
ALGEBRAIC TECHNIQUES FOR CONSTRUCTING MINIMAL
WEIGHT THRESHOLD FUNCTIONS∗

VASKEN BOHOSSIAN† AND JEHOSHUA BRUCK†

SIAM J. DISCRETE MATH. c© 2003 Society for Industrial and Applied Mathematics
Vol. 16, No. 1, pp. 114–126

Abstract. A linear threshold element computes a function that is a sign of a weighted sum of
the input variables. The best known lower bounds on the size of threshold circuits are for depth-2
circuits with small (polynomial-size) weights. However, in general, the weights are arbitrary integers
and can be of exponential size in the number of input variables. Namely, obtaining progress in
lower bounds for threshold circuits seems to be related to understanding the role of large weights.
In the present literature, a distinction is made between the two extreme cases of linear threshold
functions with polynomial-size weights, as opposed to those with exponential-size weights. Our main
contributions are in devising two novel methods for constructing threshold functions with minimal
weights and filling up the gap between polynomial and exponential weight growth by further refining
the separation. Namely, we prove that the class of linear threshold functions with polynomial-size
weights can be divided into subclasses according to the degree of the polynomial. In fact, we prove
a more general result—that there exists a minimal weight linear threshold function for any arbitrary
number of inputs and any weight size.

Key words. threshold functions, computational complexity, neural networks

AMS subject classifications. 03D15, 68Q15, 68Q17, 92B20

PII. S0895480197326048

1. Introduction. The present paper focuses on the study of a single linear
threshold gate with binary inputs and output as well as integer weights. Such a
gate is mathematically described by a linear threshold function.

Definition 1.1 (linear threshold function). A linear threshold function of n
variables is a Boolean function f : {0, 1}n → {0, 1} that can be written, for any
x ∈ {0, 1}n and a fixed w ∈ Zn+1, as

f(x) = sgn(F (x)) =

{
1 for F (x) ≥ 0,
0 otherwise,

where F (x) = w · (−1,x) = −w0 +

n∑
i=1

wixi.

Although we could allow the weights, wi, to be real numbers, it is known [Muroga 71]
that one needs only O(n log n) bits per weight, where n is the number of inputs. So
in the rest of the paper, we will assume without loss of generality that all weights are
integers. Also, notice that a linear threshold function can be implemented as

f : {−1, 1}n → {0, 1}.
We will address both the {0, 1} and the {−1, 1} representations.

Note that, given a function f , the weight vector w is not unique (see Example 1
below).

∗Received by the editors August 13, 1997; accepted for publication (in revised form) July 22,
2002; published electronically January 3, 2003. Part of this work was presented in Proceedings of
Neural Information Processing Systems 8, 1995, under the title On Neural Networks with Minimal
Weights, by the authors of this paper.

http://www.siam.org/journals/sidma/16-1/32604.html
†California Institute of Technology, Mail Code 136-93, Pasadena, CA 91125 (vincent@paradise.

caltech.edu, bruck@paradise.caltech.edu).

114



CONSTRUCTING MINIMAL WEIGHT THRESHOLD FUNCTIONS 115

Definition 1.2 (weight space). Given a linear threshold function f we define
W as the set of all weights that satisfy Definition 1.1, that is,

W = {w ∈ Zn : ∀x ∈ {0, 1}n, sgn(w · (−1,x)) = f(x)}.
Here follows a measure of the size of the weights.

Definition 1.3 (minimal weight size). We define the size of a weight vector as
the sum of the absolute values of the weights. The minimal weight size of a linear
threshold function is defined as

S[f ] = min
w∈W

(
n∑

i=0

|wi|
)
.

The particular vector that achieves the minimum is called a minimal weight vector.
Naturally, S[f ] is a function of n.

1.1. Motivation. Why do we care about the size of the weights in threshold
circuits?

Threshold circuits have been shown to be surprisingly powerful. For example,
integer division can be implemented by a polynomial-size threshold circuit of constant
depth [Beame 84], [Siu 93]. It is also proved in [Allender 89] that any function in AC0

can be computed by depth-3 majority circuits of quasi-polynomial size; in fact, it is
true for all of ACC0 [Yao 90]. For a general survey about the representation of
Boolean functions by threshold functions, see [Saks 93].

Given the foregoing impressive upper bounds, it is not surprising that we face dif-
ficulties in obtaining lower bounds. In fact, the best general lower bound for threshold
circuits is the result that the inner-product mod 2 (IP2) requires exponential size for
depth 2 [Hajnal 93]. However, this lower bound assumes that the circuits involve small
weights, and it is not known whether IP2 can be computed by a depth-2 polynomial
size threshold circuit with arbitrary weights. Obtaining progress in lower bounds for
threshold circuits therefore seems to be related to understanding the role of large
weights.

Hence, it is natural to ask how limited the computational power of the circuit is
if one limits oneself to threshold elements with only “small” growth in the size of the
coefficients. It has been shown [Anthony 93], [Hampson 86], [Hastad 94], [Myhill 61],
[Muroga 71], [Siu 91] that there exist linear threshold functions that can be imple-
mented by a single threshold element with exponentially growing weights, S[f ] ∼ 2n,
but cannot be implemented by a threshold element with smaller polynomialy grow-
ing weights, S[f ] ∼ nd, d constant. In light of that result, the above question was
dealt with by defining a class within the set of linear threshold functions, the class
of functions with “small” (i.e., polynomialy growing) weights [Siu 91]. Most of the
recent research focused on the power of circuits with small weights, relative to circuits
with arbitrary weights [Goldmann 92], [Goldmann 98]. In particular, it showed that
increasing the depth of the circuit by one is sufficient to reduce all the weights to be
of polynomial size. However, these impressive upper bounds were still not helpful in
improving the lower bounds.

In this paper we take a different approach. Rather than dealing with circuits we
focus on the modest task of studying a single threshold gate. The main contribution of
the present paper is to further refine the division of small versus arbitrary weights. We
separate the set of functions with small weights into classes indexed by d, the degree of
polynomial growth, and show that all of them are nonempty. In particular, we develop



116 VASKEN BOHOSSIAN AND JEHOSHUA BRUCK

a technique for proving that a weight vector is minimal. We use that technique to
construct a function of size S[f ] = s for an arbitrary s. The natural future direction
is to extend our techniques for constructing minimal weight threshold functions to
circuits of depth 2. This might help in defining explicit functions that cannot be
computed by depth-2, polynomial size threshold circuits with specific weight size.

1.2. Organization. Here follows a brief outline of the rest of the paper. In
section 2 we show some of the difficulties one faces when minimizing the weights as
well as how they are affected by the choice of input domain. In section 3 we consider
functions defined over {−1, 1}. We limit ourselves to functions with no threshold
(generalized majority function), and we show how to construct such functions with
minimal weights. In section 4 we present another way of constructing minimal func-
tions that allows us to deal with any threshold function defined over {0, 1}.

2. Preliminaries and examples. In this section we illustrate some of the dif-
ficulties one faces when trying to minimize the weights of a threshold function. We
also show how the input domain (i.e., {0, 1} versus {−1, 1}) affects the size of the
weights. See [Krause 95] for related results.

2.1. Minimizing the weights. The main difficulty in analyzing the size of the
weights of a threshold element is due to the fact that a single linear threshold function
can be implemented by different sets of weights as shown in the following example.

Example 1 (a threshold function with minimal weights). Let us consider the
following two sets of weights (weight vectors):

w1 = (4 1 2 5), F1(x) = −4 + x1 + 2x2 + 5x3,

w2 = (8 2 4 10), F2(x) = −8 + 2x1 + 4x2 + 10x3.

They both implement the same threshold function

f(x) = sgn(F2(x)) = sgn(2F1(x)) = sgn(F1(x)).

A closer look reveals that f(x) = sgn(−1+x3), implying that none of the above weight
vectors has minimal size. Indeed, the minimal one is w3 = (1 0 0 1) and S[f ] = 2.

To determine if a given set of weights is minimal is in general a difficult problem
[Willis 63]. Our technique consists of constructing weight vectors whose minimality is
easily established. We then show how to modify them, while keeping them minimal,
in order to get to a larger set of functions.

2.2. {0, 1} versus {−1, 1}. Suppose we implement the same function over
{0, 1} and over {−1, 1}. How are the weights affected? Let us look at an example.

Example 2 (the OR function).
1. Let xi ∈ {0, 1},

OR(x1, . . . , xn) = sgn(−1 + x1 + · · · + xn).

The size of the weights is s = n+ 1. Those weights are minimal.
Proof. The weights are integers. Reducing their size implies resetting one or

more of them to 0, which will violate the definition of OR.
2. Now let xi ∈ {−1, 1},

OR(x1, . . . , xn) = sgn(n− 2 + x1 + · · · + xn).

The size of the weights is s = 2n− 2. Those weights are minimal as well.



CONSTRUCTING MINIMAL WEIGHT THRESHOLD FUNCTIONS 117

Proof. Any weights that implement OR have to be positive. Suppose there exist
weights of size s′ < 2n − 2. No weight can be 0, so

∑n
1 w

′ ≥ n, implying that the
threshold −w0 < (2n− 2)−n = n− 2. Let w′

i be the smallest weight. Set xi = 1 and
all other inputs to −1.

∑n
1 w

′ < −wi(n− 2) so that F (x) < 0 violating the definition
of OR.

It appears from this example that the {0, 1} implementation has smaller weight
size than the {−1, 1} representation. Is that true in general?

Example 3 (the majority (MAJ) function). Let the number of variables, n, be
odd. The majority function outputs true if more than half of its inputs are true.

1. Let xi ∈ {0, 1},

MAJ(x1, . . . , xn) = sgn

(
−n+ 1

2
+ x1 + · · · + xn

)
.

The size of the weights is s = 3n+1
2 . They can be shown to be minimal by a proof

similar to case 2 in Example 2.
2. Now let xi ∈ {−1, 1},

MAJ(x1, . . . , xn) = sgn(x1 + · · · + xn).

Those weights are minimal, since reducing them would imply resetting one or more of
them to 0, which will violate the definition of MAJ . The size of the weights is s = n.

Example 3 shows that in general we cannot tell which implementation {0, 1} or
{−1, 1} will produce a function with smaller weights. However, the weight sizes for
each of those functions are always within a constant factor of each other, since the
{0, 1} weights are related to a set of {−1, 1} weights by a simple linear transformation.

3. Generalized majority function over {−1, 1}. In this section we study
the following model:

f : {−1, 1} → {0, 1},

f(X) = sgn

(
n∑
1

wixi

)
.

Notice that there is no threshold; we are looking at a majority function with arbitrary
weights. We address the problem of constructing functions with minimal weights. In
particular, our goal is that for a given number of inputs n and size s we find a function.

3.1. Mathematical setting. We are interested in constructing functions for
which the minimal weight is easily determined. Finding the minimal weight involves
a search, and we are therefore interested in finding functions with constrained weight
spaces. The following tools allow us to put constraints on W.

Definition 3.1 (root space of a Boolean function). A vector v ∈ {−1, 1}n such
that f(v) = f(−v) is called a root of f . We define the root space, R, as the set of all
roots of f . Note that a vector v is a root if and only if

∑
wivi = 0.

Definition 3.2 (root generator matrix). For a given weight vector w ∈ W and
a root v ∈ R, the root generator matrix, G = (gij), is a (k×n)-matrix, with entries in
{−1, 0, 1}, whose rows g are orthogonal to w and equal to v at all nonzero coordinates,
namely,

1. GwT = 0;



118 VASKEN BOHOSSIAN AND JEHOSHUA BRUCK

2. gij = 0 or gij = vj for all i and j.

The root generator matrix is used to generate linearly independent root vectors
for f . Each row of G corresponds to a new root vector.

Example 4 (root generator matrix). Suppose that we are given a linear thresh-
old function specified by a weight vector w = (1, 1, 2, 4, 1, 1, 2, 4). By inspection we
determine one root v = (1, 1, 1, 1,−1,−1,−1,−1). Notice that w1 + w2 − w7 = 0
which can be written as g ·w = 0, where g = (1, 1, 0, 0, 0, 0,−1, 0) is a row of G. Set
r = v−2g. Since g is equal to v at all nonzero coordinates, r ∈ {−1, 1}n. Also r·w =
v ·w − 2g ·w = 0. We have generated a new root: r = (−1,−1, 1, 1,−1,−1, 1,−1).

Lemma 3.3 (orthogonality of G and W). For a given weight vector w ∈ W and
a root v ∈ R, GuT = 0 holds for any weight vector u ∈ W.

Proof. For an arbitrary u ∈ W and an arbitrary row, gi, of G, let v′ = v − 2gi.
By definition of gi, v

′ ∈ {−1, 1}n and v′ ·w = 0. This implies f(v′) = f(−v′) : v′

is a root of f . For any weight vector u ∈ W, sgn(u · v′) = sgn(−u · v′). Therefore
u · (v − 2gi) = 0 and finally, since v · u = 0, we get u · gi = 0.

Lemma 3.4 (minimality). For a given weight vector w ∈ W and a root v ∈ R if
rank(G) = n − 1 (i.e., G has n − 1 independent rows) and |wi| = 1 for some i, then
w is the minimal weight vector.

Proof. From Lemma 3.3 any weight vector u satisfies GuT = 0. rank(G) = n− 1
implies that dim(W) = 1; i.e., all possible weight vectors are integer multiples of each
other. Since |wi| = 1, all vectors are of the form u = kw for k ≥ 1. Therefore w has
the smallest size.

We complete Example 4 with an application of Lemma 3.4.

Example 5 (minimality). Given the following weights w and a root v,

w = (1, 1, 2, 4, 1, 1, 2, 4), v = (1, 1, 1, 1,−1,−1,−1,−1),

we can construct G:

G =



1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1
1 0 0 0 0 −1 0 0
1 1 0 0 0 0 −1 0
1 1 1 0 0 0 0 −1


It is easy to verify that rank(G) = n − 1 = 7 and therefore, by Lemma 3.4, w is
minimal and S[f ] = 16.

3.2. Weight vectors. In Example 5 we saw how, given a weight vector, one can
show that it is minimal. In this section we present an example of a linear threshold
function with minimal weight size, with an arbitrary number of input variables.

We would like to construct a weight vector and show that it is minimal. Let the
number of inputs, n, be even. Let w consist of two identical blocks :

w = (w1, w2, . . . , wn/2, w1, w2, . . . , wn/2).

Clearly, v = (1, 1, . . . , 1,−1,−1, . . . ,−1) is a root and G is the corresponding genera-



CONSTRUCTING MINIMAL WEIGHT THRESHOLD FUNCTIONS 119

tor matrix.

G =



1 0 0 0 · · · 0 0 0 −1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0 0 −1 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0 0 0 −1 0 · · · 0 0 0
...

...
0 0 0 0 · · · 0 1 0 0 0 0 0 · · · 0 −1 0
0 0 0 0 · · · 0 0 1 0 0 0 0 · · · 0 0 −1



3.3. Construction. The following theorem states that given an integer s and a
number of variables n there exists a function of n variables and minimal weight size
s.

Theorem 3.5 (main result). For any pair (s, n), with both s and n even, sat-
isfying n ≤ s ≤ 2

n
2 , there exists a linear threshold function of n variables, f , with

minimal weight size S[f ] = s.

Proof. Given a pair (s, n) that satisfies the above conditions we first construct
a weight vector w that satisfies

∑n
i=1 |wi| = s; then we show that it is the minimal

weight vector of the function f(x) = sgn(w · x). The proof is shown only for n even.

Construction.

1. Define (a1, a2, . . . , an/2) = (1, 1, . . . , 1).

2. If
∑n/2

i=1 ai < s/2, then increase by one the smallest ai such that ai < 2i−2.
(In the case of a tie take the ai with smallest index i).

3. Repeat the previous step until
∑n/2

i=1 ai = s/2 or
(a1, a2, . . . , an/2) = (1, 1, 2, 4, . . . , 2

n
2 −2).

4. Set w = (a1, a2, . . . , an/2, a1, a2, . . . , an/2).

Because we increase the size by one unit at a time the algorithm will converge to the
desired result for any integer s that satisfies n ≤ s ≤ 2

n
2 . We have a construction for

any valid (s, n) pair. Let us show that w is minimal.

Minimality. Given that w = (a1, a2, . . . , an/2, a1, a2, . . . , an/2) we find a root v,

v = (1, 1, . . . , 1,−1,−1, . . . ,−1),

and n/2 rows of the generator matrix G corresponding to the equations wi = wi+n
2

.
To form additional rows note that the first k ai’s are powers of two (where k depends

on s and n). Those can be written as ai =
∑i−1

j=1 aj and generate k − 1 rows. And

finally note that all other ai, i > k, are smaller than 2k+1. Hence, they can be written
as a binary expansion ai =

∑k
j=1 αijaj , where αij ∈ {0, 1}. There are n

2 − k such
weights. G has a total of n − 1 independent rows. rank(G) = n − 1 and w1 = 1;
therefore, by Lemma 3.4, w is minimal and S[f ] = s.

Example 6 (a function of 10 variables and size 26). We start with
a = (1, 1, 1, 1, 1). We iterate (1, 1, 2, 1, 1), (1, 1, 2, 2, 1), (1, 1, 2, 2, 2), (1, 1, 2, 3, 2),
(1, 1, 2, 3, 3), (1, 1, 2, 4, 3), (1, 1, 2, 4, 4), and finally the algorithm converges to a =
(1, 1, 2, 4, 5). We claim that w = (a,a) = (1, 1, 2, 4, 5, 1, 1, 2, 4, 5) is minimal. Indeed,



120 VASKEN BOHOSSIAN AND JEHOSHUA BRUCK

v = (1, 1, 1, 1, 1,−1,−1,−1,−1,−1) and

G =



1 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 −1
1 0 0 0 0 0 −1 0 0 0
1 1 0 0 0 0 0 −1 0 0
1 1 1 0 0 0 0 0 −1 0
1 0 0 1 0 0 0 0 0 −1


is a matrix of rank 9.

Example 7 (functions with polynomial size). This example shows an application

of Theorem 3.5. We define L̂T
(d)

as the set of linear threshold functions for which
S[f ] ≤ nd. The theorem states that for any even n there exists a function f of n

variables and minimum weight S[f ] = nd. The implication is that for all d, L̂T
(d−1)

is a proper subset of L̂T
(d)

.

4. Arbitrary threshold function over {0, 1}. In this section we present a
different technique for constructing threshold functions with minimal weights. It
allows us to construct functions with any weight size and number of variables. We
consider functions with input domain {0, 1}, but, as mentioned below, the argument
holds for an arbitrary input space {a, b}.

4.1. Approach. The method we use is based on a result from [Willis 63]. We
assume, without loss of generality, that the weights are strictly positive integers. Our
goal is to minimize s =

∑n
0 |wi| =

∑n
0 wi. We know from [Muroga 71] that any other

weights, u, implementing the same function have to be strictly positive. We will show
that under certain conditions on w,

∑n
0 wi ≤

∑n
0 ui for any u.

Consider input vectors x and y for which the following equations hold:

F (x) = −w0 +

n∑
1

wixi = 0, F (y) = −w0 +

n∑
1

wiyi = −1.

Let them define the rows of a matrix that we call A. Using p x-type and q y-type
vectors we get

A =



−1 x(1)

−1 x(2)

...
...

−1 x(p)

1 −y(1)

1 −y(2)

...
...

1 −y(q)


=



−1 x
(1)
1 x

(1)
2 · · · x

(1)
n

−1 x
(2)
1 x

(2)
2 · · · x

(2)
n

...
...

−1 x
(p)
1 x

(p)
2 · · · x

(p)
n

1 −y(1)1 −y(1)2 · · · −y(1)n

1 −y(2)1 −y(2)2 · · · −y(2)n

...
...

1 −y(q)1 −y(q)2 · · · −y(q)n


Example 8 (the matrix A). Suppose we are given the following weights:

w = (16 1 2 4 8 1 2 4 8).



CONSTRUCTING MINIMAL WEIGHT THRESHOLD FUNCTIONS 121

Our goal is to show they are minimal. We need to first construct the matrix A. Here
follows a candidate:

A =


−1 x(1)

−1 x(2)

1 −y(1)

1 −y(2)

 =


−1 1 0 0 0 1 1 1 1
−1 1 1 1 1 1 0 0 0

1 0 0 0 0 −1 −1 −1 −1
1 −1 −1 −1 −1 0 0 0 0


There are many possible choices for A, depending on which of the x- and y-type
vectors are used. The one shown above is not a good one, as we will see. Additional
x-type vectors need to be included in the construction of A in order to satisfy the
requirements in Theorem 4.1.

Theorem 4.1 (condition for minimality). Given a weight vector w, we construct
A as described above. If there is a nonnegative row vector a (that is, ai ≥ 0 for all i)
such that A satisfies

aA = (

n+1︷ ︸︸ ︷
1 . . . 1),

the weight vector w is minimal.
Proof. By definition of the x’s and the y’s the matrix A satisfies

A · (w0 w1 w2, . . . , wn)T = (

p︷ ︸︸ ︷
0 0 . . . 0 0

q︷ ︸︸ ︷
1 1 . . . 1 1)T .(4.1)

Because sgn(0) = 1 and sgn(−1) = 0, any other weight vector, u, implementing the
same function has to verify the above equalities with “≥” instead of “=”:

A · (u0 u1 u2, . . . , un)T ≥ (

p︷ ︸︸ ︷
0 0 . . . 0 0

q︷ ︸︸ ︷
1 1 . . . 1 1)T .(4.2)

Let v = u−w, and subtracting equations (4.1) from inequalities (4.2) we get

A · (v0 v1 v2, . . . , vn)T ≥ (

p+q︷ ︸︸ ︷
0 0 . . . 0 0)T(4.3)

Now suppose A is such that

(a0 a1, . . . , ap+q−1) ·A = (

n+1︷ ︸︸ ︷
1 1 . . . 1 1)(4.4)

Where the ai are strictly positive. We multiply inequalities (4.3) by a from the left
and get

(a0 a1, . . . , ap+q−1) ·A · (v0 v1 v2, . . . , vn)T ≥ (a0 a1, . . . , ap+q−1) · (

p+q︷ ︸︸ ︷
0 0 . . . 0 0)T ,

(

n+1︷ ︸︸ ︷
1 1 . . . 1 1) · (v0 v1 v2, . . . , vn)T ≥ 0,

n∑
0

vi ≥ 0.



122 VASKEN BOHOSSIAN AND JEHOSHUA BRUCK

Since wi ≥ 0, ui ≥ 0 for all i = 0, . . . , n we know that
∑n

0 ui ≥
∑n

0 wi.
Notice that nowhere in the proof did we use the fact that the input domain is

{0, 1}. Indeed, the above proof is valid for any input domain {a, b}. As you can
see the proof relies on constructing A so that (4.4) holds. To construct A we need
appropriate x’s and y’s which in turn depend on the choice w.

4.2. Basic construction. In this section we introduce w, the weight vector for
the general construction, and prove it is minimal by finding an appropriate matrix A.
We use a construction similar to the one in section 3, based on powers of two.

Construction. Given a pair (s, n), where n+ 1 ≤ s ≤ 3∗2�
n
2 �−2, and s = 3m− l,

with l ∈ {0, 1, 2}, we have the following:
1. Define s′ = 3m− 2 and n′ = n− (s− s′).
2. Define k as the largest integer such as s′ > 3 ∗ 2k−1 − 2.
3. Define s0 = 1

3 (s′ − 3 ∗ 2k−1 + 2).
4. Set

(w0, w1, . . . , w2k) = (2k−1 + s0, 1, 2, 4, . . . , 2
k−2, s0, 1, 2, 4, . . . , 2

k−2, s0).

At this point the size of w is s′. In the following two steps additional weights are
added in order to get to the desired number of variables n and the exact weight size
s.

5. For every wi with i ∈ {2k + 1, . . . , n′} let wi = 1 and subtract 1 from the
largest weight wj , j ∈ {1, . . . , 2k}. In case of a tie select the weight with largest index.

6. For every wi with i ∈ {n′ + 1, . . . , n} let wi = 1. No subtraction is needed.
(Notice that n− n′ ∈ {0, 1, 2}.)

Let us look at two examples.
Example 9 (a function of 12 variables and size 35). s = 35 = 3∗12−1, therefore

s′ = 34, n′ = 11, k = 4, s0 = 4. The weight iterations are

w = (12, 1, 2, 4, 4, 1, 2, 4, 4),

w = (12, 1, 2, 4, 4, 1, 2, 4, 3, 1),

w = (12, 1, 2, 4, 4, 1, 2, 3, 3, 1, 1),

w = (12, 1, 2, 4, 3, 1, 2, 3, 3, 1, 1, 1),

w = (12, 1, 2, 4, 3, 1, 2, 3, 3, 1, 1, 1, 1).

Example 10 (base case: n = 2k, s0 = 2k−1). Let us show that the weights of
Example 8 are minimal. Using the above notation n = 8, s0 = 8, and k = 4.

w = (16 1 2 4 8 1 2 4 8).

Here follow the X- and Y -type rows for A:{ −1 1 0 0 0 1 1 1 1
−1 1 1 1 1 1 0 0 0

}
sumX1 = (−2 2 1 1 1 2 1 1 1){ −1 0 1 0 0 0 1 1 1

−1 0 1 1 1 0 1 0 0

}
sumX2 = (−2 0 2 1 1 0 2 1 1){ −1 0 0 1 0 0 0 1 1

−1 0 0 1 1 0 0 1 0

}
sumX3 = (−2 0 0 2 1 0 0 2 1){ −1 0 0 0 1 0 0 0 1

−1 0 0 0 1 0 0 0 1

}
sumX4 = (−2 0 0 0 2 0 0 0 2)



CONSTRUCTING MINIMAL WEIGHT THRESHOLD FUNCTIONS 123

1 0 0 0 0 −1 −1 −1 −1
1 −1 −1 −1 −1 0 0 0 0︸ ︷︷ ︸

sumY1=(2 −1 −1 −1 −1 −1 −1 −1 −1)

We replicate rows and add them in order to get to the all 1 vector. Only the first five
columns are shown.

−2 2 1 1 1
−2 0 2 1 1
−2 0 0 2 1
−2 0 0 0 2

2 −1 −1 −1 −1




−16 16 8 8 8
−8 0 8 4 4
−4 0 0 4 2
−2 0 0 0 2

2 −1 −1 −1 −1




−24 24 12 12 12
−12 0 12 6 6
−6 0 0 6 3
−3 0 0 0 3
46 −23 −23 −23 −23


The last matrix was obtained by multiplying the first four rows by 3/2, and the last
row by 23. Its rows add up to the all 1 vector. Using the notation of Theorem 4.1,
given the matrix A, as defined above,

a =

(
12, 12, 6, 6, 3, 3,

3

2
,

3

2
, 23, 23

)
.

Theorem 4.2 (minimality of the construction). For any pair (s, n) satisfying

n+ 1 ≤ s ≤ 3 ∗ 2�
n
2 � − 2

one can construct an n-variable threshold function with minimal weights of size s.
We will first show that steps 1–4 of the construction produce minimal weights.

The second part of the proof focuses on adding a padding of unit weights in order to
achieve the desired number of variables n.

Proof (part 1: no padding). As of step 4 of the construction,

w = (2k−1 + s0, 1, 2, 4, . . . , 2
k−2, s0, 1, 2, 4, . . . , 2

k−2, s0).

We are going to construct A, show that it satisfies aA = 1, and apply Theorem 4.1.
Only two Y -type vectors are needed for the construction of A:(

1 0 · · · 0 −1 · · · −1
1 −1 · · · −1 0 · · · 0

)
They add up to (2 −1 · · · −1). The X-type vectors, summed two by two, produce
the following matrix (only the first k+1 columns are shown, the remaining k columns
are identical to columns 2 to k + 1):

AX =



−2 2 1 1 1 1 · · · 1 1 1
−2 0 2 1 1 1 · · · 1 1 1
−2 0 0 2 1 1 · · · 1 1 1
−2 0 0 0 2 1 · · · 1 1 1

...
...

−2 0 0 0 0 0 · · · 0 2 1
−2 t0 t1 t2 t3 t4 · · · tk−2 tk−1 2





124 VASKEN BOHOSSIAN AND JEHOSHUA BRUCK

The ti, (ti ∈ {0, 1}), are the binary expansion of 2k−1 − s0,

2k−1 − s0 =

k−1∑
i=0

2iti.

One can verify that the last row is indeed the sum of two X-type vectors. Given the
above choice of A we need to compute the ai in the following set of equations:

a0
a1
a2

...
ak−2

ak−1

ak



T 

−2 2 1 1 1 ·· 1 1 1 1
−2 0 2 1 1 ·· 1 1 1 1
−2 0 0 2 1 ·· 1 1 1 0

...
...

−2 0 0 0 0 ·· 0 0 2 1
−2 t0 t1 t2 t3 ·· tk−4 tk−3 tk−2 2

2 −1 −1 −1 −1 ·· −1 −1 −1 −1


=



1
1
1
...
1
1
1



T

It is possible to get an explicit formula for ai as a function of the ti, but it is not
necessary. All that is needed is to show that the ai are nonnegative. Consider the
following set of equations:

b0
b1
b2

...
bk−2

1



T 

2 1 1 1 ·· 1 1 1 1
0 2 1 1 ·· 1 1 1 1
0 0 2 1 ·· 1 1 1 0
...

...
0 0 0 0 ·· 0 0 2 1
t0 t1 t2 t3 ·· tk−4 tk−3 tk−2 2


=



h
h
h
...
h
h



T

Notice that bk−1 is set to 1. This is a system of k equations with k unknowns. Solving

for the bi and h we get 2b0 = h − t0, 2bi = h − ti −
∑i−1

j=0 bj , and h = 2 +
∑k−2

j=0 bj .
The last two equations can be combined into bk−2 = 2 − tk−2. Using the recurrence
formula, 2bi = bi−1 − (ti − ti−1), the remaining values are obtained:

bk−3 = 4 − tk−2 − tk−3,

bk−4 = 8 − 2tk−2 − tk−3 − tk−4,

bk−5 = 16 − 4tk−2 − 2tk−3 − tk−4 − tk−5,

...

b0 = 2k−1 − 2k−3tk−2 − 2k−4tk−3 − · · · − t1 − t0,

h = 2k − 2k−2tk−2 − 2k−3tk−3 − · · · − 2t1 − t0.
Notice that all the bi and h are nonnegative because ti ∈ {0, 1}.

Let ai = αbi for i = 0, .., k − 1. We need to show that α and ak are nonnegative.
Going back to aA = 1, the remaining two equations are

2ak − 2α

k−1∑
i=0

bi = 1 and αh− ak = 1.



CONSTRUCTING MINIMAL WEIGHT THRESHOLD FUNCTIONS 125

Solving for α and ak we get α = 3/2(h −∑ bi) and ak = (h + 2
∑
bi)/2(h −∑ bi).

Substituting for h = 1 +
∑k−1

i=0 bi we get

α =
3

2
and ak =

1

2
+

3

2

k−1∑
i=0

bi.

Since all bi are nonnegative, ak ≥ 0, which completes the proof.
Proof (part 2: extra padding of ones). The second part of the proof will focus on

steps 5 and 6 of the construction. The following two lemmas are needed.
Lemma 4.3 (splitting a weight). Let w = (w0, w1, . . . , wn) be minimal.

Then w̃ = (w0, w1, . . . , wn−1, a, b), where a+ b = wn is also minimal.
Proof. Construct the matrix A while duplicating the last column.
Lemma 4.4 (adding an input with unit weight). If w = (w0, w1, . . . , wn) is

minimal, and w0 > 0, then w̃ = (w0, w1, w2, w3, . . . , wn+1), where wn+1 = 1, is also
minimal.

Proof. Suppose it is not minimal, implying there exists a better choice for w̃;
let us call it w′. There are two possibilities. Either w′

n+1 = 0 or some of the w′
i for

i < n + 1 is smaller than the corresponding wi. In the latter case, we set xn+1 = 0
and obtain the original function implemented with smaller weights, contradicting the
hypothesis. Now suppose w′

n+1 = 0, implying that f̃ does not depend on xn+1. That
in turn implies

∑n
0 wixi ≥ 0 or

∑n
0 wixi ≤ −2 for all inputs X. We can reduce w0 by

1, implying the original function was not minimal.
In step 5 of the construction, starting with the following weights,

w = (2k−1 + s0, 1, 2, 4, . . . , 2
k−2, s0, 1, 2, 4, . . . , 2

k−2, s0).

Lemma 4.3 is used to increase the number of weights while keeping their size constant.
In step 6, a final adjustment is done for the cases s = 3m− 1 and s = 3m. Applying
Lemma 4.4, an additional one, or two, unit weights are added to achieve the desired
pair (s, n). The smallest weights achievable are w = (1 . . . 1). Any smaller weights
will produce a function of less variables. The upper bound 3 ∗ 2�

n
2 � − 2 is achieved

when s0 = 2k−1 and there is no padding of ones.
Example 11 (functions with polynomial size). Just as in section 3, we can

define L̂T
(d)

as the set of linear threshold functions for which S[f ] ≤ nd. Theorem
4.2 states that for any n there exists a function f of n variables and minimum weight

S[f ] = nd. The implication is that for all d, L̂T
(d−1)

is a proper subset of L̂T
(d)

.

5. Conclusions. We presented two techniques for constructing minimal weight
threshold functions of arbitrary weight size and number of inputs. We considered
both the {0, 1} and {−1, 1} input domains. Using these techniques we further refined
the separation between polynomialy and exponentially growing weights. The natural
open problem is to find out if these new techniques are useful in extending the existing
lower bounds [Hajnal 93] on circuit size to functions with arbitrary weights.

REFERENCES

[Allender 89] E. Allender, A note on the power of threshold circuits, in Proceedings of the 30th
IEEE Symposium on Foundations of Computer Science, Research Triangle Park,
NC, 1989, pp. 580 – 584.

[Anthony 93] M. Anthony and J. Shawe-Taylor, Using the perceptron algorithm to find con-
sistent hypotheses, Combin. Probab. Comput., 2 (1993), pp. 385–387.



126 VASKEN BOHOSSIAN AND JEHOSHUA BRUCK

[Beame 84] P.W. Beame, S.A. Cook, and H.J. Hoover, Log depth circuits for division and
related problems, in Proceedings of the 25th IEEE Symposium on Foundations
of Computer Science, Singer Island, FL, 1984, pp. 1–6.

[Goldmann 92] M. Goldmann, J. Hastad, and A. Razborov, Majority gates vs. general weighted
threshold gates, Comput. Complexity, 2 (1992), pp. 277–300.

[Goldmann 98] M. Goldmann and M. Karpinski, Simulating threshold circuits by majority cir-
cuits, SIAM J. Comput., 27 (1998), pp. 230–246.

[Hajnal 93] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan, Threshold circuits
of bounded depth, J. Comput. System Sci., 46 (1993), pp. 129–154.

[Hampson 86] S.E. Hampson and D.J. Volper, Linear function neurons: Structure and training,
Biol. Cybernet., 53 (1986), pp. 203–217.

[Hastad 94] J. Håstad, On the size of weights for threshold gates, SIAM. J. Discrete Math., 7
(1994), pp. 484–492.

[Krause 95] M. Krause and P. Pudlak, On computing boolean functions by sparse real polyno-
mials, in Proceedings of the 36th IEEE Symposium on Foundations of Computer
Science, Milwaukee, WI, 1995, pp. 682–691.

[Muroga 71] M. Muroga, Threshold Logic and Its Applications, Wiley-Interscience, New York,
1971.

[Myhill 61] J. Myhill and W. H. Kautz, On the size of weights required for linear-input switch-
ing functions, IRE Trans. Electronic Computers, EC10 (1961), pp. 288–290.

[Saks 93] M. Saks, Slicing the hypercube, in Surveys in Combinatorics, London Math. Soc.
Lecture Note Ser. 187, 1, K. Walker, ed., Cambridge University Press, Cam-
bridge, UK, 1993, pp. 211–256.

[Siu 93] K. Siu, J. Bruck, T. Kailath, and T. Hofmeister, Depth efficient neural net-
works for division and related problems, IEEE Trans. Inform. Theory, 39 (1993),
pp. 423–435.

[Siu 91] K.-Y. Siu and J. Bruck, On the power of threshold circuits with small weights,
SIAM J. Discrete Math., 4 (1991), pp. 423–435.

[Willis 63] D.G. Willis, Minimum weights for threshold switches, in Switching Theory in Space
Techniques, Stanford University Press, Stanford, CA, 1963.

[Yao 90] A.C. Yao, On ACC and threshold circuits, in Proceedings of the 31th IEEE Sym-
posium on Foundations of Computer Science, St. Louis, MO, 1990, pp. 619–627.


