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ALGEBRAIC THEORY OF AFFINE CURVATURE TENSORS

N. BLAZIC 1, P. GILKEY, S. NIKCEVIC, AND U. SIMON

ABSTRACT. We use curvature decompositions to construct generating sets for
the space of algebraic curvature tensors and for the space of tensors with the
same symmetries as those of a torsion free, Ricci symmetric connection; the
latter naturally appear in relative hypersurface theory.

1. INTRODUCTION

Let V' be a real vector space of dimension m; to simplify the discussion, we shall
assume that m > 4 henceforth; similar results hold in dimensions m = 2 and m = 3.
In Section 2, we discuss the space of curvature operators R(V) C @?V* @ End(V).
These are operators with the same symmetries as those of the curvature operator
of a torsion free connection on the tangent bundle of a smooth manifold. One has
that R € R(V) if and only if for all z,y,z € V,

(L.a) R(z,y)z = —R(y,z)z and
(1.b) R(z,y)z + Ry, z)x + R(z,z)y =0.
Equation (1.b) is called the first Bianchi identity. We have, see for example
Strichartz [7], that
dimR(V) = tm?(m? —1).
In Section 3, we discuss the space of algebraic curvature tensors a(V) C @4V*.
This is the space of tensors with the same symmetries as that of the curvature tensor

defined by the Levi-Civita connection of a pseudo-Riemannian metric; A € a(V) if
and only if for all z,y,z,w € V,

(16) A(xvywsz) = _A(yaxwsz)a
(1.d) A(x7y, Z7w) + A(y’ z’ m7w) + A(Z7x7y7w) = 0,
( * A(x7y, Z7w) = A(z, w, x’y)?

l.e)
(1.) Alz,y, z,w) = —A(z,y,w, 2) .

We shall show in Theorem 3.2 that identities (1.e) and (1.f) are equivalent in the
presence of identities (1.c) and (1.d). One has, see for example Strichartz [7], that:
dim{a(V)} = 220D

If R € R(V), it is natural to consider the traces:
pl4(R)(x7y) = TI‘{Z - R(Z, x)y}a
(1.g) p2a(R)(z,y) := Triz — R(z, 2)y},
p34(R)((E7 y) = TI‘{Z - R(CE7 y)Z} :
The identities of Equations (1.a) and (1.b) show that:
p24(R) = —p14(R) and

(Lb) ps(R)(@,9) = —pra(R) (@,9) + pra(R)(y. 2).
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In Section 4, we discuss the affine curvature operators §(V) C R(V). These are
the operators with the same symmetries as those of an affine connection without
torsion; F € §(V) if and only if for all z,y,z € V,

(1.1) Flx,y)z = —F(y,x)z,

(1.j) F(x,y)z+ Fy,z)x + F(z,x)y =0,
(Lk) p1a(F) (@, y) = p1a(F)(y, ),

(1. p3a(F) =0.

By Equation (1.h), Equations (1.k) and (1.1) are equivalent in the presence of Equa-
tions (1.1) and (1.j); thus these are the symmetries of the curvature operator of a
torsion free, Ricci symmetric connection on the tangent bundle of a smooth man-
ifold. Such curvature operators appear naturally as curvature operators of the
induced and of the conormal connections in relative hypersurface theory; see [6].
The natural structure group of the spaces R(V), a(V), and F(V) is the general
linear group GL(V). Let O(V,(-,-)) be the orthogonal group associated to a non-
degenerate symmetric bilinear form (-,-) € S(V*) of signature (p,q) on V. We can
use (-, -) to raise and lower indices and define an O(V, (-, -)) equivariant identification
between ®*V* and ®?V* @ End(V) by means of the identity:
(1.m) R(z,y,2,w) = (R(z,y)z, w).
We let
t(V) C ®4V*7 Q[(Va <'7 >) C ®2V* ® EDd(V), f(V, <'7 >) c ®4V*
be the subspaces associated to R(V'), a(V), and §(V), respectively; R € t(V) if and
only if for all x,y, z,w € V, one has
R(J?, Y,z U)) = _R(ya z,z, U)),
R(z,y,2,w) + R(y, 2, z,w) + R(z,2,y,w) = 0.

We have A € A(V, (-, -)) if and only if for all z,y, 2z, w € V one has:

A(ﬂf, y) = _A(ya 33),

Az, y)z + Aly, 2)z + A(z, )y =0,

(A(z,y)z,w) = (A(z,w)z,y),

(Alz, y)z,w) = —(Alz, y)w, 2),
the last two identities being equivalent in the presence of the first two. Finally
F € f(V,{(-,-)) if and only if for all z,y, z,w € V one has:

(1.n) F(z,y,z,w) = —F(y, z,z,w),

(1.0) F(z,y,z,w)+ F(y, z,z,w) + F(z,z,y,w) =0,
(Lp) p14(F)(@,y) = p1a(F)(y, z),

(1.9) (ideTr)F =0.

Again, identities (1.p) and (1.q) are equivalent given the identities of Equations
(1.n) and (1.0).

The spaces A(V, (-, -)) and §(V, (-, -)) depend upon the choice of the inner product;
the space t(V) does not. Thus it is convenient to keep the distinction between
subspaces of ®2V* ® End(V) and ®*V*; this will play a crucial role in the proof of
Theorem 4.2. The spaces R(V), A(V), and F(V) are subspaces of @2V* @ End(V);
elements of these spaces will be denoted by R, A, and F, respectively, and are
operator valued bilinear forms. The spaces t(V'), a(V), and f(V') are subspaces of
®4V*; elements of these spaces will be denoted by R, A, and F, respectively, and
are quadralinear forms. We have the inclusions:

AV, () < F(V) c R’(V),
a(V) c i) < (V).
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Let {e;} be a basis for V. If 1 € ®2V* and if © € @*V*, set

Yij = Y(ei,e5) and Oy = Oej, ej, ex,e) .

Let {e'} be the associated dual basis for V*. Then
P = Zij %’jei ®el and O = Zijkl wijklei R @e.

If (-,-) is a non-degenerate inner product on V, let
(L.r) Eij = (ei,e;) and 3, EUE = 0l
where J is the Kronecker symbol. One then has:

> EY(z,ei)ej =x and  Tr{y}= 2 i) B9y -

We shall decompose the natural action of GL(V) and of O(V, (-,-)) on the spaces
R(V), a(V), and F(V) as the direct sum of irreducible modules and use these de-
compositions to exhibit generating sets for these spaces and to derive other natural
geometric properties.

Our motivation in this paper is to study affine curvature operators; as already
stated above, these are the curvature operators which naturally appear as curvature
operators of the induced and of the conormal connections in relative hypersurface
theory. Moreover, in this situation, there naturally appears a metric, the so called
relative metric, which permits us to raise and lower indices. Our aim is a char-
acterization of the affine curvature operators, arising from torsion free and Ricci
symmetric connections, in the space of all curvature operators arising from torsion
free connections. Via the decomposition results of Section 4, these are character-
ized by the vanishing of the component W3. We will study the geometric meaning

of the various components in this decomposition, at least in the case of relative
hypersurfaces, in a subsequent paper.

2. CURVATURE OPERATORS

In this section, we study operators with the same symmetries as those of a torsion
free connection on the tangent bundle of a smooth manifold.

2.1. Geometric representability of curvature operators. If V is a torsion free
connection on the tangent bundle of a smooth manifold M, let RV be the associated
curvature operator; if P € M and if z,y,z € TpM, then

RY(z,y)z = {Vrvy —VyVa — V[%y]} z-

One then has RY, € R(TpM) since the symmetries of Equations (1.a) and (1.b)
hold. Conversely, every curvature operator is geometrically representable by an
torsion free connection:

Theorem 2.1. Let R € R(V) be given. Regard V' as a smooth manifold in its own
right. Let 0 be the origin of V and identify ToV = V. Then there exists a torsion
free connection V on V so that R = R.

Proof. Let R € R(V). Expand R(e;, ej)er = >, Riji'e; relative to some basis {e;}
for V. Let {z;} be the associated dual coordinates; if e € V, then e = ). x;(e)e;.
Define a connection V on TV by setting

Va,, 0z, =Yy Tap?0z, for Tap?:=—23 2{Racs? + Reca} -
Since Vo, O, = Va,, 0z,, V is torsion free. As I'(0) =0,
RY (0, 00,)0, = 32300, Tjit — 02, Tirh) 0y,
= =32 {Rjir' + Riis® — Rijit — Ruji' }oa,
=2 3 {2Rijit 4 Rt + Rjni' Y0, = Rijie' Os, -
This completes the proof of the desired result. g
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2.2. The Jacobi operator. This operator is defined by setting:
Ir(@)y =Ry, z)z.

It plays a central role in the study of geodesic sprays. The following result is known
in the context of Riemannian geometry; it extends easily to the more general setting.

Lemma 2.2. Let R € R(V). If Jr =0, then R = 0.

Proof. Jr(zx) is quadratic in z. The associated bilinear form is given by
Tr(@,y) : 2 = 5{0:Tr(z + ey) }2le=0 = 3{R (2, 2)y + R(z,y)z}.
If Jr(x) =0 for all x € V, one has the additional curvature symmetry
R(z,z)y +R(z,y)z =0
for all x,y,z € V. We compute:
0 = Rz,y)z+ Ry, 2)x +R(z,2)y

= R(z,y)z — R(y,x)z — R(z, z)y

= R(z,y)z+ R(z,y)z + R(x,y)z.
The Lemma now follows. |

2.3. The action of the general linear group on R(V). This action is not
irreducible, but decomposes as the direct sum of irreducible modules. Let

(2.a) V) :=ker{p1a} NR(V).

The decomposition V* ®@ V* = A2(V*) @ S%(V*) is a GL(V) equivariant decom-
position of V* ® V* into irreducible modules; we let 7, and w5 be the appropriate
projections where

(2.b) Ta(¥)ij = 5(bi; —ji) and  wy(¥)s; = 3 (ij + ¥ji) -
We may therefore decompose p14 = 7, © p14 ® 75 0 p14 Where p14 is as defined in
Equation (1.g). One has the following result of Strichartz [7]:

Theorem 2.3. The map p14 defines a GL(V) equivariant short exact sequence
0— UV) = ROV)ZEAZ (V) & S2(V*) =0
which is equivariantly split by the map or,o0p1s © Ox 0p, Where
Traops(@)(@,9)2 = {20 (2, y)z + w(z, 2)y — w(y, 2)a} for w e AX(V7),
Traopns (W) (@, 9)2 = 5 {v(x, 2)y — W(y, 2)a} fory € S2(V¥).
This gives a GL(V) equivariant decomposition of
ROV) =UV)@ A2 (V)@ S32 (V™)
as the direct sum of irreducible GL(V') modules. We have
dim{U(V)} = tm?(m? —4), dim{A?(V*)} = im(m — 1),
dim{SQ(V*)} = %m(m +1), dim{R(V)}= %mQ(m2 —-1).
Proof. We check the splitting as follows. If w € A%2(V*), let Ry = Oroprs ().
Then R, (z,y) = —Ru(y,x). We check the Bianchi identity by computing:
Ro(x,y)z + Ru(y, 2)x + Ru(z, )y = 1jr—71n{2w(3:, y)z +w(z, 2)y —w(y, 2)z
+2w(y, 2)z + w(y, z)z — w(z, 2)y +2w(z,2)y + w(z,y)x —w(z,y)z}
=0.
Thus R, € R(V). One also has that:

P1a(Ru)(Y, 2) = 1557 2o € {2w(ei, y)2 + w(ei, 2)y — w(y, 2)ei}

= 5 (20(2,9) T w(y, 2) — mw(y, 2)} = w(y, 2).
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Let ¢ € S2(V*) and let Ry = 0y op, (). Again, Ry(z,y) = —Ry(y,x). We
verify the Bianchi identity by computing:

Ry(w,y)z + Ry (y, 2)x + Ry (2, 2)y

= = {U(z, 2)y — (Y, 2)z + Yy, 2)z — (2, 2)y + (2, 9)z — P(z,y)z}
=0.

This shows that Ry € R(V'). Furthermore:
Pra(Ry)(y, 2) = 1= L e {(ei, )y — v(y. 2)es}
= = {0, 2) —m(y, 2)} = ¥ (y, 2).
Consequently one has an equivariant decomposition of R(V') into GL(V') modules:
R(V) =d(V) @ A*(V*) & S (V7).

We refer to [7] for the proof of the remaining assertions of the Theorem. O

We say that two torsion free connections V and V on a differentiable mani-
fold M are projectively equivalent if and only if every every geodesic for V can
be reparametrized to be a geodesic for V, or equivalently if there exists a smooth
1-form w so

Vay = Vay = w(@)y + w(y)z

The summand (V) plays the role of the Weyl projective tensor; it also plays a
role in the affine setting as we shall see presently in Theorem 4.1. Let my be the
associated projection on this summand in the decomposition of Theorem 2.3. One
has [6, 7, 8]:
Lemma 2.4. Let V and V be torsion free connections on M.

(1) If V and V are projectively equivalent, then mgR = myR.

(2) The connection V is projectively flat if and only if myR = 0.

2.4. The action of the orthogonal group on R(V). The associated orthogonal
group O(V, (-,+)) acts on R’(V) and on t(V); the natural map from R(V) to (V)
given by Equation (1.m) is an equivariant isomorphism. Let £ be as in Equation
(1.r). We define:

AN (V*)i={w e @V* twij = —wj; },
Sy, () = {w € @V 1y =i, 0, EYey; = 03,
w(V, () = {@ € V™ : Ok + Ojrit + Oy =0,
Okl = —Ojikl = Okiij, Yy E'Oijm = 0},
A (A2(V*) :={0 € @"V* : O4j1 = —Ojits = —Oijie = —Ouis },
AZ(A2(V7)) = {0 € A2(A2(V™)) : X2y E1Ouu = O},
S(V, () =1{0 € @*"V* : Oijr = —Ojir = Oujir, y_;y Z'Oijus = 0,
Okjit + Oikji — Ojir — O = 0} .
Note that A2(A2(V*)), AZ(A%(V*)), and &(V, (-,-)) are not subsets of a(V).
Theorem 2.5.
(1) There is an O(V,{-,-)) equivariant orthogonal decomposition of
RV)=t(V)=W1@...0Ws
as the direct sum of irreducible O(V, (-,-)) modules where:
dim{W;} =1, dim{Ws} = dim{W;} = tn=lmt2)

dim{W3} = dim{W,} = M’ dim{Ws} = m(m+1)(T2 3)(m+2)
dim{W;} = (m=1)(m— 2)(m+1)(m+4) dim{Ws} = m(m— 1)(m 3)(m+2)

(2) There are the followmg zsomorphisms as O({-,-)) modules.
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(a) Wy =R, Wo = W5 =~ SZ(V*, (,+)), and W3 ~ Wy ~ A2(V*).
(b) W =~ w(V,(-,-)) is the space of Weyl conformal curvature tensors.
(c) Wr = &S(V, () and Wg ~ A3(A2(V*)).

We refer to Bokan [1] for the proof of Assertion (1) in the context of a positive
definite inner product; it extends immediately to the indefinite inner products. We
will prove Assertion (2a) later in this section. We will prove Assertion (2b) in
Section 3. We will prove Assertion (2c¢) in Section 4.

Remark 2.6. Since Wy and W5 are isomorphic as O(V, {-,-)) modules and since
W3 and Wy are isomorphic as O(V, (-, -)) modules, the decomposition of R(V') into
irreducible module summands is not unique; this fact plays an important role in
the analysis of Bokan [1].

We shall need a technical result before proving Theorem 2.5 (2). We use Equation
(1.m) to lower indices and to define a curvature tensor R associated to a curvature
operator R. Let = be as in Equation (1.r). Then:

y) = Zz] = jR(elvx y7ej) p23(R)(x7y) = Zz] E”R('xv €i, ejvy)a
p24(R)($,y) = ZU = ]R(QZ, €i,Y, ej)a p13(R)(x7y) = Zz] E”R(eh m,@j,y),
y) =2, EVR(x,y, €5, ¢5) = —pra(R)(z,y) + pra(R)(y, x) .
There is an O(V, (-, )) equivariant decomposition:
VRV =NV ) e SgVE () eR

where S3(V*,(-,-)) is the space of trace free symmetric bilinear forms, and where
R is the trivial O(V, (-,-)) module. If m,, mo, and 7 are the associated orthogonal
projections, then

Wa(¢)(x7y) = %{W%y) - w(yvx)}a
o0 ma(W)(z.1) = 3 (0(e.1) + V(.2
' T() == 22 EV (e, €5),

mo(¥)(@,y) = ms () (2, y) — (W) () -

If o € SZ(V*,(-,-)) and if w € A2(V*), let:

= Y(x, w){y, 2) — Yy, w)(z, 2),
= (z,w)(y, z) — (y, w)p(z, 2),
= 2w(z,y) (2, w) + w(z, 2){y, w) — w(y, 2){z, w),
= w(z,w)(y, z) — w(y, w){z,2) .

Q

S
1Y), y, 2, w
o2 (Y)(2,y, 2, w
(@)(
(w)(

o3(w)(x,y, z,w

o4(w)(z,y, 2z, w

Lemma 2.7.

*

(1) o1 and o2 are O(V,{(-,)) equivariant maps from Sz(V*,{(-,-)) to v(V), o3
and a4 are O(V, (-,-)) equivariant maps from A2(V*) to v(V'), and
d

P14001 pP23001 \ _ —id (m—1)i

praooy ppzooy )\ (m—1)id —id

<101300'3 p34oag)_< —3id 2(m+1)id
={ '

P13004 P34 004 —m)id 2id
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(2) We have O(V,{-,-)) equivariant sequences which are equivariantly split:
Topa:t(V) =R —0,
0 © p1a ® 7o 0 p13 + (V) — SFV*, () @ S5(V*, (-,-)) — 0,
Ta 0 p13 D Tq 0 p3a s t(V) — A2(V*) @ A2(V*) — 0.
Proof. Let v € S3(V*,(-,-)) and let w € A2(V*). Set Ry := o1(¢), Re := 02(1),

Rs = 03(w), and R4 := o4(w). It is immediate R;(z,y, z,w) = —R;(y,x, z,w). To
show that R; € v(V'), we must verify the first Bianchi identity is satisfied:

Ry(z,y,z,w) + Ri(y, 2, x,w) + Ri (2, 2,y, w)

)
=Pz, w)(y, z) — Yy, w)(z, 2)
+(y, w)(z, z) — ¥(z, w)(y, z)
+(z,w){z,y) — ¥(z,w)(z,y) =
Ro(x,y,z,w) + Ra(y, z,z,w) +R2(z,x7y,w)
= (z,w)Y(y, z) — (y, w)(z, z)
(Y, w)(z, ) — (2, w)Y(y, )
+(z, w)(z,y) — (z, w)p(z,y) =
Rs(x,y, z,w) + R3(y, z,z,w) +R3(z Z,y,w)
:2w(xv )< 2y > ( 7Z)< >_w(y7 )<x7w>
+2w(y, z)(z, w) + w(y, 2)(z, w) — w(z, z){y, w)
+2w(z, )y, w) + w(z, y) {2, w) —w(,y){z,w) =
R4($ Yy, 2, w) + Ra(y, z, x,w) + Ra(z,2,y, w)
w(z, )< ,2) — w(y, w)(z, z)
+w(y, w)(z, ) — w(z, w)(y, )
+w(z,w){z,y) — w(z,w)(z,y) = 0.

We complete the proof of Assertion (1) by computing:
pra(R1)(y, 2) = 0 E9{(eir ) (y, 2) — ¥y, e5)(ei, 2)}

i)
= T(dj) <y7 Z> - ’@[J(ya Z) = _¢(ya Z),
p23(R1)(x,w) = Zij Eij{w(wixeiﬂ ej> - w(eivw)<x7ej>}
= (m — 1Y (z,w),
pra(Ra)(y, 2) = 30, E {(ei, e)¥(y. 2) — (y. e5)¥(ei, 2)}

1
pa3(Re)(w,w) = 3=, ¥ {(z, w)¥(es, ¢5) — (es, w)¥(z, ¢;)}
7U}> - w(wi) = —¢($,W),

) =305 BV {2w(ei y)(ej, w) + wlei, e5){y, w) — wly, e;){ei, w)
Y
paa(B3)(x,y) = ZU ””{2w(x y)leire;) +w(x, ei)(y, ) — wly, ei){z, e:)

p13(Ra)(y, w) = Zij E“{w(euw)@,eﬁ —w(y,w)les ¢j)} = (1 = m)w(y, w),
) =305 BN w(@, )y €i) — w(y, e;)(x, ei) } = 2w(x,y).

We now prove Assertion (2). We show the first sequence splits by computing:

p3a(Ra)(z,y

mT(Pm(Uﬂ', ) = ﬁl) Dijkl EUEIMEu B — EaZa )
= mmoD E”{(SZ(SJ 5175;}:1.

As the determinants of the two coefficient matrices in Assertion (1) are non-zero,
the desired splitting of the second and of the third sequences follows. g
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Proof of Theorem 2.5 (2a). By Lemma 2.7, R has multiplicity 1, SZ(V*,(-,-)) has
multiplicity 2, and A?(V*) has multiplicity 2 in the decomposition of t(V) as an
O({(-,+)) module. These modules are irreducible and

dim{R} =1, dim{S2(V*, (-,))} = B0t - gim (A2(V*)} = mm=l)

Theorem 2.5 (2a) now follows from Theorem 2.5 (1). O

3. ALGEBRAIC CURVATURE TENSORS

In this section, we study the quadralinear forms with the same symmetries as
those of the Levi-Civita connection of a pseudo-Riemannian manifold.

3.1. The action of the general linear group on a(V).
Theorem 3.1. a(V) is an irreducible GL(V') module.

We postpone the proof of this result until Section 5 as we must first establish
some additional notation.

3.2. The action of O(V, (-,-)) on a(V). Let
(3-a)  (i[dem)(R)(z,y,z,w) == 3{R(z,y,2,w) + R(z,y,w, 2)} for R € (V).
If ¢,7) € S?(V*), one can define an algebraic curvature tensor ¢ A € a(V) by:

(3 b) {¢/\¢}($7yaz7w) = %{qb(x,w)w(y,z) _(b(xaz)’lr/)(va)
(This has a different normalizing constant than the usual Kulkarni-Nomizu prod-

uct). These tensors arise naturally. If L is the second fundamental form of a
hypersurface M in R™+!, then

Ry=LAL.
Define:
w(V, (-, ) = ker{pra} N a(V),
(3.c) Tidam, (S)ijkt = Sijrt + 3{Skjit + Sikji — Stjik — Sitjk }s
Tapna(¥) = 250 A () = iy () A ()
Theorem 3.2.

(1) Let R € @*V* satisfy Equations (1.c) and (1.d). Then Equations (1.e) and
(1.f) are equivalent.
(2) The maps idQ@ms and p14 define GL(V) and O(V,{-,-)) equivariant short
eract sequences, respectively,
0— a(V) — (V)L A2(V) @ S2(V*) — 0,
0= r(V, () = a(V) =55 (V) — 0.
which are equivariantly split, respectively, by the maps oiqgr, and oq,p, -
(3) This gives an O(V, (-,-)) equivariant decomposition of
as the direct sum of irreducible O(V, (-, -)) modules where

dim{r(V, (-, )} = Em(m+1)(m+2)(m —3), dim{R} =1,
dim{SZ(V*, (-, )} = 2(m — 1)(m +2), dim{a(V)} = 5m2(m? —1).
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Proof. Tt is immediate that (1.c) and (1.e) imply Equation (1.f). Conversely, sup-
pose that Equations (1.c), (1.d), and (1.f) hold. We use the following notation:

R(€15€27§37§4):a15 R(&37§4)€1)€2):a1+51;
R(&1,83,82,81) = a2, R(£2,64,61,83) = aa + €2,
R(&2,83,81,8) = a3, R(£1,64,62,83) = ag +e3.

We establish Assertion (1) by showing e; = e = e5 = 0. We compute:
0= R(€17§27§37€4) + R(€27€37£17§4) + R(€37§17£27€4)

=a1 + a3 — ag,

0= R(§17§Qa€4a€3) =+ R(€25€47§17§3) =+ R(€47§17§Qa€3)

= —a1+ay —ag + &g —E3 = €9 — €3,

0= R(£1,83,64,&) + R(€3,84,61,&2) + R(&4,61,83,&2)

=—az2+tay+a3z+e+e3=¢1+es,

0= R(€27£3a§4a€1) + R(€3a€47£2751) + R(€47527£3a€l)

= —a3—ay+ay —€1+€Ey=—€1+ 2.
This yields the equations 0 = €5 —e3 = €1 + €3 = —&1 + &2 from which it follows
that £1 = g9 = £3 = 0; this proves Assertion (1).
Let S € A%2(V*) ® S?(V*). We compute:
Tid @, (9)ijkl + Tid @, (S)jikl
= Sijt + 3 (Skjit + Sirjt — Stjie — Sujk)
+Sjikt + 5 (Skijt + Sjkir — Sk — Sjur) = 0,
Tid@m, (8)ijkl + Tid@r, (S)jkit + Tid @, (S)kiji
= Sijii + 2 (Skjir + Sikjt — Stjie — Sitjr)
+Sjkit + 5 (Sikji + Sjikt — Sikji — Sjiki)
+Skiji + 3 (Sjikt + Skjit — Stikj — Skiij)
=0.
This shows that giq g, takes values in t(V). Let a(S) := 0iq gx,S — S. Then
(3.d) (S)ijrer = 5(Skjir + Sikji — Sijie — Sijr) € A2(V*) @ A2(V*).
The map « will also play a role in Section 4.3. Since id ®7, vanishes on the space
A2(V*) ® A%(V*), one has that
(id ®7s)(dia @r, (5)) = (id @) (S) + (Id @7 )a(S) = S.
This shows that id ®m, is an equivariant splitting. We refer to Singer and Thorpe

[5] or to Strichartz [7] for the proof of the remaining assertions. O

Proof of Theorem 2.5 (2b). Because to is the space of Weyl conformal tensors,
dim{r(V, (-, )} = 5m(m +1)(m — 3)(m + 2) = dim{Ws} .

Since o (V, (-, -} is an irreducible O(V, (-, -)) module, we may use Theorem 2.5 (1) to
identify Ws = w(V, (-, ). O

Theorem 2.1 generalizes immediately to this setting:

Theorem 3.3. Let A € a(V) be given. Regard V as a smooth manifold in its
own right. Let 0 be the origin of V' and identify ToV = V. There exists a pseudo-
Riemannian metric g defined on V' so that R} = A where R} is the curvature tensor
of the associated Levi-Civita connection.
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Proof. Let {e;} be an orthonormal basis for V. Let z; be the associated coordinate
system. We define the germ of a pseudo-Riemannian metric on V' by setting
Jab = g(azaa 8rb) = <ea; eb> - % Ecd Aacdbmcxd .

Clearly gap = gba- As glT,v = (-, ), g is non-degenerate near 0. One may then use
a partition of unity to extend g to be non-degenerate on all of V' without changing
it near 0. One has

Ciji = 9(Vo,,0n;,00,) = 5 (00, 95k + On; gi. — 02, i) -
Since T'j;x(0) = 0, one has
Rijkl (0) = R(aw17893178$k ) awz)(o) = {awirjkl - 8$Jrlkl}(0)

= 3{02,(0; 911 + 02,9t — On,Gjk) — Ou, (02,911 + O Git — O, Gite) }(0)

= ${—Ajim — Ajra + Aji + Ajuir + Aijir + Airt — Aijike — Auji}

= {44 — 2Au — 2Ai;} = Aijia -
The desired result now follows. a

The following result was first proved by Fiedler [3] using Young symmetrizers;

subsequently Gilkey [4] established it using a direct construction and Diaz-Ramos

and Garcia-Rio [2] derived it from the Nash embedding theorem. We adopt the
notation of Equation (3.b) to define ¢ A € a(V) for ¢, € S2(V*).

Theorem 3.4. a(V) = Spang{p A ¢ : ¢ € S*(V*)}.
We use Theorem 3.2 to establish a slightly stronger version of Theorem 3.4:

Theorem 3.5.

(1) If A € a(V), there is a finite collection of elements ¢, € S*(V*) such that
Rank{¢,} = 2 and such that A=) ¢, N\ ¢,

(2) Suppose given (p,q) with 2 < p+q < m. Let S?p’q)(V*) be the set of all
symmetric bilinear forms on V' of signature (p,q). Then

a(V) = Span¢€5(2p’q)(v*){¢ AN Qb} .
Proof. Consider the following GL(V') invariant subspace of a(V):
b(V) := Spang{p A ¢ : ¢ € S*(V*), Rank{¢} = 2} .

We apply Theorem 3.1 to show b(V) = a(V'). This shows that we may express any
A € a(V) in the form c1¢1 A1 + ... + e A ¢, where the ¢, are symmetric bilinear
forms of rank 2 and where the ¢, € R. By rescaling the ¢,, we may assume that
the ¢, = £1. Set oy :=e! @el +e?2®e? and oy :=e! ® 2 + €2 @ e!l. We have

(a1 Nag)(er,ea,ea,e1) =41 and (g A ag)(er,ea,ea,e1) = —1.

Thus a1 Aa; = —asAag. Consequently, by replacing a definite form by an indefinite
form or an indefinite form by a definite form if necessary, we can change the sign
and assume that all the constants ¢, are equal to 1. Assertion (1) now follows.

To prove Assertion (2), we set

b(V):= Span¢€5(2p’q)(v*){¢ N

As this is a non-empty GL(V) invariant subspace of a(V'), Theorem 3.1 shows
a(V) = b(V) as desired. O

4. AFFINE CURVATURE TENSORS IN THE ALGEBRAIC SETTING
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4.1. The action of the general linear group on F(V). We adopt the notion of
Equation (2.a) to define $4(V'); the geometrical significance of this subspace is given
in Lemma 2.4.

Use Equations (1.g) and (2.b) to define pi4, 74, and ms. Let 07, 0p,, and 0 opy,
be as in Theorem 2.3. The following is an immediate consequence of Theorem 2.3:

Theorem 4.1. We have the following GL(V') equivariant short exact sequences
0— (V)= ROV)™=BA(V*) — 0,
0— U(V) = FV) 24 82(V*) - 0
which are equivariantly split by the maps or,op,s ANA Or op,,, Tespectively. This
gives a GL(V) equivariant decomposition of
(V) =wV)e s (V")
as the direct sum of irreducible GL(V') modules where
dim{8((V)} = 5=,
dim{dim{S*(V*)} = im(m + 1),
m(m— m2 m—
dlm{%(V)} — ( 1)(26 +2 3) ]

We use this result to generalize Theorem 3.4 to the setting at hand. We exploit
in an essential way that the space 2(V, (-, -)) depends non-trivially on the particular
bilinear form which is chosen. Let G, ;) (V) be the set of non-degenerate bilinear
forms on V' of signature (p,q). Let G, 4 (M) be the set of all pseudo-Riemannian
metrics on a smooth m-dimensional manifold M of signature (p, q). If g € G m)(M)

and if P € M, let R(g, P) be the curvature operator of the Levi-Civita connection
defined by g.

Theorem 4.2.

(1) IFp+q=m, then §(V) = Span..ycq,, . {2V D).
(2) We have that §(TpM) = Spanycg, . m){R(g, P)}-

Proof. Let

B(V) :=Span_ yeq, {A(V, {-, "))}
Let U € GL(V). If A€ 20(V,{-,-)), then
TU* A e AV, U%(-,-)).
Thus B(V) is invariant under the action of GL(V'). Since B(V) # {0}, Theorem
4.1 shows exactly one of the following alternatives holds:
(1) B(V) =ker{ms o p14}.
(2) B(V) =~ S2(V*).
3) B(V) =3(V).
If () € Gp.gp(V), let Ary € AV, (-,-)) be the associated algebraic curvature
operator of constant sectional curvature:
A(.,.>(CE7 y)Z = <y7 Z>$ - <x7 Z>y .
Since p14(A(..y) = (m —1)(:,-), B(V) # ker{p14}. This eliminates the first possi-

.y

bility. Since m >4, m(m + 1) > 6. Consequently,
dim{B(V)} > dim{A(V, (-, )} = 2= > 200 — dim{$2(v7)}
This eliminates the second possibility. Thus the third possibility holds; this proves
Assertion (1).
Let V.=TpM. Let go € Go,;m)(TpM). By Theorem 3.3,
Q[(Vv gO) = Ugeg(o,m),g\TPM:go {R(ga P)} :

Assertion (2) now follows from Assertion (1). O
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4.2. Centro affine geometry. Let h € S2(V*) and let C € S?(V*) @ V. Define
Ru(x,y)z := h(y, 2)z — h(z, 2)y,
Re(w,v)u = C(v,C(w,u)) — C(w,C(v,u)) .
The decomposition of Theorem 4.1 has geometric significance. Let h be the cen-
troaffine metric, let V be the induced connection, and let V* be the conormal
connection. Then Ry is the curvature operator of both V and of V* while the
Riemannian curvature tensor of the associated Levi-Civita connection is given by
Re + Rh.
Theorem 4.3.
(1) Rn € Gﬂsop14S2(V*) and UWs°P14S2(V ) = Spanh652 {Rh}
(2) Re € §(V) and (V) = Spanceg(v-ygviRel-
Proof. Assertion (1) follows from the discussion given to establish Theorem 4.1. We
begin the proof of Assertion (2) by computing:
Re (v, w)u = C(w,C(v,u)) — C(v,C(w,u)) = —Re(w,v)u,
Re(w,v)u + Re(v, w)w + Re(u,w)v = C(v,C(w,u)) — C(w,C(v,
+C(w,C(u,v)) — C(u,C(w,v)) + C(u, C(v,w)) — C(v,C(u,w))
=0.
Let Cles,ej) = >, CiiFer, where {e;} is a basis for V. We show that Re € F(V)
by checking:

u))

Releiej)en = 2, {Cit"Cin' — C" Cji'}en,
p3a(Re)(eire) = 2o {0 Cix' — Cu*Ci'} = 0.
Let B(V) := Spanceg>(y+)gv{Rc}. For € # 0, let the non-zero components of
C be given by:
0211 = 0121 = 0112 = C311 = 0131 = 0113 =
We have
p1a(Re)(ez, e2) = Zl)i{C’zﬁCigl —Cy'Cop!} =2 #0.
This shows that p14(R¢)(ez,e2) # 0. Consequently
OrpopraS°(VF) CB(V).
We also compute
Re(er,e2)er = Elm{cmncnl — Cy"Car'le,
=Co1'Cii'er — C11°Cor'es — C11°Cor'es
= —e%(eg +e3).
If Re € 0r.0p1.S?(V*), then Re(eq, e2)er € Span{e, e} which is false. Thus
Treopa 52 (VF) £ B(V).
The desired result now follows. |

4.3. The action of O(V, (-,-)) on §(V). We can use Theorems 2.5 and 4.1 to see
that there is an O(V, (-, -)) equivariant orthogonal decomposition of

is a direct sum of 7 irreducible O(V, (-, -)) modules. Since Sz(V'*,(,-)) is repeated
with multiplicity 2, the decomposition is not unique.

We now make this decomposition a bit more explicit to identify the factors W7
and Wg. We adopt the notation of Equation (3.a) and let id ®7s symmetrize the
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last two components of T € ®*V*. Let 0iqe~. be the splitting of Equation (3.c).
Finally, let « be the map of Equation (3.d).

Lemma 4.4. We have an O(V, (-,-)) equivariant short exact sequence
0= a(V) = (V. () FA (V) @ SV () = 0

which is equivariantly split by the map oid gr, -
Proof. Let F € f(V,{-,-)). We have

(id@m)(F)(z,y, z,w) = 5{F(,y, 2,w) + F(z,y,w,2)},

(dem)(F) =0 < F(x,y,z,w)=—F(z,y,w,2) V¥V z,y,z,w V.
This implies F' € a(V'). Conversely, if F' € a(V'), then p34(F) = 0 and (id ®@7s)F = 0
and hence F € f(V, (-,-)). Thus

ker{id@m} (1 f(V; () = a(V).
Furthermore
p3a(F) = (id @ Tr)((id @7,) F)

and consequently (id ®m,) takes values in A%2(V*) @ SZ(V*, (-, -)).

In the proof of Theorem 3.2, we showed that 0iqgr, takes values in t(V) and
that (id ®7s)oid@r, is the identity on A%2(V) @ S?(V*). Thus oiqgx,S € §f(V, {-,-))
if and only if S € A2(V*) @ SE(V*, (-,-)). O

This shows that
F(V, () = a(V) @ A2 (V) @ S§(V*, (), so
A2(VF) @ gV, () = SV () @ A2(VF) & Wr @ W
We therefore study A2(V*)®S52(V*) as an O(V, (-, -)) module and identify the copies
of A2(V*) and SZ(V*, (-,-)) in A2(V*) @ S3(V*, (-,-)). Let
O e (V) @S5V, (), »eSFV, (), weA (V).
Let = be as in Equation (1.r). Define:

71,5(0)k := (ms(p140))jx = 2 >, EH{Oujt + Oinjt }
71,a(0)jk := (ma(p140))jk = 5 25 EH{Oujut — Oirji},
WA(@)zgkl = 2(Okjit + Oikji — Oujir — Oujn),
Orr(V)ijrr = = {Zatie — Ethie + b — Ejrtbat,
Oy (W)ijkt = P {Zawjr + Zpwii — Zjwik — Zjpwi + —wi Sty
Orp (©)ijkt = 2 (Orjit — Oijt),
AF(A* (V) == 1{©: Oyt = —Ojikt = —Opiij, >y E'Oijr = 0},
S(V,(-,-) :==ker{m s} Nker{m o} Nker{mp} NA2(V*) @ SZ(V*, (-,-)).
Lemma 4.5. We have O(V, (-,+)) equivariant short exact sequences
0 — ker{m s} — A*(V*) @ SF(V*, (-,) ==S5(V*, (-,-)) = 0,
0 — ker{mo} — A2(V*) @ S5(V*, (-, ) =A% (V*) — 0,
0 — ker{m o} Nker{ma} — ker{m o} “SA2(A%(V*)) — 0.

T1,s

T1,a

These sequences are equivariantly split, respectively, by ox, ., Oz, ., and or,. This
gives an O(V, {-,-)) equivariant decomposition of

A(VF) @ SG(V™, () & SEV™, () & A2 (V) @ AFA* (V) @ S(V, (-, )
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as the direct sum of irreducible O(V, (-,-)) modules where
dim{Sg(V*, <'7 >)} = (ML;WH-Q)’
dim{A2(V*)} = mmd),
dim{AZ(A2(V*))} = mlm=Dlm=3)(m2)
dim{&S(V, {-,))} = (m—1)(m— 2)8(m+1)(m+4),
dim{A2(V*) @ SZ(V*, (-, )} = M

We have Wy ~ A3(A%(V*)) and W7 = &(V, {-,-)).

Proof. 1t is clear that m; s takes values in S?(V*). Let Z be as in Equation (1.r).
We show that 71 ¢ takes values in SZ(V*, (-,-)) by checking:

Tr{m,s(0)} = 3XiuE"T*{Oijm + O}
= Zukl EE* O = Zijkl RO jun
= - Zijkl EFE" O m = — Tr{m,s(0)} .
It is clear that o, _ takes values in A*(V*) ® S?(V*). We verify that o, _ takes
values in A%2(V*) ® S2(V*, (, >) by checking the trace condition:
S Eor (Wi = 3 EMEavk — Ejbi + ~1k¢jl — Zjktat
= %Wﬂ = Yij + P50 — Vit =
We check that oy, , is a splitting by verifying:
Ts(Om (V)i = 5 Y0 EYEavie — Ejivbin + Eatbij — Sjetba
+ Euthk; — Exitij + Eijw — Sk ta
= sa{miie — ik + Yix — Zje Tr{v}
M — Y + Pr; — Zxy Tr{}}
= Yjk-

Clearly 7, takes values in A?(V*) and oy, , takes values in A?(V*) @ S%(V*).
We check the trace condition by computing:

{(id® Tf)(ffm o (@)}
S S Eawik 4 Zawi — Sjwik — Zipwa + —wii S}
g wii + wji — wij — wij + srmwis }
= —F5(- 444 —m)w; = 0.
To check oy, , is a splitting, we compute:

T1,a(0r . (W))jk
_ 1_m =il f= = = = 4, ,..=
= S 2 a0 BHEawjk + Eawji — Ejiwik — Ejrwi + 5 wii S
=. = = I — N DR
- SGWEy — G Wki + SklWig + kg Wil mwlk‘—‘jl}

1 4 4
= ST UMWk + Wik — Wik + - Wkj — MWkj — Wkj + Wkj — Wik}

= E{m = ek =wi.

Let S € ker{m o} N {A%(V*) @ Sg(V*,(-,-))}. To check that s takes values in
AZ(A%(V*)), we compute:

TA(9)ijt = 5(Skjir + Sikji — Sijik — Sijk)
TA(S) ikt = 5 (Skiji + Sjkir — Sk — Sjiie) = —7a(S)ijnts
TA(S)kiij = 5(S lkj + Skitj — Sjiki — Skjis) = —7A(S)ijkl,

p1a(ma(S))je = 2 3, ENSkjit + Sikji — Sijix — Suje }
={3034(S) + m1.a(S)}jx = 0.
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Let T € A3(A%2(V*)). To check 0., takes values in A%(V*) @ SZ(V*, (), we
compute:

O (Tt =
Trn(T)jikt = 5 Thiji — Trjir) = —0xp (T)ijikt,
Trn(T)ijik = %(leik — Thiji) = %(Tjkli — Tikij)
= l(Tkjil — Tkijl) = Or, (T)ijlka
S Moy (T)ijr = 3 2230 EM (Tigir — Thijn) = 0.
Finally, we verify that o, is a splitting by computing
{malony (1)) }ijr
= 5(oma (Djit + Onp (D)ikjt = O (Tijii = Oy (T)itr)
3 (Tijrr — Tiji + Tikit — Tjirr — Tjii + Tragi — Traig + Trity)

Tijki -
We compute dimensions:
dim{A*(V*)} = gm(m — 1),

1
dim{A*(A*(V*))} = g{gm(m — 1)} {zm(m — 1) — 1},
dim{AG(A*(V*))} = dim{A*(A*(V"))} — dim{A*(V")}
= {Gm(m-1)}im(m—1) -1} — 3m(m —1)
= {gm(m-1)Him(m 1) -5 -1}
%{m(m —DHHm(m—-1) -6} = %m(m —1(m—-3)(m+2)
dim{Ws}

and
dim{G(V, <'7 >)}
= dim{A*(V*) @ S§(V*, ()} — dim{AJ(A*(V*))}
— dim{S§(V", (-, ))} — dim{A*(V")}
= dim{A*(V") @ S§(V", ()} — dim{A*(A*(V))} — dim{S5(V", (-, -)}

m(m—1)(m=1)(m+2) m(m-1)(m(m-1)—2)  (m—1)(m+2)
4 8 2

= 2=L{om(m — 1)(m +2) — m(m — 2)(m + 1) — 4(m + 2)}
= (DDt — i (17}

The remaining assertions now follow from Theorem 2.5 (1); this also establishes
Theorem 2.5 (2c¢). O

As an immediate consequence, we have
Theorem 4.6.
(1) There is an O(V,(-,-)) equivariant orthogonal decomposition of
FV)=F(V)=Wi oW, @ Wa & W5 & Wo & Wy & Ws
as the direct sum of irreducible O(V, (,)) modules where:
dim{W,} = L dim{Ws} = dim{W;} = tn=lmt2)

dim{W,} = ™), dim{ W} = mlmtln— 3)(m+2}
dim{W;} = (m=1)(m— 2)8(m+1)(m+4)7 dim{Ws} = m(m—l)(ng 3)(m+2)'

(2) There are the following isomorphisms as O({-,-)) modules:
(a) Wi =R, Wo = W5 ~ SZ(V*, (-,+)), and Wy = A2(V*).
(b) Ws = (V (-,-)) is the space of Weyl conformal curvature tensors.
(c) Wr = &S(V, (-,-)) and Wg ~ A3(A%(V*)).
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5. THE PROOF OF THEOREM 3.1

Let b be a non-empty subspace of a(V') which is invariant under the action of
GL(V). We must show that b = a(V'). Choose a positive definite inner product (-, -)
on V. Then b is invariant under the action of O(V, (-,-)) as well. Let my, 7o, and
mr be the projections on the appropriate module summands in the decomposition
of Theorem 3.2 (3);

mr(R) == 7(p14(R)), mo(R) = p1a(R) — 5 7(pra(R))(, "),
Tw(R) := R — 04,p,,(p14(R)) where
)=

Ta,ors (V) 1= g ¥ A (- m< DAL

Since O(V, (-,-)) is a compact Lie group acting orthogonally, the projections are
orthogonal projections. Furthermore:

Tw(b) # {0} = w(V, () C
mo(b) # {0} = 0a.(SE(V, < >))Cb,
mr(b) #{0} = Gapu((,) C

Let {e;} be an orthonormal basis for V. Let {);} be distinct positive constants.
Define © € GL(V) by setting:
@(el) = )\iei .

Suppose mgr(b) # {0}. The component corresponding to R in a(V') is generated
by A:= (-,-) A (-,-). Consequently A € b; the non-zero components of ©*(A4) and
p14(©*(A)) are, up to the usual Zy symmetries and modulo a suitable normalizing
constant which plays no role, given by

©*(A) (e, e5,e5,€i) = )\?)\? and  p14(0%(A))(ei, e5) = A2 Zﬁél )\?

This shows the projection of ©*(A), and hence of b, on So(V*,(:,-)) is non-zero.
Let A; be the algebraic curvature tensor whose only non-zero component, up to the
usual Zo symmetries, is Aj(eq, e, e, e1). As b is closed, we show that 4; € b by
taking the limit

)\1—>1, )\2—>1, )\J—>0f0r323

As {A1 — 04,p14(p14(A41))}(e1, €3, €3,e1) # 0, one has my (b) # 0. We summarize:
(b)) 0 = b=a(V).
Suppose 7o (b) # 0. Then oq,p,, (SZ(V*, (,-))) C b. Define ¢ € SZ(V*, (-, -)) with
non-zero components
Yler,er) =1, ez, ea) =1, and (es,e3) =—2.
Let A =0q,,, () = =259 A (-,) € b. We compute:

07 (A)(eir ejs exs e) = Mid Mz {v(es e)djn + 1 (e), ex)du
—t(ei, exn)dj — (ej, e)din},
T(p14(07(4))) = % Zij ©* A(e;, ej, ej,ei)
= S{+A -2 A — 75 A A -2

This is non-zero for generic values of X. This shows 7r(b) # {0}. Combining this
result with the result of the previous paragraph yields:

p1a(b) #{0} = b=a(V).

Finally, suppose my(b) # 0. Then w(V,(-,-)) C b. Let A € a be defined with
non-zero components, up to the usual Z, symmetries, by

A(€1,63,€4,61) =+1 and A(62,637€4,62) = —1.
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Then p14(A) =0s0o A € w(V,{-,-)). We have
@*(A)(el, €3, €4, 61) = )\%)\3)\4 and @*(A)(eg, €3, €4, 62) = )\3)\3)\4 .

Thus p14(0*(A))(e3,e4) = A3M(A2 — A2) # 0. Since p14(0*(A4)) # 0 we may
conclude that b = a(V). O
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