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Abstract

It is shown that any subset of Q can be the exceptional set of some transcendental entire function.

Furthermore, we give a much more general version of this theorem and present a unified proof.
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1. Introduction

In 1886, Weierstrass gave an example of a transcendental entire function which

takes rational values at all rational points. He also suggested that there exist

transcendental entire functions which take algebraic values at any algebraic point.

Later, in [3], Stäckel proved that for each countable subset 6 ⊆ C and each dense

subset T ⊆ C, there is a transcendental entire function f such that f (6) ⊆ T . Another

construction due to Stäckel produces an entire function f whose derivatives f (s),

for s = 0, 1, 2, . . . , all map Q into Q; see [4]. A more thorough discussion on this

subject can be found in [2, 6]. There are recent results due to Surroca on the number

of algebraic points where a transcendental analytic function takes algebraic values,

see [5]. We were able to generalize these two results of Stäckel to the following general

theorem.

THEOREM 1. Given a countable subset A ⊆ C and for each integer s ≥ 0 with α ∈ A,

fix a dense subset Eα,s ⊆ C. Then there exists a transcendental entire function

f : C → C such that f (s)(α) ∈ Eα,s , for all α ∈ A and all s ≥ 0.

Let f be given, and denote by S f the set of all algebraic points α ∈ C, for which

f (α) is also algebraic. An interesting problem is to determine properties of S f ,

which we call the exceptional set of f . In the conclusion we will show that for

any A ⊆ Q there is a transcendental entire function f such that A is the exceptional

set of f .

Without referring to Theorem 1, we have the following special examples.
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EXAMPLE 2. Arbitrary finite subsets of algebraic numbers are easily seen to be

exceptional. For instance, if f1(z) = e(z−α1)···(z−αk), then the Hermite–Lindemann

theorem implies that S f1 = {α1, . . . , αk}. If f2(z) = ez + ez+1and f3(z) = ezπ+1,

then the Lindemann–Weierstrass and Baker theorems imply that S f2 = S f3 = ∅.

EXAMPLE 3. Some well-known infinite sets are also exceptional; for instance, if

f4(z) = 2z, f5(z) = eiπ z , then S f4 = S f5 = Q, by the Gelfond–Schneider theorem.

EXAMPLE 4. Assuming Schanuel’s conjecture to be true, it is easy to prove that if

f6(z) = sin(π z)ez, f7(z) = 23z

and f8(z) = 222z−1

,

then S f6 = S f7 = Z and S f8 = N.

These examples are just special cases of our Theorem 1; they can be proved

uniformly here.

2. Preliminary results

In order to prove Theorem 1, we need several lemmas.

LEMMA 5. Let {Pn(z)}n≥0 be a sequence of complex polynomials, where deg Pn =

n. Also let {Cn}n≥0 be a sequence of positive constants such that |Pn(z)| ≤

Cn max{|z|, 1}n . If a sequence of complex numbers {an}n≥0 satisfies |an| ≤ 1/Cnn!,

then the series
∑∞

n=0 an Pn(z) converges absolutely and uniformly on any compact set;

in particular, this gives an entire function.

PROOF. When |an| ≤ 1/Cnn!,

∞∑

n=0

|an||Pn(z)| ≤

∞∑

n=0

1

Cnn!
Cn max{|z|, 1}n ≤ exp(max{|z|, 1}),

so
∑∞

n=0 an Pn(z) converges absolutely and uniformly on any compact set. Therefore

this series will produce an entire function. ✷

Let us now enumerate the set A in Theorem 1 as {α1, α2, α3, . . . }.

For n ≥ 1, define mn and jn by n = 1 + 2 + 3 + · · · + mn + jn , where mn ≥ 0 and

1 ≤ jn ≤ mn + 1. Next, construct a sequence of polynomials by letting P0(z) = 1 and

defining recursively

Pn(z) = (z − α jn )Pn−1(z) for n ≥ 1.

Here we list the first few polynomials:

P0(z) = 1

P1(z) = (z − α1)

P2(z) = (z − α1)
2

P3(z) = (z − α1)
2(z − α2)

P4(z) = (z − α1)
3(z − α2)
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P5(z) = (z − α1)
3(z − α2)

2

P6(z) = (z − α1)
3(z − α2)

2(z − α3)

P7(z) = (z − α1)
4(z − α2)

2(z − α3)

...

Let in = mn + 1 − jn . For any given i ≥ 0 and j ≥ 1 there exists a unique n ≥ 1

such that in = i and jn = j , namely n = 1
2 (i + j)(i + j − 1) + j .

LEMMA 6. For n ≥ 1, we have P
(in)
n−1(α jn ) 6= 0 and P

(in)
l (α jn ) = 0 when l ≥ n.

PROOF. From the definition of Pn(z), we can write explicitly

Pl(z) = (z − α1)
ml (z − α2)

ml−1 · · · (z − αml
)(z − α1) · · · (z − α jl ).

It follows that α jn is a zero of Pn−1(z) with multiplicity in , which means that

P
(in)
n−1(α jn ) 6= 0. On the other hand, if l ≥ n, then α jn is a zero of Pl(z) with multiplicity

at least in + 1, which implies that P
(in)
l (α jn ) = 0. ✷

LEMMA 7. If
∑∞

k=0 ak Pk(z) =
∑∞

k=0 bk Pk(z) for all z ∈ C, then ak = bk for each

k ≥ 0.

PROOF. It suffices to prove that if g(z) :=
∑∞

k=0 ak Pk(z) = 0 for all z ∈ C, then

{ak}k≥0 is identically 0. Notice that a0 = g(α1) = 0. Assuming that a0, a1, . . . , an−1

are all 0, by Lemma 6,

0 =

∞∑

k=0

ak P
(in+1)

k (α jn+1)

=

n−1∑

k=0

ak P
(in+1)

k (α jn+1) + an P
(in+1)
n (α jn+1) +

∞∑

k=n+1

ak P
(in+1)

k (α jn+1)

= an P
(in+1)
n (α jn+1).

Since P
(in+1)
n (α jn+1) 6= 0, we have an = 0. The proof is completed by induction. ✷

We are now able to prove our theorem.

3. Proof of Theorem 1

We will construct the desired transcendental entire function by fixing the

coefficients in the series
∑∞

k=0 ak Pk(z) recursively, where the sequence {Pk}k≥0 has

been defined in Section 2.

First, by Lemma 5, the condition |ak | ≤ 1/Ckk! will ensure that
∑∞

k=0 ak Pk(z) is

entire.
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Now we will fix the coefficients ak recursively. For n ≥ 1, we denote En = Eα jn,in

and let the numbers βn =
∑∞

k=0 ak P
(in)
k (α jn ). We will choose the value of ak so that

βn ∈ Eα jn,in = En for all n ≥ 1.

By Lemma 6, we know that P
(in)
l (α jn ) = 0 when l ≥ n, so βn is actually the finite

sum
∑n−1

k=0 ak P
(in)
k (α jn ). Notice that β1 = a0 P

(0)
0 (α1) = a0 and E1 is dense; we can

fix a value for a0 such that 0 < |a0| ≤ 1/C0 and β1 ∈ E1. Now suppose that the

values of {a0, a1, . . . , an−1} are well fixed such that 0 < |ak | ≤ 1/Ckk! and βk ∈ Ek

for 0 ≤ k ≤ n − 1. By Lemma 6, we know P
(in+1)
n (α jn+1) 6= 0, so we can pick a proper

value of an such that 0 < |an| ≤ 1/Cnn! and

βn =

n−1∑

k=0

ak P
(in+1)

k (α jn+1) + an P
(in+1)
n (α jn+1) ∈ En.

So now by induction all the ak are well chosen such that for all k ≥ 1 we have 0 <

|ak | ≤ 1/Ckk! and βk ∈ Ek . Thus by Lemma 5, the function f (z) =
∑∞

k=0 ak Pk(z)

is entire and for any i ≥ 0, j ≥ 1 we have f (i)(α j ) =
∑∞

k=0 ak P
(i)
k (α j ) = βn ∈ En =

Eα j ,i where n is the unique integer such that in = i, jn = j . Taking into account

that every polynomial can be expressed as a finite linear combination of the {Pk},

and all the {ak} here are not 0, so by Lemma 7 we conclude that f (z) is not a

polynomial. Hence f (z) is the desired transcendental entire function, and the proof

is complete.

From the construction of the proof, we can easily see that in fact there are

uncountably many functions satisfying the properties required in Theorem 1.

4. Applications to exceptional sets

We recall the following definition.

DEFINITION 8. Let f be an entire function. We define the exceptional set of f to be

S f = {α ∈ Q | f (α) ∈ Q}.

We list some of the more interesting consequences of Theorem 1 with the choice of

A, Eα,s noted in parentheses.

COROLLARY 9. For each countable subset 6 ⊆ C and for each dense subset T ⊆ C

there is a transcendental entire function f such that f (s)(6) ⊆ T for s ≥ 0. (A = 6,

Eα,s = T .)

COROLLARY 10. Let A ⊆ C be countable and dense in C. Then there is a

transcendental entire function f such that f (s)(A) ⊆ A, for s ≥ 0. (Eα,s = A.)

COROLLARY 11. There exists a transcendental entire function such that f (s)(Q) ⊆

Q(i), for s ≥ 0. (A = Q, Eα,s = Q(i).)
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A set A is said to be closed (with respect to Q) if it has the following property:

if α is algebraic and α′ is any algebraic conjugate of α, then α ∈ A implies that also

α′ ∈ A. In 1965, Mahler [1] proved that every closed set is the exceptional set of

some transcendental entire function. Our next result shows, in particular, that another

interesting consequence of Theorem 1 is that every A ⊆ Q is an exceptional set of a

transcendental entire function.

THEOREM 12. If A ⊆ Q, then there is a transcendental entire function such that

S f (s) = A for s ≥ 0.

PROOF. Suppose that A and Q \ A are both infinite, thus we can enumerate

Q = {α1, α2, . . .} where A = {α1, α3, . . . , α2n+1, . . .}. Set Eα2n+2,s = C \ Q and

Eα2n+1,s = Q for all n, s ≥ 0. Now by Theorem 1, there exists a transcendental

entire function f with f (s)(α2n+1) ∈ Q and f (s)(α2n+2) ∈ C \ Q, for each n, s ≥ 0.

Therefore it is plain that S f (s) = A.

For the case where A is finite, we can suppose that A = {α1, . . . , αm}. Take

Eα1,s = · · · = Eαm ,s = Q for all s ≥ 0, and set Eαk ,s = C \ Q for all k > m, s ≥ 0.

If Q \ A = {α1, . . . , αm}, we take Eα1,s = · · · Eαm ,s = C \ Q for all s ≥ 0, and set

Eαk ,s = Q for all k > m, s ≥ 0. Then for these two cases we proceed as in the

proof above. ✷
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