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Abstract We introduce a new class of Pythagorean-Hodograph (PH) space curves
- called Algebraic-Trigonometric Pythagorean-Hodograph (ATPH) space curves
- that are defined over a six-dimensional space mixing algebraic and trigonomet-
ric polynomials. After providing a general definition for this new class of curves,
their quaternion representation is introduced and the fundamental properties are
discussed. Then, as previously done with their quintic polynomial counterpart, a
constructive approach to solve the first-order Hermite interpolation problem in
R

3 is provided. Comparisons with the polynomial case are illustrated to point
out the greater flexibility of ATPH curves with respect to polynomial PH curves.
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1 Introduction

The goal of this paper is to expand the boundary of Pythagorean–Hodograph
(PH) curve theory into the realm of non-polynomial curves, in order to show
that the benefits of polynomial PH curves over generic polynomial curves can
be extended also to curves defined over more complicated function spaces. A
first attempt in this direction has been already made in [8] and [13], where the
so-called Pythagorean–Hodograph cycloidal curves and Algebraic-Trigonometric
Pythagorean-Hodograph (ATPH) curves were proposed as an extension of pla-
nar PH cubics and quintics, respectively. In this paper we investigate, for the
first time, the existence of spatial Pythagorean–Hodograph curves defined over
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a six-dimensional space mixing algebraic and trigonometric polynomials. These
curves are shown to be the non-polynomial analogue of the spatial Pythagorean–
Hodograph curves defined over the six-dimensional space of quintic algebraic
polynomials [6], and are thought to be a 3-dimensional extension of the pla-
nar Algebraic-Trigonometric Pythagorean-Hodograph (ATPH) curves proposed
in [13]. Indeed, the idea behind our proposal is to succeed in getting a subclass
of the general class of spatial Algebraic-Trigonometric curves which boasts the
same advantage that the subclass of spatial polynomial PH curves possesses with
respect to general spatial polynomial curves. Precisely, since spatial polynomial
PH curves are characterized by the fact that the Euclidean norm of their hodo-
graph (i.e. their parametric speed) is a polynomial, the subclass of spatial ATPH
curves is developed in such a way that the Euclidean norm of their hodograph is a
trigonometric polynomial. As a consequence, the arc length has a closed–form rep-
resentation which coincides with a polynomial function in the case of PH curves
and with a mixed algebraic–trigonometric function in the case of ATPH curves.
Thus, in both cases, the arc–length can be computed explicitly without numer-
ical quadrature. Moreover, as already shown in [13] for the planar case, when
the PH property is extended from parametric polynomial curves to parametric
curves defined over a mixed algebraic-trigonometric space, greater flexibility is
achieved. In fact, an additional free parameter is introduced, which turns out to
be advantageous to augment the ductility of the important class of PH curves
in free-form design applications [12]. The same free parameter is also inherited
by spatial ATPH curves and it can be used to arbitrarily modify their total arc
length, to minimize their elastic bending energy, or to obtain aesthetically more
pleasing curves by improving curvature and torsion distribution. In this regard
we will focus our attention on the benefits offered by this shape parameter when
solving a first-order Hermite interpolation problem (which constituted one of the
major strands of research on PH curves over the last years [7]). For this purpose,
we first revisit several important publications, such as [2–4], dealing with a gen-
eral constructive approach for obtaining the two-parameter family of solutions of
an analogous problem by spatial polynomial PH curves. Then, we dwell on the
main differences characterizing its generalization to our non-polynomial context.

The remainder of this article is specifically organized as follows. In Section
2 we recall known results dealing with Algebraic–Trigonometric Bézier curves.
Section 3 is dedicated to the definition and construction of ATPH space curves
generalizing spatial PH quintics. After deriving their quaternion form, we prove
that these curves have the property that the Euclidean norm of their hodograph is
a trigonometric function while their arc length is a mixed algebraic–trigonometric
function. In Section 4 the class of spatial ATPH curves is employed to solve
the first-order Hermite interpolation problem and in Section 5 an algorithm to
reconstruct from an identified spatial ATPH curve its quaternion pre-image is
presented. Conclusions are drawn in Section 6.

2 Background

In the last decades, a great interest in the design of curves in spaces mixing al-
gebraic, trigonometric and hyperbolic functions has arisen (see, e.g., [1,9–11]).
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Among these spaces, the only ones that turn out to be of interest in curve design
are the ones that admit a normalized B-basis (see [1] for the definition of normal-
ized B-basis and its key properties). In the following we focus our attention on a
six-dimensional space mixing algebraic and trigonometric polynomials, and recall
the explicit form of its normalized B-basis. Analogously to the Bernstein-Bézier
basis for the space of quintic algebraic polynomials, this normalized B-basis allows
us to define Algebraic-Trigonometric Bézier curves through a control polygon and
evaluate them through a stable and efficient de Casteljau-type algorithm.

2.1 Basic results on Algebraic-Trigonometric Bézier curves

Referring to [13] for further details, in the following definitions we summarize
the expressions of the normalized B-bases of two pure trigonometric spaces of
our interest and of the mixed algebraic-trigonometric space used in Section 3 to
define the new class of spatial Pythagorean–Hodograph curves.

Definition 1 The normalized B-bases for the pure trigonometric spaces Ũ2 =<
1, sin(t), cos(t) > and Ũ4 =< 1, sin(t), cos(t), sin(2t), cos(2t) > are respectively
defined by the set of functions B̃2

i : [0, α]→ R, i = 0, 1, 2 given by

B̃2
0(t) =

cos(α−t)−1
cos(α)−1 ,

B̃2
1(t) =

cos(α)−cos(t)−cos(α−t)+1
cos(α)−1 , where 0 < α < π,

B̃2
2(t) =

cos(t)−1
cos(α)−1 ,

and B̃4
i : [0, α]→ R, i = 0, . . . , 4 having the expressions

B̃4
0(t) =

(cos(α−t)−1)2

(cos(α)−1)2
,

B̃4
1(t) =

2(cos(α−t)−1)(cos(α)−cos(t)−cos(α−t)+1)
(cos(α)−1)2

,

B̃4
2(t) =

2(cos(α−t)−1)(cos(t)−1)+(cos(α)−cos(t)−cos(α−t)+1)2

(cos(α)−1)2
, where 0 < α < 2

3π.

B̃4
3(t) =

2(cos(t)−1)(cos(α)−cos(t)−cos(α−t)+1)
(cos(α)−1)2

,

B̃4
4(t) =

(cos(t)−1)2

(cos(α)−1)2
,

Definition 2 Let 0 < α < 2
3π and Ω = [0, α]. The normalized B-basis for the

mixed algebraic-trigonometric space U5 =
〈
1, t, sin(t), cos(t), sin(2t), cos(2t)

〉
is

defined by the set of functions B5
i : Ω → R, i = 0, . . . , 5 given by

B5
0(t) =

2
n0

(3(α− t) + sin(α− t)(cos(α− t)− 4)),

B5
1(t) =

4s1
n0n1

(
n0 sin

4
(
α−t
2

)
− 2s41(3(α− t) + sin(α− t)(cos(α− t)− 4))

)
,

B5
2(t) =

2s1
3n2

(
8 sin3

(
α−t
2

)
sin( t2 )−

n0
n1

sin4
(
α−t
2

)

+
2s41
n1

(3(α− t) + sin(α− t)(cos(α− t)− 4))
)
,

B5
3(t) =

2s1
3n2

(
8 sin3( t2 ) sin

(
α−t
2

)
− n0

n1
sin4( t2 ) +

2s41
n1

(3t+ sin(t)(cos(t)− 4))
)
,

B5
4(t) =

4s1
n0n1

(
n0 sin

4( t2 )− 2s41(3t+ sin(t)(cos(t)− 4))
)
,

B5
5(t) =

2
n0

(3t+ sin(t)(cos(t)− 4)),

(1)
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where

s1 := sin

(
α

2

)
, s2 := sin(α), c1 := cos

(
α

2

)
, c2 := cos(α), (2)

and

n0 := 6α+ 2s2(c2 − 4), n1 := c1(s2 − 3α) + 4s1, n2 := (2 + c2)α− 3s2. (3)

Note that, for a function f ∈ Ũ2, we have f2 ∈ Ũ4 and
∫
f2 ∈ U5. Specifically,

when f is a basis function of Ũ2 the antiderivative of f2 assumes the following
form

∫
(B̃2

0(t))
2dt = −n0−6α

16s41
B5

0(t) +
3α
8s41

∑5
i=1B

5
i (t),

∫
B̃2

0(t)B̃
2
1(t)dt = − s2(7+2c2)

16s41
(B5

0(t) +B5
1(t)) +

n3

16s41

∑5
i=2B

5
i (t),

∫
B̃2

0(t)B̃
2
2(t)dt =

3s2
16s41

∑2
i=0B

5
i (t) +

n4

16s41

∑5
i=3B

5
i (t),

∫
(B̃2

1(t))
2dt = 3s2(c2+1)

8s41

∑2
i=0B

5
i (t) +

(c2+1)n4

8s41

∑5
i=3B

5
i (t),

∫
B̃2

1(t)B̃
2
2(t)dt = − 3s2

16s41

∑3
i=0B

5
i (t) +

n5

16s41
(B5

4(t) +B5
5(t)),

∫
(B̃2

2(t))
2dt = n0

16s41
B5

5(t),

(4)

with

n3 := 3s2 − 6α(c2 +1), n4 := 2(2+ c2)α− 3s2, n5 := s2(7+ 2c2)− 6α(c2 +1).

For later use, we also point out the value of the corresponding definite integrals
∫ α

0
(B̃2

0(t))
2dt =

∫ α

0
(B̃2

2(t))
2dt = n0

16s41
=: I0,

∫ α

0
B̃2

0(t)B̃
2
1(t)dt =

∫ α

0
B̃2

1(t)B̃
2
2(t)dt =

n0−6n2

16s41
=: I1,

∫ α

0
B̃2

0(t)B̃
2
2(t)dt =

n2

8s41
=: I2,

∫ α

0
(B̃2

1(t))
2dt = 2(c2 + 1)

∫ α

0
B̃2

0(t)B̃
2
2(t)dt = 2(c2 + 1) n2

8s41
=: I3,

(5)

where s1, c2 and n0, n2 are as in (2) and (3), respectively.
Moreover, taking into account the following equalities

(B̃2
0(t))

2 = B̃4
0(t), 2B̃2

0(t)B̃
2
1(t) = B̃4

1(t), (B̃2
1(t))

2 = 1+c2
2+c2

B̃4
2(t),

2B̃2
0(t)B̃

2
2(t) =

1
2+c2

B̃4
2(t), 2B̃2

1(t)B̃
2
2(t) = B̃4

3(t), (B̃2
2(t))

2 = B̃4
4(t),

(6)

for the antiderivatives of the basis functions of Ũ4 we can write
∫
B̃4

0(t)dt = −n0−6α
16s41

B5
0(t) +

3α
8s41

∑5
i=1B

5
i (t),

∫
B̃4

1(t)dt = − s2(7+2c2)
8s41

(B5
0(t) +B5

1(t)) +
n3

8s41

∑5
i=2B

5
i (t),

∫
B̃4

2(t)dt =
3s2(c2+2)

8s41

∑2
i=0B

5
i (t) +

n4(c2+2)
8s41

∑5
i=3B

5
i (t),

∫
B̃4

3(t)dt = −3s2
8s41

∑3
i=0B

5
i (t) +

n5

8s41
(B5

4(t) +B5
5(t))

∫
B̃4

4(t)dt =
n0

16s41
B5

5(t).

(7)

We conclude this section by recalling from [13] the following definition.
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Definition 3 Given distinct control points p0, . . . ,p5 ∈ R
3, we call algebraic-

trigonometric Bézier curve, or shortly AT-Bézier curve, over the mixed algebraic-
trigonometric space U5, the parametric curve defined by

r(t) =
5∑

i=0

piB
5
i (t), t ∈ [0, α], 0 < α <

2

3
π,

where {B5
i }5i=0 is the normalized B-basis of U5 defined in (1).

We also emphasize that the basis functions B5
i (t), i = 0, . . . , 5 satisfy the following

properties

B5
0(0) = B5

5(α) = 1, B5
i (0) = 0, i = 1, . . . , 5, B5

i (α) = 0, i = 0, . . . , 4,

(B5
0)
′(0) = −(B5

1)
′(0) = −(B5

5)
′(α) = (B5

4)
′(α) = − 1

I0
,

(B5
i )
′(0) = 0, i = 2, . . . , 5, (B5

i )
′(α) = 0, i = 0, . . . , 3,

which yield

r(0) = p0, r(α) = p5, r′(0) =
1

I0
(p1 − p0), r′(α) =

1

I0
(p5 − p4), (8)

with I0 in (5). Moreover, spatial AT-Bézier curves defined over U5 can be effi-
ciently and stably evaluated by the de Casteljau-like algorithm proposed in [13].
These are key properties that are successively used to extend the construction
of spatial Pythagorean–Hodograph curves from the space of quintic algebraic
polynomials to the mixed algebraic-trigonometric space U5.

3 Quaternion form of Algebraic-Trigonometric Pythagorean-Hodograph

space curves and their distinctive features

The goal of this section is to generalize the definition of Pythagorean-Hodograph
space curves (see [2, Chapter 21]) to Algebraic-Trigonometric Pythagorean-Hodograph

space curves.

Definition 4 Let u(t), v(t), p(t), q(t) be real trigonometric functions in Ũ2. Then,
the spatial parametric curve r(t) = (x(t), y(t), z(t)) whose coordinate components
have first derivatives of the form

x′(t) = u2(t) + v2(t)− p2(t)− q2(t),
y′(t) = 2[u(t)q(t) + v(t)p(t)],

z′(t) = 2[v(t)q(t)− u(t)p(t)],

is called an Algebraic-Trigonometric Pythagorean-Hodograph space curve.

Remark 1 Definition 4 is supported by the fact that if u, v, p, q ∈ Ũ2, then x
′, y′, z′ ∈

Ũ4 and verify the Pythagorean condition

(x′(t))2 + (y′(t))2 + (z′(t))2 = (σ(t))2

with σ(t) = u2(t) + v2(t) + p2(t) + q2(t).
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Proposition 1 If x′, y′, z′, σ are real trigonometric functions in Ũ4 with no common

roots, and satisfy the Pythagorean condition

(x′(t))2 + (y′(t))2 + (z′(t))2 = (σ(t))2,

then they can be expressed in terms of real trigonometric functions u, v, p, q ∈ Ũ2 in

the form

x′(t) = u2(t) + v2(t)− p2(t)− q2(t),
y′(t) = 2[u(t)q(t) + v(t)p(t)],

z′(t) = 2[v(t)q(t)− u(t)p(t)],
σ(t) = u2(t) + v2(t) + p2(t) + q2(t).

Proof The proof is obtained by replicating the steps of the proof of [2, Theorem
21.1], where polynomial functions of degree 2 and 4 are replaced by trigonometric
functions in Ũ2 and Ũ4, respectively. ⊓⊔

As we will see later, it is convenient to represent the hodograph of a spatial ATPH
curve

r′(t) = [u2(t)+v2(t)−p2(t)−q2(t)]i+2[u(t)q(t)+v(t)p(t)]j+2[v(t)q(t)−u(t)p(t)]k,

using its quaternion form. Precisely, if after introducing the quaternion function

A(t) = u(t) + v(t)i+ p(t)j+ q(t)k,

we consider its conjugate

A∗(t) = u(t)− v(t)i− p(t)j− q(t)k,

we can easily obtain

r′(t) = A(t)iA∗(t). (9)

Proposition 2 The spatial ATPH curve can be expressed in the AT-Bézier form

r(t) =
5∑

i=0

piB
5
i (t), t ∈ [0, α],

with 3D control points pi, i = 1, . . . , 5 of the form

p1 = p0 + I0 A0iA
∗
0,

p2 = p1 + I1 (A0iA
∗
1 +A1iA

∗
0),

p3 = p2 + I2 (A0iA
∗
2 +A2iA

∗
0) + I3A1iA

∗
1,

p4 = p3 + I1 (A1iA
∗
2 +A2iA

∗
1),

p5 = p4 + I0 A2iA
∗
2,

(10)

where I0, I1, I2, I3 are defined as in (5) and the integration constant p0 is freely

chosen.
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Proof By substituting the trigonometric function A(t) = A0B̃
2
0(t) + A1B̃

2
1(t) +

A2B̃
2
2(t) with quaternion coefficients Aℓ = uℓ+ vℓi+ pℓj+ qℓk, ℓ = 0, 1, 2 into the

hodograph form (9), we obtain

r′(t) = A0iA
∗
0(B̃

2
0(t))

2 +A1iA
∗
1(B̃

2
1(t))

2 +A2iA
∗
2(B̃

2
2(t))

2

+ (A0iA
∗
1 +A1iA

∗
0)B̃

2
0(t)B̃

2
1(t) + (A1iA

∗
2 +A2iA

∗
1)B̃

2
1(t)B̃

2
2(t)

+ (A0iA
∗
2 +A2iA

∗
0)B̃

2
0(t)B̃

2
2(t).

(11)

Since r(t) =
∫
r′(t)dt, by integrating the expression in (11) exploiting the formulae

in (4), we obtain the AT-Bézier form of r(t) with control points in (10). ⊓⊔

Remark 2 In the well-known polynomial case, the control points of the spatial
PH quintic have exactly the form in (10) (see, e.g., [3]), where I0 = 1

5 , I1 = 1
10 ,

I2 = 1
30 , I3 = 2

15 . These are indeed the values of the definite integrals in (4),
obtained by setting α = 1 and replacing B̃2

j (t), j = 0, 1, 2 with the degree-2
Bernstein polynomials.

3.1 Parametric speed

The parametric speed of the ATPH curve r(t) is the rate of change σ = ds
dt

of its arc length s with respect to the curve parameter t. As in the case of
spatial PH polynomial curves [2, Chapters 21-22], the parametric speed of r(t) =
(x(t), y(t), z(t)) is given by

σ(t) = |r′(t)| =
√
(x′(t))2 + (y′(t))2 + (z′(t))2 = u

2(t) + v
2(t) + p

2(t) + q
2(t).

Since the square of a function in Ũ2 is a function in Ũ4, the parametric speed of
a spatial ATPH curve is a trigonometric function in Ũ4. The fact that σ(t) is a
trigonometric function (rather than the square-root of a trigonometric function)
in t is the source of the advantageous properties of ATPH curves. To compute
the explicit expression of σ(t) in the B-basis of Ũ4 we need to compute

σ(t) = |A(t)iA∗(t)| = |A(t)|2 = A(t)A∗(t)

with

A(t) = A0B̃
2
0(t)+A1B̃

2
1(t)+A2B̃

2
2(t), A∗(t) = A∗0B̃

2
0(t)+A∗1B̃

2
1(t)+A∗2B̃

2
2(t),
(12)

and

Aℓ = uℓ + vℓi+ pℓj+ qℓk, A∗ℓ = uℓ − vℓi− pℓj− qℓk, ℓ = 0, 1, 2

the corresponding quaternion coefficients. There follows that

σ(t) = |A0|2(B̃2
0(t))

2 + |A1|2(B̃2
1(t))

2 + |A2|2(B̃2
2(t))

2

+ (A1A
∗
0 +A0A

∗
1)B̃

2
0(t)B̃

2
1(t) + (A1A

∗
2 +A2A

∗
1)B̃

2
1(t)B̃

2
2(t)

+ (A2A
∗
0 +A0A

∗
2)B̃

2
0(t)B̃

2
2(t).
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At this point, we exploit formulae (6) to arrive at

σ(t) = |A0|2B̃4
0(t) +

1
2 (A1A

∗
0 +A0A

∗
1)B̃

4
1(t)

+ 1
2+c2

(
(1 + c2)|A1|2 + 1

2 (A2A
∗
0 +A0A

∗
2)
)
B̃4

2(t)

+ 1
2 (A1A

∗
2 +A2A

∗
1)B̃

4
3(t) + |A2|2B̃4

4(t).

(13)

To conclude

σ(t) =
4∑

i=0

σiB̃
4
i (t)

where
σ0 = |A0|2,
σ1 = 1

2 (A1A
∗
0 +A0A

∗
1),

σ2 = 1
2+c2

(
(1 + c2)|A1|2 + 1

2 (A2A
∗
0 +A0A

∗
2)
)
,

σ3 = 1
2 (A1A

∗
2 +A2A

∗
1),

σ4 = |A2|2.

(14)

3.2 Cumulative and total arc length

In this section we show that the cumulative arc length is an algebraic-trigonometric
function of the curve parameter t, and the total arc length can be computed ex-
actly (i.e., without numerical quadrature) by rational arithmetic on the curve
coefficients. To this end, we exploit equation (13) to write the arc length function

s(t) =

∫
σ(t)dt =

∫ 4∑

i=0

σiB̃
4
i (t)dt =

4∑

i=0

σi

∫
B̃

4
i (t)dt.

Then, recalling formulae (7) we arrive at

s(t) = 1
8s41

(

s2(4− c2)σ0 − s2(7 + 2c2)σ1 + 3s2(c2 + 2)σ2 − 3s2σ3

)

B5
0(t)

+ 1
8s41

(

3ασ0 − s2(7 + 2c2)σ1 + 3s2(c2 + 2)σ2 − 3s2σ3

)

B5
1(t)

+ 1
8s41

(

3ασ0 + n3σ1 + 3s2(c2 + 2)σ2 − 3s2σ3

)

B5
2(t)

+ 1
8s41

(

3ασ0 + n3σ1 + n4(c2 + 2)σ2 − 3s2σ3

)

B5
3(t)

+ 1
8s41

(

3ασ0 + n3σ1 + n4(c2 + 2)σ2 + n5σ3

)

B5
4(t)

+ 1
8s41

(

3ασ0 + n3σ1 + n4(c2 + 2)σ2 + n5σ3 + (3α− s2(4− c2))σ4

)

B5
5(t),

namely the arc length function is an algebraic-trigonometric function in U5.
There follows that the cumulative arc length of an ATPH curve is

S(ξ) =
∫ ξ

0 σ(t)dt = s(ξ)− s(0)

= 1
8s41

(

s2(4− c2)σ0 − s2(7 + 2c2)σ1 + 3s2(c2 + 2)σ2 − 3s2σ3

)

(B5
0(ξ)− 1)

+ 1
8s41

(

3ασ0 − s2(7 + 2c2)σ1 + 3s2(c2 + 2)σ2 − 3s2σ3

)

B5
1(ξ)

+ 1
8s41

(

3ασ0 + n3σ1 + 3s2(c2 + 2)σ2 − 3s2σ3

)

B5
2(ξ)

+ 1
8s41

(

3ασ0 + n3σ1 + n4(c2 + 2)σ2 − 3s2σ3

)

B5
3(ξ)

+ 1
8s41

(

3ασ0 + n3σ1 + n4(c2 + 2)σ2 + n5σ3

)

B5
4(ξ)

+ 1
8s41

(

3ασ0 + n3σ1 + n4(c2 + 2)σ2 + n5σ3 + (3α− s2(4− c2))σ4

)

B5
5(ξ)
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and the total arc length S of an ATPH curve can be written as

S =

∫ α

0

σ(t)dt = S(α) = 1

8s41

(
n0

2
(σ0+σ4)+(n0−6n2)(σ1+σ3)+2(c2+2)n2σ2

)
.

(15)

4 First-order spatial Algebraic-Trigonometric Pythagorean-Hodograph

Hermite interpolants

Given arbitrary control points p0 6= p1 and p4 6= p5 of an AT-Bézier curve
r(t) =

∑5
i=0 piB

5
i (t), t ∈ [0, α], defined over the space U5, we look for the two

remaining inner control points p2 and p3 such that all six are expressible in
the form given by equations (10) for some quaternions A0,A1,A2. Since AT-
Bézier curves built-upon the normalized B-basis B5

i , i = 0, . . . , 5 satisfy (8), this
problem can be obviously regarded as a first-order Hermite interpolation problem
to prescribed end points p0, p5 and end first derivatives at these end points.
Hereinafter the first derivatives at p0, p5 will be denoted by di, df , respectively.
Following the line of reasoning in [2, Section 28.2], the following result can be
proven.

Proposition 3 Let s1, c2, n0, n2 be as in (2)-(3), I1, I3 as in (5) and

M := 1
64s81

(
(n0−6n2)

2

4 − (c2 + 1)n0n2
)
,

N := 1
32s81

(
(n0−6n2)

2

8 − (c2 + 1)(n2)
2
)
.

(16)

The ATPH curves r(t) solving the first-order Hermite interpolation problem

r(0) = p0, r′(0) = di, r(α) = p5, r′(α) = df ,

have control points given by expressions (10) with

A0 =
√
|di| i+wi

|i+wi| exp(φ0i), A2 =
√
|df | i+wf

|i+wf | exp(φ2i),

A1 = − I1
I3
(A0 +A2) +

√
|c|
I3

i+wc

|i+wc| exp(φ1i),
(17)

where

c := I3(p5 − p0) +M(di + df ) +N(A0iA
∗
2 +A2iA

∗
0), (18)

and

• (λi, µi, νi), (λf , µf , νf ), (λc, µc, νc) are the direction cosines of di, df and c, re-

spectively,

• wi = λii + µij + νik, wf = λf i + µf j + νfk, wc = λci + µcj + νck are unit

vectors in the directions of di, df and c, respectively,

• φ0, φ1, φ2 are free angular variables varying in the interval [−π
2 ,

π
2 ].
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Proof In view of (9) and (12), interpolation of the end-derivatives yields the
equations

A0iA
∗
0 = di, A2iA

∗
2 = df , (19)

for A0 and A2, where di and df are known pure vectors. Moreover, interpolation
of the end points p0 and p5 (with p0 the integration constant) gives the condition

∫ α

0
A(t)iA∗(t)dt = p5 − p0 = I0A0iA

∗
0 + I1(A0iA

∗
1 +A1iA

∗
0)

+ I2(A0iA
∗
2 +A2iA

∗
0) + I3A1iA

∗
1

+ I1(A1iA
∗
2 +A2iA

∗
1) + I0A2iA

∗
2.

(20)

Recalling the result in [3, Section 3.2], the quaternion equations (19) can be
solved directly to obtain

A0 =
√

(1+λi)
2 |di|

(
− sinφ0 + cosφ0i+

µi cosφ0+νi sinφ0

1+λi
j+ νi cosφ0−µi sinφ0

1+λi
k

)

=
√
|di| i+wi

|i+wi| exp(φ0i) with wi = λii+ µij+ νik,

(21)
and

A2 =

√
(1+λf )

2 |df |
(
− sinφ2 + cosφ2i+

µf cosφ2+νf sinφ2

1+λf
j+

νf cosφ2−µf sinφ2

1+λf
k

)

=
√
|df | i+wf

|i+wf | exp(φ2i) with wf = λf i+ µf j+ νfk,

(22)
where (λi, µi, νi) and (λf , µf , νf ) are the direction cosines of di and df , while φ0
and φ2 are free angular variables. Knowing A0 and A2, the solution of (20) for
A1 may appear more difficult. However, by using (19) and making appropriate
rearrangements, this equation can be written as

(I1A0 + I3A1 + I1A2)i(I1A0 + I3A1 + I1A2)
∗ = I3(p5 − p0) +M(di + df )
+ N(A0iA

∗
2 +A2iA

∗
0),

(23)
with I1, I3 as in (5) and M,N as in (16). Equation (23) is of the form ÂiÂ∗ = c

(exactly as (19)) with

Â := I1A0 + I3A1 + I1A2 (24)

and c in (18). Note that c is a known pure vector. In fact, A0iA
∗
2+A2iA

∗
0 is twice

the vector part of A0iA
∗
2 in light of the fact that A2iA

∗
0 = (A0iA

∗
2)
∗. Exploiting

(21) and (22), we can write

A0iA
∗
2 +A2iA

∗
0 =

√
(1 + λi)|di|(1 + λf )|df |(axi+ ayj+ azk),

where

ax = cos(∆φ)− (µiµf + νiνf ) cos(∆φ) + (µiνf − µfνi) sin(∆φ)
(1 + λi)(1 + λf )

,

ay =
µi cos(∆φ)− νi sin(∆φ)

1 + λi
+
µf cos(∆φ) + νf sin(∆φ)

1 + λf
,

az =
νi cos(∆φ) + µi sin(∆φ)

1 + λi
+
νf cos(∆φ)− µf sin(∆φ)

1 + λf
,
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and
∆φ := φ2 − φ0.

Finally, writing c = cxi+ cyj+ czk, the solution of (23) for A1 is

A1 = − I1
I3
(A0 +A2) +

√

(1+λc)
2

|c|
I3

(
− sinφ1 + cosφ1i+

µc cosφ1+νc sinφ1

1+λc
j

+ νc cosφ1−µc sinφ1

1+λc
k

)

= − I1
I3
(A0 +A2) +

√
|c|
I3

i+wc

|i+wc| exp(φ1i) with wc = λci+ µcj+ νck,

where (λc, µc, νc) are the direction cosines of c, while φ1 is another free angular
variable. ⊓⊔

Proposition 4 The total arc length S of an ATPH Hermite interpolant has the com-

pact quaternion representation

S =
1

I3

(
ÂÂ∗ −M

(
A0A

∗
0 +A2A

∗
2

)
−N

(
A0A

∗
2 +A2A

∗
0

) )
, (25)

with Â in (24), I3 in (5) and M,N in (16).

Proof Substituting into equation (15) the values of σi, i = 0, . . . , 4 in (14) we
obtain

S = I0(A0A
∗
0 +A2A

∗
2) + I1(A1A

∗
0 +A0A

∗
1 +A1A

∗
2 +A2A

∗
1)

+ I2(A0A
∗
2 +A2A

∗
0) + I3A1A

∗
1,

(26)

with I0, I1, I2, I3 the abbreviations in (5). Noting that I0 and I2 verify the iden-
tities

I0 =
(I1)

2 −M
I3

, I2 =
(I1)

2 −N
I3

,

for M,N in (16), equation (26) can be further rewritten in the equivalent form

S = 1
I3

(
(I1)

2A0A
∗
0 + I1I3A0A

∗
1 + (I1)

2A0A
∗
2 + I1I3A1A

∗
0 + (I3)

2A1A
∗
1

+I1I3A1A
∗
2 + (I1)

2A2A
∗
0 + I1I3A2A

∗
1 + (I1)

2A2A
∗
2

−M(A0A
∗
0 +A2A

∗
2)−N(A0A

∗
2 +A2A

∗
0)

)
,

which is nothing but the expanded form of (25). ⊓⊔

Corollary 1 Assuming φ1 to be fixed, the total arc length S of a spatial ATPH Her-

mite interpolant depends only on α and the difference ∆φ = φ2−φ0 of the two angular

degrees of freedom.

Proof If φ1 is fixed, it is easy to see that the quaternion Â = I1A0+ I3A1+ I1A2

and its conjugate depend only on α and ∆φ. In fact, in light of (17), Â can be
rewritten as Â =

√
|c| i+wc

|i+wc| exp(φ1i), with c the pure vector in (18) depending

only on α and ∆φ. Moreover, we can replace the term A0A
∗
0 + A2A

∗
2 by the

constant |di| + |df |, and also easily verify that A0A
∗
2 + A2A

∗
0 depends only on

∆φ. Thus, S depends both on α and ∆φ only. ⊓⊔
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Remark 3 We observe that, for a given set of Hermite data, the arc lengths S of
PH Hermite interpolants lie in a relatively narrow range, while the range where
the arc lengths S of ATPH Hermite interpolants can vary is much larger. For ex-
ample, if we consider the Hermite data p0 = (0, 0, 0), p5 = (1, 1, 1), di = (1, 0, 1),
df = (0, 1, 1) and assume φ1 = −π

2 , the arc lengths of PH Hermite interpolants
lie in [1.777, 1.825] while the arc lengths of ATPH Hermite interpolants lie in
[1.734, 1.999]. This lower bound of S for ATPH Hermite interpolants is obtained
with α = 0.05, while the upper bound is achieved when α = 2

3π − 0.05.

4.1 Independent degrees of freedom of spatial ATPH Hermite interpolants

The three angular variables φ0, φ1, φ2, associated with the quaternions A0, A1,
A2 respectively, do not identify independent degrees of freedom. In fact, the
control points in (10) depend only on the products AriA

∗
s which can be written

as AriA
∗
s = Ar(0)

(
sin(φs−φr)+cos(φs−φr)i

)
A∗s(0), by introducing the notation

Ar := Ar(φr) = Ar(0)(cosφr +sinφri). Thus the control points of spatial ATPH
Hermite interpolants indeed depend only on α and the difference of the angles
φ0, φ1, φ2. Without loss of generality, we can assume φ1 to be fixed and, recalling
[3], we can conveniently select φ1 = −π

2 . In this way, the first-order Hermite
interpolation problem admits a three-parameter family of solutions since, besides
φ0 and φ2, the value of α also identifies a degree of freedom.

Remark 4 In the quintic polynomial case, the Hermite interpolation problem was
proven to yield a two-parameter family of solutions (see, e.g., [2–4]) since φ0 and
φ2 are the only two independent degrees of freedom. When α = 1 is selected,
the families of ATPH Hermite interpolants behave closely to the corresponding
families of PH Hermite interpolants (Figure 1). In this figure, as well as in many
others of this section, we refer to color lines to distinguish among multiple plots.
We thus invite the reader to refer to the electronic version of the paper to make
the identification of individual plots easier.
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(a) φ0 = −π
2

, φ2 = −π
2
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z

1.2
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y
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x

0.5
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-0.5

(b) φ0 = −π
3

, φ2 = − 2π
5

0
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0.4
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1.5

0.8

1

z

1.2

1

y

0.5 1

x

0.5
00

-0.5

(c) φ0 = −π
3

, φ2 = −π
5

Fig. 1 Comparison between ATPH (solid red) and PH (solid blue) Hermite interpolants to
the data p0 = (0, 0, 0), p5 = (1, 1, 1), di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1), obtained by
fixing α = 1 and φ1 = −π

2
, and choosing φ0, φ2 as specified in each subfigure. The ATPH

and PH control polygons are delineated by a dashed red and blue polyline, respectively.

Recalling the previously introduced notation ∆φ = φ2 − φ0, we can write

φ0 = φm −
1

2
∆φ and φ2 = φm +

1

2
∆φ, for φm :=

1

2
(φ0 + φ2).
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Figure 2 illustrates how the arc length of spatial ATPH curves interpolating the
same Hermite data, changes in terms of α, φm (a), ∆φ, φm (b) and α, ∆φ (c).

1

3

1.5

1

2

2

2.5

m

3

0 1

3.5

0-1

(a)

0

1

2

2

21

3

m

0

4

0
-1

-2-2

(b)

0

1

2 4

2

3

2

4

0

5

0
-2

-2

(c)

Fig. 2 Behaviour of the arc length S for the families of ATPH Hermite interpolants to the
data p0 = (0, 0, 0), p5 = (1, 1, 1), di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1), obtained by

fixing φ1 = −π
2

and assuming: α ∈ (0, 2
3
π), φm ∈ [−π

2
, π
2
] (a), ∆φ ∈ [−π, π], φm ∈ [−π

2
, π
2
]

(b), α ∈ (0, 2
3
π), ∆φ ∈ [−π, π] (c).

a) In the first situation considered in Figure 2, we assume ∆φ constant and
change α and φm so obtaining:

a.1) for a fixed value of α, a family of spatial ATPH Hermite interpolants with
the same arc length but varying shapes (see Figure 3);

a.2) for a fixed value of φm, a family of spatial ATPH Hermite interpolants
with the same shape but varying arc length (see Figure 4).

Indeed, according to Figure 2(a), we can observe that, for a fixed value of
φm, S becomes larger and larger when considering increasing values of α.
Differently, for a fixed value of α, S does not change with φm.

b) In the second situation considered in Figure 2, we assume α constant and
change ∆φ and φm (exactly like in the quintic polynomial case) so obtaining:

b.1) for a fixed value of ∆φ, a family of spatial ATPH Hermite interpolants
with the same arc length but varying shapes (see Figure 5);

b.2) for a fixed value of φm, a family of spatial ATPH Hermite interpolants
with varying shapes and varying arc length (see Figure 6).

Indeed, according to Figure 2(b), we can observe that, for a fixed value of
∆φ, S does not change with φm. Moreover, monotonically increasing values
of ∆φ do not provide monotonically increasing values of S. Differently, for a
fixed value of φm, S changes with ∆φ, but still not monotonically.

c) Finally, in the third situation considered in Figure 2, we assume φm constant
and change α and ∆φ so obtaining:

c.1) for a fixed value of α, spatial ATPH Hermite interpolants with varying
shapes and varying arc length (see Figure 7);

c.2) for a fixed value of ∆φ, spatial ATPH Hermite interpolants with the same
shape but varying arc length (see Figure 8).

Indeed, according to Figure 2(c), we can observe that, for a fixed value of α,
S changes with ∆φ, but not in a monotonic way. Differently, for a fixed value
of ∆φ, S increases in a monotonic way by considering increasing values of α.



14 L. Romani, F. Montagner
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Fig. 3 One-parameter families of spatial ATPH Hermite interpolants to the data p0 =
(0, 0, 0), p5 = (1, 1, 1), di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1), defined by fixing φ1 = −π

2
,

∆φ = π
3

and varying only φm in [−π
2
, π
2
].
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Fig. 4 One-parameter families of spatial ATPH Hermite interpolants to the data p0 =
(0, 0, 0), p5 = (1, 1, 1), di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1), defined by fixing φ1 = −π

2
,

∆φ = π
3

and varying only α ∈ (0, 2
3
π). In each subfigure, assuming αj = π

30
j, j = 1, . . . , 19,

curves with increasing arc length values are obtained.
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Fig. 5 One-parameter families of spatial ATPH Hermite interpolants to the data p0 =
(0, 0, 0), p5 = (1, 1, 1), di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1), defined by fixing φ1 = −π

2
,

α = 2π
5

and varying only φm in [−π
2
, π
2
].
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Fig. 6 One-parameter families of spatial ATPH Hermite interpolants to the data p0 =
(0, 0, 0), p5 = (1, 1, 1), di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1), defined by fixing φ1 = −π

2
,

α = 2π
5
, and varying only ∆φ in [−π, π]. In each subfigure, assuming (∆φ)j = 2j−21

19
π,

j = 1, . . . , 20, curves with different arc length values are obtained.
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Fig. 7 One-parameter families of spatial ATPH Hermite interpolants to the data p0 =
(0, 0, 0), p5 = (1, 1, 1), di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1), defined by fixing φ1 = −π

2
,
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and varying only ∆φ in [−π, π].
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Fig. 8 One-parameter families of spatial ATPH Hermite interpolants to the data p0 =
(0, 0, 0), p5 = (1, 1, 1), di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1), defined by fixing φ1 = −π

2
,

φm = π
3

and varying only α in (0, 2
3
π).

4.2 A way to fix the angular degrees of freedom φ0 and φ2

Let r(t) be a spatial ATPH curve. Like in the polynomial case (see [2–4]), we can
define the elastic bending energy of r(t) as

E :=

∫ α

0

κ
2(t)|r′(t)|dt with κ(t) :=

|r′(t)× r′′(t)|
|r′(t)|3 ,
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where, according to (9), r′(t) = A(t)iA∗(t) and r′′(t) = A′(t)iA∗(t)+A(t)iA′∗(t)
are both pure vector quaternions (i.e. quaternions of the form Q = (0,q) with
q = vect(Q) = qxi+qyj+qzk). Since E depends on φ0 and φ2 in a non-linear way,
it is very hard to identify the optimal values of the two angular variables which
correspond to the global minimum of E. However, there is a strong numerical
evidence that the angular values φ0 = φ2 = −π

2 can be used as a default choice
to provide ATPH Hermite interpolants of reasonable shape (see Figure 9). In
fact, although the choice φ0 = φ2 = −π

2 does not always correspond to the global
minimum of the shape measure E, we have observed empirically from many
examples that it turns out to be very close to it.
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Fig. 9 Comparison between spatial ATPH Hermite interpolants to the data p0 = (0, 0, 0),
p5 = (1, 1, 1), di = (1, 0, 1), df = (0, 1, 1) (first row) and p0 = (0, 0, 0), p5 = (1, 1, 1),
di = (−0.8, 0.3, 1.2), df = (0.5,−1.3,−1) (second row), obtained by fixing φ1 = −π

2
, α ∈

{2/21π, 4/21π, 2/7π, 1, 10/21π, 3/5π} and choosing φ0, φ2 as specified in each subfigure.

4.3 Benefits of the free parameter α

For given Hermite data and fixed values of φ0 and φ2 (e.g., φ0 = φ2 = −π
2 ),

ATPH interpolants increase the flexibility of PH interpolants in the sense that
they allow the user to:
- use α as a shape parameter (see Figure 10);
- select α to minimize S or E (see Figures 11, 12);
- select α to improve the behaviour of curvature and torsion (see Figure 13).
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Fig. 10 PH Hermite interpolant (blue) and family of ATPH Hermite interpolants (red) to
the end points p0 = (0, 0, 0), p5 = (1, 1, 1) and associated end derivatives di, df , obtained
by fixing φ0 = φ1 = φ2 = −π

2
. Each curve of the family of ATPH interpolants is identified

by a different value of α ∈ (0, 2
3
π), precisely, αj = 0.05 + j

9
( 2
3
π − 0.1), j = 0, . . . , 9.
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Fig. 11 Blue: PH Hermite interpolant from Figure 10 (a). In (a) the ATPH Hermite inter-
polant (red) from the family in Figure 10 (a) that minimizes the arc length; in (b) the one
which minimizes the elastic bending energy.
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which minimizes the elastic bending energy.



18 L. Romani, F. Montagner

1

0.5

y

-0.5

00

0

z

0.5

x

0.5

1

-0.5
1

(a)

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

(b)

0 0.5 1 1.5 2 2.5
-10

-5

0

5

10

15

20

(c)

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

(d)

Fig. 13 In (a) the PH (blue) and the ATPH (red) Hermite interpolant to the data p0 =
(0, 0, 0), p5 = (1, 1, 1), di =

1
6
(0.4,−1.5,−1.2), df = 1

6
(−1.2,−0.6,−1.2), obtained by fixing

φ0 = φ1 = φ2 = −π
2

and α = 2
3
π − 0.05. In (b), (c), (d) the behaviour of the curvature κ,

the torsion τ and the total curvature ω :=
√
κ2 + τ2 of the PH interpolant (dashed lines)

and the ATPH interpolant (solid lines).

5 Reverse engineering of spatial ATPH curves

Given the control points p0,p1, . . . ,p5 of a spatial ATPH curve, the reverse
engineering problem consists in determining the three quaternion coefficients
A0,A1,A2 from the five vector equations

A0iA
∗
0 = d0,

vect(A0iA
∗
1) = n0

2(n0−6n2)
d1,

vect(A0iA
∗
2) + (c2 + 1)(A1iA

∗
1) =

n0
4n2

d2,

vect(A1iA
∗
2) = n0

2(n0−6n2)
d3,

A2iA
∗
2 = d4,

(27)

obtained from (10) by setting

di :=
16s41
n0

(pi+1 − pi), i = 0, . . . , 4. (28)

To this end we follow the approach used in [5]. Since we focus our attention on
ATPH curves for which |di| 6= 0, i = 0, . . . , 4, we are allowed to introduce the



Algebraic-Trigonometric Pythagorean-Hodograph space curves 19

notation

δi :=
di

|di|
, i = 0, . . . , 4. (29)

If we assume δ0, δ4 6= −i, the solution to the first and the fifth equation in (27)
can be written in the form

A0 =
√
|d0|m0 exp(φ0i), A2 =

√
|d4|m4 exp(φ2i), (30)

where

m0 :=
i+ δ0

|i+ δ0|
, m4 :=

i+ δ4

|i+ δ4|
. (31)

On the other hand, from the second equation in (27) we can write

A0iA
∗
1 =

n0

2(n0 − 6n2)
(−ξ,d1), ξ ∈ R,

from which we obtain

iA∗1 = n0

2(n0−6n2)|A0|2 A∗0(−ξ,d1)

A∗1 = n0

2(n0−6n2)|A0|2 i∗A∗0(−ξ,d1)

A1 = n0

2(n0−6n2)|A0|2
(
i∗A∗0(−ξ,d1)

)∗
= n0

2(n0−6n2)|A0|2 (−ξ,−d1)A0i.

Hence, after recalling the expression of A0 in (30), we arrive at

A1 =
n0

2(6n2 − n0)
√
|d0|

(ξ,d1)m0 exp(φ0i)i. (32)

If we now set δ1 := d1

|d1| and use the expression in (32) to form the product

A1iA
∗
1, we obtain

A1iA
∗
1 =

n20
4(n0 − 6n2)2

ξ2δ0 − 2ξ|d1|(δ0 × δ1) + 2|d1|2(δ0 · δ1)δ1 − |d1|2δ0
|d0|

.

(33)
Moreover, exploiting (30) we get

vect(A0iA
∗
2) = cos(∆φ)u+ sin(∆φ)v, (34)

with

u :=
√
|d0||d4|

(
(m0 · i)m4 + (m4 · i)m0 − (m0 ·m4) i

)
,

v :=
√
|d0||d4| (m4 ×m0),

(35)

and ∆φ = φ2 − φ0. We continue by substituting (33) and (34) into the third
equation in (27). This yields the vector condition

(c2 + 1)n20n2ξ
2
δ0 − 2(c2 + 1)n20n2ξ|d1|(δ0 × δ1)

+4n2(n0 − 6n2)
2|d0|(cos(∆φ)u+ sin(∆φ)v) =

n0(n0 − 6n2)
2|d0|d2 + (c2 + 1)n20n2|d1|2δ0 − 2(c2 + 1)n20n2|d1|2(δ0 · δ1)δ1,

(36)
which defines an over-determined system of three scalar equations in the two
unknowns ξ and ∆φ. Note that this system is consistent if the given data define
a spatial ATPH. In order to solve (36) we proceed as follows.
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First we note that (m0 · i)m0 = i+δ0
2 and (m4 · i)m4 = i+δ4

2 , from which we
obtain that

u× v =
|d0||d4|

2
(δ4 − δ0),

and, under the stated assumptions, u× v 6= 0.
Second, we observe that u · (u × v) = v · (u × v) = 0, which means that by
computing the dot product of (36) with u×v we can eliminate the unknown ∆φ
and obtain a quadratic equation in ξ. Precisely, exploiting the fact that

δ0 · (u× v) =
|d0||d4|

2
(δ0 · δ4 − 1)

and

(δ0 × δ1) · (u× v) =
|d0||d4|

2
(δ0 × δ1) · δ4,

we obtain the quadratic equation

aξ
2 + bξ + c = 0 (37)

with
a = (c2 + 1)n20n2(δ0 · δ4 − 1),
b = −2(c2 + 1)n20n2|d1|(δ0 × δ1) · δ4,
c = (δ0 − δ4) ·

(
n0(n0 − 6n2)

2|d0|d2 + (c2 + 1)n20n2|d1|2δ0
−2(c2 + 1)n20n2|d1|2(δ0 · δ1)δ1

)
.

(38)

Thus, to guarantee the existence of a solution ξ ∈ R, the condition b2 − 4ac ≥ 0
must be satisfied by the given data, and this is a non-obvious consequence of
the fact that d0,d1, . . . ,d4 define a spatial ATPH. Then, for each root ξ of (37),
corresponding values of the unknown ∆φ can be computed by taking the dot
product of (36) with i. Precisely, after introducing the notation

r(ξ) := i ·
(
n0(n0 − 6n2)

2|d0|d2 + (c2 + 1)n20n2|d1|2δ0
−2(c2 + 1)n20n2|d1|2(δ0 · δ1)δ1
−(c2 + 1)n20n2ξ

2
δ0 + 2(c2 + 1)n20n2ξ|d1|(δ0 × δ1)

)
,

(39)

and

p := 4n2(n0 − 6n2)
2|d0| (i · u), q := 4n2(n0 − 6n2)

2|d0| (i · v), (40)

the dot product of (36) with i yields the equation

p cos(∆φ) + q sin(∆φ) = r(ξ). (41)

Equation (41) can be rewritten as

cos(∆φ− ψ) = r(ξ)√
p2 + q2

(42)

with

cos(ψ) =
p√

p2 + q2
and sin(ψ) =

q√
p2 + q2

. (43)
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There follows that the root ξ must satisfy the condition

|r(ξ)| ≤
√
p2 + q2, (44)

in order to obtain from equation (42) the corresponding values ∆φ ∈ [0, 2π]. Since

ψ ∈
{
acos

(
p√

p2+q2

)
, 2π−acos

(
p√

p2+q2

)}
satisfies (43) and∆φ ∈

{
acos

(
r(ξ)√
p2+q2

)

+ψ, 2π−acos
(

r(ξ)√
p2+q2

)
+ψ

}
satisfies (42), the proposed approach can determine

up to eight distinct solutions (ξ,∆φ) of equation (36). For each solution, if (for
instance) we assume φ0 to be freely chosen and compute φ2 = φ0 + ∆φ, the
corresponding quaternion coefficients A0,A1,A2 may be obtained by equations
(30), (32). Note that such coefficients are unique only modulo a common factor
exp(φi) for any φ, reflecting the free choice of φ0 (or φ2).

Remark 5 The cases δ0, δ4 = −i can be treated in a similar way; thus, for brevity,
we discount them.

For the reader’s convenience, in the following algorithm we summarize the com-
putational strategy for determining the quaternion coefficients A0,A1,A2 from
the control points of a spatial ATPH curve.

The reverse engineering algorithm.
Input: the control points pi, i = 0, . . . , 5; α; φ0.

1. Compute s1, c2, s2 by using (2) and then compute n0, n2 by using (3).
2. Compute d0,d1,d2,d4 via (28) and then compute δ0, δ1, δ4 by using (29).
3. Compute m0,m4 by using (31).
4. Compute a, b, c by using (38).
5. if b2 − 4ac ≥ 0 do

5.1. Compute ξ = −b±
√
b2−4ac
2a .

5.2. Compute r(ξ) by using (39), u,v by using (35) and then p, q via (40).

5.3. Compute ψ = acos
(

p√
p2+q2

)
or ψ = 2π − acos

(
p√

p2+q2

)
.

5.4. if |r(ξ)| ≤
√
p2 + q2 do

5.4.1 Compute ∆φ = acos
(

r(ξ)√
p2+q2

)
+ψ or ∆φ = 2π−acos

(
r(ξ)√
p2+q2

)
+ψ,

and set φ2 = φ0 +∆φ.
5.4.2 Compute Aj , j = 0, 1, 2 by using (30) and (32).
end

end

Output: the three quaternion coefficients Aj , j = 0, 1, 2.

Remark 6 When the control points of the ATPH curve are constructed by select-
ing φ0 = φ2, the solutions

ψ = acos
(

p√
p2 + q2

)
, ∆φ = 2π − acos

(
r(ξ)√
p2 + q2

)
+ ψ,
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and

ψ = 2π − acos
(

p√
p2 + q2

)
, ∆φ = acos

(
r(ξ)√
p2 + q2

)
+ ψ,

both identify the same three quaternion coefficients Aj , j = 0, 1, 2. In fact, p =
r(ξ) and the computed ψ is such that ∆φ = 2π.

Conversely, when the control points of the ATPH curve are constructed by se-
lecting φ0 6= φ2, from our numerical tests we always obtained only one correct
solution. The following example is included to illustrate this fact.

Example 1 We select α = 3
5π, φ0 = −2

5π, φ1 = −π
2 , φ2 = 9

20π and consider
the spatial ATPH curve r(t) which solves the first-order Hermite interpolation
problem

r(0) = (0, 0, 0), r′(0) = (−0.8, 0.3, 1.2), r(α) = (1, 1, 1), r′(α) = (0.5,−1.3,−1).

According to the results in Proposition 3, the control points of r(t) are

p0 = (0, 0, 0),
p1 = (−0.363402375465172, 0.136275890799440, 0.545103563197758),
p2 = (0.446114740676690, 0.975310866441397, 1.405422626178919),
p3 = (1.896654791102130, 0.883305472863396, 0.622427428874599),
p4 = (0.772873515334269, 1.590528860130905, 1.454252969331466),
p5 = (1, 1, 1).

Applying the reverse-engineering algorithm to obtain from p0, . . . ,p5 the coeffi-
cients A0,A1,A2, we find that equation (37) has solutions

ξ+ = 0.278417655031089 and ξ− = 1.298969111520490,

but condition (44) is satisfied by ξ+ only. Thus four admissible solutions can be
worked out which correspond to the choices of ψ in step 5.3 and ∆φ in step 5.4.1
of the algorithm. However, for the selected value φ0 = −2

5π, only one of the four is

the correct solution, and it is identified by the choices ψ = 2π−acos
(

p√
p2+q2

)
and

∆φ = acos
(

r(ξ+)√
p2+q2

)
+ψ. In fact, for these values of ψ and ∆φ when recomputing

the control points p1, . . . ,p5 via formula (10), the relative errors

Er(p1) = 1.6591× 10−16, Er(p2) = 1.9859× 10−16, Er(p3) = 4.4630× 10−16,

Er(p4) = 5.9784× 10−16, Er(p5) = 7.0509× 10−16,

are found. This is the only case for which the relative errors in p1, . . . ,p5 have a
so small magnitude, so confirming the correctness of this solution only.
By modifying the input data φ0 and φ2 we can also find that condition (44) is
satisfied by ξ− only, or even by both ξ+ and ξ−. However, in any case, even if
eight admissible solutions exist, there is only one choice of ψ and ∆φ for which
the magnitude of the relative errors in p1, . . . ,p5 is close to the machine epsilon
2.2204× 10−16.
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6 Conclusions

We have presented the new class of spatial ATPH curves. In the same way as
general Algebraic-Trigonometric Bézier curves complement general polynomial
Bézier curves, the class of spatial ATPH curves provides a beneficial addition to
the existing class of spatial PH curves. Moreover, spatial ATPH curves have been
shown to inherit the same free parameter that characterizes planar ATPH curves
and its benefits in free-form design applications have been illustrated.
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