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Let k be an arbitrary algebraically closed field and let &* denote the multiplicative
group of £ considered as an algebraic group. We give a complete classification of all
non-singular projective algebraic surfaces with &*-action. Moreover, for singular surfaces
we provide an algorithm for finding an equivariant resolution. Explicit computations are
given for hypersurfaces in P2.

The topologically significant case emerges when k=C, the complex numbers, when
non-singular surfaces are smooth orientable closed 4-manifolds with €*-action. This was
the case studied in our earlier papers [16, 17, 18]. In order to facilitate the reading of the
present paper for the reader whose main interest lies in these topological aspects, we have
included geometric motivation for several of our algebraic constructions. It is clear from
the naturality with which these constructions can be extended to the general case that
it is appropriate to treat the problem from the point of view of algebraic geometry.

The paper is organized as follows. In section 1 the necessary tools are introduced
both from transformation group theory and algebraic geometry. We prove a number of
lemmas about actions in general, needed later in the paper. In section 2 we focus our
attention on non-singular algebraic surfaces with £*-action. The fixed points of a k*-action
are divided into three classes; elliptic, hyperbolic and parabolic (§2.3). A “topological”
classification of non-singular surfaces with no elliptic fixed points is obtained in §2.5. The
classification theorem states that the fixed point set is F=F+U F-U {x,, ..., z,}, where

the x, are hyperbolic fixed points and F+ and F- are isomorphic complete curves. More-
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named author was visiting the University of Oslo, Norway.
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over the surface is obtained from a P(k) bundle over F+ with k* action in the fiber, by
blowing up a suitable number of fixed points of the action. A complete set of “topo-
logical” invariants is included in a labeled graph I' associated to the surface V. Assign a
vertex each to F* and F- with labels [g] for their genus and —c¢ and —¢’ respectively
for their self-intersection in V. Assign a vertex to each 1-dimensional orbit whose closure
does not meet both F+ and F-, with label —b,, for its self-intersection in V. Finally,
let an edge connect two vertices if the corresponding curves meet (transversly with

intersection number +1).

TurorREM 2.5. Let V be a non-singular, complete algebraic surface with k* action, so
that dim F+=dim F-=1. Then we have:

(i) F+ is a complete curve of genus g, isomorphic to F—;
(ii) the graph I' of (V, k*) ts of the form

(iii) by;=1 and the continued fraction (see the Appendix for this notation)
[bi1s byl =0 for ¢=1,.., 7
(iv) if we define the integers ¢, by
ey =[by 1, ooy by gq] for i=1,..,7
then the following equation holds

T
c+c'= 2 e
i=1

In section 3 we construct the canonical equivariant resolution of the singularities

of a surface V with k*-action. By this we mean a non-singular surface W with a k*.action
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and a k* equivariant proper map n: W~V which is biholomorphic on the complement of
the singular set of ¥ and so that there are no elliptic fixed points on W. Note that even if
V is nonsingular, W will not be equal to V if there are elliptic fixed points on V. We
define in §3.2 a marked graph I',, starting with Iy, and indicating which orbits in W are
identified to points in ¥ and which orbits in W are identified to each other in V. This
marked graph contains all the ‘“topological” information about V. In particular if
k=0, I'y determines ¥ up to equivariant homeomorphism. In §3.3 we define the Seifert
orbit invariants (o, §) of an orbit of dimension 1. Here « is the order of the isotropy group
of a point » on the orbit and § determines the action of the isotropy group on the tangent
space at v. Section 3.4 is devoted to determining the behavior of orbit invariants under
“blowing up” and we use this in §3.5 to prove a relation between the continued fraction
expansion of o/f and the self-intersection of certain orbits on V. Explicit formulas for
determining the orbit invariants and the graph of the resolution of an elliptic fixed point
on a surface in k?® are given. The corresponding action was called “good” in [16]. These
results are an improvement over [16] since they are valid for a field of arbitrary charac-
teristic. Moreover, the formulas are in terms of the weights and degree of the defining
polynomial. In §3.7 we indicate how to find the minimal equivariant resolution of a hyper-
bolic or parabolic singular point, not treated in [16].

Section 4 is devoted to the diffeomorphism and algebraic classification problems. First
we classify the (relatively) minimal surfaces with k*-action §4.1 and apply this to deter-
mining which surfaces admit an essentially unique k£*-action and which k*-actions extend
to k* x k*-actions §4.2. In §4.3 it is shown that a complete surface with algebraic C*-action

is diffeomorphic to precisely one of the following

(1) (R, xS%) #kCP2 g>0, k>0,
(2) N,
(3) Cp2,

where R, is a compact Riemann surface of genus g and NV, is the non-trivial 82 bundle over
R,, and CP? denotes CP? with the opposite of the usual orientation. This is applied to
give examples of non standard S! actions on CP2#kCP?, k>3 i.e. S! actions which do
not extend to S! xSt actions (§4.4). Finally, we give a complete list of invariants of V
up to equivariant algebraic isomorphism (§4.6).

Specific examples of the resolution of singularities of hypersurfaces ¥V in P® and
calculation of I'y, are given in section 5. Some facts about continued fractions have been

collected in an appendix.
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1. Group actions on varieties

1.1. Let G be an algebraic group. We shall not assume that @ is compact. In the
applications G will be k&*, the multiplicative group of a field %.

Let V be a algebraic variety. An action of G on V is a morphism of algebraic varieties
a:GxV->V

so that o(s, o(t, v)) =o(st, v) and o(1, v} =v. If g€G and v€V it is customary to denote the
element a(g, v) by gv. The action is effective if gy=v Vv €V =g =¢, the identity element of G.
For v€V ¢ induces a morphism o, @— V defined by o,(g)=gv. We define the isotropy
subgroup G, of v to be the scheme theoretic fiber 5 (v). If k is a field of characteristic O then
G,={g€G|gv=v}. The orbit of v is the subvariety defined by G(v)={w€V|Ig€QG, gv=w}.
This induces a natural equivalence relation on V, x ~y <=2 €G(y). The quotient V*=V/~
equiped with the quotient topology is called the orbit space of the action. Even if V
is a complex manifold, V* can be rather unpleasant, as the examples below indicate,
see also [8]. Let F={v€V|G,=G} denote the fixed point set and E={v€V|G,is
finite and G,=={1)} denote the exceptional orbits, i.e. orbits with finite non-trivial

isotropy group.

1.2. Let ¥V =C? with the metric topology, and G =C* and g¢,, ¢, integers. Consider the
action o(f; vy, v5) = (£%v,, £7°v,). First assume that ¢,, ¢,>0. Then F=(0, 0) and ¥ consists
of two orbits: E;={v,, v,|v;30, v,=0} with isotropy Z, and E,={v,, v,|v, =0, v,=+0}
with Z,. The orbit space V* fails to be T'; at the image of the fixed point. However,
if we let V=V —F, then Vj is Hausdorff, in fact by a theorem of Holmann [8] it has a
natural complex structure and is easily identified as P'. The situation is the same

if ¢,, ¢, <0.

1.3. In the example above, if ¢, 40, g, =0, then F = {v;, v,|v, =0} and E = {v,, v,| v, =:0)}
so the action is not effective unless ¢;= 1 1. In that case E=0. Again, V* fails to be
Ty at F, but Vo=V —F has Hausdorff orbit space, V§=C.

1.4. If we assume ¢,>0, ¢, <0, then F and E are the same as in §1.2, but even the
orbit space of V, fails to be Hausdorff. The images of K, and E, have no disjoint
neighborhoods in V3. (This holds even if ¢, =1, g,= —1.) This phenomenon is indeed one
of the crucial differences between the actions of compact and non-compact groups. The
remarks above apply in the category of algebraic varieties if we replace ‘‘Hausdorff” by
“separated”.
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1.6. A map f: V> W between G spaces V and W is equivariant if f(gv)=gf(v) for all
g€G, vEV. A G-space is linear if it is equivariantly isomorphic to a vector space with
linear G action. Let H be a closed subgroup of & and 8 a linear H-space. We form
G x 4 8 by identifying in G x 8 (g, s)~(gh~2, hs) for all R€H. Call the equivalence class of
(g, s), [g,s]. Given a G-space V and vEV we call S, a linear slice at v if it is a linear
G,-space and some G-invariant open neighborhood of the zero section of G xg,S, is
equivariantly isomorphic to a G-invariant neighborhood of the orbit G(») in ¥ by the map
[g, v]—>gv, so that the zero section /G, maps onto the orbit G(v).

It is essential for the reader to keep in mind that the standard tools of transformation
groups do not always apply in our context. For holomorphic or smooth action of a
compact Lie group @, the existence of slices is a classical result. In our situation with
G =k* a slice need not exist.

We refer to Holmann [8] and Luna [10] for results on the existence of slices, These

will only be used in the present paper in §5.2.

1.6. A k*-action on an affine variety V ==Spec (4) is equivalent to a grading of the
ring 4. The correspondence is defined as follows. If V is an affine variety with k* action

we define a grading on 4 by letting
A, ={f€A|f(tz) =t'f(z), for all zEV}.

Then one can verify that 4= ®,., 4, and that 4,4, 4, ,. Conversely, if A is graded
we can find homogeneous generators of the k-algebra 4, say «,, ..., z,. The homomorphism
@: k[ X, ..., X,]>A defined by ¢(X,)=z, defines an embedding of V in k". Let ¢,=
degree z,. Then define an action of k* on k" by

Hzgy veos 2) = [tV 2y, .., 8072,)

This action on k" leaves V invariant.
We can use this correspondence to get some information about the structure of a

k* variety.

LEMMA. If k* acts effectively on V, then there exists an invariant Zariski open set U,
equivariantly isomorphic to W x k* where
(1) W is affine, and

(i1) k* acts on W x k* by translation on the second factor.

Proof. We first consider the case where V=A; and the action is given by
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oty (21, s 22)) = (™ 2y, ..., E™2,). In this situation let U={(z,, ..., 2,)|2,==0, for all i}. We
claim that U is equivariantly isomorphic to W x k* with £* acting on the second factor by

multiplication. Now
U = Spec (k[zy, - 2, 277, oy 232]).

In this case the grading is defined by degree z,=m,. Since the action is effective, g.c.d.
(my, ..., m;)=1. Therefore there exist integers a,, a,, ...,a, so that > [ ;a,m,=1. Let
X=Z{" ... Z}~, a form of degree 1. Let R be the subalgebra of forms of degree 0. Then R is

an algebra of finite type over £ and
k21, coor 2y 215 - 270 = R[X, X1,

Letting W =Spec (R), we have proven our claim.

Now consider the case of general V. We may assume that V is normal. Then a
theorem of Sumihiro [23] asserts that an open subset of V can be equivariantly embedded
in A}, with an action as above. Thus we may assume that V< A4} and is invariant
under ¢. Let 1< R[X, X~1] be the (prime) ideal defining V. The fact that V is invariant
under ¢ means that I is a graded ideal. Thus I = ®,.,I, where I, consist of the elements
of I which are homogeneous of degree j. However fC I,«>X 'f€ [ <f=X/(X"f)€eXI,.
Thus I= @, X1, and hence V =Spee (R/I,) x Spec (k[X, X-1]) which is the desired result.

1.7. LEMMA. Let G be an algebraic group, V and W varieties with G action and U<V
an invariant Zariski open set. If the map f: V—+W is equivariant when restricted to U, then

it 18 equivariant on V.

Proof. The following diagram with 1 denoting the identity map

G x V_l_)f_f,Gx w
Oy Oy
14 ! w

is commutative because G x U is dense in @ x V and the maps oo(l xf) and foo agree on

G x U, hence they agree on G x V.
1.8. Let O, denote the sheaf of rational functions on ¥ and I=(, an ideal sheaf.
The monoidal transform with center I is a pair (n, V') with m: V>V and

(i) IOy is locally principal, ie. Yw€V’ the stalk (I0y), is generated by one

function,
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(ii) for every m,: Vo=V satisfying “I0y, is locally principal” there is a unique

72 Vo> V' with mon—>my,.

The monoidal transform exists by Hironaka [7] and it is unique by (ii). If X is a subspace
of V and I, is the sheaf of functions vanishing on X, then the monoidal transform with
center X is defined to be the monoidal transform with center I;. It is also called

“blowing up of X”. For a geometric description of the blowing up of a subvariety see [22].

LEMMA. Let G be an algebraic group acting on an algebraic variety V and (7, V') a
monoidal transformation with center a G-invariant sheaf of ideals I. Then there is a unique

extension of the action of G to V' so that m is equivariant.

Proof. We first show that there is a unique map ¢’: G x V'V’ so that the diagram
below commutes.

exV L% axy

’

g [

Vl

|4

For this it is sufficient to show that (oo(1 x7x))*(I) is a locally principal sheaf of ideals in
Ogxv. Now I is invariant under o so o*(I})=0s®I and hence (co(l xn))*(I)=
Os®n*(I) which is locally principal because n*(I) is locally principal. To verify that ¢’ is
an action, let U =V —support (I) and U’ =z-(U). Since U’ is isomorphic to U, the follow-

ing diagram is commutative

ex@xy™Laxr

ag ag

Gx U’ U

where m is the multiplication of G. An application of §1.7 completes the proof.

1.9. ProPoSITION. Suppose V is a non-singular algebraic surface with k*-action and
C<V is a complete curve with negative self-intersection number. Then C is invariant under

the action.

Proof. Let C,={tx|x€C}. Then C, is rationally equivalent (homologous if k=C) to
C for all t. If C is not invariant then (C-C)=(C.C,) >0, which is a contradiction.
4 —772902 Acia mathematica 138. Imprimé le 5 Mai 1977
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2. Non-singular surfaces with k¥*-action

2.1. From now on we shall concentrate on the case G'=k*, the multiplicative group of
a field, and V an algebraic surface over that field. In this section we shall determine the
topological type of a non-singular algebraic surface with k*-action, provided it has no

elliptic fixed points.

Definition. A morphism f: X— Y of algebraic varieties is said to be birational if there
is & closed subvariety Z< Y so that f: X —f}(Z)—~Y —Z is an isomorphism.

LeEmMMA. Suppose f: X—V is a G-equivariant birational proper morphism of non-sigular
surfaces. Then there exist equivariant morphisms fi: X,—>X, 1, i=1, .., n so that X,=V,
X,=X and f, is a monoidal transform with center at a fixed point of X, ;.

Proof. By [9, § 26] the set of points § where ! is not defined is finite. Moreover if
y €S, then y is a fixed point and f-(y) is a divisor. Now let 8={y,, ¥y, ..., ¥,} and define
h, to be the blowing up of the points y,, ..., y,. Then since f~*({,, ..., ¥,}) is locally

principal we have a factorization X —g—l->X1 —}il—-» Y. Repeating the process, by [9] we
reach a point so that f=h;0h,0...0h,, where h;: X,~ X, , is a monoidal transform with

center at a finite number of points. Factoring each k, gives the desired result.

2.2, Definition. V is normal at v€V if the local ring O, at v is integrally closed. For
any variety V there is a variety ¥ and a proper morphism 7: ¥~ V called the normaliza-
tion of ¥ characterized by the fact that for every affine open subset U of V, I'(z-Y{(U), O7)
is the integral closure of I'(IU, Oy) in its field of quotients [4, II. 6.3]). If a: V,>V, is

a birational morphism there exists a unique &: V,— ¥, so that

commutes.

Definition. V is complete if the morphism V-—>Spec (k) is proper. If k=C this is
equivalent to ¥ being compact in the metric topology.

THEOREM. Suppose V is a complete, normal algebraic surface with k* action. Then
there is a complete non-singular curve C, a complete surface Z with k* action and morphisms
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2
|4 Cx Pt
80 that

(i) the action on C x Pl(k) is given by

tw, (207 21)) = (z, [E2y7 24]),

(ii) ¢, and @, are equivariant,

(iii) @, ts a composite of monoidal transforms whose centers are fixed points of the
k*-action,

(iv) @y is @ composite of maps, each of which is either a normalization or a blowing up
of a fixed point. If V is non-singular, then each of the maps is a blowing up.

The variety of Z constructed here is not canonical.

Proof. It follows from §1.6 that there is an open invariant subset U< ¥V equivariantly
isomorphic to Cyx k*, where C, is a non-singular curve. Thus there is an equivariant open
embedding f: U—~C x P! where C is the (non-singular) completion of Cy. Now f defines a
rational map f: V—C x P! and it follows from [9] that the set 8 of points where f is not
defined is finite. If x€X is not a fixed point then f is defined at z, since for some g€k*,
f is defined at gz and f(x)=g-f(gx). Thus S consists of fixed points. Let V,= V. Define
inductively f,: V,—~V,_; to be the normalization of the monoidal transform with center at
the singular points and points of indeterminacy of fof,o...0f, ;. By [9, (26.2)] and §2.1
there is an s so that V, is non-singular and fof,o...0f; is defined on V, Let Z=V,,
@, =f10...0f, and p,=fog,. The f, are equivariant by Lemma 1.8 and the functoriality of

normalization. Moreover, g, is equivariant by §1.7. Assertion (iii) follows from §2.1.

2.3. Let V be a non-singular variety and v€V a fixed point of a k*-action. The tangent
space T, at v has a local coordinate system in which the induced action of k* is linear and
given by

HZgy oees2) = (8921, .., 8 2,)

for integers ¢, ..., ¢, [2]. Denote by N*(v) the dimension of the positive eigenspace of this
action # {g,>0}, N~ (v) the dimension of the negative eigenspace and N°v) the dimension
of the subspace fixed under the action in T',.

We call v an elliptic fized point if m=dim T',=N*(v) or m=N"(»). It is a source in

the former case and a sink in the latter.
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We call v a parabolic fized point if NOv)>0 and either m=N+*(v)+N%w) or
m=N—(v)+N°v). The former is a parabolic source, the latter a parabolic sink.

All other fixed points are called hyperbolic.

We can extend the definition of an elliptic fixed point to the singular case. Assume
v€V is normal. We say v is an elliptic fixed point if there exists an invariant neighborhood
U containing v so that v is in the closure of every orbit in U. Recall that we denote by
F the fixed point set of V. Let F+={v€F|N (v)=0} and F-={v€F|N*(v)=0}. It
follows from [2] that if V is non-singular then F+ and F- are irreducible, connected
components of F. If V is complete, then both F+ and F- are non-empty.

24, Let V be a non-singular, complete surface with k*-action and assume that
dim F+=dim F-=1. A l-dimensional orbit O is called ordinary if On F++@ and
On F-=+@, where O is the closure of 0. According to Theorem 2.2 the odinary orbits
form an open set in V and since V is compact, there are only a finite number of 1-dimen-
sional orbits E,, E,, ..., E,, which are special, i.e. not ordinary. We define the weighted
graph T' of (V, @) as follows:

(i) its vertices are f+ for the curve F*+, f~ for F- and e, ..., e, for the closures
B, .. E,
(ii) each vertex carries a weight {g], referring to the genus of the curve it represents,
(if g=0 this weight is omitted),
(iii) each vertex carries a weight %, representing the self-intersection in V of the

curve it represents,

(iv) two vertices are connected by an edge if and only if the respective curves

intersect in V.

Clearly each point of intersection between different orbit closures is fixed under the
action. It follows from §2.2 that if any two of the curves above intersect, they intersect

transversely.

2.5. THEOREM. Let V be a non-singular, complete algebraic surface with k*-action so
that dim F+=dim F-=1. Then we have

(i) F+ is a complete curve of genus g, isomorphic to F~,

(ii) the graph I of (V, k*) is of the form
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e @ . . . . . . @ e

(iii) {b;,1, by 2 .o by, 5} 18 admissible (see Appendiz) and the continued fraction
(bi15 bi2 -0y by, ()] =0 for i=1,..7,

(iv) with ¢;=1][b, 4, ..., b; ;4] we have

T
c+c' =2 ¢
i=1

Proof. Applying Theorem 2.2 we see that ¥ can be obtained from C x P! by blowing
up fixed points and then blowing down curves. No fixed curves are blown down since
dim F+=dim F-=1. The theorem clearly holds for ¥V =C x P!(k), since I" is of the form

where ¢=¢'=0, and F+= F~=C. Hence it is sufficient to show that if V is a surface with
dim F+=dim F-=1 and z: VW is a monoidal transform with center z at a hyperbolic
or parabolic fixed point of V, then the theorem holds for V if and only if it holds for W.
This is obvious for (i) and (ii). For (iii) we have

[Bas s By Brygs vves ] = [by, oor byg, B+ 1, 1, by +1, by, ooy B]

according to A.7. Finally, the expressions of the formula of (iv) remain unchanged if x is
not on Fy or Fy. Assume without loss of generality that the center of & is on F3. Then
cw=cy and ¢y =cy+1. If z is in the closure of an ordinary orbit, then I'y, is obtained from

T’y by adding one new arm [1, 1] as follows
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This clearly increases both sides of (iv) by 1, as required. If  is not on the closure of an
ordinary orbit, then W is obtained from V by blowing up a point on F- which is in the
closure of a special orbit. This corresponds to adding a new vertex to the ith arm of I';.

Omitting the first index for convenience, it changes as shown:

Finally, 1-+1/[by, ..., b,_{1=1/[by, ..., bs_y, b, +1] follows from Lemma (A.8) to complete
the argument.

2.6. PROPOSITION. Suppose k s an algebraically closed field. Any graph T' satisfying
(ii)~(iv) of §2.5 arises from a complete algebraic surface with k*-action.

Proof. Let Vy=C x P* where C is a non-singular complete curve of genus g and let &*
act on the second factor. By A.3 and A.7 we can obtain a surface V, with the desired
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weights on the arms by a sequence of monoidal transforms with centers at fixed points.
The graph of V, may not have the desired weights ¢ and ¢’ for f- and f*. Let elm(V,)
be the variety obtained from V, by blowing up a point x of F+ which lies in the closure
of an ordinary orbit 0, and then blowing down the transform of 0. This surface has the
same graph as V, except that the weight of f~ is increased by 1 and the weight of f*is
decreased by 1. Similarly the weight of f~ can be decreased. Thus in a finite number of
steps we can obtain a surface ¥, with F* having self intersection —c¢. Now ¢’ is determined

by the relation (iv) hence V, has the desired graph.

3. Resolution of singularities

3.1. We shall now consider singular surfaces V with k*-action. By an equivariant
resultion of the singularities of ¥ we mean a non-singular surface W and a &* equivariant
map n: W—V which is proper and birational. The existence of an equivariant resolution

was demonstrated in §2.2. In this section we construct a canonical equivariant resolution.

3.2. The canonical equivariant resolution. Suppose V is an irreducible normal surface.
We construct the canonical equivariant resolution locally and then put the pieces
together. Since V is normal, the singular set consists of a finite number of points, each
of which must be fixed. Suppose v is an elliptic fixed point (singular or not). By [23], the
normality of V implies there is an affine invariant neighborhood U of v and an equivariant

embedding f: U—k", where the action on k" is given by
tzy, ooor 2) = (824, ..., 8%2,).

Moreover we can assume ¢,>0, for all ¢, if v is a source and ¢,<0, for all ¢ if v is a sink.
Assume that v is a source. Now U =Spec (4) and 4 =k{X,, ..., X, ]/1, where [ is the ideal of
functions vanishing on U. The invariance of U under the action is equivalent to the fact
that A4 is a graded ring, the grading being induced by letting degree X,;=g¢,, §1.6. The
quotient space X =U—{v}/k* is the algebraic variety Proj(4) [4, 11, §2]. We shall
construct a canonical variety Uy and morphisms h: Uy~ U and »: Uy—X .Geometrically
v: Ux—~ X is the Seifert £* bundle with fiber k associated to the principal Seifert k*-bundle
U—{v}—>X. The map h collapes the zero section to the point v.

Let
A["]= @ Am a;nd .Ah: @ A["].
nx0

mzn

If we consider 4 as an ungraded ring then A9 is a graded 4 algebra under the multiplica-
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tion which makes
Ay A< Ainym

Let Uyx=Proj (4%). Then by [4, II, 8.3 and 8.6.2] Uy is a projective variety over
U =8pec (4) and there are natural morphisms

Ux—h"’U‘—’ U- {’0}
ENV T

X
so that

(1) Ux—&(X) is isomorphic to U — {v} and v restricted to Uy—¢(X) is the orbit map
U~ {v}—-X.
(2) voe=1dy.

If v€V is a sink and U =S8pec (4) is a neighborhood of v as above, then 4 is generated
by forms of negative degree. We can define a new grading on 4 by letting new degree
2= —(old degree z). Then we can perform the same construction as above and h: Ux—>U
will again be equivariant.

Now there is a unique proper birational morphism z,: V;,—~V so that 7, agrees with
the above in the neighborhood of every elliptic fixed point and 7, is an isomorphism
elsewhere. Moreover one can show that V; is normal (A.10). The only fixed points on ¥V,
are hyperbolic or parabolic. Note that the definition of z: V;—V makes sense for a

variety with k*-action of any dimension.

LemMa. If v€V is a singular point on a normal surface with k*-action and m: V-V
is the minimal resolution of the singularity, then there is a unique action & on V so that 7 is

equivariant.

Proof. By §2.2 we know that there is an equivariant resolution p: W—V,. The
minimal resolution is obtained stepwise by collapsing rational curves on W having self-
intersection —1. By §1.8 these curves are invariant under the action, hence there is an
induced action on the minimal resolution.

Now define 7,: ¥V, to be the minimal resolution of the singularities of V,. The
composite & =my0m,: V-V is called the canonical equivariant resolution of V.

If V is not normal we let m,;: Vo—V be the normalization of V and 7,;: ¥V, the

canonical equivalent resolution of V. Then =m0z, is the canonical equivariant resolution

of V.
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3.3. Orbit invariants. Suppose V is a variety with k*-action and v €V is a simple point.
If v is not a fixed point then G, is a proper subgroup scheme of k*. All such subgroups are
of the form u,=Spec (K[T]/T*— I), for some a=>1. If the characteristic p of k does not
divide «, then this is the group of ath roots of unity. If p divides « then the scheme u,
has nilpotent elements. The action of £* on V induces an action of G, on the tangent
space T',. Every such action is linear and by [3, III 8.4] we can choose coordinates
(®1, Ty, ..., %,) s0 that the tangent space to the orbit is the x, axis and the action is defined by

gy vy gy ) = (8'2q, ..., 8", 4, ).

If V is a surface the integer y, is well defined.

Definition. The Seifert invariant of the point v is the pair («, ) where G,=y, and

y18 =1 (mod )
0<f<«, g.cd. (o, f)=1.
Warning. The definition of § adopted here corresponds to [13] and is the negative of
that given in [16].
In [16] we calculated the graph of the resolution of an elliptic point from the Seifert
invariants and other data. We shall generalize that result in our current context. For this

we must first analyze how the orbit invariants are affected by “blowing up”.

3.4. ProrosiTioN. Suppose V is a non-singular surface with k*-action and v€V is a
hyperbolic fixed point.
Suppose the action of k* on T, is given by

t, y) = (-, °y)

where a, b=0 and (a,b)=1. Let n: V'—>V be the monoidal transform with center v and
X=n"1v). Then
(1) X s invariant under the action and there are two fixed points x, and x, on X,
where x, 18 a sink and x, 18 a source of the action on X,
(i) if x€X and x==x,, x, then the Seifert invariants (a, 8) of x are given by a=a+b
and bf=1 (mod «),

(iit) there are coordinates x, y for T, ., (resp. Ty, ..} so that the action of k* is given by
Ha, y) = (t=Vx, )  (resp. Ha, y) = (%, 7).

Proof. This is easy to see in the case k=C. Near x, we have coordinates (z, y) so that

a(x, y)=(zy,y) and near ¥, we have coordinates z,y so that n(z, y)=(z, xy). This
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implies (iii) and hence (ii). To consider the general (algebraic) case we replace V by a
suitable affine neighborhood of v so that we may assume that ¥V =Spec (4) and m, the
maximal ideal of v, is generated by a homogeneous system of parameters «, y i.e. # and y
are homogeneous and generate m/m? Then V’'=8pec (B;)USpec (B,) where B, = A[x/y]
and B,=Aly/x]. Let x, =2y, y,=y, z,=w, y,=y/x. By (1.6) the action on V' is deter-
mined by the grading of the rings B,. These rings are graded in the natural way i.e.
degree x, =degree x —degree y = —a —b, degree y, =degree y =b, degree x,=degree x= —a,
degree y, =degree y — degree x =b-+qa. Now X is invariant since v is a fixed point. Moreover
¥, is the point in Spec (B,) given by z; =y, =0 and z, is the point in Spec (B,) given by
Z3=¥,=0. Asgertion (iii) follow from the grading given above and in addition we see that
x, is the source on X and z,, the sink. To verify (ii) we note that the («, §) given above are
the Seifert orbit invariants of any point on the line y;=0 in T, .. The inclusion
k[z, y,]— B, induces an equivariant map f: Spec (B;)—Spec (k[x,, 4,1}~ Ty ,,. This map
is etale at x, since x,, y, is a system of parameters and hence it is étale in a neighborhood
of x,. If we choose a point  on X near z,, then the Seifert invariants of z and f(x) are

the same hence z, and therefore any point in G(z), has invariants (o, §)

3.5. Isotropy groups and the isotropy representation.(!)

ProrosiTioN. Suppose V is a non-singular surface with graph I'. Given an “arm”

of the graph

I f°

source sink

let X, be the curve corresponding to the ith vertex on the arm, i.e. (X, X,)= —b, and let

(b, ..., bl =Dilg,, where (p,, q,)=1.

(1) If veX,NX,,,, 0<i<r, then we can choose coordinates (x,y) in T, so that the
tnduced action of k* on T, is of the form

(¢ %12, 1Pty).

(!} For the terminology of this section, see the appendix.
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(2) If veX,,, is not a fixed point, then the Seifert orbit invariants at v are («, ), where
a=p, and Bp, ,=—1 (mod p,), 0<i<r—1.

(3) Suppose by, by, ...,b,22. If the Seifert orbit invariants of a non-fixed point
vE€EX,,, are (x, B), then the equation [by, ..., b} =af(cc—f) determines the b,-uniquely. More-
over [b,, b,_y, ..., b s]=0/B.

Proof. By induction on r. If =1 then b,=0, p_,=0, p,=1 and p,=0. On the other
hand X,=F+, X, is an ordinary principal orbit and X,=F~-. The assertions are easily
verified. Now suppose the statements are true for an arm with fewer than r vertices. By
(A.3) and (2.5) one of the integers b,,; must be equal to 1. Let #: V-V be the map which
collapses X,,,. Then & maps X, isomorphically onto a curve X; for i==j+1. Let

P:/q; =1by, ..., b= 1,0,.,— 1, eesbpiq]

as in the appendix. Then by A.6 pi=p,, qi=q, for i<j—1 and p;=p,,4, ¢1=¢,,, for ¢ >7.
Now one can easily verify that (1) holds for i=4, j+1 and (2) holds for ¢==j. Let v be the
point of intersection of X; and X, ,. By (1) we may choose coordinates (x, y)in T, so that

the action of k* on T, is of the form
Hx,y) =t ¥ 1z, t"ly)

and pj_,=p;; and p;=(b,—1)p;., — P, a=P;~P,-1=Ps1- Now by §3.4, X, has isotropy
group u, where a=p)_,+p;=p, Again by §3.4 there are coordinates at X,N X,,, and
X, 1N X,,, so that the action is of the form in (1). By §3.4 (ii) we have that for any
z€X,,,, the Seifert invariants of x are («, §) where p,,, =1 (mod p,}. Now p,,, =p,—p;_;
so we get the desired result for (2). To verify (3) first note that «—f =g, since both are
between 0 and o and (x—pf)p,_;=1 (mod p,) by (2) and ¢,p, =1 (mod p,) by A.lL.
The uniqueness when b, ..., b,>2 is easily verified. Finally, the last equation follows from

considering the inverse action and using the above argument.

3.6. Invariants of an elliptic singular point.

The determination of the invariants of an affine variety ¥V with k*-action (k=C),
having an elliptic singular point »€V was the main object of [16]. The orbit space
V*=V —{v}/k* of the action is a non-singular complete algebraic curve of genus g (i.e. a
Riemann surface if k=0). It has a finite number of orbits with non-trivial isotropy and
Seifert invariants («, 8,), ¢=1, ..., r. There is an additional integer invariant b, related to
the “Chern class” of the Seifert bundle V—{v}—>V*. When k=C the invariants
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{b; ¢; (25, By)» s (&, B;)} determine the neighborhood boundary K of v up to orientation
preserving S! equivariant diffeomorphism. The main result of [16] states that the canonical

equivariant resolution of the singularity has weighted graph

()

where the b, ,>>2 are obtained from the continued fractions

ol =By =1bi1, s by 5], =1, 1.

Note that the definition of b here is that of [13] and differs from [16].

Thus in order to find the resolution of V at this fixed point we have to find all orbits
with finite isotropy and obtain their Seifert invariants («;, §;) from the action of the
isotropy group in the tangent space; the genus of the orbit space, and the integer b.

This was described in principle for hypersurfaces and complete intersections in
[16, 18, 13]. If V =Spec (4) is an affine variety with k*-action, there is a k*-action on
k" defined by

t(zh LR ] zn) = (tql 215 +e ey £ zn)

and an embedding of V in k" so that V is invariant under this action. If v€V is an elliptic
fixed point we can choose the embedding so that ¢,>0 for all 4. The ideal of functions I
vanishing on V is generated by polynomials which are homogeneous with respect to the

grading given by degree (X,)=g¢,. Thus we can choose generators f, for I so that

/{(tqlzl’ ey tqnzn) = td‘f‘(zli te Z").
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We say that a polynomial satisfying the above is weighted homogeneous of degree d;
relative to the exponents ¢y, ..., ¢,. The rational numbers w;,=d,/q, are called the weights
of f,.

An explicit computation of the Seifert invariants of an isolated elliptic singularity of a
hypersurface in (? defined by a single weighted homogeneous polynomial was given in
[16, 18, 13]. Unfortunately, there is an omission in [16], where it is claimed that if the
singularity of a weighted homogeneous polynomial in three variables is isolated, then it is

essentially one of six classes:

(1) 25° +2{* +23°,
(1) zg°+ 20 +2.25°, a;>1
(iii} 25°+2{z, + 2302, a,>1,a,>1
(iv) zg°+zpzlt +2y25°, ag>1
(V) 20°2; + 2§ 2y + 24257,

(Vi) 26°+2;2,.

The correct description of weighted homogeneous polynomials in general [14] shows that
there are two more classes to consider (see also Arnold [1]):
(vii) 20°+2p2{ +2zp28 2028, (@g— 1) (@105 + anb,)aga,a,=1

(vill) 2§°2; +2g2{ + 228" + 207 28°, (@ — 1) (a1 by + agby)las(apa, — 1) =1.

We could amend the discussion of [16, § 3] to give the Seifert invariants of the corresponding
classes. However, we now have a new method of obtaining these Seifert invariants
directly from d and the q,, making it unnecessary to list all the classes above.

For integers a,, ..., a, let <a,, ..., a,> denote their least common multiple and (a,, ..., @,)
their greatest common divisor.

Let f(z4, 21, 25) be a weighted homogeneous polynomial whose locus is V in k3. In
order for a point (z, z,, 2,) €V to have non-trivial isotropy, at least one of the z; must be
zero. The number of orbits so that say z,=0 is equal to the number of factors of the

polynomial f(0, z,, z,). The following lemma lets us determine this number easily.

LemMMA. Suppose g(z,, 25) 18 a weighted homogeneous polynomial so that g(t¥z,, 1%2z,) =
'9(2y, ;). Then the irreducible factors g, of g satisfy g (t%z, 1%2,) =t™g(2,, 25) and each g, is
one of the following forms

(1) gi(2), 2) =2y, €O
(ii) g4z, 25)=cz5, €30
(iil) g,(2;, zg) =€y 20" T 0g28" where ci0,=0 and p,=q./(q,, ¢2)-

In particular, if z, and z, do not divide g, then g has r(qy, 45)/9:9:=7/<{qs, 42) factors.
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Proof. The fact that the g, are weighted homogeneous is a general fact about factoriza-
tion in graded rings. If g, is irreducible then the variety {g,(2,, z,) =0} must be the closure
of an orbit of the action i(z,, z,) = (%2, t%z,). This action has the same orbits as the effective
action t(z;, zy) = (i”'2,, t72,). The closures of the orbits are precigely {z,=0}, {2,=0} and
{z{* +cz8* =0}, where c+0.

We apply the lemma above to show that in the case of isolated singularities the orbit
invariants are determined by d and the g, Let w,=d/q,=u,/v;, where g.c.d. (u, v,)=1

and u, v,=1.

ProrositioN 1. Suppose V has an isolated singularity at 0. Assume 1 <vy<v, <v,.
Then the table below indicates the number of orbits of each type.

FOF T
a=(q1, ¢2) %= (g ¢2) ®=(qo, ¢1) A
1=vo=v;=v; d/{q q> d/<{q0 92> d/{q0s 91>
L=vy=v,<v, (@—q1)/{q > (€ —90)/<20 42> a/{qp 22> 1

1=v,<v;<v, (d— 01— 9)/{%, 92> (2—90)/<Q0 12> (€ —q0)/{q0s 01> 1 1
1<v,<,<v, (@~ %20 @ % "0)/<40 9> @—%~ /<% e 1 1 1

The blank entries are zero if q; does not divide ¢, for j=%1i. If q,|q;, then (q,, ¢;) =q, and we
list those orbits under the column headed (q,, ¢,).

Proof. The exceptional orbits are in the hyperplanes z,=0. Suppose vy=v;,=v,=1.
The exceptional orbits contained in {z,=0} are given by {f(0, z,, z,)=0} We write
(0, 2y, z5) =25 28 [ 151 94(21, 25} & product of irreducible factors. The factors must be
distinct since otherwise the curve z,=g,(z,, 2,) =0 would be & singular curve on V. By

Lemma 3.6; each g, has weighted degree ¢,¢,/(¢;, ¢:) ={41, 2> 80 we have

8191 TEqa T gy, @ =4d (1)

where ¢,=0 or 1. If £, =¢,=0 then s=-d/{qy, ¢,> which is the desired result. If say ;=1
then ¢, =0 mod ¢, so that g,=(g,, ¢,). One can easily verify that the number of orbits in
{zo=0} is d/g, =d/<qy, 92)-

Suppose 1=v,=v;<v,. Then g,|d, ¢,|d and g,|d. If we write f(0,2,,2,) a8 a product
of irreducible factors as above, then the equation (1) gives us ¢ %0 mod ¢,, hence & =1.
Thus there must be an orbit {z,=2,=0} with isotropy ¢,>(q;, ¢,)- If £,==1 then ¢,=0
(mod ¢,) so {(qy, ¢.> =9, Thus the orbits contained in {z,=0} with isotropy precisely
(41, g2) correspond to the factors of 2§ [[i_1g,(2y, 2,). If £,=0 then s=(d—q,)/<{q1, g=>-
If £,=1 then s+1=(d —q,)/g; which is the desired result.
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Suppose 1=y, <v; <v,. Then again we have the factorization of f(0, z,, z,) which gives
us the equation (1). Now
&9 =d=*x0mod g,

€393 =d £0mod ¢

hence &, =g,=1. This gives us s=(d —¢, —¢5}/<qy, 92>- The calculation of exceptional

orbits contained in {z;,=0}, i=1, 2 is similar to those above.

ProrosiTioN 2. Under the hypotheses of Proposition 1, the values of 8 are computed
as follows.

For a=(q,, ¢5), gopf=1mod a, 0<f<a.

For an orbit of the form {zy=2,=0} we have a=gq,. In this case

(i) if there is an x€Z* so that

—+—=1,
Wo Wy
then ¢, =1 (mod «)
(ii) ¢f there is a yE€Z* so that
1
1.y,
Wy wp

then gof=1 (mod o).

Cyclic permutation of the indices 0, 1, 2 permits calculation of all the required §.

Proof. For a=(q,, ¢;) the action of u, on k3 is &(2,, 2y, 25) =(£%°2,, 24, 25). This implies
that the action of u, on the tangent plane, an affine subspace of k3, must have » =¢, (mod ).

For an orbit of the form {z,=2,=0} we calculate the action of u, on the tangent
space T',, with v=(0,0,1). The action of u, on k® is &(zo, 2, 25) =(£%2¢, £ 2, 2,). The
tangent plane at v is (8f/zy) (v)2o+ (8f/2,) (v)2, =0, since (8f/dz,) (v)=0. If (0f/0zy) (v)==0
then the action of u, on the tangent plane must have y=g¢, (mod «). If (6f/0z,) (v)==0 then
the action of u, on the tangent plane must have v=g¢, (mod «). Thus ¢;#=1 (mod «) in
the former case and ¢,§=1 {mod &) in the latter. Now if (9f/9z,) (v)3=0 there must be a
monomial of the form z,z§ in f, hence (1/w,) + (x/w,) =1. If (8f/02,)(v)==0 then there is a
monomial of the form 2,2 in f so (1/w,) + (y/w,) =1. Finally, if both (}/w,) +(xfw,)=1 and
(1/w,)+ (y/ws) =1 then we claim that ¢,=g, (mod ). From the two equations we obtain

Z = (uy— ) Ug/Uugv, hence uy=wv, mod v,

y = (u, —v,)ug/u, v, hence u; =v, mod v,.
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Also, %, and u; divide u, and d=<ug, u,, 4> 80 d=u, and ax=q,=v,. By definition
Go=0dvy[ 1y, g =dv,/u, 80 ¢y =¢q, mod vy<=>uyv; =u, v, mod v, and the latter follows from the

above congruences.

CoroOLLARY. For an orbit of the form {zy=2,=0} we have x=q,. In this case
() of
of -
—(0,0,1)+0 then ¢, =1 mod a.
0z,
(i) of
of —
—(0,0,1)%0 ¢then ¢;f=1 mod .
02,

ProrosiTioN 3. The formulas for g and b are given by

d* 49091 _4(e1,92) (g2, 90) + (d, ‘Io)_+ d,q,) T (d.gs) 1

B 90019 /0L 0192 229, % 51 92
LAY

GoNg 1%

Proof. A formula for the genus is given in [17, 5.3]. The proof there is valid under the
hypotheses of this paper. The formula reduces to the formula above once we verify that
for any hypersurface in k% with an elliptic isolated singular point, for each ¢ either d=0
(mod ¢q,) or d=gq, (mod ¢q,) and (g,, ¢x) =1 for some j==k=i, see [17, 5.4]. To verify this
for ¢=0 we first note that (g,, g,)|d for i< because there must be some monomial in f
which does not involve z,. Moreover there must be come monomial M =azfzl2zl in f so
that =0, i, +1,<1, since otherwise 2z, =2,=0 would be a singular line on the surface.
If 4, +1,=0 we get d=0 (mod ¢,) and if, say 3,=1 we get 14q,+q,=d so d=gq, (mod q,)
and (g, ¢;) =1. By symmetry, we get the result for ¢=1, 2. The formula for 6 was proven
in [16, 3.6.1]. The proof there generalizes to our case.

This completes the computation of the weighted graph of the resolution of ¥ from
the integers d, g, ¢;, ¢;- In the case that k=C, {b;g; (%, 1), ..., (&, By)} are the Seifert
invariants of the neighborhood boundary K, and hence K is determined up to 8'-equi-

variant diffeomorphism by these invariants [13].

3.7, Non-elliptic singular points. Suppose v€V is a normal non-elliptic singular point
on a variety V with k*-action. If 7: ¥ — V is the canonical equivariant resolution (=minimal

resolution) of ¥, then none of the curves in z~1(v) can be fixed curves, otherwise » would
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be elliptic. The graph I' of the resolution must be a connected subgraph of the graph in § 2.5,
since ¥ has a non-singular equivariant completion [23]. Thus I" must be of the form

Let A (resp. B) be the orbit on ¥ (and V) which is not contained in 7-1(v) so that 4 inter-
sects the closure of the orbit corresponding to the first (resp. rth) vertex. The Seifert
orbit invariants of the orbits, («,, f,) for 4 and («,, B,) for B determine the », as follows.

With the notation in the appendix, o/, =[m,, m,, ..., m;], m,=2. Let m,,, be the
self intersection of 4. By §3.5, ay/fs=[my, My, ..., mg, Mgy, Ny, ..., 7). Now 7,22 and

Mg, 21, hence by A.9 the n, and m,,, are uniquely determined.

4. Diffeomorphism and algebraic classification

4.1. Minimal models. A non-singular surface V with k*.action is said to be relatively
minimal if there is no curve X< V so that (X-X)=—1 and X is isomorphic to PL If
such a curve does exist it must be invariant under the action (1.8) and hence there is a

contraction of X, n: V=V, which is equivariant.

ProrosiTION. If V is a non-singular complete relatively minimal surface with k*-

action, then V is equivariantly isomorphic to one of the following

(i) @ Pr-bundle of degree d over a complete curve of genus g (the degree is the self-
intersection of the fixed curve F+), ¢>0.

(ii) @ Pl-bundle E of degree d==~+1 over P! with an action subordinate to the standard
k* x k* action o, x 0y on V i.e. 0, acts in the fiber and o, acts on the base.

(iii) P? with an action subordinate to the standard k* x k* action on V
o((ty, t2), (20 21° 29)) = (%o: 81241 Ey25).

Proof. 1If there is no elliptic point on V then §2.5, A.3 and the minimality of V
imply that I'; is of the form

Hence V is a P! bundle over a complete curve of genus g, and if g=0 then ¢ and —c¢==—1,
5 —772902 Acta mathematica 138, Imprimé le 5 Mai 1977
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If there is an elliptic point on ¥V, then the non-singularity of ¥ implies ¢g=0. By a theorem
of Nagata [6] a relatively minimal rational surface is isomorphiec to P? or a P! bundle E,
of degree d+ 11 over P It remains to show that any k*-action on P2 or E, can be
extended to the standard k* x k*-action on P2 (resp. E,). Now a k*-action on V is equivalent
to an injective algebraic group homomorphism £*—Aut (V). In our case Aut (P?)=
PGL (3, k) and Aut (E;)=PGL(2) xk*. Each of these (linear algebraic groups) has a
maximal torus of dimension 2, i.e. every subgroup isomorphic to k* is contained in a
subgroup isomorphic to k* x ¥* and any two subgroups isomorphic to k* x k* are conjugate
[3, IV. 11.3]. This implies the desired result.

4.2, Definition. Call a k*-action ¢ on V essentially unique if the only other k*-action on
V is 1(t, v) =0(t, v).

ProrosiTiON. Suppose V is a non-singular surface with k*-action o,. Then the following
are equivalent.
(i) =0 and any fized curve intersects at most two invariant curves which have negative
self-intersection.
(ii) the action o, extends to an effective k* x k*-action o, X oy,

(iii) the action g, 1s not essentially unique.

Proof. The group of automorphisms of a projective variety Aut (V), is a reduced
algebraic group [11], and a G-action on V is equivalent to a homomorphism ¢: G—Aut (V).
Hence it is sufficient to show that if (i) holds the maximal torus of Aut (V) is k* x k*,
and if (i) does not hold then Aut, (V)=4%*. Here Aut,(V) denotes the component of the
identity in Aut (V).

We may assume V==P2 Then there is a birational equivariant morphism f: V>V,
so that V is a P! bundle over a curve X (4.1). By an argument analogous to that in §1.9
we can show that any element of Auty(V) leaves a curve with negative self-intersection
invariant. Hence there is an injective homomorphism f,: Auty (V) Aut,(V,). Moreover
Aut (V) =Aut (X) xk*. Now if ¢g>0, then Aut (X) is finite and therefore Auty (V)=
Aut, (Vy)=k* If g=0 then any element of Aut,(V,) which is in the image of Aut,(V),
leaves the points of X which lie on curves with negative self-intersection, fixed. Thus
Auty(V)=Fk* if there are more than two such points, and Aut, (V) has a maximal torus iso-

morphic to k* x k* otherwise.

4.3. THEOREM. A complex algebraic surface V with C* action is diffeomorphic to one, and
only one, of the following
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(i) M, =(R,x8%)#kCP? ¢g=>0, k>0,
(ii) N,, the non-trivial S bundle over R, =0,
(iii) CPe,
where R, is a compact Riemann surface of genus g and CP? denotes CP2 with the opposite

orientation.

Proof. Blowing up a point on a non-singular complex surface is equivalent to taking
connected sum with CP2. Hence the proposition implies that V is diffeomorphic to
W #kCP? where W=CP? or a CP! bundle E, of degree d over a Riemann surface E,.
Now E,;#CP? is diffeomorphic to E,,,#CP2. In fact, one can construct an equivariant
diffeomorphism by blowing up a point on F+in E, and a point on F- in E,,,. Both give

We can conclude that if W =E; and k>0 then V is diffeomorphic to M, ;. Now suppose

us a surface with graph

V =E,. There are two 8% bundles over a compact Riemann surface, the trivial one and a
non-trivial one. Thus E, is diffeomorphic to B3 where 0 <d <1, is the residue of d modulo 2.
E, is not diffeomorphic to E, since the former has an even quadratic form (intersection
form) and the latter does not. Finally suppose V=CP2#k—CP2 It is well known that
CP:#CP? is diffeomorphic to the CP! bundle of degree 1 over CP.

Thus V=M, ,, if k>2 and V=N, if k=1. The manifolds M, ,, N, and CP? can be
shown to be distinet by comparing the ranks of their homology groups, H, and H,, and
the parity of the quadratic form given by cup product.

4.4. St.actions on 4-manifolds. It is an open question whether all S'-actions on CP?
are orthogonal i.e. of the form

t(zg:21129) = (10241172, : 1% 2)

for t€8'. Orlik and Raymond [15] classified 72= 8! x S! actions on 4-manifolds and have
proven that every smooth 7% action on CP? is orthogonal. Thus we can rephrase the
question to ask whether every smooth effective S action extends to a smooth effective

T? action. We have the following related non-extension result.

THEOREM. If k>3 there is a smooth effective S* action on CP2 # kCP? which does not

extend to a smooth effective St x S action.
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Proof. 1t follows from [15, § 5] that if the S* action extends to a 72 action the graph
I’y must have <2 arms. The surface ¥V, with graph

is diffeomorphic to CP2#4CP? and has 3 arms, thus the C*-action induces an Sl-action
o, which does not extend to a 72 action. If we collapse the curve corresponding to the
left hand vertex we get a surface V, diffeomorphic to CP?#3CP2. If the S! action o,
extends to g, X 03, 05 must leave the fixed points of ¢, fixed and hence ¢, x g, extends to V.
This is a contradiction, hence the action does not extend. We can get non-extendable
actions on CP2#kCP?, k>4, by blowing up fixed points on V,.

We do not know if such actions can be obtained for £<2.

4.5. We can now list invariants which give an equivariant algebraic classification of
normal surfaces V with k*-action. Let 7: ¥~V be the canonical equivariant resolution of
V and I'y, the graph of V. We would like to describe the topology of V using I'y and
some additional data. The map 7 induces an equivalence relation in V. There are two
kinds of identifications; certain curves are identified to points and certain curves are
identified to each other. If a collection of curves is mapped to a single point by = we enclose
the corresponding vertices of I" by a solid line. If curves X, ..., X, on V are all mapped onto
the same curve Y in V and d, is the degree of 7| X; then we enclose the corresponding
vertices with a dotted line and indicate the degree d, above the vertex. This diagram is
denoted by I';,. See § 5 for examples.

Suppose V is a complete non-singular surface with k*-action and no elliptic fixed
points, I';, is the graph of ¥V, and the arms of I', are numbered 1, 2, ..., . Define the con-
traction of V, f: V—cont (V), to be the contraction of that orbit X which lies on the rth
arm, has a self-intersection —1 and is the orbit closest to F+ having the first two pro-

perties (i.e. the vertex corresponding to X is closest to f*). If we apply the contraction
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operator repeatedly we finally arrive at a surface B, whose graph has no arms, i.e. Byisa
P! bundle over F+. Let
@: V—>By

be the contraction map. We say (V, By, ¢) is the canonical relatively minimal model of V.
One can easily see that (V, By, ¢) is independent of the numbering of the arms of I'. Let
p: By~ F+* be the structure morphism of the bundle. If ¥V is an arbitrary complete
normal surface we define B,= Bjy.

Let z,, ..., z, be the points of F'+ which are in the closures of non-ordinary orbits. The
algebraic invariants of (V, o) are {F*; zy, ..., 25 ['y; (By, p)} together with a numbering of
the arms of I', so that z,; is in the closure of an orbit on the ith arm. Two sets of invariants
{Fi; a0, ., a2 T (By, p)} i=1, 2 are equivalent if r, =r, and there is an isomorphism
o: Ff > F; and a permutation 7z so that o(x{") =22}, ¢*(By,)= By, and I',=T', with its

arms reordered by .

4.6. THEOREM. Suppose V, and V, are complete normal surfaces with k*-action. Then

V, and V, are equivariantly isomorphic if and only if their respective invariants

{F+; (131, coey Tys FV: (BV7 p)}

are equivalent.

Proof. Since V, and V, are normal, V, is determined by V', and that part of the graph
I, which indicates which curves are contracted. Thus we may assume V,=V, The
equivalence of invariants is certainly a necessary condition. Finally the sufficiency is
easily seen by induection on the number of vertices of I' and the uniqueness of blowing up
(down).

5. Examples and remarks
5.1. Consider the homogeneous polynomial
fz) = 22122 +23
which defines a hypersurface ¥ in P3, invariant under the k*-action
t[2q: 21t 25 25] = (2" 132y 132, 1224].

The partials of f show that V is singular at [0: 0: 1: 0], [0: 1: 0: 0] and [1: 0: 0: 0). The
closures of the exceptional orbits are L, ={zy=23=0} with isotropy k*, L,={z,=2,=0}

and Ly={z; =2,=0} with isotropy us. In the diagram below a line indicates a curve; a
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non-singular point of intersection is denoted by a dot, a singular one by a small circle.

We have therefore
[0:1:0:0]

[1:0:0:0]

[0:0:1:0]

The elliptic singularity [1: 0: 0: 0]. The affine piece of V where 2,==0 is the surface defined
by the weighted homogeneous polynomial z,z,+23=0 with ¢,=¢,=3, ¢;=2, d=6. We
see from (3.6.2) that the Seifert orbit invariants of the orbits L, and L, are (3,2). Now by
(3.6.3) ¢=0 and b= —1. Thus if we resolve the singular point at [1: 0: 0: 0] we get

[0:1:0:0)

0:0:1:0
T [ ]

The points [0: 1:0: 0] and [0: 0: 1: 0] are parabolic singular points. The minimal

resolution of these two points gives us the canonical equivariant resolution V. The

eorresponding diagram is of the form below

L,

R

L,

The dual graph (as defined in 2.4) with weights is the following
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Ly

L,

Now by §3.6 the missing vertices are given by the continued fraction expansion of
o/8=3/2. Finally, the self-intersection of L, and L, must by —1 by A.3 and hence
¢'=1 by §2.5, (iv). Thus the graph associated to V is:

-1
[0]

Note that we have made no assumptions about the characteristic of k. We leave it an
exercise to find the canonical equivariant resolution of this singularity under the

action [z 248 25! 23] =[f29: £712,: 2, 2]

5.2. Let us now turn to an example with singular lines. Consider the hypersurface in

P? defined by the zeros of the homogeneous polynomial

f2) =282, 288 + 3224+ 2)2,
with action

o(t; [2: 212 292 23)) = [t%2: %21 £722,: 23],
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Computing the partials of f shows that:

L, ={zy=23=0} is a singular line with isotropy us,
L,={2,=2,=0} is a singular line without isotropy,
Ly = {zy=2,=0} is a singular line with isotropy us,
L,={2,=2,=0} is a non-singular line with isotropy us,
Ly={2,=2,=0} is a non-singular line with isotropy u,.
As above we draw a diagram with line segments representing orbits with isotropy. A double

(resp. triple) line segment represents a singular orbit with two (resp. three) sheets passing

through it i.e. two (resp. three) orbits on ¥ are identified to one on V.

L;

[1:0:0:0] @pmmns [0:0:0:1]

L,

[0:1:0:0]

[0:0:1:0]
L,

In the following we shall assume that £=C so that we can use slices. For details of the
following analysis consult [17]. The same result is valid for arbitrary & by a slight addi-
tional analysis.

The elliptic singularity at [0: 0: 1: 0]

At z,=1 the equation is 2z§z,2} + 2323 +2{=0 with ¢,=3, ¢,=6, ¢;=1 and d=21.
Call V' the corresponding affine hypersurface.

L, is singular with slice at 2, =1:

2ol +2+=0

which is locally irreducible, hence L, is covered by one orbit. With £ =exp (27/6) the slice
action on V' is £(z,, 25) = (&%, &2,). If ¢ is a local coordinate for the slice on ¥ then z,=13,
2g=t" 80 o(&, t)=£t is the slice action on ¥. So 1-8=1(6). Thus L, gives rise to one excep-
tional orbit of type (6,1).
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L, is singular with slice at z,3=1: 262, +2} +25=0. One can see that this curve has 3
branches through 0 (for example by blowing up once), thus L, is covered by three principal
orbits.

From (3.6.3) we get b=21/3-6—1/6=1 and we use [17, § 5] to compute the genus of
the resclution of the curve X'=(V'-0)/C*.

Its arithmetic genus is given by the formula

e @ dgeq) a9 9gx %)
29019  29v01 214 29590

P

—0(g0 91> 925 @) — (915 92 %03 @) (425 90 95 ),
where by definition
1 1w
. cdy==
o(k; m, ny; &) }cg(l_gm)(l_ym)

for £ =exp (2ni/k) and
I={j|0<j<k, jn, =0 (mod k), jn, %0 (mod k)}.
We compute directly that
0(3; 6, 1; 21) =p(1;6,3; 21) =0 and p(6;3,1;21)=1/4,
so from the formula above, p,=6. Finally,
g=Pp.~ 2 6,

where J, is an invariant of the point z defined in [12, § 10] (see also [17]).

The image of L,, say z;€X has §,,=0, since X is non-singular at z,. The image of
L,, say z,€X has d,,=6 by [12, p. 93]. Thus g=0 and we have that the neighborhood
boundary at [0: 0: 1: 0] has Seifert invariants

K[0:0:1: 01 = {1, 0; (6, 1) ~6; (1, 0) ~(1, 0) ~(1, 0) ~1}.
See Orlik-Wagreich [17, 3.5] for this notation.

The elliptic singularity at [0:1: 0: 0]
At z,=1 we have 223 + 2323 +2{2,=0 with g,= —3, ¢,= —6, ¢= —5 and d= —27. We

impose the inverse action by letting
%=3, =6, ¢,=5 d=27.

L, is singular with slice at z,=1: 2§23 +23 + 2§ =0 covered by one orbit of type (6,5).
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L, is singular with slice at z;=1: 2§ +25 +2{2z,=0. This has two non-singular branches
each of which is tangent to the line {z,=0}. The action in the tangent space is &(z,, z,) =
(E32,, £2,) 80 3f=1 (5), $=2, and L, is covered by two orbits of type (5, 2).

L, is non-singular. The action in the tangent space at [1: 1: 0: 0]€L, is &(z,, 25) =
(2a, £%). Thus 28=1 (3) and §=2.

From (3.6.3) we get 6=27/3-6-5—5/6—2/5-2(/5—2/3=—2. We know that g=0

since g is zero at the other elliptic singular point. Hence
K[0:1:0: 0] ={—2;0; (6,5)~6, (5,2)~(5,2)~5, (3,2)}.

Comparing orientations in W shows that the orientation given here for K[0: 1: 0: 0] is
correct.
We now know that the (dual) graph I' of V (as defined in 2.4) is of the form below:

L, Ly / L, \\

L,

Recall here that the integer above a vertex enclosed by dotted lines denotes the degree
of the map n: V-V on the corresponding curve, see §4.5.

Applying §3.5 we see that the fact that L, has isotropy u, implies that L, has
self intersection —1 and the branch of L, intersecting L; has self intersection —2. But
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then L; must have self intersection --2. In order to calculate the missing part of the
middle two arms we note that the orbit invariants of L, are (5,2). The vertices are deter-
mined by the continued fraction expansion of 5/2=[3,2] if we know that there are no
vertices with self intersection —1. Now the vertices inside the curve come from a minimal
resolution, so they do not have self intersection —1. On the other hand, if one of the
branches of L, had self intersection —1 the relation §2.5 (iv) would not hold. Thus, the
graph of V is as follows.

5.3. Let V be a complex surface with C* action and with only isolated singular points.
Let V, denote the compact 4-manifold with boundary obtained by removing an open
Sl.invariant tubular neighborhood of the fixed point set. Then ¥V, may be viewed as a
fixed-point-free S*-cobordism between its various boundary components. This relates our
paper to the results of Ossa [19]. As an example, consider the hypersurface V in €P3
defined by the zercs of the homogeneous polynomial

{(2) =222 + 23 + 23

with C* action #zy 2;: 2y 25] =[t7%: 12, 231 25]. It has five fixed points. [1:0:0: 0],
[0: 1: 0: 0] and 2zy=2,=0, 23 +23=0. The first one is singular.
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We leave it to the reader to show that
K[1:0: 0: 0] ={—1;0; (2,1), (2,1), (2,1)}
K[0: 1: 0: 0] = {1; 0}
K[0: 0: 23 +23=0] = {0; 0; (2,1)}
so V,, the complement of open Sl-invariant tubular neighborhoods of the fixed points,

is a fixed point free S'-cobordism between K[1: 0: 0: 0] and its decomposition as a linear

combination of the generators in the cobordism group O,(c0), see [19].

Appendix

We recall a few elementary facts about continued fractions, see e.g. [20]. Let a,, ..., a,

be positive integers and let [a,, ..., a,] denote the continued fraction

1
[al) ---,G,;]=a1———--- — 1 R

provided none of the denominators equals zero. Define

P1=0, po=1, pi=a,, pi=a,p; Dy 122

%=0, ¢,.=1, ¢.=a g ,—qi, 1=2.

Definition. Call {ay, ..., a,} admissible if p,>0 for =0, ...,n—1

Consider the symmetric matrix

.

If we diagonalize the matrix over the rational numbers starting in the upper left hand

corner we get a matrix with diagonal elements {a,], [a,, a,], {43, 25, a4] ....
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a

One can easily prove by induction that the ¢th entry is p,/p,_, and {ay, ..., a,} is admissible
if and only if the matrix is positive semi-definite of rank >»n—1. From this one can see
that if {a,, ..., a,} is admissible then {a,, ..., a,} is admissible and {a,, a,,,, ..., a;} is ad-
missible for any 1 <i<j <. If we diagonalize the matrix starting at the lower right hand
corner we can see that if {a,, ..., ,} is admissible then the denominators in the expression

1

a; — F#A“]:*‘ A
ag—
1

ay

are not zero. Hence [a,, ..., @,] makes sense if {a,, ..., a,} is admissible.
Henceforth we will always assume that {a,, ..., a,} is admissible.

It is shown in [20], that if p, and ¢, are defined as above then [ay, ..., a,]=p,/q;.
Lemma AL 9,9,y —pi19,=—1 for 0<i<n,

Proof. Use induction. By definition p,¢,—p¢; = —1. Assuming the statement for

i=7 we have Pr19r— Pr¢ri1 = (@1 P~ Pr) O — PG ia8r — &r1) =Prgra ~Pra g =~ 1.
From this we see that (p,, ¢,)=1, (p;, p,,)=1 and (q,, ¢,_,)=1. In particular the
fraction p,/q, is in reduced form for all . Also, p,_,¢,=1(p)).

LeEmMmA A2. If for each i, a,22, then p;>p, 1, ¢,>q,_, and p,>q,, so in particular

2i/q,>0 for all 3.

Proof. We shall only prove the first assertion using induction: p,=a,>p,=1.

Assuming p,>p;, we have p,,;=a,,p,~pi1> (@1 —1)pi =P,
CoroLLARY A3. If [a,, ..., a,]=0, then for at least one i, a;=1.

LEMMA A4, Let {ay, ..., a,} be admissible and p;, 1 <i<n, as defined above. Then the

continued fraction [a, @y, ..., 0] =D0,/P1_;-
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Proof. From p,=a,p, ;—p,-p,wehave p,/p,_; =a,—~(1/(p,;1/p,_,)) and repeated applica-
tion gives the desired result.

Lemma AS5. Let [ay, ..., a,]=0. Consider the two continued fractions [a,_y, ..., a,]=ufv

and [@,,q, .o @) =2%'[v'. Then we have that u=vu' and v+v' =a,u.

Proof. Sinee [ay, ..., ¢,]=0, also [a,, .., a;]=0. By a repeated application of the

following calculation

1
a, =———
" 10,;_1;"}7,;‘2
Gp-1Pn-2~ " Pn-s_ 1
Pn—z an
1 1
a - —— T ———
n1 a’n Pn—z/]’n—s
we obtain
’ 7 1
w' ={a,.q, ..., a,,]=;7r
i r—1
w'lv = L i
a, —
PralPr-s

Using Lemma 4 we have p,_;/p,_,=ufv so

" v\ _
(u/v)(a,-;) 1

and hence

LA RN

a,=-+

Y
%
Since both (u, ¥)=1 and (', »') =1, we conclude that u=«" and v+v" =a,u as desired.

Lemma A6. Let [ay, ..., 0,4, 1, @ryy, ..., @] be a continued fraction with p, and q,
defined above. Let [a,, ..., @,_y—1, @,y —1, Gy py, ..., @) have corresponding values p; and q..
Then

P =Py ¢ =4 for i<r-2

P; =P q’f =G for s=2r-—1.
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Proof. The first half of the assertion is obvious. Now p;_;=(a,_; —1)pr_s—Pr_s=

(&1~ 1)prs—2r 3=1(2 1 Pr—2 ~Pr-3) " Pr 2= Pr 1" Pr_a =Py
The argument is the same for g¢,_,.

P: = (ar+1 - l)p;—l _P;—z = (ar+1 —1)p,— 1,
= Q1 Pr —Pr ~Prog = Q1 0 (1P —Dr2) — 11

=011 Pr~Pra = Pra
Again, the same holds for ¢; and clearly, for 4> 7 the conclusion is trivially true.

Definition. Given {ay, ..., @,_y, @y, Oy, ..., a,} and a,=1 we say that we have
“blown down a,” to obtain {a,, .., @, @, —1, a,,,—1, a,,s, ..., @,}. The reverse pro-

cess is called “blowing up”.

Definition. {a,, ..., a,} and {b,, ..., b,} are called equivalent if a series of blowing up
and blowing down of {a,, ..., ,} makes it equal to {b,, ..., b,}. This is clearly an equivalence

relation.

Lemma A7. {a,, .., a,} and {b,, ..., b,} are equivalent if and only if [a,, ..., a,]=
[by, oo byl

Proof. Repeated application of A3 blows both sequences down to [1,1] (if [y, ...,a,] =0)
or a sequence with no ones (otherwise). But every positive rational number has a unique

representation in the form [c,, ..., ¢,], ¢;=2.

LeMMA AS8. Let [ay, ..., a,]=0. Then

(315 s @oy] = 1/g5,4
Moreover {a,, ..., a,_y, a,+1, 1} is also admissible, and
@y, .o.s sy, @+ 1] =1/(g,_; +1).
Proof. The first part is obvious. Let
[@ys ey @y, @+ 1] = ufv.

Now ¢,=1 by A.1 hence we have

U= (as + 1)ps—1 Py =QsPy_y— Ps_g D5y = Py +ps~1 P51 < 1
v=(a 1) 3G 2 =0Ge 1~ ooy =ty =11¢,
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Lemma A9. Suppose a>f>1 are integers and «/f=[m,, ..., My, Mgy, Ny, ooy M) =
[my, ..., Mg, Mgy, B, ..., B, Where m;>2, for i=1, ..., s, n, and n, 22 for all i, m, ,>1,

myr1>1 and both sequences are admissible. Then m, 4 =ms,,, and n;=n,, for all i.

Proof. 1t follows easily from the definition of continued fractions that we may
assume s=0. Proceeding by induction on ¢, if t=0 the assertion is trivial. If £>0 and
Mgy @nd Mgy >2 the lemma follows from the uniqueness of continued fraction expan-
sions with entries >2. If m,,, =1 then the first sequence can be blown down to a shorter
sequence. Thus m;,; =1 and the lemma follows by blowing down and applying the

inductive hypothesis.

ProProsiTioN Al0. Suppose 4 is a graded ring and define

Ah = @ A['ﬂ.]
n20

as n (3.2). If A is an integrally closed domain then AR is an integrally closed domain.

Proof. We define a grading on the polynomial ring A[¢] by defining degree { =1 and the

degree of the coefficients to be 0. Then A4 is isomorphic as a graded ring to
® Aimt*< Alt).
nz0

Clearly A% is a domain and if we let B be the integral closure of A% then it follows from
Bourbaki (Commutative Algebra, V, § 1, no. 8, Prop. 20 and no. 3, Prop. 13, Cor. 2) that B
is a graded subring of A[t].

Suppose b€ B,. Then b=at", where a€ 4. It is sufficient to show a € A,;. Since b is

integral over 4* there exist a,€ A[,; so that
(at™™ + ay tMat™)" 1+ .. tat™ =0
Thus
a” =—(a,a" 1 +... ta,) (2)
in A. Suppose a¢A,;. Then we can write

a=o;+to;,y+..

where «,€4, for all j, «,=0 and ¢ <n. Now a,a™'€ A, (m_pu for j=1, ..., m, and hence
the right hand side of equation (2) lies in A4, ., This contradicts the fact that

a™=(o;)" +y where y is a sum of forms of higher degree.
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