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Abstract

We consider a generalization of low-rank matrix

completion to the case where the data belongs to

an algebraic variety, i.e., each data point is a solu-

tion to a system of polynomial equations. In this

case the original matrix is possibly high-rank,

but it becomes low-rank after mapping each col-

umn to a higher dimensional space of monomial

features. Many well-studied extensions of lin-

ear models, including affine subspaces and their

union, can be described by a variety model, as

well as a rich class of nonlinear quadratic and

higher degree curves and surfaces. We study the

sampling requirements for matrix completion un-

der a variety model with a focus on a union of

affine subspaces. We also propose an efficient

matrix completion algorithm that minimizes a

convex or non-convex surrogate of the rank of

the matrix of monomial features, using the well-

known “kernel trick” to avoid working directly

with the high-dimensional monomial matrix. We

show the proposed algorithm is able to recover

synthetically generated data up to the predicted

sampling complexity bounds, and outperforms

standard low rank matrix completion and sub-

space clustering algorithms in experiments with

real data.

1. Introduction

Work in the last decade on matrix completion has shown

that it is possible to leverage linear structure in order to in-

terpolate missing values in a low-rank matrix (Candes &

Recht, 2012). The high-level idea of this work is that if

the data defining the matrix belongs to a structure having

fewer degrees of freedom than the entire dataset, that struc-

ture provides redundancy that can be leveraged to complete
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the matrix. The assumption that the matrix is low-rank is

equivalent to assuming the data lies on (or near) a low-

dimensional linear subspace.

It is of great interest to generalize matrix completion to

exploit low-complexity nonlinear structures in the data.

Several avenues have been explored in the literature, from

generic manifold learning (Lee et al., 2013), to unions of

subspaces (Eriksson et al., 2012; Elhamifar & Vidal, 2013),

to low-rank matrices perturbed by a nonlinear monotonic

function (Ganti et al., 2015; Song et al., 2016). In each

case missing data has been considered, but there lacks a

clear, unifying framework for these ideas.

In this work we study the problem of completing a ma-

trix whose columns belong to an algebraic variety, i.e., the

set of solutions to a system of polynomial equations (Cox

et al., 2015). This is a strict generalization of the linear

(or affine) subspace model, which can be written as the set

of points satisfying a system of linear equations. Unions

of subspaces and unions of affine spaces are also algebraic

varieties. Plus, a much richer class of non-linear curves,

surfaces, and their unions, are captured by a variety model.

The matrix completion problem using a variety model can

be formalized as follows. Let X =
[

x1, . . . ,xs

]

∈ R
n×s

be a matrix of s data points where each column xi ∈ R
n.

Define φd : R
n → R

N as the mapping that sends the

vector x = (x1, ..., xn) to the vector of all monomials in

x1, ..., xn of degree at most d, and let φd(X) denote the

matrix that results after applying φd to each column of X ,

which we call the lifted matrix. We will show the lifted ma-

trix is rank deficient if and only if the columns of X belong

to an algebraic variety. This motivates the following matrix

completion approach:

min
X̂

rankφd(X̂) such that PΩ(X̂) = PΩ(X) (1)

where PΩ(·) represents a projection that restricts to some

observation set Ω ⊂ {1, . . . , n} × {1, . . . , s}. The rank of

φd(X̂) depends on the choice of the polynomial degree d
and the underlying “complexity” of the variety, in a sense

we will make precise. Figure 1 shows three examples of

datasets that have low-rank in the lifted space for different

polynomial degrees d.

In this work we investigate the factors that influence the

sampling complexity of varieties as well as algorithms for
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completion. The challenges are (a) to characterize varieties

having low-rank (and therefore few degrees of freedom) in

the lifted space, i.e., determine when φd(X) is low-rank,

(b) devise efficient algorithms for solving (1) that can ex-

ploit these few degrees of freedom in a matrix completion

setting, and (c) determine the trade-offs relative to exist-

ing matrix completion approaches. This work contributes

considerable progress towards these goals.
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Figure 1. Data belonging to algebraic varieties in R
3. The original

data is full rank, but a nonlinear embedding of the matrix to a

feature space consisting of monomials of degree at most d is low-

rank with rank R, indicating the data has few degrees of freedom.

Our main contributions are as follows. We identify bounds

on the rank of a matrix φd(X) when the columns of the

data matrix X belong to an algebraic variety. We study

how many entries of such a matrix should be observed in

order to recover the full matrix from an incomplete sample.

We show as a case study that monomial representations

produce low-rank representations of unions of subspaces,

and we characterize the rank. The standard union of sub-

space representation as a discrete collection of individual

subspaces is inherently non-smooth in nature, whereas the

algebraic variety allows for a purely continuous parameter-

ization. This leads to a general algorithm for completion of

a data matrix whose columns belong to a variety. The al-

gorithm’s performance is showcased on data simulated as a

union of subspaces, a union of low-dimensional parametric

surfaces, and real data from a motion segmentation dataset

and a motion capture dataset. The simulations show that

the performance of our algorithm matches our predictions

and outperforms other methods. In addition, the analysis of

the degrees of freedom associated with the proposed repre-

sentations introduces several new research avenues at the

intersection of nonlinear algebraic geometry and random

matrix theory.

1.1. Related work

There has been a great deal of research activity on matrix

completion problems since (Candes & Recht, 2012), where

the authors showed that one can recover an incomplete ma-

trix from few entries using a convex relaxation of the rank

minimization optimization problem. For example, it is now

known that only O(rn) entries are necessary and sufficient

(Pimentel-Alarcón et al., 2016b) for almost every n × n
rank r matrix as long as the measurement pattern satisfies

certain deterministic conditions. However, these methods

and theory are restricted to low-rank linear models. A great

deal of real data exhibit nonlinear structure, and so it is of

interest to generalize this approach. Work in that direc-

tion has dealt with union of subspaces models (Eriksson

et al., 2012; Yang et al., 2015; Elhamifar, 2016; Pimentel-

Alarcón et al., 2016a; Pimentel-Alarcon & Nowak, 2016),

locally linear approximations (Lee et al., 2013), as well as

low-rank models perturbed by an arbitrary nonlinear link

function (Ganti et al., 2015; Song et al., 2016; Rao et al.,

2017). In this paper we instead seek a more general model

that captures both linear and nonlinear structure. The va-

riety model has as instances low-rank subspaces and their

union as well as quadratic and higher degree curves and

surfaces.

Work on kernel PCA (cf., (Sanguinetti & Lawrence, 2006;

Nguyen & Torre, 2009)) leverage similar geometry to

ours. In Kernel Spectral Curvature Clustering (Chen et al.,

2009), the authors similarly consider clustering of data

points via subspace clustering in a lifted space using ker-

nels. These works are algorithmic in nature, with promis-

ing numerical experiments, but do not systematically con-

sider missing data or analyze relative degrees of freedom.

This paper also has close ties to algebraic subspace clus-

tering (ASC) (Vidal et al., 2003; 2005; 2016; Tsakiris &

Vidal, 2015), also known as generalized PCA. Similar to

our approach, the ASC framework models unions of sub-

spaces as an algebraic variety, and makes use of monomial

liftings of the data to identify the subspaces. Characteriza-

tions of the rank of data belonging to union of subspaces

under the monomial lifting are used in the ASC framework

(Vidal et al., 2016) based on results in (Derksen, 2007).

The difference of the results in (Derksen, 2007) and those

in Prop. 1 is that ours hold for monomial liftings of all de-

grees d, not just d ≥ k, where k is the number of subspaces.

Also, the main focus of ASC is to recover unions of sub-

spaces or unions of affine spaces, whereas we consider data

belonging to a more general class of algebraic varieties. Fi-

nally, the ASC framework has not been adapted to the case

of missing data, which is the main focus of this work.

2. Variety Models

As a toy example to illustrate our approach, consider a ma-

trix

X =

(

x1,1 x1,2 · · · x1,6

x2,1 x2,2 · · · x2,6

)

∈ R
2×6

whose six columns satisfy the quadratic equation

c0+c1 x1,i+c2 x2,i+c3 x
2
1,i+c4 x1,ix2,i+c5 x

2
2,i = 0 (2)

for i = 1, . . . , 6 and some unknown constants c0, ..., c5 that

are not all zero. Generically, X will be full rank. However,
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suppose we vertically expand each column of the matrix to

make a 6× 6 matrix

Y =









1 1 ··· 1
x1,1 x1,2 ··· x1,6

x2,1 x2,2 ··· x2,6

x2

1,1 x2

1,2 ··· x2

1,6

x1,1x2,1 x1,2x2,2 ··· x1,6x2,6

x2

2,1 x2

2,2 ··· x2

2,6









∈ R
6×6,

i.e., we augment each column of X with a 1 and with the

quadratic monomials x2
1,i, x1,ix2,i, x

2
2,i. This allows us

to re-express the polynomial equation (2) as the matrix-

vector product Y T c = 0 where c = (c0, c1, .., c5)
T .

In other words, Y is rank deficient. Suppose, for exam-

ple, that we are missing entry x1,1 of X . Since X is

full rank, there is no way to uniquely complete the miss-

ing entry by leveraging linear structure alone. Instead,

we ask: Can we complete x1,1 using the linear structure

present in Y ? Due to the missing entry x1,1, the first col-

umn of Y will having the following pattern of missing en-

tries: (1,−, x2,1,−,−, x
2
2,1)

T . However, assuming the five

complete columns in Y are linearly independent, we can

uniquely determine the nullspace vector c up to a scalar

multiple. Then from (2) we have

c3 x
2
1,1 + (c1 + c4 x2,1)x1,1 = −c0 − c2 x2,1 − c5 x

2
2,1.

In general, this equation will yield at most two possibil-

ities for x1,1. Moreover, there are conditions where we

can uniquely recover x1,1, namely when c3 = 0 and

c1 + c4 x2,1 6= 0.

This example shows that even without a priori knowledge

of the particular polynomial equation satisfied by the data,

it is possible to uniquely recover missing entries in the orig-

inal matrix by leveraging induced linear structure in the

matrix of expanded monomials. We now show how to con-

siderably generalize this example to the case of data be-

longing to an arbitrary algebraic variety.

2.1. Formulation

Let X =
[

x1, . . . ,xs

]

∈ R
n×s be a matrix of s data points

where each column xi ∈ R
n. Define φd : Rn → R

N as

the mapping that sends the vector x = (x1, ..., xn) to the

vector of all monomials in x1, ..., xn of degree at most d:

φd(x) = (xα)|α|≤d ∈ R
N

where α = (α1, ..., αn) is a multi-index of non-negative

integers, with xα := xα1

1 · · ·x
αn
n , and |α| := α1+· · ·+αn.

In the context of kernel methods in machine learning, the

map φd is often called a polynomial feature map (Muller

et al., 2001). Borrowing this terminology, we call φd(x) a

feature vector, the entries of φd(x) features, and the range

of φd feature space. Note that the number of features is

given by N = N(n, d) =
(

n+d
n

)

=
(

n+d
d

)

, the number

of unique monomials in n variables of degree at most d.

When X = [x1, ...,xs] is an n× s matrix, we use φd(X)
to denote the N × s matrix [φd(x1), ..., φd(xs)].

The problem we consider is this: can we complete a par-

tially observed matrix X under the assumption that φd(X)
is low-rank? This can be posed as the optimization prob-

lem given above in (1). We give a practical algorithm for

solving a relaxation of (1) in Section 4. Similar to previ-

ous work cited above on using polynomial feature maps,

our method leverages the kernel trick for efficient compu-

tations. The success of this optimization and its relaxations

will depend on many factors, but clearly the rank of φd(X)
and the number of sampled entries will play an important

role. The number of samples, rank, and dimensions all

grow in the mapping to feature space, but they grow at dif-

ferent rates depending on the underlying geometry; it is not

immediately obvious what conditions on the geometry and

sampling rates impact our ability to determine the missing

entries. In the remainder of this section, we show how to

relate the rank of φd(X) to the underlying variety, and we

study the sampling requirements necessary for the comple-

tion of the matrix in feature space.

2.2. Rank properties

To better understand what determines the rank of the ma-

trix φd(X), we introduce some additional notation and

concepts from algebraic geometry. Let R[x] denote the

space of all polynomials with real coefficients in n vari-

ables x = (x1, ..., xn). We model a collection of data as

belonging to a real (affine) algebraic variety (Cox et al.,

2015), which is defined as the common zero set of a sys-

tem of polynomials P ⊂ R[x]:

V (P ) = {x ∈ R
n : f(x) = 0 for all f ∈ P}.

Suppose the variety V (P ) is defined by the finite set of

polynomials P = {f1, ..., fq}, where each fi has degree at

most d. Let C ∈ R
N×q be the matrix whose columns are

given by the vectorized coefficients (cα,i)|α|≤d of the poly-

nomials fi(x), i = 1, ..., q in P . Then the columns of X

belong to the variety V (P ) if and only if φd(X)TC = 0.

In particular, assuming the columns of C are linearly inde-

pendent, this shows that φd(X) has rank≤ min(N − q, s).
In particular, when the number of data points s > N − q,

then φd(X) is rank deficient.

However, the exact rank of φd(X) could be much smaller

than min(N − q, s), especially when the degree d is large.

This is because the coefficients c of any polynomial that

vanishes at every column of X satisfies φd(X)T c = 0.

We will find it useful to identify this space of coefficients

with a finite dimensional vector space of polynomials. Let

Rd[x] be the space of all polynomials in n real variables of

degree at most d. We define the vanishing ideal of degree

d corresponding to a set X ⊂ R
n, denoted by Id(X ), to be
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subspace of polynomials belonging to Rd[x] that vanish at

all points in X :

Id(X ) := {f ∈ Rd[x] : f(x) = 0 for all x ∈ X}.

We also define the non-vanishing ideal of degree d corre-

sponding to X , denoted by Sd(X ), to be the orthogonal

complement of Id(X ) in Rd[x]:

Sd(X ) :={g ∈ Rd[x] :〈f, g〉 = 0 for all f ∈ Id(X )},

where the inner product 〈f, g〉 of polynomials f, g ∈ Rd[x]
is defined as the inner product of their coefficient vectors.

Hence, the rank R of φd(X) can expressed in terms of the

dimension of non-vanishing ideal of degree d correspond-

ing to X = {x1, ....,xs}, the set of all columns of X .

Specifically, we have rank φd(X) = min(R, s) where

R = dim Sd(X ) = N − dim Id(X ) .

In general the dimension of the space Id(X ) or Sd(X ) is

difficult to determine when X is an arbitrary set of points.

However, if we assume X is a subset of a variety V , then

Id(V ) ⊆ Id(X ) and hence

rank φd(X) ≤ dim Sd(V ).

In certain cases dim Sd(V ) can be computed exactly or

bounded using properties of the polynomials defining V .

For example, it is possible to compute the dimension of

Sd(V ) directly from a Gröbner basis for the vanishing

ideal associated with V (Cox et al., 2015). In Section 3

we show how to bound the dimension of Sd(V ) in the case

where V is a union of subspaces.

2.3. Sampling rate

Informally, the degrees of freedom of a class of objects is

the minimum number of free variables needed to describe

an element in that class uniquely. For example, a n×s rank

r matrix has r(n+ s− r) degrees of freedom: nr parame-

ters to describe r linearly independent columns making up

a basis of the column space, and r(s− r) parameters to de-

scribe the remaining s − r columns in terms of this basis.

It is impossible to uniquely complete a matrix in this class

if we sample fewer than this many entries.

We can make a similar argument to specify the minimum

number of samples needed to uniquely complete a matrix

that is low-rank when mapped to feature space. First, we

characterize how missing entries of the data matrix trans-

late to missing entries in feature space. For simplicity, we

will assume a sampling model where we sample a fixed

number of entries m from each column of the original data

matrix. Let x ∈ R
n represent a single column of the data

matrix, and Ω ⊂ {1, ..., n} with m = |Ω| denote the in-

dices of the sampled entries of x. The pattern of revealed

entries in φd(x) corresponds to the set of multi-indices:

{α = (α1, ..., αn) : |α| ≤ d, αi = 0 for all i ∈ Ωc},

which has the same cardinality as the set of all monomials

of degree at most d in m variables, i.e.,
(

m+d
d

)

. If we call

this quantity M , then the ratio of revealed entries in φd(x)
to the feature space dimension is

M

N
=

(

m+d
d

)

(

n+d
d

) =
(m+ d)(m+ d− 1) · · · (m+ 1)

(n+ d)(n+ d− 1) · · · (n+ 1)
,

which is on the order of (mn )d for small d. More precisely,

we have the bounds

(m

n

)d

≤
M

N
≤

(

m+ d

n

)d

. (3)

In total, observing m entries per column of the data matrix

translates to M entries per column in feature space. Sup-

pose the N × s lifted matrix φd(X) is rank R. By the

preceding discussion, we need least R(N + s−R) entries

of the feature space matrix φd(X) to complete it uniquely

among the class of all N × s matrices of rank R. Hence, at

minimum we need to satisfy

Ms ≥ R(N + s−R). (4)

Let m0 denote the minimal value of m such that M =
(

m+d
d

)

achieves the bound (4), and set M0 =
(

m0+d
d

)

. Di-

viding (4) through by the feature space dimension N and s
gives

M0

N
≥

(

R

N

)(

N + s−R

s

)

=

(

R

s
+

R

N

(

1−
R

s

))

,

(5)

and so from (3) we see we can guarantee this bound with

ρ0 :=
m0

n
≥

(

R

s
+

R

N

(

1−
R

s

))
1

d

, (6)

and this in fact will result in tight satisfaction of (5) because

(M0/N)
1

d ≈ m0/n for small d and large n.

At one extreme where the matrix φd(X) is full rank, then

R/s = 1 or R/N = 1 and according to (6) we need

ρ0 ≈ 1, i.e., full sampling of every data column. At

the other extreme where instead we have many more data

points than the feature space rank, R/s≪ 1, then (6) gives

the asymptotic bound ρ0 ≈ (R/N)
1

d .

The above discussion bounds the degrees of freedom of

a matrix that is rank-R in feature space. Of course, the

proposed variety model has potentially fewer degrees of

freedom than this, because additionally the columns of the

lifted matrix are constrained to lie in the image of the fea-

ture map. We use the above bound only as a rule of thumb
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for sampling requirements on our matrix. Furthermore, we

note that sample complexities for standard matrix comple-

tion often require that locations are observed uniformly at

random, whereas in our problem the locations of obser-

vations in the lifted space will necessarily be structured.

However, there is recent work that shows matrix com-

pletion can suceed without these assumptions (Pimentel-

Alarcón et al., 2016b; Chen et al., 2014) that gives reason

to believe random samples in the original space may allow

completion in the lifted space, and our empirical results in

Section 5 support this rationale.

3. Case Study: Union of Affine Subspaces

A union of affine subspaces can be modeled as an

algebraic variety. For example, with (x, y, z) ∈ R
3,

the union of the plane z = 1 and the line

x = y is the zero-set of the quadratic polynomial

(z − 1)(x− y). In general, if A1,A2 ⊂ R
n are affine

spaces of dimension r1 and r2, respectively, then we

can write A1 = {x : fi(x) = 0 for i = 1, ..., n− r1} and

A2 = {x : gi(x) = 0 for i = 1, ..., n− r2} where the fi
and gi are affine functions. The union A ∪ B can be ex-

pressed as the common zero set of all possible products of

the fi and gi, i.e., A1 ∪ A2 is the common zero set of a

system of (n− r1)(n− r2) quadratic equations. Similarly,

a union of k affine subspaces of dimensions r1, ..., rk is a

variety described by a system of
∏k

i=1(n− ri) polynomial

equations of degree k.

In this section we establish bounds on the feature space

rank for data belonging to a union of affine subspaces. We

will make use of the following lemma that shows the di-

mension of a vanishing ideal is fixed under an affine change

of variables:

Lemma 1. Let T : Rn → R
n be an affine change of vari-

ables, i.e., T (x) = Ax+b, where b ∈ R
n and A ∈ R

n×n

is invertible. Then for any S ⊂ R
n,

dim Id(S) = dim Id(T (S)). (7)

We omit the proof for brevity, but the result is elemen-

tary and relies on the fact the degree of a polynomial is

unchanged under an affine change of variables. Our next

result establishes a bound on the feature space rank for a

single affine subspace:

Proposition 1. If the columns of a matrix Xn×s belong to

an affine subspace of dimension at most r, then

rankφd(X) ≤

(

r + d

d

)

, for all d ≥ 1. (8)

Proof. By Lemma 1, dim Id(A) is preserved under an

affine transformation of A. Note that we can always find

an affine change of variables y = Ax + c with invert-

ible A ∈ R
n×n and c ∈ R

n such that in the coordinates

y = (y1, ..., yn) the variety A becomes

A = {(y1, . . . , yr, 0, . . . , 0) : y1, ..., yr ∈ R}. (9)

For any polynomial f(y) =
∑

|α|≤d cαy
α, the only mono-

mial terms in f(y) that do not vanish on A are those of

the form yα1

1 · · · y
αr
r . Furthermore, any polynomial in just

these monomials that vanishes on all ofA must be the zero

polynomial, since the y1, ..., yr are free variables. Hence,

Sd(A) = span{yα1

1 · · · y
αr

r : α1 + · · ·+ αr ≤ d} (10)

i.e., the non-vanishing ideal coincides with the space of

polynomials in r variables of degree at most d, which has

dimension
(

r+d
d

)

, proving the claim.

We note that for s sufficiently large, the bound in (8) be-

comes an equality, provided the data points are distributed

generically within the affine subspace, meaning they are

not the solution to additional non-trivial polynomial equa-

tions of degree at most d.

Proposition 1 shows that points belonging to a single affine

subspace of dimension r are mapped to a linear subspace of

dimension
(

r+d
d

)

under φd. Therefore, if the columns of a

data matrix are drawn from a union of k affine subspaces of

dimension r, their image under φd will belong to a union of

k linear subspaces each of dimension at most
(

r+d
d

)

. The

linear span of this union has dimension at most k
(

r+d
d

)

,

which yields the following result:

Proposition 2. If the columns of a matrix Xn×s belong to

a union of k affine subspaces each of dimension at most r,

then

rankφd(X) ≤ k

(

r + d

d

)

, for all d ≥ 1. (11)

In some cases the bound (11) is (nearly) tight. For exam-

ple, if the data lies on the union of two r-dimensional affine

subspaces A and B that are mutually orthogonal, one can

show1 rankφd(X) = 2
(

r+d
d

)

− 1. Empirically, we observe

that the bound in (11) is order-optimal with respect to k, r,
and d. In this case, the feature space rank to dimension

ratio is R/N = O(k
(

r
n

)d
). Recall that the minimum sam-

pling rate is approximately (R/N)
1

d for s≫ R. Hence the

mininum number of samples per column m should be

m ≈ O(k
1

d r). (12)

This rate is favorable to low-rank matrix completion ap-

proaches, which need m = O(kr) for a union of k sub-

spaces having dimension r. At first glance, this bound sug-

gests it is always better to take the degree d as large as

possible. However, this is only true for sufficiently large s.

1The rank is one less than the bound in (11) because Sd(A) ∩
Sd(B) has dimension one, coinciding with the space of constant
polynomials.



Algebraic Variety Models for High-Rank Matrix Completion

To take advantage of the improved sampling rate implied

by (12), according to (6) we need the number of data vec-

tors per subspace to be O(rd). In other words, our model

is able to accommodate more subspaces with larger d but

at the expense of requiring exponentially more data points

per subspace. Note that if the number of data points is suf-

ficiently large, we could take d = log k and require only

m ≈ O(r) observed entries per column. In this case, for

moderately sized k (e.g., k ≤ 20) we should choose d = 2
or 3. In fact, we find that for these values of d we get excel-

lent empirical results for the recovery of union of subspaces

data, as shown in Section 5.

4. Algorithm

There are several existing matrix completion algorithms

that could potentially be adapted to solve a relaxation of

the rank minimization problem (1), such as singular value

thresholding (Cai et al., 2010), or alternating minimization

(Jain et al., 2013). However, these approaches do not easily

lend themselves to “kernelized” implementations, i.e., ones

that do not require forming the high-dimensional lifted ma-

trix φd(X) explicitly, but instead make use of the efficiently

computable kernel function for polynomial feature maps 2

kd(x,y) := φd(x)
Tφd(y) = (xTy + 1)d. (13)

For matrices X = [x1, ...,xs],Y = [y1, ...,ys] ∈ R
n×s,

we use kd(X,Y ) to denote the matrix whose (i, j)-th entry

is kd(xi,yj), or equivalently,

kd(X,Y ) := φd(X)Tφd(Y ) = (XTY + 1)⊙d, (14)

where 1 ∈ R
s×s is the matrix of all ones, and (·)⊙d de-

notes the entrywise d-th power of a matrix. A kernelized

implentation is critical for even modest sizes of d, since the

number of rows of the lifted matrix scales exponentially

with d.

One class of algorithm that kernelizes very naturally is the

iterative reweighted least squares (IRLS) approach of (For-

nasier et al., 2011; Mohan & Fazel, 2012) for low-rank ma-

trix completion. The algorithm also has the advantage of

being able to accommodate the non-convex Schatten-p re-

laxation of the rank penalty, in addition to the convex nu-

clear norm relaxation. Specifically, we use an IRLS ap-

proach to solve the following variety-based matrix comple-

tion (VMC) optimization problem:

min
X

‖φd(X)‖pSp
s.t. PΩ(X) = PΩ(X0), (VMC)

2Strictly speaking, kd is not kernel associated with the poly-
nomial feature map φd as defined in (2.1). Instead, it is the kernel

of the related map φ̃d(x) := {√cαx
α : |α| ≤ d} where cα are

appropriately chosen multinomial coefficients.

Algorithm 1 Kernelized IRLS to solve (VMC).

Require: Initialize X = X0, γ = γ0. Choose η,γmin.

while not converged do

Step 1: Inverse power of kernel matrix

K ← kd(X,X)
(V ,S) = eig(K).
W ← V (S + γI)

p

2
−1V T

Step 2: Projected gradient descent step

τ ← γ1− p

2

X ←X − τX(W ⊙ kd−1(X,X))
X ← PΩ(X0) + PΩc(X)
γ ← max{γ/η, γmin}

end while

where ‖Y ‖Sp
is the Schatten-p quasi-norm defined as

‖Y ‖Sp
:=

(
∑

i σi(Y )p
)

1

p , 0 < p ≤ 1 (15)

with σi(Y ) denoting the ith singular value of Y . Algo-

rithm 1 gives the pseudo-code of the proposed IRLS algo-

rithm for solving (VMC), which we derive below.

First, consider the simpler problem of minimizing the

Schatten-p norm of a matrix variable Y belonging to a con-

straint set C. The main idea behind the IRLS approach is

re-express the Schatten-p quasi-norm as

‖Y ‖pSp
= tr[(Y TY )

p

2 ] = tr[(Y TY )W ], (16)

where W := (Y TY )
p

2
−1. Note if W is treated as con-

stant, then (16) is a smooth, quadratic function of Y . This

motivates the following iterative approach:

Wn = (Y T
n Yn + γn)

p

2
−1

Yn+1 = argmin
Y ∈C

tr[(Y TY )Wn].

Here γn is a sequence of smoothing parameters satisfying

γn → γmin as n → ∞, where γmin is close to zero, which

is included to improve numerical stability and avoid local

minima; this is equivalent to minimizing a smooth approx-

imation of the Schatten-p cost (Mohan & Fazel, 2012).

Making the substitution Y = φd(X) in the above deriva-

tion, gives the following approach for solving (VMC):

Wn = (k(Xn,Xn) + γnI)
p

2
−1

Xn+1 = argmin
X

tr[k(X,X)Wn] s.t. PΩ(X) = PΩ(X0)

Rather than finding the exact minimum in the X up-

date, which could be costly, following the approach

in (Mohan & Fazel, 2012), we instead take a sin-

gle projected gradient descent step to update X . A

straightforward calculation shows that the gradient of
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(a) Union of Subspaces (b) Parametric Data

Figure 2. Phase transitions for matrix completion of synthetic variety data. In (a) we simulate data belonging to a union of k subspaces

for varying k. In (b) we simulate data belonging union of few parametric curves and surfaces having known feature space rank R. We

randomly undersample each column of the data matrix at the rate m/n. The grayscale values 0–1 indicate the fraction of random trials

where the columns of the data matrix were successfully recovered up to the specified percentage (white is success, black is failure). In

all figures the red dashed line indicates the predicted minimal sampling rate ρ0 = m0/n determined by (4).

the objective F (X) = tr[k(X,X)W ] is given by

∇F (X) = X(W ⊙ kd−1(X,X)), where ⊙ denotes an

entry-wise product. Hence a projected gradient step with

step-size τn > 0 is given by

X̃n = Xn − τnXn(Wn ⊙ kd−1(Xn,Xn))

Xn = PΩ(X0) + PΩc(X̃n).

Similar to (Mohan & Fazel, 2012), one can show that ev-

ery limit point of the above iterates converges to a station-

ary point of a smoothed Schatten-p cost for appropriate

choices of step-sizes τn. Heuristics are given in (Mohan

& Fazel, 2012) for updating the smoothing parameter γn,

which we adopt as well. Specifically, we set γn = γ0/η
n,

where γ0 and η are user-defined parameters, and update

τn = γ
1−p/2
n . The appropriate choice of γ0 and η will

depend on the scaling and spectral properties of the data.

Empirically, we find that setting γ0 = (0.1)dλmax, where

λmax is the largest eigenvalue of the kernel matrix obtained

from the initialization, and η = 1.01 work well in a vari-

ety of settings. For all our experiments in Section 5 we fix

p = 1/2, which was found to give the best matrix recovery

results for synthetic data. We also use a zero-filled initial-

ization X0 in all cases.

5. Numerical Experiments

5.1. Empirical validation of sampling bounds

In Figure 2 we report the results of two experiments to vali-

date the predicted minimum sampling rate ρ0 in (4) on syn-

thetic variety data. In the first experiment we generated

n× s data matrices whose columns belong to a union of k
subspaces each of dimension r (with n = 15, s = 100k,

r = 3). In the second experiment we generated data ma-

trices of size 20 × 300 whose columns belong to a union

of randomly generated parametric surfaces of low dimen-

sion, where we sorted each dataset by its empirically de-

termined feature space rank R. For both experiments, we

undersampled each column of the matrix taking m entries

uniformly at random at various values of k and R, and then

attempted to recover the missing entries using our proposed

IRLS algorithm for VMC (Algorithm 1 with p = 1/2) for

d = 2, 3. For the union of subspaces data, we also com-

pare with low-rank matrix completion in the original ma-

trix domain via nuclear norm minimization (LRMC) and

non-convex Schatten-1/2 minimization (LRMC-NCVX),

implemented using Algorithm 1 with a linear kernel (d = 1
in (13)). We said a column was successfully recovered if

‖x−x0‖/‖x0‖ ≤ 10−5, where x is the recovered column

and x0 is the original column. For each pair of parameters

(m, k) or (m,R) we perform 10 random trials to determine

the probability of successful recovery.

Consistent with our theory, VMC is successful at recover-

ing most of the data columns above the predicted minimum

sampling rate, substantially extending the range of recov-

ery over LRMC. While VMC often fails to recover 100% of

the columns near the predicted rate, in fact a large propor-

tion of the columns (%99–%90) are still successfully com-

pleted. Sometimes the recovery dips below the predicted

rate (e.g., VMC, d = 2 in Fig. 2(a) and VMC, d = 3 in

Fig. 2(b)). However, since the predicted rate relies on what

is likely an over-estimate of the true degrees of freedom, it

is not surprising that the VMC algorithm occasionally suc-

ceeds below this rate, too.
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5.2. Motion segmentation of real data

In Figure 3 we apply VMC to the problem of motion seg-

mentation (Kanatani, 2001) with missing data using the

Hopkins 155 dataset (Tron & Vidal, 2007). This data con-

sists of several feature points tracked across frames of the

video. We reproduce the experimental setting in (Yang

et al., 2015), and simulate high-rank data by undersam-

pling frames of the dataset. We simulate missing trajec-

tories by sampling uniformly at random from the feature

points across all frames. To obtain a clustering we first

completed the missing entries using VMC and then ran

the sparse subspace clustering (SSC) algorithm (Elhami-

far & Vidal, 2009) on the result, calling this VMC+SSC.

A similar approach of standard LRMC followed by SSC

(LRMC+SSC) provides a consistent baseline for subspace

clustering with missing data (Yang et al., 2015; Elham-

ifar, 2016). We also compare against SSC with entry-

wise zerofill (SSC-EWZF) (Yang et al., 2015). We find

the VMC+SSC approach gives similar or lower clustering

error than LRMC+SCC for low missing rates. Likewise,

VMC+SSC also substantially outperforms SSC-EWZF for

high missing rates. Unlike SSC-EWZF and the other al-

gorithms in (Yang et al., 2015), VMC+SSC also succeeds

in setting where the data is low-rank (i.e., when all frames

are retained). This is because the performance of VMC is

similar to standard LRMC in the low-rank setting.
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Figure 3. Subspace clustering error on Hopkins 155 dataset for

varying rates of missing data and undersampling of frames.

5.3. Completion of motion capture data

In Figure 4 we demonstrate VMC for completing time-

series trajectories from motion capture sensors using a

dataset from the CMU Mocap database3 (subject 56, trial

6). Empirically, this dataset has been shown to be locally

low-rank over the time frames corresponding to each sep-

arate activity, and can be modeled as a union of subspaces

(Elhamifar, 2016). The data had measurements from n =
62 sensors at s = 6784 time instants. We randomly under-

sampled the columns of this matrix and attempt to complete

the data using VMC, LRMC, and LRMC-NCVX and mea-

sure the resulting completion error: ‖X −X0‖F /‖X0‖F ,

where X is the recovered matrix and X0 is the original

matrix. Similar to results on synthetic data, we find the

3http://mocap.cs.cmu.edu

VMC approach outperforms LRMC-NCVX for appropri-

ately chosen degree d. In particular, VMC with d = 2, 3
perform similar for small missing rates, but VMC d = 2
gives lower completion error over d = 3 for large missing

rates, consistent with the results in Figure 2.
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Figure 4. Completion error on CMU Mocap dataset using the pro-

posed VMC approach compared with convex and non-convex

LRMC algorithms.

6. Conclusion

We introduce a matrix completion approach that general-

izes low-rank matrix completion to a much wider class of

variety models, including data belonging to a union of sub-

spaces. We present a hypothesized sampling complexity

bound for the completion of a matrix whose columns be-

long to an algebraic variety. A surprising result of our

analysis that that a union of k affine subspaces of dimen-

sion r should be recoverable from O(rk1/d) measurements

per column, provided we have O(rd) data points (columns)

per subspace, where d is the degree of the feature space

map. In particular, if we choose d = log k, then we need

only O(r) measurements per column as long as we have

O(rlog k) columns per subspace. We additionally introduce

an efficient algorithm based on an iterative reweighted least

squares approach that realizes these hypothesized bounds

on synthetic data, and reaches state-of-the-art performance

on for matrix completion on several real high-rank datasets.

Our algorithm can easily accommodate other smooth ker-

nels, including the popular Gaussian RBF kernel (Muller

et al., 2001). A similar optimization formulation to ours

was presented in the recent pre-print (Garg et al., 2016) us-

ing Gaussian RBF kernels in place of polynomial kernels,

showing good empirical results in a matrix completion con-

text. However, analysis of the sample complexity in this

case is complicated by the fact that a feature space repre-

sentation for Gaussian RBF kernel is necessarily infinite-

dimensional. Understanding the sample requirements in

this case would be an interesting avenue for future work.

Acknowledgements

For this work, Balzano and Ongie were supported in part

by ARO grant W911NF-14-1-0634. Willett and Nowak

were supported in part by NSF IIS-1447449, NSF CCF-

0353079, and NIH 1 U54 AI117924-01, and Nowak also

by AFOSR FA9550-13-1-0138.

http://mocap.cs.cmu.edu


Algebraic Variety Models for High-Rank Matrix Completion

References

Cai, Jian-Feng, Candès, Emmanuel J, and Shen, Zuowei. A

singular value thresholding algorithm for matrix comple-

tion. SIAM Journal on Optimization, 20(4):1956–1982,

2010.

Candes, Emmanuel and Recht, Benjamin. Exact matrix

completion via convex optimization. Communications

of the ACM, 55(6):111–119, 2012.

Chen, Guangliang, Atev, Stefan, and Lerman, Gilad. Ker-

nel spectral curvature clustering (kscc). In Computer

Vision Workshops (ICCV Workshops), 2009 IEEE 12th

International Conference on, pp. 765–772. IEEE, 2009.

Chen, Yudong, Bhojanapalli, Srinadh, Sanghavi, Sujay,

and Ward, Rachel. Coherent matrix completion. In Pro-

ceedings of The 31st International Conference on Ma-

chine Learning, pp. 674–682, 2014.

Cox, David A., Little, John, and O’Shea, Donal. Ideals,

Varieties, and Algorithms. Springer International Pub-

lishing, 2015.

Derksen, Harm. Hilbert series of subspace arrangements.

Journal of pure and applied algebra, 209(1):91–98,

2007.

Elhamifar, Ehsan. High-rank matrix completion and clus-

tering under self-expressive models. In Advances in Neu-

ral Information Processing Systems, pp. 73–81, 2016.

Elhamifar, Ehsan and Vidal, René. Sparse subspace clus-
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Sparse subspace clustering with missing entries. In Pro-

ceedings of The 32nd International Conference on Ma-

chine Learning, pp. 2463–2472, 2015.


