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Abstract: In this paper, a method for the finite time estimation of the switching times in linear switched
systems is proposed. The approach is based on algebraic tools (differential algebra, module theory and
operational calculus) and distribution theory. Switching time estimates are given by explicit algebraic
formulae that can be implemented in a straightforward manner using standard tools from computational
mathematics. Simulations illustrate the proposed techniques.
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1. INTRODUCTION

Many systems encountered in practice exhibit switchings be-
tween several subsystems, inherently by nature, such as when
a physical plant has the capability of undergoing several opera-
tional modes, or as a result of the controller design, such as in
switching supervisory control.

Switched systems can be seen as higher–level abstractions of
hybrid systems, obtained by neglecting the details of the dis-
crete behavior. A switched system is composed of a family of
dynamical (linear or nonlinear) subsystems and a rule, called
the switching law, that orchestrates the switching between them
(see Liberzon (2003); Sun and Ge (2005) for surveys). In the
recent years, there has been an increasing interest in the control
problems of switched systems due to their significance from
both a theoretical and practical point of view. Important results
for switched systems have been achieved for problems includ-
ing stability Agrachev and Liberzon (2001); Boscain (2006);
Branicky (1998); Mancilla-Aguilar and Garcı́a (2000); Vu and
Liberzon (May, 2005), stabilization Moulay et al. (2007); Persis
et al. (2004); Wicks et al. (1998); Zhai et al. (2003), tracking
Bourdais et al. (2007) or controllability Sun et al. (May, 2002);
Xie et al. (2002).

Observability and state estimation is a key problem for such
systems because both the active mode and the continuous state
have to be estimated and this during a finite time interval.
The notion of state estimation for switched systems was in-
troduced in Ackerson and Fu (1970). Observability notions for
some classes of hybrid systems such as switched linear systems
has been discussed and characterized in recent works such as
Babaali and Pappas (2005), Santis et al. (2003), Vidal et al.
(2003). The problem is to recover from available measurements
the state of the system and/or the switching signal, and eventu-
ally the switching time. Different observation and identification
methods have been performed during the last years (Alessan-

dri and Coletta (2001); Balluchi et al. (2002); Domlan et al.
(2007); Fantuzzi et al. (2002); Hashambhoy and Vidal (2005);
Heemels et al. (2001); Huang et al. (2004); Paoletti et al.
(2007); Saadaoui et al. (2006)). Usually, the hybrid observer
consists of two parts: an index estimator of the current active
sub-model and a continuous observer that estimates, asymptot-
ically in most cases, the continuous state of the hybrid system.

The aim of this paper is to estimate in “real-time” the switching
time sequence of some class of switched linear systems with the
knowledge of the continuous state only. The possibility to have
finite time estimate for that kind of systems is clearly important,
not to say crucial. The approach considered here takes root in
recent works developed by Fliess and Sira-Ramı́rez (2003) for
parameter identification of linear time-invariant systems. This
method is based on algebraic tools (differential algebra, module
theory and operational calculus) and results in finite estimates
given by explicit algebraic formulae that can be implemented
in a straightforward manner using standard tools from compu-
tational mathematics. Those results have been extended to the
problems of closed-loop parametric estimation in Fliess and
Sira-Ramı́rez (2008), state estimation of linear systems with
time-varying parameters in Tian et al. (2008) or with delays
in Belkoura et al. (2006), fault diagnosis in Fliess et al. (2004),
nonlinear systems with unknown inputs in Barbot et al. (2007)
or some class of linear infinite dimensional systems governed
by partial differential equations in Rudolph and Woittennek
(2008). This approach was also applied in Fliess et al. (2008)
for the estimation of the index corresponding to the current
active subsystem, and the state variable of this subsystem. In
this paper, the algebraic approach is extended to the problem
of the finite time identification of the switching occurrences.
Using some properties of the distribution theory, the switching
time estimation is given by an explicit formulae, as a function
of the integral of the output, in order to attenuate the influence
of measurement noises.



2. PROBLEM STATEMENT

In this work, we study a class of linear hybrid systems called
switched linear systems (definition see Vidal et al. (2003)),
i.e. systems whose evolution is determined by a collection
of linear models (Q subsystems) with continuous state x ∈
R

n connected by switches among a number of discrete states

q ∈ IQ , {1, . . . ,Q}, modeled by linear ordinary differential
equations of the following form:

ẋ = Aqx, (1)

Aq ∈ R
n×n are constant matrices. For the sake of convenience

and without loss of generality, it is assumed that at each time
t ∈ R only one discrete event can act on the system. It is also
assumed that there is no jump, i.e. that if tk is a switching
instant

lim
t→t−

k

x(t) = lim
t→t+

k

x(t).

The objective of this paper is to estimate on line the switching
times of the system (1) using the dynamics of the continuous
state only. It will be assumed that all the state is available
for measurement. The more general case with partial state
measurements will be studied in further work. The method that
will be developed will involve high order time derivatives of x.
Because of the presence of non smooth dynamics, derivation
has to be understood in the distribution sense.

2.1 Distribution Framework

We recall here some standard definitions and results from
distribution theory developed in Schwartz (1966), and fix the
notations to be used in the sequel. The space of C∞-functions
having compact support in an open subset Ω of R is denoted
by D(Ω), and D ′(Ω) is the space of distributions on Ω, i.e., the
space of continuous linear functionals on D(Ω).

When concentrated at a point {τ}, the Dirac distribution δ (t −
τ) is written δτ .

Functions are considered through the distributions they define
and are therefore indefinitely differentiable. Hence, if y is a
continuous function except at a point a with a finite jump σa,
its derivative writes

ẏ = dy/dt +σa δa, (2)

where dy/dt is the distribution stemming from the usual deriva-
tive of y.

A distribution is said to be of order r if it acts continuously on
Cr-functions but not on Cr−1-functions. Measures and functions
are of order 0. By virtue of Schwartz Theorem (see Schwartz
(1966)), α × T = 0 for any smooth function α whose deriva-
tives of appropriate order vanish on the support of a given
distribution T ∈ D ′(Ω). In particular, one has for the Dirac

distribution 1 :

f (t) ·δti = 0, ∀ f ∈C∞(R) if f (ti) = 0,

f (t) ·δti = f (ti) ·δti , ∀ f ∈C∞(R) if f (ti) 6= 0.

1 The existence of the product f (t) · δti is ensured as soon as f is a

C∞−function.

3. SWITCHING TIME IDENTIFICATION

3.1 The case of two subsystems and one commutation

In this case, q ∈ {1,2}. Assume that the system (1) switches
from the subsystem 1 to the subsystem 2 at the time tc. Then, the
dynamical behavior of the system can be rewritten as follows:

ẋ = Γ(t)x (3)

Γ(t) = A1H(t)+A2(1−H(t))

with the function H given by:

H(t) =

{

1, 0 ≤ t < tc
0, tc ≤ t < T.

The aim is to get a finite time estimation of the switching time
tc when the system commutes from q = 1 to q = 2.

Assume that A1 and A2 are two square commuting matrices and
consider the following change of variable:

z = eGtx (4)

with G = −A1+A2
2

. One has:

ż = GeGtx+ eGt ẋ = Gz+ eGt
Γ(t)x = (G+ eGt

Γ(t)e−Gt)z

This leads to

ż = M(t)z (5)

with

M(t) = (G+ eGtA1e−Gt)H(t)+(G+ eGtA2e−Gt)(1−H(t)).

Since A1 and A2 are two square commuting matrices, one gets:

M(t) = (G+A1)H(t)+(G+A2)(1−H(t))

=
A1 −A2

2
H(t)+

A2 −A1

2
(1−H(t))

= −AH(t)+A(1−H(t))

with A = A2−A1
2

. The choice of the change of coordinates
(4) is motivated by the fact that the subsequent computations
involve M2 = A2 which is a known quantity independent of the
switching time.

Differentiating (5) over the interval t ∈ [0,T [, one has:

z̈−A2z = −2Aδ0z(0), 0 ≤ t < tc

z̈−A2z = −2Aδ0z(0)+2Aδtcz(tc), tc ≤ t < T

which can be rewritten in the following compact form:

z̈−A2z = −2Aδ0z(0)+2A(1−H(t))δtcz(tc), 0 ≤ t < T (6)

Note that if the initial subsystem is q = 2, a similar expression
can be obtained as follows:

z̈−A2z = 2Aδ0z(0)−2A(1−H(t))δtcz(tc), 0 ≤ t < T

the terms in the right hand have the opposite signum. As it
will be seen hereafter, this slight difference has no influence
on the result because the right hand side of (6) will be canceled
by suitable algebraic manipulations. Thus the proposed method
does not need the knowledge of the current mode.

3.2 Explicit computation of the switching instant

Take any function with the following properties:

(i) f (t, tc)δtc = 0,
(ii) f (0, tc) = ḟ (0, tc) = 0.



Multiplying (6) by f (t, tc), one obtains:

f (t, tc)(z̈−A2z) = 0. (7)

Integrating (7) from 0 to tc < t ≤ T leads to
∫ t

0
f (τ, tc)(z̈(τ)−A2z(τ))dτ = 0 (8)

Integration by parts gives:
∫ t

0
f (τ, tc)z̈(τ)dτ = [ f (τ, tc)ż(τ)]τ=t

τ=0 −

∫ t

0
ḟ (τ, tc)ż(τ)dτ

= f (t, tc)ż(t)−

∫ t

0
ḟ (τ, tc)ż(τ)dτ

and
∫ t

0
ḟ (τ, tc)ż(τ)dτ =

[

ḟ (τ, tc)z(τ)
]τ=t

τ=0
−

∫ t

0
f̈ (τ, tc)z(τ)dτ

= ḟ (t, tc)z(t)−
∫ t

0
f̈ (τ, tc)z(τ)dτ.

Hence
∫ t

0
f (τ, tc)z̈(τ)dτ

= f (t, tc)ż(t)− ḟ (t, tc)z(t)+

∫ t

0
f̈ (τ, tc)z(τ)dτ (9)

Integrating one more time (8) from 0 to tc < t ≤ T and using (9)
leads to the following relation:

∫ t

0
[ f (τ, tc)ż(τ)− ḟ (τ, tc)z(τ)]dτ

+

∫ t

0

∫

τ1

0
( f̈ (τ, tc)−A2 f (τ, tc))z(τ)dτdτ1 = 0

Thus, using the property
∫ t

0

∫ tν−1

0
· · ·

∫ t1

0
x(τ)dtν−1 · · ·dt1dτ =

∫ t

0

(t − τ)ν−1

(ν −1)!
x(τ)dτ

one has:

f (t, tc)z(t)−2

∫ t

0
ḟ (τ, tc)z(τ)dτ

+
∫ t

0
(t − τ)( f̈ (τ, tc)−A2 f (τ, tc))z(τ)dτ = 0. (10)

The following function f (t, tc) = t2(t − tc) satisfies the two
properties (i)-(ii) and

ḟ (t, tc) = t(3t −2tc)

f̈ (t, tc) = 6t −2tc

Using the result of (10), the estimate of tc is given by the
following formula:

D(t,z)tc = N(t,z)

with

N(t,z,A) = t3z(t)−

∫ t

0
6τ

2z(τ)dτ +

∫ t

0
(t − τ)(6τI −A2

τ
3)z(τ)dτ

D(t,z,A) = t2z(t)−
∫ t

0
4τz(τ)dτ +

∫ t

0
(t − τ)(2I −A2

τ
2)z(τ)dτ

(11)

where I ∈ R
n×n is the unit matrix. Note that N(t,z,A) and

D(t,z,A) are column vectors of dimension n. So

tc =
Ng(t,z,A)

Dg(t,z,A)
, (12)

for any 1 ≤ g ≤ n, where Ng(t,z,A) and Dg(t,z,A) are the
components of N(t,z,A) and D(t,z,A), respectively.

Thus, one obtains the exact formula for the identification of
the switching time tc. Hereafter, the method is extended to the
problem of the identification of the switching times between an
arbitrary number of subsystems.

3.3 The case of Q subsystems and S commutations

Assume that every pair of matrices Ai and A j (i, j ∈ IQ and i 6= j)
in system (1) are commuting. It has been seen that an estimator
Ei, j that computes the quantities D(t,z,Ai, j) and N(t,z,Ai, j),

with Ai, j =
A j−Ai

2
can be used to determine a switching time

ti, j that occurs between the two subsystems i and j (either from
mode i to mode j or from mode j to mode i).

Hence, in order to identify all the switches among Q modes,
one can use C2

Q estimators in parallel. Then, the output signals

of each estimator can be analyzed as follows to determine the
occurrence of a switch and its associated mode. Indeed, assume
that the system (1) is in the mode i for t ∈ [t0, ti, j[ and in mode
j for t ∈ [ti, j,T [, where times t0 and T stands for other switch
occurrences. Then, one has:

(1) Dg(t,z,Ai, j) = 0 and Ng(t,z,Ai, j) = 0 for t ∈ [t0, ti, j[: in
practice several successive points have to be tested before
the switching instant;

(2) Dg(t,z,Ai, j) and Ng(t,z,Ai, j) are straight lines for t ∈
[ti, j,T [: in practice several points have to be used to detect
the slope of the line is constant.

(3) for t ∈ [ti, j,T [ the ratio of
Ng(t,z,Ai, j)

Dg(t,z,Ai, j)
is constant and equal

to ti, j: to detect when this ratio is constant, successive
values within a boundary of a given thickness are needed.

Properties (1) and (2) can be seen from the fact that Dirac distri-
butions in equation (6) are integrated twice. Thus, the estimator
that fulfills those three conditions provides the switching instant
as well as the index of the subsystems between which the switch
occurs. Furthermore, with the knowledge of the first active
mode, the sequence of the all active models can be estimated.

The implementation of the numerical algorithm which allows to
identify all the switching instants is done on a sliding window
as follows:

function detection of the switching time tc

read x(kTe)

Te: sample time;

h: number of points chosen to verify the constraints with h.Te

less than the dwell time of the system;

ts = 0: left bound of the integration window;

m = length(x): length of the sampled state x;

zi, j(kTe) = e−
Ai+A j

2 x(kTe): new state

for k = h : m

Reset all the components of N(t,z,Ai, j)(k) and D(t,z,Ai, j)(k)
to zero

for i = ts : k

Approximate numerically the integrals as sums using the trape-
zoidal rule



end

Compute the value of N(t,z,Ai, j)(k) and D(t,z,Ai, j)(k) in an
integration window with (11)

if an estimator satisfies the three detection criterions

update the integration window: ts ←− k−h;

print this estimator and the active model.

else

break;

end

print the switching time

end

The numerical implementation of the above obtained algorithm
has also to address the following points:

• integration window: when none of the C2
Q estimator detect

the commutation, algorithm will calculate the value of
N(t,z,Ai, j)(k), D(t,z,Ai, j)(k) in a new integration window
(k ←− k + 1) whose width is one sample time larger than
the old one (lower bound of the integration no change
while upper bound increase one sampling), until a switch-
ing instant is detected with one of the estimator.

• update: when tc is detected, one has to update the scheme
by resetting the integral computation and replacing the
lower bound of the integration with tc in order to identify
the next switching time (for this in the integral approxi-
mation).

4. EXAMPLE

Consider a linear switched system consisting of three linear
time invariant scalar systems given by:

A1 = −8

A2 = −1

A3 = 0.4

The switching instants of this switched system are detected
using the algorithm proposed in Section 3 with Te = 0.001s and
3 estimators (C2

3). The first active model is subsystem 1 and the
switching sequences among the subsystems are A1 −→ A2 −→
A3 −→ A1 −→ A2 −→ A3 −→ A2 −→ A1. Since estimator
E1,2 detects the commutation between A1 ←→ A2, estimator
E2,3 corresponds to the commutation between A2 ←→ A3 and
estimator E1,3 detects the switch between A1 ←→ A3, it is
known that estimators E1,2 −→ E2,3 −→ E1,3 −→ E1,2 −→
E2,3 −→ E2,3 −→ E1,2 work respectively. The switching times
are assumed to occur at: t1 = 0.2s, t2 = 1.2s, t3 = 2.4s, t4 = 2.6s,
t5 = 3.6s, t6 = 4s and t7 = 4.9s. In the simulation, we choose 30
samplings to identify the switching time, so the dwell time has
to be at least larger than 0.03s.

Fig. 1 shows that the estimator performs well. Note that t4
occurs shortly (0.2s) after t3 but that the algorithm can detect
it accurately.

Fig. 2 gives the estimation of the sequence of active model. It
can be seen that the estimated switched system Se tracks exactly
the real switched system Sr.

Note that identification of the switching time does not need the
knowledge of the first active mode, but is just required in order
to obtain the sequence of the active model.
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Fig. 1. Identification of the switching times tc.
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Fig. 2. Estimation of the active model.

5. CONCLUSION

In this paper, an algebraic approach for switching time esti-
mation of a class of hybrid systems has been introduced. An
explicit algorithm which computes on-line the switching time
instants in a fast way has been derived. In future works, this
approach will be extended to more general cases with partial
state measurements.
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