10. Algebraic Threefolds with Ample Tangent Bundle

By Toshiki Mabuchi*)
Department of Mathematics, University of California, Berkeley
(Communicated by Kunihiko Kodaira, m. J. A., April 12, 1977)

This is an announcement of our result proving the following conjecture of T. T. Frankel for $n=3$:
(F-n) A compact Kaehler n-dimensional manifold with positive sectional (or more generally, positive holomorphic bisectional) curvature is biholomorphic to the complex projective space $\boldsymbol{P}^{n}(\boldsymbol{C})$.

We actually obtained the stronger result:
(G-3) A non-singular irreducible 3-dimensional projective variety M with ample tangent bundle and the second Betti number 1 is (algebraically) isomorphic to $\boldsymbol{P}^{3}(\boldsymbol{C})$.

In order to prove (G-3), we first quote the following theorem of S. Kobayashi and T. Ochiai [3] which enables us to take a group-theoretic approach.

Theorem 1. Let M be a non-singular irreducible 3-dimensional projective variety with ample tangent bundle. Then the group Aut (M) of algebraic transformations of M satisfies:
(1) dim_{c} Aut $(M) \geqq 7$.
(2) M can be embedded into $P^{N-1}(C)$ for some N in such a way that Aut (M) acts on M as a closed subgroup of $\operatorname{PGL}(N ; C)$.

Secondly, note that a consideration of standard facts on linear algebraic groups gives us:

Theorem 2. Any linear algebraic group of dimension $\geqq 7$ contains a closed subgroup which is isomorphic to one of the following four algebraic groups:
(1) The 3-dimensional algebraic torus $\left(C^{*}\right)^{3}$.
(2) A group which is isogenous to $S L(3 ; C)$.
(3) A group which is isogenous to $S L(2 ; C) \times S L(2 ; C)$.
(4) The 3-dimensional additive group C^{3}.

The main point of these two theorems is that, for the proof of (G-3), we may assume one of the following four conditions on M :
(1) $\left(C^{*}\right)^{3}$ acts on M regularly and effectively.
(2) $S L(3 ; C)$ acts on M regularly and essentially effectively.
(3) $S L(2 ; C) \times S L(2 ; C)$ acts on M regularly and essentially effectively.

[^0](4) C^{3} acts on M regularly and effectively.

But then, we can prove (G-3) by combining Theorems 3, 4', 5^{\prime} and 6.
Theorem 3 (T. Mabuchi [5]). Let M be a non-singular irreducible n-dimensional projective variety with ample tangent bundle. Assume that the n-dimensional algebraic torus $\left(C^{*}\right)^{n}$ acts on M regularly and effectively. Then M is isomorphic to $\boldsymbol{P}^{n}(\boldsymbol{C})$.

This theorem is largely indebted to the systematic studies of torus embeddings made by several authors in recent years (cf. M. Demazure [1], D. Mumford et al. [10], K. Miyake and T. Oda [9]).

Theorem 4 (T. Mabuchi [6]). Let M be a non-singular irreducible 3 -dimensional complete variety on which the algebraic group $S L(3 ; C)$ acts regularly and essentially effectively. Then M is isomorphic to one of the following four types of varieties:
(1) The projective bundle $\operatorname{Proj}\left(T\left(\boldsymbol{P}^{2}(\boldsymbol{C})\right.\right.$) associated with the tangent bundle $T\left(\boldsymbol{P}^{2}(\boldsymbol{C})\right.$) of $\boldsymbol{P}^{2}(\boldsymbol{C})$. (This corresponds to the homogeneous SL(3; C)-action.)
(2) $P^{3}(C)$.
(3) $\operatorname{Proj}\left(O_{P^{2}}(m) \oplus O_{P^{2}}(0)\right), m \in \boldsymbol{Z}_{+}$, where $O_{P_{2}}(m)$ denotes the m-fold tensor of the tautological line bundle over $\boldsymbol{P}^{2}(C)$.
(4) $\boldsymbol{P}^{2}(\boldsymbol{C}) \times C$, where C is a complete non-singular curve. (In this case, the $S L(3 ; C)$-action on M factors to the product of a homogeneous action on $\boldsymbol{P}^{2}(\boldsymbol{C})$ and the trivial one on C.)

Since a projective variety with ample tangent bundle can admit no non-trivial fibrations except for those which have finite fibres (cf. T. Ochiai [11]), the following is straightforward from Theorem 4:

Theorem 4'. Let M be a non-singular irreducible 3-dimensional projective variety with ample tangent bundle. Assume that the algebraic group $S L(3 ; C)$ acts on M regularly and essentially effectively. Then M is isomorphic to $\mathbf{P}^{3}(\boldsymbol{C})$.

A parallel argument goes through also in case of $S L(2 ; C)$ $\times S L(2 ; C)$-actions on M :

Theorem 5 (T. Mabuchi [7]). Let M be a non-singular irreducible 3 -dimensional complete variety on which the algebraic group $S L(2 ; C)$ $\times S L(2 ; C)$ acts regularly and essentially effectively. Then M is isomorphic to one of the following five types of varieties:
(1) $\boldsymbol{P}^{1}(\boldsymbol{C}) \times \boldsymbol{P}^{1}(\boldsymbol{C}) \times C$, where C is a non-singular complete curve.
(2) The projective bundle Proj $\left(\mathrm{pr}_{1} *\left(O_{P_{1}}(\alpha)\right) \oplus \mathrm{pr}_{2} *\left(O_{P_{1}}(\beta)\right)\right), \alpha, \beta \in \boldsymbol{Z}$, associated with the vector bundle $\operatorname{pr}_{1} *\left(O_{P_{1}}(\alpha)\right) \oplus \mathrm{pr}_{2} *\left(O_{P_{1}}(\beta)\right)$ over $\boldsymbol{P}^{1}(\boldsymbol{C})$ $\times \boldsymbol{P}^{1}(\boldsymbol{C})$, where $\mathrm{pr}_{i}: \boldsymbol{P}^{1}(\boldsymbol{C}) \times \boldsymbol{P}^{1}(\boldsymbol{C}) \rightarrow \boldsymbol{P}^{1}(\boldsymbol{C})$ denotes the canonical projection to the i-th factor $(i=1,2)$.
(3) The hyperquadric $\left\{(x: y: z: u: v) \in \boldsymbol{P}^{4}(C) ; x u-y z=v^{2}\right\}$.
(4) $\boldsymbol{P}^{3}(C)$.
(5) $\operatorname{Proj}\left(O_{P_{1}}(m) \oplus O_{P_{1}}(0) \oplus O_{P_{1}}(0)\right), m \in Z$.

Noting that any non-singular hyperquadric cannot have ample tangent bundle, by the same argument as in deriving Theorem 4^{\prime}, we obtain :

Theorem 5'. Let M be a non-singular irreducible 3-dimensional projective variety with ample tangent bundle. Assume that the algebraic group $S L(2 ; C) \times S L(2 ; C)$ acts on M regularly and essentially effectively. Then M is isomorphic to $\mathbf{P}^{3}(\boldsymbol{C})$.

Finally, we need:
Theorem 6 (T. Mabuchi [8]). Let M be a non-singular irreducible 3-dimensional projective variety with ample tangent bundle and the second Betti number 1. Assume that the 3-dimensional algebraic additive group C^{3} acts on M regularly and effectively (or more generally, the 3-dimensional complex Lie group C^{3} acts on M holomorphically and effectively). Then M is isomorphic to $P^{3}(C)$.

The proof of this theorem essentially depends on the following two facts.

Theorem A (T. Fujita [2], S. Kobayashi and T. Ochiai [4]). Let M be a 3-dimensional irreducible non-singular projective variety with an ample tangent bundle. Assume that, in $H^{2}(M)\left(=H^{2}(M ; Z) /\right.$ torsion classes), the first Chern class c_{1} of the tangent bundle is written in the form :

$$
c_{1}=r \cdot g \quad \text { for some } 2 \leqq r \in Z \text { and some } g \in H^{2}(M)
$$

Then M is isomorphic to $\boldsymbol{P}^{3}(\boldsymbol{C})$.
Theorem B. Let M be a non-singular irreducible 3-dimensional projective variety with ample tangent bundle and the second Betti number 1. Assume that there exists a section

$$
0 \neq S \in H^{0}(M, T(M))
$$

whose zero locus contains a (non-empty) 2-dimensional component. Then M is isomorphic to $\boldsymbol{P}^{3}(\boldsymbol{C})$.

In conclusion, I wish to thank all those people who encouraged me and gave me suggestions, and in particular Professors S. Kobayashi, S. S. Roan and I. Satake. I was also stimulated by the recent work of T. Fujita, with whom I have had many valuable discussions by correspondence.

References

[1] M. Demazure: Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. Ecole Norm. Sup., 3, 507-588 (1970).
[2] T. Fujita: On the structure of certain types of polarized varieties, I and II. Proc. Japan Acad., 49, 800-802 (1973) ; 50, 411-412 (1974).
[3] S. Kobayashi and T. Ochiai: Three-dimensional compact Kaehler manifolds with positive holomorphic bisectional curvature. J. Math. Soc. Japan, 24, 465-480 (1972).
[4] S. Kobayashi and T. Ochiai: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ., 13, 31-47 (1973).
[5] T. Mabuchi: Almost homogeneous torus actions on varieties with ample tangent bundle (to appear).
[6] -: On the classification of essentially effective $S L(3 ; C)$-actions on algebraic threefolds (to appear).
[7] -: On the classification of essentially effective $S L(2 ; C) \times S L(2 ; C)$ actions on algebraic threefolds (to appear).
[8] -: C^{3}-actions and algebraic threefolds with ample tangent bundle (to appear).
[9] K. Miyake and T. Oda: Almost homogeneous algebraic varieties under algebraic torus action, in Manifolds-Tokyo 1973, edited by A. Hattori, Univ. Tokyo Press, 373-381 (1975).
[10] D. Mumford, G. Kempf, F. Knudsen, and B. Saint-Donat: Toroidal embeddings I. Lecture Notes in Math., 339, Springer, Berlin (1973).
[11] T. Ochiai: On compact Kaehler manifolds with positive holomorphic bisectional curvature. Proc. Symp. Pure Math., Vol. 27, Part II, Amer. Math. Soc., 113-123 (1975).

[^0]: *) Supported by Earle C. Anthony Fellowship at the University of California, Berkeley.

