I/7 = 1 (rood p j). Now PJ+I =PJ - P  j-1 

so we get the desired result for (2). To verify (3) first note tha t  :r since both are 

between 0 and :r and ( ~ - / 7 ) p t _ l = l  (modp, )  by  (2) and qtp~_l=-I (modpt)  by  A.1. 

The uniqueness when bl, ..., b~ >~ 2 is easily verified. Finally, the last equat ion follows from 

considering the inverse act ion and using the above argument .  

3.6. Invariants o / a n  elliptic singular point. 

The determinat ion of the invariants  of an affine var ie ty  V with k*-action (k=C),  

having an elliptic singular point  v E V  was the main  object of [16]. The orbit  space 

V* = V -  {v}/k* of the act ion is a non-singular complete algebraic curve of genus g (i.e. a 

Riemann surface if k = (3). I t  has a finite number  of orbits with non-trivial  isotropy and 

Seifert invariants  (at, fit), i = 1 .. . .  , r. There is an  addit ional  integer invariant  b, related to 

the "Chern class" of the  Seifert bundle V - ( v } ~ V * .  W h e n  k = ( ]  the invar iants  
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{b; g; (a D ill) ..... ( a ,  fir)} determine the neighborhood boundary K of v up to orientation 

preserving S 1 equivariant diffeomorphism. The main result of [16] states tha t  the canonical 

equivariant resolution of the singularity has weighted graph 

where the b t . j~2  are obtained from the continued fractions 

a J ( a ~ - f l , ) = [ b t .  1 . . . . .  b~.s,], i = 1  ..... r. 

Note that  the definition of b here is tha t  of [13] and differs from [16]. 

Thus in order to find the resolution of V at this fixed point we have to find all orbits 

with finite isotropy and obtain their Seifert invariants (at, fit) from the action of the 

isotropy group in the tangent  space; the genus of the orbit  space, and the integer b. 

This was described in principle for hypersurfaces and complete intersections in 

[16, 18, 13]. If  V=Spec  (A) is an affine variety with k*-action, there is a k*-action on 

k n defined by 

t (z l  . . . . .  zn) = (tqlZl . . . . .  tq'Zn) 

and an embedding of V in k n so tha t  V is invariant  under this action. If  v E V is an elliptic 

fixed point we can choose the embedding so tha t  q , > 0  for all i. The ideal of functions I 

vanishing on V is generated by  polynomials which are homogeneous with respect to the 

grading given by degree (X,)=qt.  Thus we can choose genera to rs / ,  for I so tha t  

l~(t  ~ z l  . . . . .  t ~ z ~ )  = t d ' l ~ ( z l  . . . . .  z ~ ) .  
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We say tha t  a polynomial  satisfying the above is weighted homogeneous o/ degree d~ 

relative to the exponents ql . . . . .  qn. The rat ional  numbers  w~=dJq~ are called the weights 

of/~. 

An explicit computa t ion  of the Seifert invariants  of an isolated elliptic s ingulari ty of a 

hypersurface in C a defined by  a single weighted homogeneous polynomial  was given in 

[16, 18, 13]. Unfor tunately ,  there is an omission in [16], where it is claimed t h a t  if the 

singularity of a weighted homogeneous polynomial  in three variables is isolated, then it is 

essentially one of six classes: 

(i) z~ ~ + z[ '  + z2 ~', 

(ii) z~ . . . . .  + 2:1 + Z 12:2 , a~ > 1 

(iii) z ~ ~  a l >  1 , a 2 >  1 

( iv )  Z~ ~ a, a2 § + z l z 2 ,  a o > 1  
as 

(V) Z~~ -~ Z~'Z 2 -~ ZoZ 2 , 

(vi) z~ ~ + z 1 z 2. 

The correct description of weighted homogeneous polynomials  in general [14] shows tha t  

there are two more classes to  consider (see also Arnold [1]): 

(vii) z~ . . . . .  +ZoZ 1 +z0z2 +z~'z~', (a o - 1 ) ( a l b 2 + a 2 b l ) / a o a l a ~ = l  

(viii) z~~ +zoz~ ' +zoz~'+z~'z~" , (a o -  1)(alb~+ a~bl)/a2(aoa 1 -  1 )=  1. 

We could amend the discussion of [16, w 3] to give the Seifert invariants  of the corresponding 

classes. However,  we now have a new method of obtaining these Seifert invar iants  

directly/rom d and the q~, making it unnecessary to list all the classes above. 

For  integers a 1 ..... a, let <a 1 .. . . .  a~> denote  their least common multiple and (a 1 . . . . .  a,) 

their greatest  common divisor. 

Let  /(z o, Zl, z~) be a weighted homogeneous polynomial  whose locus is V in k 3. I n  

order for a point  (z o, z 1, z~) E V to  have non-trivial  isotropy, a t  least one of the z~ mus t  be 

zero. The number  of orbits so tha t  say  z 0 = 0  is equal to the number  of factors of the  

polynomial  /(0, z 1, z2). The following lemma lets us determine this number  easily. 

LEMMA. Suppose g(z 1, z~) is a weighted homogeneous polynomial so that g(tQ~zl, tq~z2) = 

Vg(z 1, z2). Then the irreducible/actors g~ o/ g satis/y gt(tq'zl, tq'z2)=t'~g~(zl, z2) and each gt is 

one o/ the /ollowing /orms 

(i) g~(zl, z2) =ezl,  e=4=O 

(ii) g~(zl, z~)=cz~_, c#O 

(iii) gt(zl, z~) - ~  zv~+c 1 ~ 2 where elC2#O and Pt=qJ(ql ,  q2). 

In  particular, i/ z 1 and z 2 do not divide g, then g has r(ql, q~)/qlq2 =r/<ql, q2> /actors. 
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Proo/. The fact tha t  the g~ are weighted homogeneous is a general fact about  factoriza- 

tion in graded rings. I f  g~ is irreducible then the variety {9~(zi, z2)=0} must  be the closure 

of an orbit of the action t(z~, z~) = ( t  q~ Zl ,  t q ' z2 ) .  This action has the same orbits as the effective 

action t(z~, z~)=(tv'zl, tv'z2). The closures of the orbits are precisely {z~=O}, {z~=O} and 

(z~' + cz~' = 0}, where c =V O. 

We apply the temma above to show tha t  in the case of isolated singularities the orbit  

invariants are determined by d and the q~. Let  wt=d/q~=uJv, where g.c.d. (u ,  v i ) = l  

and u ,  v~ >/1. 

P~OPOSXTIO~ 1. Suppose V has an isolated singularity at O. Assume 1 <.vo <~v~ <v ~. 

Then the table below indicates the number o/orbits o] each type. 

II l~ II 

1 = v 0 = v  1 = v  2 d/<q~, ~> d/<q o, q~> d/<q o, q~> 

I =vo=v~<v., (d-qx)/<q~, q~> (d-qo)/< %, q~> d/<q o, q~> 1 

1 = v o < v  ~ <~v 2 (d-ql-q~)/<qp q~> (d-qo)/<qo, q~> (d-qo)/<qo, q~> 1 1 

1 <vo<<-v ~<v~ (d-ql-q~)/<qx, q~> (d-qo-q~)/(qo, q~> (d-qo-q~)/<%, q~> 1 1 1 

The blank entries are zero i /q i  does not divide qj /or i # i .  I/q~lqJ, then (q(, qj} =qt and we 

list those orbits under the column headed (ql, qJ). 

Proot. The exceptional orbits are in the hyperplanes zt=0.  Suppose vo=vl=v2=l .  

The exceptional orbits contained in {zo=O ) are given by {t(0, z,, z~)=0} We write 
el el  $ ](O, zl, z:)=z I z,, 1-it=lgt(zl, z2) a product of irreducible factors. The factors must  be 

distinct since otherwise the curve z~==gi(zl, z2)=0 would be a singular curve on V. By 

Lemma 3.6; each 9t has weighted degree qxq2/(qx, q2)=<qx, q2> so we have 

ex ql + e2q~. + s<ql, q~> = d (1) 

where e~=0 or I. I f  el=~=-O then s==d/<ql, q~.> which is the desired result. If  say e l = l  

then ql = 0  rood q2 so that  q~ = (q~, ql). One can easily verify tha t  the number of orbits in 

(z o = 0) is d/q t =d/<ql, q~>. 

Suppose 1 = % = v l < v  2. Then qo[d, q, ld and q2[d. I f  we write [(O,z~,z~) as a product  

of irreducible factors as above, then the equation (1) gives us e 1 ~ 0 rood q2, hence e~ = 1. 

Thus there must  be an orbit {Zo=z~=O } with isotropy q2>(ql, qa). I f  e2=l then q~=0 

(rood ql) so <ql, q~> =q~. Thus the orbits contained in {zo---0 ) with isotropy precisely 

(ql, q~) correspond to the factors of z~' I-I~-1 9~(zx, z2). I f  e~=0 then s=(d-qx) /<q 1, q~). 

I f  e~ = 1 then s + 1 = (d-ql)/qz which is the desired result. 
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Suppose 1 ~ v  0 < v 1 ~<v2. Then  again we have  the faetorization of [(0, gl, Z2) which gives 

us the equat ion (1). Now 

elq~ =-- d ~ 0 mod  q~ 

e, q2 =- d ~- 0 mod ql 

hence e l = e ~ = l .  This gives us s=(d-ql-q~)/(q~,q2 ). The calculation of exceptional 

orbits contained in {z~=O}, i = l ,  2 is similar to those above. 

PROPOSITION 2. Under the hypotheses o/ Proposition 1, the values o/ fl are computed 

as ]ollows. 

2'or ~=(q l ,  q2), qofl =-1 rood ~, O < f l < a .  

For an orbit o/the ]orm {zo=Zl=O} we have ~=q~. In this case 

(i) i/there is an xEZ + so that 

then qlfl = - 1 (rood a) 

(if) i/there is a yEZ + so that 

then qof l-  1 (mod a). 

l + x  1, 
Wo w2 

1 ~Y=I,  
wl w2 

Cyclic permutation o[ the indices 0, 1, 2 permits calculation o/al l  the required ft. 

Proo/. For  a= (q l ,  q~) the act ion of / l~  on k a is ~(z0, Zl, z~)=(~q~ Zl, z2). This implies 

t ha t  the act ion o f / ~  on the tangent  plane, an affine subspace of k a, mus t  have v ~ qo (mod a). 

For  an orbit  of the form {z o = z 1 = 0} we calculate the act ion of /1 a on the  tangent  

space Tv, with v=(O, O, 1). The act ion of #a on k a is ~(z o, z I, z~)=(~qOZo, ~q~z 1, z~). The 

tangent  plane at  v is (a//~Zo)(V)Zo+(~//~zl)(V)Zl=0, since (a//~z~)(v)=O. I f  (~]/~Zo)(v)~0 

then the act ion of #~ on the tangent  plane mus t  have v-=ql (rood a). I f  (all,z1) (v):t:O then 

the action of/~a on the tangent  plane mus t  have v--qo (mod a). Thus q l f l = l  (rood a) in 

the  former  case and qofl- 1 (rood a) in the  latter.  Now if (~]]~zo) (v) :4:0 there mus t  be a 

monomial  of the form ZoZ~ in [, hence ( l /w0)+ (x/w2)= 1. If  (~//~zl)(v):4:O then  there is a 

in ] so ( l /w1)+ (y/w~)= I .  Finally, if both  (I /wo)+ (x/w2)= 1 and monomial  of the  form z 1 z2 

(l/w1) +(y/we)=1 then we claim tha t  qo-ql  (rood ~). F rom the two equations we obtain 

x = (u o-vo)uJuov 2 hence u 0 -  v 0 rood v2, 

y = (u 1 - v l ) u J u l v  2 hence u 1 - v 1 rood v s. 
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Also, u 0 and u 1 divide u 2 and d=<uo,  ul, u2) so d = u  2 and ot=q2=v ~. By definit ion 

qo = dvo/uo, ql = dVl/Ul so q0 ~ ql rood v ~  u 0v 1 = u 1 v 0 mod v~ and the Iat ter  follows from the 

above congruences. 

COROLLARY. For an orbit o / the  /orm { z 0 = z l = 0  } we have a=q~. I n  this case 

(i) i~ 

(if) i/ 

aJ-] (0, 0, 1 ) # 0  
~z 0 

~!(o, o, 1) .o  
~z  o 

then ql f l  ~ 1 rood a. 

then q0 fl = 1 mod ~. 

PROPOSITION 3. The /ormulas /or g and b are given by 

2~, d~ d(qo, ql) d(ql, q2) d(q~, qo) + . . . . .  (d, %) + (d, ql) _~ (d, q2) 1 

qo ql q~ qo ql ql q2 q2 qo qo ql q~ 

q0ql q~ ~ a~ 

Proo]. A formula for the genus is given in [17, 5.3]. The proof there is valid under  the 

hypotheses of this paper. The formula reduces to the formula above once we verify tha t  

for any  hypersurfaee in k 3 with an elliptic isolated singular point,  for each i either d = 0  

(mod qt) or d=-qj (rood q~) and (qt, qk) =1 for some j : # k # i ,  see [17, 5.4]. To verify this 

for i = 0  we first note tha t  (q,, qj)ld for i~=j because there mus t  be some monomial  in / 

which does not  involve zk. Moreover there must  be come monomial  M - ~ ~ ~  - ~ o  ~ ~z in / so 

tha t  a # 0 ,  i l + i ~ < l ,  since otherwise z l = z z = 0  would be a singular line on the surface. 

If  i 1 + i 2 = 0  we get d = 0  (mod q0) and if, say i1=1 we get  i o%+qx=d  so d=qx (mod q0) 

and (%, q~) = 1. By  symmetry ,  we get the result for i = I, 2. The formula  for b was proven 

in [16, 3.6.1]. The proof there generalizes to  our case. 

This completes the computa t ion  of the weighted graph of the resolution of V f rom 

the integers d, q0, ql, q~. I n  the case tha t  k = (3, {b; g; (~1, ill) . . . . .  (at, fir)} are the Seifert 

invariants  of the neighborhood boundary  K, and hence K is determined up to Sl-equi- 

var iant  diffeomorphism by  these invariants  [13]. 

3.7. Non-elliptic singular points. Suppose v E V is a normal  non-elliptic singular point  

on a var ie ty  V with k*-aetion. I f  zt: ~ V is the  canonical equivar iant  resolution ( = m i n i m a l  

resolution) of V, then none of the curves in zt-l(v) can be fixed curves, otherwise v would 
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be elliptic. The graph F of the resolution must  be a connected subgraph of the graph in w 2.5, 

since 17 has a non-singular equivariant completion [23]. Thus P must  be of the form 

Let  A (resp. B) be the orbit on l~ (and V) which is not contained in ~-l(v) so tha t  ,~I inter- 

sects the closure of the orbit corresponding to the first (resp. rth) vertex. The Seifert 

orbit invariants of the orbits, (al, ill) for A and (~2, f12) for B determine the n~ as follows. 

With the notation in the appendix, al/fll=[mx, m 2 ..... ms], m~>~2. Let  ms+a be the 

self intersection of ~ .  By w ~/ f l2=[ml ,  m 2 . . . . .  ms, ms+l, nl .. . . .  at]. Now n~>~2 and 

ms+l >~ 1, hence by A.9 the n~ and ms+ 1 are uniquely determined. 

4. Difleomorphlsm and algebraic classification 

4.1. Min ima l  models. A non-singular surface V with k*-action is said to be relatively 

minimal if there is no curve X c  V so tha t  (X.  X ) =  - 1  and X is isomorphic to p1. I f  

such a curve does exist it must be invariant under the action (1.8) and hence there is a 

contraction of X, z~: V ~  V 0 which is equivariant. 

PROPOSITION. 1] V is a non-singular complete relatively min imal  sur/ace with k*- 

action, then V is equivariantly isomorphic to one o/ the /ollowing 

(i) a Pl-bundle o/ degree d over a complete curve o/ genus g (the degree is the sell- 

intersection of the /ixed curve F+), g>0 .  

(ii) a Pl-bundle E o/degree d~= + 1 over p1 with an action subordinate to the standard 

k* • k* action a 1 x a2 on V i.e. ffl acts in the /iber and a 2 acts on the base. 

(iii) p2 with an action subordinate to the standard k*x k* action on V 

O'((t 1, t2), (Zo: Zl: 2:2) ) : (ZO: t12:l: t22:2). 

Pro@ If there is no elliptic point on V then w 2.5, A.3 and the minimality of V 

imply tha t  Fv is of the form 

Q Q 
Hence V is a p1 bundle over a complete curve of genus q, and if g = 0  then c and - c ~  - 1. 

5 - 772902 Acta mathernatica 138. l rnprim~ le 5 Mai  1977 
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I f  there is an elliptic point on V, then the non-singularity of V implies g = 0. By  a theorem 

of Nagata  [6] a relatively minimal rational surface is isomorphic to p2 or a p1 bundle E~ 

of degree d ~ • 1 over p1. I t  remains to show tha t  any  k*-action on p2 or Ea can be 

extended to the standard k* x k*-action on P~ (resp. Ea). :Now a k*-action on V is equivalent 

to an injective algebraic group homomorphism k*-+Aut (V). In  our case Aut (P~)= 

PGL (3, k) and Aut (Ea)=PGL(2) • Each of these (linear algebraic groups) has a 

maximal torus of dimension 2, i.e. every subgroup isomorphic to k* is contained in a 

subgroup isomorphic to k* x k* and any two subgroups isomorphic to k* • k* are conjugate 

[3, IV. II.3].  This implies the desired result. 

4.2. Definition. Call a k*-action a on V essentially unique if the only other k*-action on 

V is ~(t, v)=a(t -1, v). 

PROPOSITION. Suppose V is a non-singular sur]ace with k*.action ol. Then the ]ollowing 

are equivalent. 

(i) g =0 and any/ixed curve intersects at most two invariant curves which have negative 

sell-intersection. 

(ii) the action (~1 extends to an eHective k*• k*.action 01 • (~. 

(iii) the action ol is not essentially unique. 

Proo/. The group of automorphisms of a projective variety Aut (V), is a reduced 

algebraic group [11 ], and a G-action on V is equivalent to a homomorphism a: G-+ Aut (V). 

Hence it is sufficient to show tha t  if (i) holds the maximal torus of Aut (V) is k* • k*, 

and if (i) does not hold then Aut o (V)= k*. Here Aut0(V) denotes the component  of the 

identi ty in Aut (V). 

We may  assume V~=P ~. Then there is a birational equivariant morphism ]: V-+ V o 

so tha t  V0 is a p1 bundle over a curve X (4.1). By an argument  analogous to tha t  in w 1.9 

we can show tha t  any element of Aut0(V ) leaves a curve with negative self-intersection 

invariant. Hence there is an injective homomorphism / . :  Aut0(V)-+Aut0(V0). Moreover 

Aut (V0)=Aut (X) • Now if g>0 ,  then Aut (X) is finite and therefore Aut o (V)=  

Aut o (V0)=k*. I f  g = 0  then any  element of Aut0(V0) which is in the image of Aut0(V), 

leaves the points of X which lie on curves with negative self-intersection, fixed. Thus 

Aut o (V)= k* if there are more than two such points, and Aut0(V ) has a maximal torus iso- 

morphic to k*x k* otherwise. 

4.3. THEOREM. A complex algebraic sur/ace V with C* action is di//eomorphic to one, and 

only one, o/ the following 
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(i) Mg.k=(R~xS2)#kCP ~ g>tO, k~>0, 

(ii) No, the non-trivial S 2 bundle over Rg g >~ 0, 

(iii) CP 2, 

where Rg is a compact Riemann sur/ace o/genus g and CP 2 denotes CP 2 with the opposite 

orientation. 

Proo/. Blowing up a point  on a non-singular complex surface is equivalent  to taking 

connected sum with CP 2. Hence the proposit ion implies t ha t  V is diffeomorphic to 

W # k C P  2 where W = CP 2 or a CP i bundle Ea of degree d over a Riemann  surface Rg. 

Now Ed ~ CP 2 is diffeomorphic to Ed+z # CP 2. I n  fact, one can construct  an equivar iant  

diffcomorphism by  blowing up a point  on F+ in E~ and a point  on F -  in E~+ 1. Bo th  give 

us a surface with graph 

We can conclude tha t  if W=E~ and k > 0  then V is diffeomorphic to Mo.k. Now suppose 

V = E~. There are two S a bundles over a compact  R iemann  surface, the trivial one and a 

non.tr ivial  one. Thus Ed is diffeomorphic to E~ where 0 ~ <  1, is the residue of d modulo 2. 

E 0 is not  diffeomorphic to E 1 since the former has an even quadrat ic  form (intersection 

form) and the latter does not.  Final ly suppose V = C P  ~ # k - C P  2. I t  is well known tha t  

CP 2 # CP 2 is diffeomorphie to the CP ~ bundle of degree 1 over CP 1. 

Thus V=Mo.k, if k~>2 and V = N  o if k = l .  The manifolds Mg.~, Ng and CP 2 can be 

shown to be dist inct  by  comparing the ranks of their homology groups, H z and He, and 

the par i ty  of the quadrat ic  form given by  cup product .  

4.4. SZ-actions on 4-mani/olds. I t  is an open question whether  all S~-actions on CP ~ 

are orthogonal  i.e. of the  form 

t(Zo: z l  : z~) = (t q~ z o: t '~' z l :  t q' z2) 

for t E S i. Orlik and R a y m o n d  [15] classified T 2 = S i x  S i actions on 4-manifolds and have 

proven t h a t  every smooth  T 2 act ion on CP ~ is orthogonal.  Thus  we can rephrase the 

question to ask whether  every smooth  effective S z act ion extends to a smooth effective 

T~ action. We have the following related non-extension result. 

THEOREM. I /  k>~3 there is a smooth e//ective S i action on CP 2 ~kC-P 2 which does not 

extend to a smooth e//ective $1•  S 1 action. 
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Proo]. I t  follows from [15, w 5] t h a t  if the  S 1 ac t ion  ex tends  to  a T ~ ac t ion  the  graph  

F V mus t  have  ~<2 arms.  The surface V 1 wi th  graph  

is d i f feomorphic  to C p 2 # 4 C P  2 and  has  3 arms,  thus  the  C*-action induces  an  S l -ac t ion  

01 which does not  ex tend  to  a T 2 act ion.  I f  we collapse the  curve cor responding  to the  

lef t  hand  ver tex  we get  a surface V z dif feomorphic  to  CP ~ # 3 C P  2. I f  t he  S 1 ac t ion  01 

ex tends  to  o 1 • as, a2 mus t  leave the  f ixed po in t s  of o I f ixed and  hence 01 • 02 ex tends  to V1. 

This  is a cont rad ic t ion ,  hence the  ac t ion  does no t  ex tend .  We can ge t  non-ex tendab le  

ac t ions  on CP~#kCP 2, k ~ 4 ,  b y  blowing up  f ixed po in t s  on V 1. 

We do no t  know if such ac t ions  can be ob ta ined  for /c ~2 .  

4.5. W e  can now l is t  i nva r i an t s  which give an  equ iva r i an t  a lgebra ic  classif icat ion of 

normal  surfaces V wi th  k*-act ion.  Le t  ~: l~-~ V be the  canonical  equ iva r i an t  resolut ion of 

V and  1" ~, the  g raph  of l~. We would l ike to  descr ibe the  topo logy  of V using I '~  and  

some add i t i ona l  da ta .  The  m a p  ~ induces  an  equiva lence  re la t ion  in l~. There  are two 

k inds  of ident i f icat ions;  cer ta in  curves are  ident i f ied  to  po in t s  and  cer ta in  curves are  

ident i f ied  to  each other.  I f  a collection of curves  is m a p p e d  to a single p o i n t  b y  z we enclose 

the  corresponding vert ices  of F b y  a solid line. I f  curves X 1 . . . . .  Xr  on ~ are  all  m a p p e d  onto  

the  same curve Y in V and  d~ is the  degree of ~]X~ then  we enclose the  corresponding 

vert ices wi th  a d o t t e d  line and  ind ica te  the  degree d~ above  the  ver tex .  This  d i a g ra m is 

deno ted  b y  Fv. See w 5 for examples .  

Suppose  V is a comple te  non-s ingular  surface wi th  k*-action and  no el l ipt ic  f ixed 

points ,  Fv  is the  g raph  of V, and  the  a rms  of Fv  are n u m b e r e d  1, 2 . . . . .  r. Define the  con- 

t r ac t ion  of V, ]: V-~cont  (V), to  be the  con t rac t ion  of t h a t  o rb i t  X which lies on the  r th  

arm,  has  a self- intersect ion - 1  and  is the  o rb i t  closest to  F + having  the  f i rs t  two pro-  

per t ies  (i.e. the  ve r tex  corresponding to  X is closest to  /+). I f  we a p p l y  the  con t rac t ion  
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operator repeatedly we finally arrive at a surface By whose graph has no arms, i.e. By is a 

p1 bundle over F+. Let 

~: V ~ B v  

be the contraction map. We say (V, B v, ~) is the canonical relatively minimal model of V. 

One can easily see that ( V, B v, ~) is independent of the numbering of the arms of F. Let 

p: By--F+ be the structure morphism of the bundle. If  V is an arbitrary complete 

normal surface we define B v = B  ~. 

Let x 1, ..., x~ be the points of F + which are in the closures of non-ordinary orbits. The 

algebraic invariants of (V, ~) are {F+; zl ..... x~; Fv; (By, p)} together with a numbering of 

the arms of Fv so that  x~ is in the closure of an orbit on the ith arm. Two sets of invariants 

{F~; x(~ ~ ~o). F~; (Bvv P~)} i=1 ,  2 are equivalent if r l = r  ~ and there is an isomorphism 

a: F~-+F,~ and a permutation ~ so that  a(x~l)) -~(2)-~o a*(Bv,)=Bv, and F~=F1 with its 

arms reordered by ~. 

4.6. T~EORE~. Suppose V 1 and Vz are complete normal sur/aces with k*-action. Then 

V 1 and V 2 are equivariantly isomorphic i /and only i/ their respective invariants 

{F+; Xl ..... Xr; rv; (By, p)} 

are equivalent. 

Proo/. Since V 1 and V 2 are normal, Vt is determined by l~t and that  part of the graph 

F~ which indicates which curves are contracted. Thus we may assume V~= ~ .  The 

equivalence of invariants is certainly a necessary condition. Finally the sufficiency is 

easily seen by induction on the number of vertices of F and the uniqueness of blowing up 

(down). 

5. Examples and remarks 

5.1. Consider the homogeneous polynomial 

l ( z )  = ZoZlZ~ +z] 

which defines a hypersurfaee V in pa, invariant under the k*-action 

t[z0: Zl: z2: za] = [z0: tSzt: tSz2: t2za]. 

The partials of / show that  V is singular at [0: 0: 1: 0], [0: 1: 0: 0] and [1: 0: 0: 0]. The 

closures of the exceptional orbits are Lx={zo=zs=O} with isotropy k*, L2={z2=z~=O } 

and L~={zl=z3=O ) with isotropy #3- In  the diagram below a line indicates a curve; a 
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non-singular point of intersection is denoted by a dot, a singular one by a small circle. 

We have therefore 

- - ~  [0:1:0:0] 

[1:0:0:0] ~ L l [ o : o :  1:0] 

The elliptic singularity [1: 0: 0: 0]. The affine piece of V where z0~0 is the surface defined 

by the weighted homogeneous polynomial zlz2+z ~=0 with ql=q2=3, qz=2, d=6. We 

see from (3.6.2) that  the Seifert orbit invariants of the orbits L~ and L a are (3,2). Now by 

(3.6.3) g = 0  and b = - 1 .  Thus if we resolve the singular point at [1: 0: 0: 0] we get 

[0:1:0:0] 

5~ 

[0:0:1:0] 
L3 

The points [0: 1: 0: 0] and [0: 0: 1: 0] are parabolic singular points. The minimal 

resolution of these two points gives us the canonical equivariant resolution l?. The 

corresponding diagram is of the form below 

L2 

L~ 

Ll 

The dual graph (as defined in 2.4) with weights is the following 
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L2 

L3 

Now by  w the missing vertices are given by  the continued fraction expansion of 

~/fl=3/2. Finally, the self-intersection of L 2 and L 3 must  by  - 1  by  A.3 and hence 

c'= 1 by w (iv). Thus the graph associated to V is: 

Note tha t  we have made no assumptions about  the characteristic of k. We leave it  an 

exercise to find the canonical equivariant resolution of this singularity under the 

action t[zo: zl: z2: za] = [tz0: t-lzl: z~: zs]. 

5.2. Let us now turn to an example with singular lines. Consider the hypersurface in 

p3 defined by  the zeros of the homogeneous polynomial 

with action 

a(t; [zo: zl: z~: z3] ) = [t2zo: tSzl: t-lz2: z3]. 
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Comput ing  the  pa r t i a l s  of ] shows tha t :  

L 1 = {Z 0 = Z  a = 0 }  is a s ingular  l ine wi th  i s o t r o p y / ~ ,  

L 2 = {% = z 1 = 0} is a s ingular  l ine w i thou t  i so t ropy,  

L s = {% =z~ =0}  is a s ingular  l ine wi th  isotropy/~5, 

L 4 = {z 2 = z a = 0} is a non-s ingular  l ine wi th  isotropy/~a,  

L 5 = {z 1 =zz=O } is a non-s ingular  l ine wi th  i s o t r o p y / %  

As above  we d raw  a d i ag ram wi th  l ine segments  represen t ing  orb i t s  wi th  i so t ropy.  A doub le  

(resp. t r iple)  l ine segment  represents  a s ingular  o rb i t  wi th  two (resp. three) sheets  pass ing  

th rough  i t  i.e. two (resp. three)  orb i t s  on 1~ are  ident i f ied  to  one on Y. 

L5 
[1:0:0:0] [0:0:0: 1] 

L L2 

[0: I:0:0]  ~ [0:0:  1:0] 
Lt 

I n  the  following we shall  assume t h a t  k = 13 so t h a t  we can use slices. F o r  de ta i l s  of the  

following analys is  consul t  [17]. The same resul t  is va l id  for a r b i t r a r y  k b y  a s l ight  add i -  

t ional  analysis .  

The elliptic singularity at [0: 0: l :  0] 

At  zz =1 the  equa t ion  is z 4 z s - z  s s 0zl 8 •  iz3+z07=0 with  % = 3 ,  q1=6,  qs=l  and  d = 2 1 .  

Call V' the  corresponding affine hypersurface .  

L I is s ingular  wi th  slice a t  z 1 = l :  

z 40 z s3 + z~ + z0 r = 0 

which is local ly i r reducible ,  hence L1 is covered by  one orbi t .  W i t h  ~ = exp (2~/6) the  slice 

ac t ion  on V' is ~(z0, z3)= (~3zo, ~z3). I f  t is a local coord ina te  for the  slice on ~ then  z 0 = t 3, 

z3=t ? so a(~, t) =~t is the  slice ac t ion  on 1~. So 1 - f l =  1(6). Thus  L 1 gives rise to  one excep- 

t ional  o rb i t  of t y p e  (6, 1). 
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L z is singular with slice at z a = 1: 4 .~ 7 zOZl +Zl +z0=0.  One can see that  this curve has 3 

branches through 0 (for example by blowing up once), thus L 2 is covered by three principal 

orbits. 

From (3.6.3) we get b = 2 1 / 3 . 6 - 1 / 6 = 1  and we use [17, w 5] to compute the genus of 

d2 d(qo, ql) d(ql, q~) d(q2, qo) 
pa = 1+"  

2q0 ql q2 2q0 ql 2ql q~ 2q~ q0 

-Q(qo; q~, q2; d) -e(q~; q~, qo; d) -~(q~; qo, ql; d), 

where by definition 

1 1 - ~m 
~(k; nl, n2; d) --- 7.~ JE~ ~ (1 - ~7 )  (1 ~- ~jn,) 

for ~=exp  (27d/k) and 

I = { ? ' 1 0 < j <  k, ~'n~ $ 0 ( m o d  k), ]n2~-O ( m o d  k)}.  

We compute directly that  

~(3; 6,1; 21) =~(1; 6, 3; 21) = 0 and ~(6; 3,1; 21)=1/4,  

so from the formula above, pa = 6. Finally, 

g=P~,- "f ~x 
XE X" 

where 5z is an invariant of the point x defined in [12, w 10] (see also [17]). 

The image of L1, say XlfiX has ~x,=0, since X is non-singular at x 1. The image of 

L2, say x~EX has (~,=6 by [12, p. 93]. Thus 9 = 0  and we have that  the neighborhood 

boundary at  [0: 0: 1: 0] has Seifert invariants 

K[0: 0: 1: 0] = {1; 0; (6, 1)~6; (1, 0)~(1,  0)~(1,  0 )~  1}. 

See Orlik-Wagrcich [17, 3.5] for this notation. 

The elliptic singularity at [0: 1: 0: 0] 

At Z l= l  we have z~z~+z~z~+2ozz=O with qo = - 3 ,  q2= - 6 ,  qa = - 5  and d =  -27 .  We 

impose the inverse action by letting 

qo=3,  q2=6, qs=5, d=27.  

L 1 is singular with slice at z~= 1: z~zSo 3 +z~ + ZoT=0 covered by one orbit of type (6, 5). 

73 

the resolution of the curve X '={V'-O)/r  

Its arithmetic genus is given by the formula 
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L a is singular with slice a t  z 3 = 1 : 4  ~ 7 Zo + z2 +ZoZ, =0. This has two non-singular branches 

each of which is tangent to the line {z~=0}. The action in the tangent space is ~(z0, z2)= 

(~az0, Sz~) so 3f l~1  (5), f l=2,  and L a is covered by  two orbits of type (5, 2). 

L 4 is non-singular. The action in the tangent space at  [1: 1: 0: 0]EL 4 is ~(z~, za)= 

(z2, ~2zs). Thus 2fl=-I (3) and f l=2.  

From (3.6.3) we get b ~ 2 7 / 3 . 6 . 5 - 5 / 6 - 2 / 5 - 2 / 5 - 2 / 3 = - 2 .  We know that  g = 0  

since g is zero at the other elliptic singular point. Hence 

K[0: 1: 0: 0] = { - 2 ;  0; (6 ,5)~6,  (5 ,2 )~ (5 ,2 )~5 ,  (3,2)}. 

Comparing orientations in W shows tha t  the orientation given here for K[0: 1: 0: 0] is 

correct. 

We now know tha t  the (dual) graph F of V (as defined in 2.4) is of the form below: 

/--'4 L5 

L3 

/ 

( 

/ x \  

/ 

I I 

I I 

t 

t I 
t 

I 1 . 

I 

I 

I 
I 

I 

i ) 

L . . . .  3 

Ll 

Recall here tha t  the integer above a vertex enclosed by dotted lines denotes the degree 

of the map ~: l~-~ V on the corresponding curve, see w 

Applying w 3.5 we see tha t  the fact tha t  L 5 has i sot ropy/x  2 implies that  L 4 has 

self intersection - 1  and the branch of L~ intersecting L 5 has self intersection - 2 .  But  



A L G E B R A I C  S U R F A C E S  W I T H  ~ * - A C T I O N  75 

then L 5 must have self intersection - 2 .  In order to calculate the missing part of the 

middle two arms we note that  the orbit invariants of L a are (5, 2). The vertices are deter- 

mined by the continued fraction expansion of 5/2 = [3, 2] if we know that  there are no 

vertices with self intersection - 1 .  Now the vertices inside the curve come from a minimal 

resolution, so they do not have self intersection - 1 .  On the other hand, if one of the 

branches of L 2 had self intersection - 1  the relation w 2.5 (iv) would not hold. Thus, the 

graph of V is as follows. 

1 I ~ \  

/ 

( 
1 / 

[ I 
I I 

I I l I 

i i ) I 

I i I I 

k.. m m. .a  

5.3. Let V be a complex surface with C* action and with only isolated singular points. 

Let V 0 denote the compact 4-manifold with boundary obtained by removing an open 

Sl-invariant tubular neighborhood of the fixed point set. Then V0 may be viewed as a 

fixed-point-free Sl-cobordism between its various boundary components. This relates our 

paper to the results of Ossa [19]. As an example, consider the hypersurfaee V in CP a 

defined by the zeros of the homogeneous polynomial 

/ ( z ) = z o z ~  ~ 3 +zz+za  

with C* action t[z0: zl: z~: za] =[t-~z0: tzl: z2: za]. I t  has five fixed points. [1: 0: 0: 0], 

[0: 1: 0: 0] and z0=zl=0,  z~+z~=0. The first one is singular. 



76 P. ORLIK AND P. WAGREICH 

We leave it to  the reader to show tha t  

K [ I :  0: 0: 0] = { - 1 ;  0; (2,1), (2,1), (2,1)) 

K[0: 1: 0: 0] = (1; 0) 

K[0: s + 8 = O:z~ za=O] {0;0; (2,1)} 

so V0, the complement  of open Sl- invariant  tubular  neighborhoods of the fixed points, 

is a fixed point  free Sl-cobordism between K [ I :  0: 0: 0] and its decomposit ion as a linear 

combinat ion of the generators in the eobordism group Os (~ ) ,  see [19]. 

A p p e n d i x  

We recall a few elementary facts about  continued fractions, see e.g. [20]. Let  a 1 .. . . .  a n 

be positive integers and let [ a  1 . . . . .  an] denote the continued fraction 

1 

[al . . . . .  an] = a l  . . . . . .  i 

a2 1 
as 

1 

an 

provided none of the denominators  equals zero. Define 

P - I = 0 ,  P 0 = l ,  P l = a l ,  P ~ = a ~ p l - l - P : - 2 ,  i>~2  

% = 0 ,  q l = l ,  q , = a ~ q ~ _ l - q t _  2, i ~ 2 .  

D e f i n i t i o n .  Call {a 1 .. . . .  a.} admissible if p~ > 0  for i = 0  .. . . .  n - 1 .  

Consider the symmetr ic  matr ix  

i -1 ] 11 az - 1 

- 1 a s 

~  - - 1  

( - -  1 a n 

I f  we diagonalize the matr ix  over the rational numbers  s tar t ing in the upper  left hand  

corner we get a matr ix  with diagonal elements lax], [az, all , [as, az, al] .... 
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a 1 

1 
a 2 - - - -  

a l  

1 

aa 1 
a z - - - -  

a l  

One can easily prove by  induc t ion  t h a t  the  i th  en t ry  is Pi/Pl-1 and  {a 1 . . . . .  an} is admissible 

if and  only if the mat r ix  is posit ive semi-definite of r ank  > ~ n - 1 .  F rom this one can see 

t ha t  if {a I . . . . .  an} is admissible then  {an ..... ix} is admissible and  {a~, a~+ 1 . . . .  , aj} is ad- 

missible for any  1 < i ~< j ~< n. If  we diagonalize the mat r ix  s tar t ing a t  the lower r ight  hand  

corner we can see t ha t  if (a I . . . . .  an} is admissible then the denominators  in the expression 

1 

a l  1 
a2 

1 

an 

are no t  zero. Hence [a 1 . . . . .  an] makes sense if {a 1 . . . . .  an} is admissible. 

Henceforth we will always assume tha t  {a I . . . . .  an} is admissible. 

I t  is shown in [20], tha t  if p~ and qt are defined as above then  [a I . . . .  , at] =pJq~. 

LEMMA A1. P t q ~ - l - P t - l q ~ = - 1  /or O<i<~n. 

Proof. Use induct ion .  By defini t ion P l q o - P o q l = - 1 .  Assuming the s t a t ement  for 

i = r  we have Pr+lqr- Prqr+l = (a~+lP~-Pr-1)qr-p~(a~+lq,-q~-l) =Prq~-x - P r - l q r  = - 1. 

F rom this we see t ha t  ( p ~ , q t ) = l ,  ( p ~ , p t _ l ) = l  and  (qt, q~_l)=l .  In  par t icular  the 

fract ion PJqt is in reduced form for all i. Also, p~_lqt=-l(pt). 

LEMMA A2. I / / o r  each i, at>~2, then Pt>P , -1 ,  qt>q~-i and pj>q~, so in particular 

p~/q~ > 0/or  all i. 

Proof. We shall only prove the first assertion using induct ion:  p l = a l > p o = l .  

Assuming p~ >P~-I we have Pl+l = a~+iPt - P i - 1  > (ai+l - 1)p~ >~p~. 

COROLLARY A3. I /  [a 1 . . . . .  a n ] = 0  , then for at least one i, a ~ = l .  

LEMMA A4. Let {a 1 ..... an} be admissible and Pi, 1 <.i <~n, as defined above. Then the 

continued fraction [at, at-1 ..... al] =P,/Pt-r 
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Proo/. From p~ =a~p~_ 1 -P~-2 we have p~/p~_ 1 =a~ - (1/(p~_l/p~_2)) and repeated applica- 

t ion gives the desired result. 

LEMMA AS. Let [a 1 .. . . .  an] =0 .  Consider the two continued/factions Jar-1 . . . . .  all =u/v  

and Jar+ 1 . . . . .  a n ]  =u'/v' .  Then we have that u = u '  and v+v '=a~u .  

Proo/. Since [a I . . . . .  a~]=0,  also [ a  n . . . . .  a l l = 0 .  By a repeated 

following calculation 

1 

application of the 

P n  - 2 a n  

we obtain 

1 1 
a n _  1 - -  _ _  = 

a, Pn-2/P,-3 

1 

u'/v' = Jar+ 1 . . . . .  an] = Pr/P,.-1 

1 
U r / V  n 

1 

a~ Pr-1/Pt-~ 

Using Lemma 4 we have p,_l /p,_~=u/v so 

and hence 

v+v' 
a t ~  -- i .  

u u 

Since both  (u, v )=  1 and (u', v ' ) =  1, we conclude t h a t  u = u '  and v +v" =aru as desired. 

L~.MMA A6. Let [a I . . . . .  a~_l, 1, ar+l . . . . .  a,] be a continued /faction with Pt and q, 

de/ined above. Let [ a  I . . . .  , a~_ 1 - 1 ,  ar+l -  I, ar+~ .. . . .  an] have correspondin~ values p~ and q~. 

Then 

p'~ =p~, q~ =q~ for i < ~ r - 2  

p ' ,=p ,+l ,q ' l=q ,+l  for i>~r--I.  
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Proo/.  The  f i rs t  half of t he  asser t ion  is obvious.  Now p ' r_ l=(a~_l -1)p ' r_~-p ' r  = 

(at_ I -- 1)pr_2 --Pr-a  = 1 (a~_~pr_~ --Pr-a) --Pr-2 = arPr-1 - P r - 2  =Pr- 

The  a rgumen t  is the  same for qr-1. 

P'r = ( a r + a -  1)P'r-1--P'r--~ = ( a~+ l -  1)p~--P~-2 

= a r + l P r - - P r - - P r - 2  = a r + l P r -  (lPr-1 - P r - ~ )  - - P r - u  

= ar+l~gr - - P r - 1  = Pr+l 

Again,  t he  same holds for q'r and  clearly,  for  i > r the  conclusion is t r i v i a l ly  t rue.  

Defini t ion.  Given {a 1 . . . .  , a~_l, at, a~+l . . . . .  aT} and  a t =  1 we say  t h a t  we have  

"b lown  down a~" to  ob ta in  {a 1 . . . . .  a~_~, at_ 1 -  ],  at+ 1 - 1 ,  a t +  ~ . . . .  , an}. The reverse  pro-  

cess is called "b lowing up" .  

Defini t ion.  {a 1 . . . . .  an} and  {bl, ..., bin} are called equivalent if a series of blowing up  

and  blowing down of {a 1 . . . . .  a,,} makes  i t  equal  to  {b I . . . . .  bin}. This is clearly an equivalence 

re la t ion.  

LEMMA A7.  {a 1 . . . . .  an} and {b I . . . .  , bin} are equivalent i /  and only i /  [a 1, ...., an]= 

[bl . . . . .  bm]. 

Proo/.  R e p e a t e d  app l ica t ion  of A 3  blows bo th  sequences down to [1,1] (if [al .... ,an] =0 )  

or a sequence wi th  no ones (otherwise).  B u t  every  posi t ive  ra t iona l  number  has a un ique  

represen ta t ion  in the  form [c 1 . . . . .  c,], c~>/2. 

L E M M A A 8. Let [a I . . . . .  as] = O. Then  

[al . . . . .  a s - l ]  = 1/q~-i  

Moreover {a 1 . . . . .  as_l, as+ 1, 1} is also admissible, and 

[al . . . .  , as_i ,  as + 1] = 1/(q~-i  + 1).  

Proo/.  The f i rs t  pa r t  is obvious.  Le t  

[a I . . . .  , a s _  1, a ,  + 1]  = u/v .  

N o w  q , = l  b y  A.1 hence we have  

u = (a s + 1)ps_l - P s - 2  = asps-1 - Ps-r +Ps-1 = Ps +Ps-1 = Ps-1 = 1 

v = (a~ + 1) q ~ - l -  qs-2 = a~q~_l - q~-~ + q~-i  = qs + q , - i  = 1 + q~-i  
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LEMMA A9. Suppose :r are integers and ~ / f l=[m 1 . . . .  , ms, ms+l, nl . . . . .  at] = 

[m 1 .. . .  , m~, m~+l, n~ . . . . .  n't], where mt>~2, /or i = 1 ,  ..., s, n t and n~>~2 /or all i, m~+l~>l , 
t r : 

ms+l >~1 and both sequences are admissible. Then ms+l~m~+l, and n~=n~, /or all i. 

Proo/. I t  follows easily f rom the definition of continued fractions tha t  we m a y  

assume s--O. Proceeding by  induct ion on t, if t = 0  the assertion is trivial. I f  t > 0  and 

ms+l and m'~+1>~2 the lemma follows from the uniqueness of continued fraction expan- 

sions with entries >12. If  m~+ 1 = 1 then  the first sequence can be blown down to a shorter 

sequence. Thus m ' ,+ l = l  and the lemma follows by  blowing down and applying the 

inductive hypothesis.  

PROPOSITION A10. Suppose A is a graded ring and define 

A ~ = | Ate1 
n>~O 

as in  (3.2). I /  A is an integrally closed domain then A~ is an integrally closed domain. 

Proo/. We define a grading on the polynomial  ring A [t] by  defining degree t = 1 and the 

degree of the coefficients to be 0. Then A~ is isomorphic as a graded ring to 

| A t n l t n c A [ t ] .  
n>~O 

Clearly A~ is a domain and if we let B be the integral closure of A ta then it follows from 

Bourbaki  (Commutat ive Algebra, V, w 1, no. 8, Prop. 20 and no. 3, Prop.  13, Cor. 2) t ha t  B 

is a graded subring of A[t]. 

Suppose b E B , .  Then b=at",  where a E A .  I t  is sufficient to show aEAE, J. Since b is 

integral over A ~ there exist a~EAt~3 so tha t  

Thus 

(atn) m + altn(atn) m-1 + ... + amt am = 0 

a m = - -  ( a x a  ~ - I  + . . .  + a m )  (2) 

in A. Suppose aCAt .  ~. Then we can write 

a = ~ t + ~ + x  + . . .  

where ~ jEA,  for all j, a j # 0  and i < n .  Now ajam-JEAt,~+(m_j)~, for j = l  . . . . .  m, and hence 

the right hand  side of equat ion (2) lies in Atm~+n_,l. This contradicts  the fact  t ha t  

am=(a~)m+y where y is a sum of forms of higher degree. 
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