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1. In tro d u c t io n  

1.1. Algebraic submani/olds and maps. A real (resp. complex) submanifold M c C  n 

is real-algebraic (resp. complex-algebraic), if it is contained in a real-algebraic (resp. 

complex-algebraic) subset of the same dimension (see w By a local holomorphism 

between real submanifolds M c C  '~ and M ' c C  n' we mean a holomorphic map f from a 

domain U c C  n with U N M ~ O  into C '~' with f ( M N U ) c M ' .  If in addition f - 1  exists 

and is a local holomorphism between M' and M, we call f a local biholomorphism. In 

this paper we study the following question: 

When is a local holomorphism between real-algebraic submanifolds complex-algebraic? 

Here a map f is called complex-algebraic, if its graph is a complex-algebraic sub- 

manifold of C n x  C n'. We use this setting throughout the paper. 

1.2. A short history of the question. Poincar~ [Po] was one of the first who studied 

algebraicity properties of local biholomorphisms between hypersurfaces. He proved that  

a local biholomorphism between open pieces of 3-spheres in C 2 is a rational map. This 

result was extended by Tanaka [Ta] to higher-dimensionai spheres. An important step 

in understanding this phenomenon was done by Webster [Wl] who proved the algebraic- 

ity of local biholomorphisms f between Levi-nondegenerate algebraic hypersurfaces M 

and M' .  Optimal conditions on M and M ~ for the aigebraicity of local biholomorphisms 

were found recently by Baouendi and Rothschild [BR1] in the case when M and M'  are 

hypersurfaces, and later extended by Baouendi, Ebenfelt and Rothschild [BER1] to the 

case when M and M I are submanifolds of higher codimensions. The question , when the 

so-called normal component of a local biholomorphism f (rather than f itself) is alge- 

braic, was recently answered by Mir [Mi] in the case when M and M' are hypersurfaces. 

A typical example of a biholomorphism is an extension of a biholomorphic map 

between smooth domains gt, 121cC n to a boundary point of ~. A consequence of the 

algebraicity of such a biholomorphism is a holomorphic extension as a correspondence 

to the boundary M=O~ (see e.g. [DP1], [BHR], [H3], [HJ], [DP2] and [Z3] for recent 

applications of extensions as correspondences). Furthermore, algebraic properties of 

single biholomorphisms can be used to study automorphism groups of domains defined 

by polynomial inequalities (see e.g. [Z1], [HZ]). 

Similarly boundary extensions of proper holomorphic maps lead to the study of local 

holomorphisms between hypersurfaces of different dimensions. An important step here 

was done by Huang [H1] (see also [H2]) who proved the algebraicity of holomorphisms 

between strongly pseudoconvex hypersurfaces. A generalization in another direction was 

obtained by Sharipov and Sukhov [SS] (see also Sukhov [Su2]) for different dimensions 

under certain conditions on the Levi forms (see w 
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One of the goals of Theorem 1.1 is to unify the algebralcity results of Webster [Wl], 

Huang [H1], Sharipov-Sukhov [SS] and Baouendi-Ebenfelt-Rothschild [BER1]. On the 

other hand, Theorem 1.1 covers also new situations, e.g. maps between non-pseudoconvex 

Levi-nondegenerate hypersurfaces of different dimensions (see w167 

1.3. The main result. We first formulate the most general algebraicity result and 

then go to applications and special cases. Given a local holomorphism f :  U--+U'CC ~' 

and x C UA M, let 0(z, 2) and Q'(z', 2') be local defining algebraic vector-valued functions 

for MC C '~ and M 'C  C n' defined in U and U ~ respectively with d0 and do ~ of maximal 

ranks. Important  invariants of M and M ~ are the corresponding families of Segre varieties 

Qw:={zeU: Q(z, ~ ) = 0 }  for w near x, and Q: ,  : : { z ' e U ' :  o ' ( z ' , ~ ' ) = 0 }  for w' near f (x)  

(see w for more details). 

Given M, M ~, f and x as before, we attach to them two invariantly defined germs 

2 of analytic subsets of C n' at f (x)  as follows (see below for the definitions in rx and r x 

terms of Segre varieties): 

rx : :  {w' near f ( x ) :  ~'(f(z), ~' )  : 0 for every z near x with Q(z, ~) : 0} (1) 

and 

2 . 
r z . : { z '  near f ( x ) :  ~'(z', ~ ' ) = 0  for every w'erz  near f (x)} .  (2) 

Since the defining functions are unique up to multiplication by an invertible mat r ix  

function, both r ,  and r 2 are independent of the choice of the defining functions. If 

U and U' are sufficiently small neighborhoods of x and f (x)  respectively, then rx= 

{w." Qw, D f ( Q x ) } ~  and rx2 is the intersection of all Segre varieties Q~, containing f(Qx) 

(cfl w The germ r~ generalizes the essential variety As attached to a real-analytic 

CR-submanifold that  has been used by many authors (see e.g. [DW], [BJT], [DE2], [BR2], 

[Fol], [H2], [DP1], [n3], [HJ] and [DP2]). Namely one has A,=r~ in the case M = M '  

and f=id.  
2 The second invariant r~ seems to be new. It may seem natural to apply this proce- 

2 in (2). However, the germ "r  3" obtained in dure one more time by replacing r~ with r~ 

this way coincides with rx. 

Recall that  M is called generic in C n at x0, if Q can be chosen near x0 with 0Q of 

the same rank as dQ. Then the complex tangent space T~M:=T,  MNiT~M is of constant 

dimension for x near x0 (i.e. M is CR). A generic submanifold M is said to be of finite 

type (in the sense of Bloom-Graham [B1Gr] and Kohn [K]) at x if T~M is spanned by 

smooth TOM-vector fields on M together with their higher-order commutators. In this 

paper we always mean this notion of finite type unless otherwise specified. A connected 
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real-analytic submanifold is generic and of finite type at some point if and only if it is 

generic and of finite type on an open dense subset (see w 

THEOREM 1.1. Let f:U--*C n' be a local holomorphism between connected real- 

algebraic submanifolds M c C  n and M~C C n' satisfying the following conditions: 

(i) M is generic and of finite type at some point; 

(ii) For every x from a nonempty open subset of MNU, f (x )  is isolated in rxnr~. 

Then f is complex-algebraic. 

Remarks. The basic property Q(z ,~)=0  =~ ~'(f(z) , f (w))=O for local holomor- 

phisms implies f (x )  C rx. Since ~)(x, 2) =0, the identity Q'(f(x), 6 ' )  =0  holds for all w'E rx. 

Hence f ( x ) E r  2. Given M, M' and S, the conditions of Theorem 1.1 can be verified ef- 

fectively using the defining functions Q and Qr 

The condition of finite type holds, in particular, if the Levi cone of M has a nonempty 

interior (see w If M C C  n is a hypersurface, it is automatically generic and (i) is 

equivalent to the condition that  M is not Levi-flat (i.e. the Levi form does not vanish 

identically). 

The conditions in Theorem 1.1 are optimal in the following sense. If (i) does not 

hold, there always exist nonalgebraic local holomorphisms between M and M t as follows 

from Theorem 1.3. In w we show that  r~Nr~ is always contained in M t. If (ii) does not 

hold, any nonalgebraic holomorphic map from a neighborhood of x in C n into r~nr~ is a 

local holomorphism between M and M r. An example in w shows that  condition (ii) in 

Theorem 1.1 cannot be replaced by the weaker condition that  f (x)  is isolated in r~Nr~ 

for some x, even in the case when M and M t are hypersurfaces. 

The proof of Theorem 1.1 is given in w The remainder of w contains several basic 

consequences of Theorem 1.1 including the known results. 

1.4. Conditions in terms of analytic discs in M'. By an analytic disc in a subset 

A C C n' we mean a nonconstant holomorphic map h from the unit disc A C C into C n' 

with h(A)CA. If condition (ii) in Theorem 1.1 does not hold for some xEMNU,  then 

r~;3r~ defines a nontrivial germ of an analytic subset through f (x) .  In fact, this germ is 

always contained in M ~ (Corollary 2.8). Hence we obtain the following corollary: 

COROLLARY 1.2. Let f:U--~C ~' be a local holomorphism between connected real- 

algebraic submanifolds M C C  ~ and M~CC "~' satisfying the following conditions: 

(i) M is generic and of finite type at some point; 

(ii) For every x from a nonempty open subset of MNU, M'Nr~ does not contain 

analytic discs through f(x) .  

Then f is complex-algebraic. 
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Corollary 1.2 contains, as a special case, the implication (i) ~ (ii) in the following 

criterion: 

THEOREM 1.3. Let M c C  n and M ~ c C  ~' be connected real-algebraic submanifolds. 

Then the following are equivalent: 

(i) M is generic and of finite type at some point and M ~ contains no analytic discs; 

(ii) Every local holomorphism between M and M ~ is algebraic. 

Proof. It remains to show (ii) ~ (i). If the subset of generic points of M is not dense, 

the local intrinsic complexification M of M near some x E M  is a complex submanifold 

of C n of positive codimension. Hence in a neighborhood of x there exists a nonalgebraic 

holomorphic map f which sends /~r into one point of M ~ and thus obviously satisfies 

f ( M ) c M q  

If the subset of generic but not finite-type points of M is not dense, then by 

Lemma 3.4.1 in [BER1], there exists a nonconstant complex-algebraic holomorphic func- 

tion h in a neighborhood of some point x E M  such that  h ( M ) c R .  Hence every real- 

analytic nonalgebraic curve 7: (h(a) - 1, h(a) + 1) C R--~ M ~ defines a nonalgebraic holo- 

morphism ~'oh between M and Mq 

Finally, if M ~ contains an analytic disc, a neighborhood of a point x E M  can be sent 

to this disc by a nonalgebraic holomorphic map. [] 

Condition (i) holds e.g. if M and M ~ are hypersurfaces (of possibly different dimen- 

sions) of finite type in the sense of D'Angelo [D]. In particular, Corollary 1.3 contains 

the algebraicity theorem of Huang [H1]. 

Theorem 1.3 can be applied to proper mappings between not necessarily smooth 

bounded domains of different dimensions. By a result of Diederich and Fornaess [DF1], 

if M is contained in a compact real-analytic subvariety of C '~, it does not contain analytic 

discs. We obtain the following corollary: 

COROLLARY 1.4. Let D c C  n (n~>2) and D~CC n' be bounded domains whose bound- 

aries are contained in compact real-algebraic subsets. Then every proper holomorphic map 

f:  D--*D ~ is algebraic provided it extends holomorphicaUy to a neighborhood of at least 

one boundary point xEOD.  

For n =  1 the statement obviously fails. See [TH], [Tu2], [Fo2], [Su3], [Su4] for related 

results in the case of quadrics. 

After Theorem 1.3 was written in the first version of this paper the author received 

the preprint by Coupet, Meylan and Sukhov [CMS], where they proved a weaker version 

of Theorem 1.3 with the condition of finite type replaced by the stronger condition of 

"Segre transversality". They also gave a sharp estimate on the "transcendence degree" 
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of f in a more general situation, where f is not necessarily algebraic. The nature of the 

method in [CMS] is algebraic in contrast to the analytic method of this paper. 

1.5. Levi-form conditions. Suppose that  M c C  n is a CR-submanifold (i.e. dim T~M 

is independent of xEM) and let 

Lx: T~M xT~M--~ CT~M/CT~M 

be the Levi form (see w after the standard identification TCM~-TI'~ To every 

linear subspace VC T~M we associate its Levi-orthogonal complement: 

V • := {uETCM: L(u ,v )=0 for all vEV} .  (3) 

In w we prove that  the Whitney tangent cone TS(x)r~ is contained in (df(T~M)) • 

Then, for every analytic disc h: A--.r~ through f(x),  the Whitney tangent cone TS(~) h(A) 

is contained in (df(T~M)) • We say that  a disc h is in the direction of a linear subspace 

W c C  n', if TI(~)h(A)cW. This is equivalent to the condition that  the first nonvanish- 

ing derivative of h at h- l ( f ( x ) )  is contained in W. The following is a special case of 

Corollary 1.2 that  does not involve r~ (the Levi orthogonality is understood with respect 

to the Levi form of M') .  

COROLLARY 1.5. Let f:U--*C n' be a local holomorphism between connected real- 

algebraic CR-submanifolds M c C  n and M~cC n' satisfying the following conditions: 

(i) M is generic and of finite type at some point; 

(ii) For every x from a nonempty open subset of MMU, M' does not contain ana- 

lytic discs through f (x)  in the direction of (df(TCzM)) • 

Then f is complex-algebraic. 

A further special case of Corollary 1.5 can be formulated without analytic discs. We 

say that  a CR-submanifold M I c C  '~' is strongly pseudoconvex in the direction of a linear 

subspace WcT~,M ~ if L~,(u,u)=O for n E W  implies u=O. This notion coincides with 

the usual strong pseudoconvexity if M '  is a hypersurface and W=T~,M'.  

COROLLARY 1.6. Let f: U--*C n' be a local holomorphism between connected real- 

algebraic CR-submanifolds M c C  n and M ' c C  n' satisfying the following conditions: 

(i) M is generic and of finite type at some point; 

(ii) For some xEMf3U, M' is strongly pseudoconvex in the direction of (df(T~M) ) • 

Then f is complex-algebraic. 

Note that  if condition (ii) holds for some xEMMU, it holds also for all x nearby. 

Corollary 1.6 is a consequence of Corollary 1.5 because, if h is an analytic disc in M '  

through x',  the Levi form L~, is vanishing on the Whitney tangent cone of h. 

Using the wedge extension by Tumanov [Tul] and the reflection principle in the form 

of Sukhov [Sul] we obtain from Corollary 1.6: 
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THEOREM 1.7. Let f: M - * M  ~ be a CR-map of class C 1 between connected real- 

algebraic CR-submanifolds M c C  ~ and M~cC n'. Suppose that the following is satisfied: 

(i) M is generic and of finite type at some point; 

(ii) (df(T~M))• for some x e M .  

Then f is complex-algebraic. 

Theorem 1.7 generalizes a result of Sharipov and Sukhov [SS], where (i) was replaced 

by the stronger assumption that  the Levi cone of M (i.e. the convex hull of the set of 

vectors L~(u, u) for all uET~M) has a nonempty interior. 

1.6. Essential finiteness and holomorphic nondegeneracy. Baouendi, Jacobowitz 

and TrOves [BJT] introduced the notion of the essential finiteness of a real-analytic CR- 

submanifold M c C n .  Using the construction (1) for the identity map f :  Cn---~C n, their 

definition can be reformulated as 

Definition 1.8. Let M =  M~C C ~ be a real-analytic CR-submanifold and f = id. Then 

M is essentially finite at x E M  if x is isolated in r~. 

In fact, if M is essentially finite, the property of f ( x )  to be isolated in rx holds for 

every f with f (Qx)  open in Q~/(~). Using the elementary properties of Segre varieties 

(see Proposition 2.5) we obtain the following consequence of Theorem 1.1. 

THEOREM 1.9. Let f:U--*C n' be a local holomorphism between connected real- 

algebraic CR-submanifolds M c C  n and M'  c C  n' satisfying the following conditions: 

(i) M is generic and of finite type at some point; 

(ii) M t is essentially finite at some point; 

(iii) df(T~M)=T](~)M' for some x e M A V .  

Then f is complex-algebraic. 

By Proposition 1.3.1 in [BER1], M ~ is essentially finite at some point if and only 

if it is holomorphically nondegenerate. Hence the conditions of Theorem 1.9 are in 

particular satisfied in the important  case where dim M - - d i m  M ~, M, M t c C  ~ are generic, 

of finite type, holomorphically nondegenerate, and f is locally biholomorphic. In this case 

Theorem 1.9 is equivalent to the algebraicity result of Theorem 3 of Baouendi, Ebenfelt 

and Rothschild [BER1]. Example 1.1 in [Z2] gives a situation, where Theorem 1.9 is 

applicable but f is not locally biholomorphic. 

We conclude with an application of Theorem 1.9 for smooth CR-maps. Suppose 

that  M, M~C C n are generic submanifolds of the same dimension. Recall that  a CR-map 

f: M--~M ~ is called not totally degenerate at a point x if the Jacobian of the formal map 

between the Segre varieties Q~ and Q~(~), induced by the complexified formal Taylor 
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series of f at x, is not identically vanishing. Meylan [Me] proved the following version of 

the reflection principle for generic manifolds of arbitrary codimension. 

THEOREM 1.10 (Meylan). Let M, MrCC '~ be connected generic real-analytic sub- 

manifolds of the same dimension, and f: M--+ M r be a CR-map of class C ~ that extends 

holomorphically to a wedge with the edge M.  Suppose that f is not totally degenerate at 

a point x E M  and M r is essentially finite at f ( x ) .  Then f extends holomorphicaUy to a 

neighborhood of x. 

We use Theorem 1.10 together with Theorem 1.9 in the following result. 

THEOREM 1.1 1. Let M, M r c C  n be connected generic real-algebraic submanifolds of 

the same dimension, and f: M - ~ M '  be a CR-map of class C ~ satisfying the following 

conditions: 

(i) M is of finite type at x; 

(ii) f is not totally degenerate at x; 

(iii) M r is essentially finite at f ( x ) .  

Then f extends to a complex-algebraic holomorphic map in a neighborhood of x. 

Proof. By Tumanov's theorem [Thl], f extends holomorphically to a wedge with the 

edge M. Since f is of class C r162 the extension is also of class C cr (see e.g. [BER4, Theo- 

rem 7.5.1]). By Theorem 1.10, f extends to a holomorphic map in a neighborhood of x, 

also denoted by f .  Then condition (ii) means that  the restriction f lQx is generically of 

maximal rank. By Proposition 2.5 below, condition (iii) in Theorem 1.9 becomes satisfied 

after possible change of x. Then the required statement follows from Theorem 1.9. [] 

1.7. Basic methods. Our method of proving Theorem 1.1 is based on a modified 

geometric reflection principle. One main difference from the methods of [W1] and of 

[BER1] is that  the graph of f is obtained as an intersection of two di~erent algebraic 

families, each given by a suitable reflection of jets, rather than a reflection of one jet  

that  is in general not sufficient in the situation of Theorem 1.1. We use families of Segre 

varieties, their jets and iterations of them. The latter are closely related to the Segre 

sets (see [BER1]). 

The basic elementary property of Segre varieties used in most applications is their 

invariance under local holomorphisms (see Proposition 2.4). As pointed out in w 

this fact immediately implies f ( x ) E  r~. The known idea is to extend r~ to an "analytic 
�9 I .  ! family" by the formula r ~ . = ( w .  Q~, Df(Q~,))  with w E C  ~ near x without loosing the 

inclusion f ( w ) E r ~ .  If f is a biholomorphism and M r is essentially finite, the set r~ 

is finite near f ( x ) ,  and hence f (w)  is determined by the above inclusion up to a finite 

number of possibilities. This finite determinacy is still valid after replacing f (Q~)  by 
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its k-jet if k is sufficiently large. See [DW], [BR1], [BER1], [BER2], [BER3], [Z2] and 

[BERh] for higher-order jet reflections of this kind. 

The main difficulty in the situation of Theorem 1.1 is that  the above finite determi- 

nacy is no longer valid because the set r~ may have positive dimension. This makes it 

impossible to apply the above method. Another approach to this problem was proposed 

by Forstneri~ [Fol] in the case where f(w) is determined by the condition f(w)Er~NM' 

for wEM. This determinacy is a consequence of the condition (A) (see [Fol, w defi- 

nition (2.4)]), essentially meaning that  f(x) is isolated in rxNM'. Compare this with 

Corollary 1.2, where condition (A) is replaced by a weaker condition of nonexistence of 

analytic discs in the same set. If M I is a strongly pseudoconvex hypersurface, condi- 

tion (A) is always satisfied. For general hypersurfaces, condition (A) is stronger than 

e.g. condition (i) in Theorem 1.3 as the example M'={Rew=z2(z+2)}cC 2 shows. 

Our idea here is to establish an algebraic relation between the jets of f at three 

(instead of two) different points w, z and wl (see Propositions 5.1 and 5.5). The k-jets 

j~ f  and jkzf parametrize certain algebraic families (denoted by A and B) such that  

f(wl) is algebraically determined up to finitely many possibilities by the intersection of 

these families (see the proof of Proposition 5.1). We show that  this finite determinacy is 

guaranteed by condition (ii) in Theorem 1.1. In fact, one family arises from r~ and the 

2 The last family is not analytic in general and we have to move to a generic other from rx. 

2 extends to a point to avoid this difficulty. Another difficulty is due to the fact that  r~ 

family of analytic subsets depending antiholomorphicaUy on x (in contrast to r~). This 

is overcome by taking the conjugate and moving the parameters of these two families 

independently. This is basically the reason that  two different jets appear as parameters. 

The condition of finite type is not used on this step. 

An immediate consequence of Proposition 5.1 is the algebraicity of f along the Segre 

varieties. The second main step is the differentiation and the iteration of the identity 

provided by Proposition 5.1. This leads to the algebraicity of f along the Segre sets Q~ 

(see Definition 2.9). Due to the criterion of Baouendi, Ebenfelt and Rothschild [BER1] 

(see Theorem 2.10), condition (i) in Theorem 1.1 guarantees that  dim Q~=n for some s. 

For this s, the algebraicity of flQ~ is equivalent to the algebraicity of f as required in 

Theorem 1.1. 

1.8. Organization of the paper. In w we recall some basic constructions that  are 

used in the paper and their properties. In w we develop some technical tools for the 

proof of Theorem 1.1. In w we prove basic properties of jets of holomorphic mappings 

and jets of complex submanifolds that  are needed for the proof of Proposition 5.1. In 

w the proof of Theorem 1.1 is completed. 
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2. S o m e  b a c k g r o u n d  m a t e r i a l  

2.1. Real- and complex-algebraic sets and their dimensions. A subset A c R  m (resp. 

A c C  '~) is real-algebraic (resp. complex-algebraic) if it is the zero set of (finitely many) 

real (resp. complex) polynomials. A real-algebraic subset of C ~ is defined via the iden- 

tification C n ~  R 2n. The real dimension of a real-algebraic set A C R m is the maximal 

dimension of a real-analytic submanifold of R m that  is contained in A. The complex 

dimension of a complex-algebraic set is defined similarly. See e.g. [BeRi] and [Mu] for 

basic properties of real- and complex-algebraic sets respectively. 

2.2. CR-points of finite type. Let MC C ~ be a connected real-analytic submanifold. 

Recall that  M is CR at a point x e M  if dimT~M=min{dimT~M: yEM}. If Q(z,2) is 

a defining function, M is c a  at x if and only if rank(OQ(x))=max{rank(OQ(y)): yeM}.  

Either M is nowhere generic or it is generic exactly at the CR-points. The idea of the 

proof of the following lemma is essentially borrowed from [BR1, Lemma 4.9]. In the case 

when M is a CR-manifold, a simpler proof can be found in [BER4, Theorem 1.5.10]. 

LEMMA 2.1. The set of all points where M is either not CR or M is CR but not 

of finite type is real-analytic. 

Proof. Since the statement is local, we may assume that  M is globally defined by 

a real-analytic defining function ~(z, 2). The set of points where M is not CR is real- 

analytic because this is exactly the set where the rank of 0Q is smaller than maximal. 

If X c F ( M ,  TxC n) is a vector field along M, the condition X(x)ET~M defines a linear 

system A(x)X(x)=O, where A is a real-analytic matrix function. 

Set d:=min{dimT~M: yEM}. Then, for every CR-point x c M ,  i.e. if dimT~M=d, 

there exists a coordinate permutat ion in C ' ~ = c d x c  n-d such that  the projection of 

T~M to C d is bijective. Writing X(y)=Y(y)+Z(y)E C d x  C '~-d, we conclude that ,  for 

every Y(y) and y near x, the system A(y)(Y(y)+Z(y))=O has a unique solution Z(y). 

Applying Cramer's rule to the standard basis Y1, ..., ]I4 of constant vector fields in C d 

we obtain a collection YI+ZI(y), ...,Yd+Zd(y) of vector fields in TOM that  span T~M 

for y=x, and whose coefficients are ratios of real-analytic functions with denominators 

nonvanishing at x. After multiplying by the common denominator we obtain a collection 

2r of real-analytic vector fields X1, ..., Xd that  span T2M. If for some CR-point yEM, 

A" spans T i M  , then M is of finite type at y if and only if A' spans TyM together with 

higher-order commutators. The set S of points y CM where A' and the higher-order 
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commutators do not span TyM is clearly real-analytic. Then the subset S c M  in the 

lemma is the union of the set of all "non-CR-points" and the intersection of the sets 

for different permutations of the coordinates in C n. Hence S is real-analytic. [] 

2.3. Segre varieties and their properties. For the reader's convenience we collect here 

some well-known facts about Segre varieties. Let MC C n be a real-analytic submanifold, 

x c M be arbitrary and Q(z, 2) be an analytic vector-valued defining function. 

Convention. Throughout  this paper we use the notation V, where V is a complex 

manifold. The complex manifold V has the same coordinate charts with conjugated 

coordinates. The conjugation defines a canonical antiholomorphic map V--~vd, z~-*2. 

Definition 2.2. For every pair (U, Q), define the complexification A/[ by 

M = M ( u ,  {(z, u •  

and, for every wEU, the Segre variety Q , , c U  by 

Qw = Q~(U, Q):= { z c U :  ( z , w ) ~ M } = { z ~ U :  ~(z, ~v)=0}. 

In general, M is a complex-analytic subset of U x U. If M is a CR-submanifold, 

then AA is a complex submanifold near (x, 2). The same holds for the Segre varieties Q~ 

near x with w also near x. 

Segre varieties were introduced by Segre [Se] and played an important role in the 

reflection principle in several complex variables (see e.g. [Pi], [L2], [Wl], [W2], [DW], 

[BJT] and more recent papers). In the case when n = l  and M c C  is a real-analytic 

curve, the Segre variety Q~ is a one-point set, whose only element is the classical anti- 

holomorphic Schwarz reflection of w about M. This reflection is involutive and has M 

as the fixed point set. These two properties have the following counterpart  in several 

complex variables (a consequence of the identity L)(z, ~)=Q(w,  2)): 

PROPOSITION 2.3. For every z, wCU, zEQw is equivalent to wEQz,  and zEQz is 

equivalent to zEMNU.  

Segre varieties are invariant under local holomorphisms: 

PROPOSITION 2.4. Let M c C  n and M~cC n' be real-analytic submanifolds, (U,t)) 

and (U ~, Q~) be their defining functions, and f: U--~U t be a local holomorphism between 

M and M'.  Then f(Q~NU(x))cQ~f(~) for all w e U ( x )  with U(x)CU an appropriate 

neighborhood of x. 

A more precise description of the Segre varieties in the case where M is a CR- 

submanifold is given in the following proposition (a consequence of the lower semiconti- 

nuity of the rank of a holomorphic map): 



284  D. ZAITSEV 

PROPOSITION 2.5. In the above notation let M c C  n be a CR-submanifold and d:= 

dim T~M. Then the following is satisfied: 

(1) There exist neighborhoods U ( x ) , Y ( x ) c U such that for every w E U ( x ) , Q ~ M Y ( x ) 

is a (possibly empty) connected complex submanifold of dimension d; 

(2) T~Q~=T2M; 

(3) I f  f:U---*C n' is a holomorphic map and ( z , ~ ) E ~ 4  is close to (x ,2) ,  then 

d i m d f ( T ~ M )  ~<rankz(f[Q~) ~< max d i m d f ( T y M ) .  
y c M N U  

If M is in addition generic, Q~ in statement (1) is always nonempty for w close to x. 

2 defined 2.4. Reflections of subsets in terms of Segre varieties. The germs r~ and r~ 

in w are special cases of the following construction: 

Definition 2.6. Let M c C  n be a real-analytic submanifold and (U, •) be a defining 

function. For every subset A C U define the inner reflection by 

r M ( A ) : = { w e U : Q ~ D A } =  ~ Q~ (4) 
zEA 

and the outer reflection by 

RM(A):={weU:Q~nAr U Q~. 
zEA 

The equalities here are consequences of Proposition 2.3. The Segre varieties Q~ 

themselves are also special cases of these reflections: Q~--rM({W})=RM ({w}). If U and 

U t are sufficiently small (more precisely, if Q ,  is contained in a connected submanifold Q 

of the same dimension with f ( Q ) c  U', and if all irreducible components of rM( f (Qx) )  

2 in w can be reformulated as follows: pass through f ( x ) ) ,  the definitions of rx and r~ 

rx = r M ( f ( Q x ) )  and r 2 =rM(r~)  (in the sense of germs). (5) 

Clearly rM(A) is a closed analytic subset of U, even if A is not (RM(A)  is in general 

not analytic). If M is in addition algebraic, then rM(A) is a local algebraic subset of C n, 

i.e. a subset locally defined by vanishing of algebraic functions. Notice that  this property 

is different from being locally defined by vanishing of polynomials, as is shown by the 

example of analytically irreducible components of the cubic { (zl, z2) E C2:z2 2 = z~ (1 - Zl )} 

at the origin. 

In the situation of Theorem 1.1 the germ r~ C C '~' is defined by holomorphic func- 

tions whose coefficients are real-analytic in x E M. Hence dim r~ is upper semicontinuous 
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in x. However, dim r 2 is not necessarily upper semicontinuous, and therefore condi- 

tion Theorem 1.1 (ii) cannot be weakened by requiring that  f(x) is isolated in r~Mr 2 

for some x. This can be demonstrated by the following example, communicated to the 

author by J. Merker. 

Example. Define 

M := {2Re zl = ]z212 } C C 2, 

M'  := {2 Re zl = ]z212 +2 Re(z3 +z223)24} C C 4 

and f(zl,z2):=(zl,z2,~(zl),O), where ~ is an arbitrary holomorphic function on C 

with ~(0)=0. Clearly f ( M ) c M ' ,  and M is generic and of finite type. Then, for 

x = ( x l ,  x2)eM,  Q~={(Zl, z2): zl +21=z~22}, f (Q~)={( t22-21 ,  t, ~( t22-21) ,  0): t e C }  

and 

r(xl,x2 ) : { w c C 4 : t 2 2 - 2 1 + ~ l = t ~ 2 + ( ~ ( t 2 2 - 2 1 ) + t 2 ~ 3 ) ) ~ 4  for all t E C } .  

In particular, 

r0={(0 ,0 ,  w3 ,0 ) :w3EC}U{(0 ,0 ,0 ,w4) :wacC}  and r02={(0, z2 ,0 ,0 ) : z2eC} .  

Hence f (0 )=0  is isolated in roNr 2 but f is not necessarily algebraic. 

On the other hand, if f (and therefore ~) is not algebraic, ~ t ' ( - 2 1 ) r  holds for 

some x=(xl,x2)EM. Then the differentiations in t up to the third order of the equa- 

tion in the above formula for t=O yield r(xl,x2):{(Xl,X2,W3,0):w3EC } a n d  r 2 - -  (xl,x2)- 

{(z2x2-21, z2, z3,0): (z2, z3)eC2}. Hence f(x) is not isolated in rxNr~=rx. Thus con- 

dition (ii) in Theorem 1.1 is not satisfied. 

For the inner reflection, we use the following elementary properties: 

LEMMA 2.7. For every subset AcU,  ANrM(A)cM and ACrM(rM(A)). 

Proof. If aEA and aCrM(A)=NzEAQ~ , then clearly aEQa. Then Proposition 2.3 

implies aCM. Since acA is arbitrary, this means AC M. Furthermore, by the construc- 

tion of rM(A), 

rM(rM(A)) = N{Qz: z e rM(A)} = N{Qz: Q~ D A} D A. [] 

Applying Lemma 2.7 to A:=rx and using (5) we obtain: 
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COROLLARY 2.8. The germ rzNr~ is always contained in M ~. 

2.5. A finite-type criterion of Baouendi, Ebenfelt and Rothschild. The outer re- 

flection can be used to define the Segre sets in the sense of Baouendi, Ebenfelt and 

Rothschild [BER1] in a slightly different but equivalent way: 

Definition 2.9. Let M C C  n be a real-analytic submanifold and (U, Q) be a defining 

function. Then the Segre sets are defined inductively by Q~:=Qw, Qws+I'.=RM(Qw) = s  

U{Qz: zcQ }. 

In general the Segre sets are not analytic. However, if U is sufficiently small, they 

are finite unions of (not necessarily closed) complex submanifolds. A useful tool for our 

purposes is given by the following criterion (see [BER1], [BER4]): 

THEOREM 2.10 (Baouendi, Ebenfelt, Rothschild). Let M C C  n be a generic real- 

analytic submanifold and x E M. Then M is of finite type at x if and only if there exists 

an integer 2~<s~Kcodim M + I  such that for every defining function (U, Q) with xEU, the 

s-th Segre set Q~ contains an open subset of C n. 

2.6. Levi orthogonality and the inner reflection. Let M C C  n be a CR-submanifold 

and x E M  be an arbitrary point. Recall that  a (1,0)-vector field on M is a vector field X 

in the complexification CTCM = C | TCM such that  J X  = iX,  where J: CTCM--~ C TOM 

is the complexification of the CR-structure J: T~M--~Tr and iX  is the multiplication 

by i in the component C of the tensor product. 

The Levi form of M at x is the Hermitian (vector-valued) form 

L = LM,x: TJ'~ x TJ'~ ---* CT~M/CT~M, (6) 

defined by 

LM,a(U, V) := 1 7r([X, Y]), 

where X and Y are (1, 0)-vector fields on M with X(a)=u, Y(a)=v and 

(7) 

~: CTxM ~ CTxM/CT~M (8) 

is the canonical projection. Notice that  the right-hand side of (7) depends only on u 

and v, and not on their extensions X and Y as (1, 0)-vector fields. 

If (U, Q) is a defining function for M, the Levi form satisfies the following identity 

(see e.g. [Bo]): 

-dp(LM, x(u,v)) ~- ~ 02-------~Q (x)ujgk. (9) 
j,k OZj~2k 
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We use (9) to derive a connection between the Levi orthogonality as defined by (3) 

and the inner reflection in w For every subset AC U and a point aEA, denote by TaA 

the Whitney tangent cone, i.e. the set of all possible limits of sequences (am-a)/cm with 

cmER+ and amEA such that  am-.a as m-~cc .  Then the connection between (4) and 

(3) can be stated as 

PROPOSITION 2.11. Let M c C  n be a real-analytic CR-submanifold, xEM and x � 9  

AcQx.  Then TxrM(A)c(TxA) • 

Proof. Since TxAcTxQx and TxQ~=T~M by Proposition 2.5, the Levi-or thogonal  

complement (T~A) • makes sense. We have to prove that  L(u,v)=O for every uETxA 

and v �9 T~ rM (A). 

For this, consider sequences bm,ckER+, amEA and rkErM(A) such that  am---+x, 

(am-x)/bm--~u as m--~oc, and (rk--X)/Ck---~v, rk--*x as k-~oc. By definition of rM(A), 

g(am, ~k)=0 for all m and k. This implies 

Q(am,rk)--#(x, rk)=O OQ(x, rk)(u) = l i m  
bm 

for every k, and, further, 

OOQ(x, ~)(u, v) = lim OQ(x, fk)(u)-OO(x, ~)(u) = O. 
k ~ o o  bm 

The required statement follows from (9). [] 

3. Holomorphic  and algebraic families 

3.1. Notation. By saying "analytic" we shall always mean "complex-analytic ' ,  and 

by "dimension" the dimension over C. All submanifolds and analytic subsets without 

further specification are supposed to be complex. The notion of algebraic subsets and 

submanifolds extends in an obvious way to subsets of algebraic varieties more general 

than C n, e.g. of the jet spaces introduced in w 

3.2. Definitions of families and their basic properties. In the following let U and V 

be connected complex manifolds and F C U• V be an arbitrary submanifold. It will be 

useful for our purposes to have the following notion. 

Definition 3.1. We call the triple (U, V, F )  a holomorphic family, if there exist con- 

nected complex manifolds Vi and V2, a biholomorphism (I): V--*V1 • V2 and a holomorphic 

map 99:U• such that  

(idv x ~) (F) = { (u, Vl, ?2 2) �9 U x V 1 x V2:v2  = ~ (u, 721 ) }. 
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If in addition U, V, V1, 1/2 are open subsets of some smooth algebraic varieties, and ~ and 

are algebraic maps, we call F an algebraic family. We write Fu := {v E V: (u, v) E F}  C V, 

uE U, for the fibers of F.  

Elementary examples. For arbitrary U and V, F : =  U• V defines an obvious holo- 

morphic family (U, V, F) .  Another extremal case is F:= U• {v}, where v E V  is arbitrary. 

More generally, if V=V1 x 1/2 for some manifolds 1/1 and 1/2, we obtain a holomorphic fam- 

ily (U, V, F )  by setting F : =  U• V1. These are examples of families with constant fibers. 

Another type of examples can be obtained by taking a holomorphic map f :  U ~ V  and 

setting F : =  { (u, f (u)): u C U} C V x V. Here the fibers F ,  = { f (u) } are one-point sets but 

their dependence on u is obviously not necessarily constant. Families of this type can be 

generalized to families of linear subspaces by setting F := { (u, vl,  A (u) vl ) } C V • I11 • V~, 

where V1 and V~ are linear spaces, and A is a holomorphic map from U into the space 

s V2) of linear operators. 

Remark. It follows immediately from the definition that  all fibers are closed con- 

nected submanifolds of the same dimension. However, the converse does not hold as is 

shown in the following example. Set U:=C, V : = C  2 and define 

F := {(u, Vl, v2): u2v2 = v2+u}. 

Clearly F is a smooth algebraic hypersurface in U x V  and every fiber F~, uEU,  is a 

smooth algebraic hypersurface in V. However, (U, V, F )  is not a holomorphic family, e.g. 

because of Lemma 3.2 below. Moreover, there do not exist open neighborhoods 5 C  U 

and VC Y of the origins such that  (5 ,  V, F M ( 5  x V)) is a holomorphic family. 

The following is an elementary consequence of the rank theorem. 

LEMMA 3.2. In the above notation fix a point x = ( u , v ) E F c U •  Then the fol- 

lowing are equivalent: 

(i) There exist open subsets U c U ,  V c V  such that x e U •  and (U, V, FM(U•  

is a holomorphic family; 

(ii) The natural projection 7rE, U: F---+U is submersive at x, i.e. alTeR, u: T~:F-~T~U 

is surjective. 

The same statement holds also in the algebraic category. 

We use the following elementary criterion of genericity that  is proved here for the 

reader's convenience. 

PROPOSITION 3.3. Let M c C  n be a real-analytic submanifold given by a defining 

function Q(z, 2) in a neighborhood of x c M .  Then M is generic at x if  and only if  
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there exist open neighborhoods U(x), V(x) C U such that (U(x), V(x), F) is a holomorphic 

family, where 

F := M ( u ( z )  x = ( (z, �9 u ( z )  x v ( z ) :  e(z, = 0}. 

If M is in addition algebraic, the family (U(x), V(x), F)  can be chosen algebraic. 

Proof. Let M be generic at x, i.e. T~M+iTxM=TxU.  Then every vector uETxU 

can be written in the form u=a§ with a, bET~M, i.e. dQ(a, ~)=dg(b, b)=0 or equiva- 

lently (a, ~), (b, b) C T(~,~)A~t. Since J~4 is a complex submanifold, 4 := (u, d+ib)  E T(~,x)A/[ 

with d~rv(4)=u, where 7rv: A/I--~U is the projection. Since uETxU is arbitrary, 7rv is sub- 

mersive at (x, 2) and the claim follows from Lamina 3.2. 

Conversely, if (U(x), V(x), F )  is a holomorphic family, then 7rv: A/I--~U is submersive 

at (x,2) by Lemma 3.2. This means that  for every uET~U there exists a preimage 4=  

(u, V)ET(~,~)A/[. Then we can write it in the form 4= (a, ~)+i(b, b), where a:=(u+v)/2 

and b:=(u-v) /2 i .  Since 4 is tangent to 2t/I, we obtain 

0 = dQ(4) = OQ(a, ~)+iOQ(b, b)+OQ(a, a) +ic~(b, b) = d~(a, ~)+ida(b, b). (10) 

Since A4 is Complex, i4 is also tangent to it and we similarly obtain dp(a)-idp(b)--O. 

Together with (10) this yields a, bETxM, i.e. u=a+ibCTxM+iT~M.  Since uCT~C n is 

arbitrary, this shows that  Tx M +iTx M--  T~ U, i.e. the required genericity. 

Finally, if M is algebraic, Q can be chosen holomorphic algebraic. This implies the 

algebraicity of A/I, and the statement follows from the algebraic version of Lemma 3.2. [] 

We shall use the following general construction. 

LEMMA 3.4. Let U and V be algebraic submanifolds of some C N, S c U x V  be an 

algebraic subset and MC U • V a nonempty real-analytic submanifold with MC S. Then 

there exist an algebraic submanifold NC U, a finite collection of open subsets V1,..., Vs c V 

and a nonempty open subset W c M  with the following properties: 

(i) (g ,  Vj, SM(NxVj)) is an algebraic family for every j = l ,  ..., s; 

(ii) W c N x V ;  

(iii) For every (u ,v )EW,  every local irreducible component at v of the fiber S ~ c V  

intersects Vj for some j= l , . . . , s .  

Proof. We prove the statement by induction on dim S. It is clear for S discrete. 

Denote by 7r:=Trs,v: S -*U the standard projection. Without loss of generality, M is 

connected. Let $1 c S be the (algebraic) Zariski closure of M. After replacing U with a 

submanifold, and M and S with MM (U x V) and SM (U x V) respectively, we may assume 

t h a t  U coincides with ~r(S1) and is connected and smooth. Let d(x):=dim~ ~r -l(~r(x)) 
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denote the fiber dimension. Since d(x) is upper semicontinuous, we may assume that  it 

is constant and equal to d on $1 and is not larger on S by further shrinking U and V. 

Then dim ~-1 (u) = d for every u E U. In particular, dim S =  dim U +  d. 

Every irreducible component of S where the generic value of d(x) is lower than d 

must be of lower dimension than dim S. Denote by S' the union of S-components of the 

highest dimension containing M, and by S ~' the union of lower-dimensional S-components 

containing M. By further shrinking U and V we may assume that  S=S~US ~ and MC 

S~NS t~. Fix xCM. Since S t is pure-dimensional with 7r-fibers of the same dimension, 

there exist open connected neighborhoods O(x) C S', U(r(x)) C U and E(0) c C  d such 

that  the restriction r i O ( x  ) can be written as a composition Poll,  where H:O(x)--~ 

U(Tr(x)) • E(O) is a finite branched holomorphic covering and P: U(~(x)) • E(O)--*U(~(x)) 

is the natural projection (see [G, Volume II, Theorem L.8]). 

For the dimension reason there exists a point uo E U(v~(x)) such that  u0 • E(0) is not 

contained in the branch locus of H. Since M is Zariski dense in $l,  r ( M )  is Zariski dense 

in U, and therefore u0 can be chosen in ~(M)AU(Tr(x)), i.e. (Uo,Vo)EM for some voEV. 

Let (u0, e0) be a point outside the branch locus and H - l ( u 0 ,  e0)={(Uo, vl), ..., (Uo, vz)}C 

O(x)CS',  where l is the branch number of H.  Then the points (uo, v j ) cS '  satisfy the 

condition (ii) of Lemma 3.2. Hence there exist neighborhoods Vj of vj ( j - - l ,  ..., l) such 

that  (U, Vj, S'A(U• Vj)) become algebraic families after appropriate shrinking of U. By 

the construction, a version of property (iii) is satisfied for these families, where (u, v)E M 

is close to (u0, v0) and the fibers S~ (rather than Su) are considered. Since S=S'US",  it 

remains to construct additional families for the fibers S~. But this can be done by using 

the induction because dim S~'<dim S. [] 

Given two holomorphic families (U, V, F )  and (V, W, G), we define their composition 

(U, V • W,H) as follows: 

H : = { ( u , v , w ) E U •  (v ,w)eG}.  (11) 

As a direct consequence of the definition, the composition of holomorphic (resp. algebraic) 

families is always holomorphic (resp. algebraic). 

The notion of genericity can be trivially extended to the case when M is a real 

submanifold of an arbitrary complex manifold X. This condition implies, in particular, 

that  M cannot be contained in a proper analytic subset of X. We use this simple 

observation in the following lemma. 

LEMMA 3.5. Let (U, V,F) be a holomorphic family, M c F  a nonempty generic real- 

analytic submanifold, V ~ another complex manifold and f: V--~V' a holomorphic map. 

Then there exist domains Uc U, V c V  and V ' c V  ~ such that the following is satisfied: 
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(1) M n ( U x V ) r  

(2) f (V)  cV ' ;  

(3) (U, V', F) is a holomorphic family, where 

.b := {(u, f (v) ) :  ue , ve , (u,v) c F}.  

Remark. An algebraic version of Lemma 3.5 holds with the same proof but we do 

not use it in this paper. 

Proof. Set g := (idu x f ) : F - ~  U x W. Since MC F is generic, it is not contained in the 

analytic subset defined by the degeneration of the rank of g. Hence there exist domains 

U c U  and V c V  such that  property (1) holds, g is of constant rank on EM(UxC~) and 

F':=g(FM(U• is a submanifold in UxV' .  Fix x E M A ( U x V ) .  By Lemma 3.2, 

7rE, ~ is submersive at x. Hence 7rg,,~ is submersive at g(x). By the other direction of 

Lemma 3.2, we can replace U with a smaller domain and find a domain V t c V '  such that  

g(x )CUxV '  and (U, I~ ' ,F 'M(UxV') )  is a holomorphic family. It remains to replace 1~ 

with V A f - I ( v ' ) .  [] 

3.3. Constructions with families and their fibers. Let U, U t, V be connected complex 

manifolds, and F C U x V, F~ C U' x V arbitrary subsets. Define 

A(F,F' )  := {(u, u ' ) E U x U ' :  FuCF~,}. (12) 

In general A(F, F ~) is not analytic, even if both F and F '  are analytic. This is the 

case, however, if F is a holomorphic family as defined before. 

LEMMA 3.6. Let (U, V, F) be a holomorphic (resp. algebraic) family and F'C U'x V 

be a closed analytic (resp. algebraic) subset. Then A(F, F~)C U x U' is a closed analytic 

(resp. algebraic) subset. 

Proof. Let V1,V~, O:V--~VlxV2 and ~:UxVI--*V2 be as in Definition 3.1. Let 

(u0, u~)E U x U', (v0)l E V1 be arbitrary points and (Vo)2 := ~(uo, (v0)l). It is sufficient to 

prove that  A(F, F') is analytic (resp. algebraic) in a neighborhood of (So, u~). Since F '  is 

analytic (resp. algebraic), it is defined by the vanishing of holomorphic (resp. algebraic) 

functions f l , . . . ,  fs in a neighborhood of (u~, Vo) E U'x  V, where Vo := ((v0)l, (v0)2). Then 

for ( u , u ' ) c U x U '  close to (u0,u~), (u ,u ' )EA(F,F' )  is equivalent to the vanishing of 

fi(u', (I)-l(vl, ~(u, Vl))) for all VlCV1 near (VO)l, because V1 is connected. The statement 

follows by the analyticity (resp. algebraicity) of this condition of vanishing. [] 

For arbitrary subsets AC Ux U ~ and GC U'x V define 

B~(A,G):= [-1 G,,,, ueU,  (13) 
u~EA~ 

B(A, G ) : =  {(u, v) �9 Ux V: v �9 B~(A, G)} (14) 

(in the case A~=O we set B~(A, G):--V). 
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LEMMA 3.7. Let (U, U', A) be a holomorphic (resp. algebraic) family and GcU'xV 
a closed analytic (resp. algebraic) subset. Then B(A, G) c U x Y is a closed analytic (resp. 
algebraic) subset. 

Proof. By Definition 3.1, there exist a biholomorphism (resp. algebraic biholomor- 

phism) ~: U'--~U~ x U~ and a holomorphic (resp. algebraic) map ~: U x  U[---~U~ such that  

(idv x ~) (A) = { ( u ,  ' ' u l , u 2 ) e U  x Ult >( V2t : u2  = ~p(u, U l ) } . t  t 

Let (no, vo) �9 U x V and (u~) 1 �9 U~ be arbitrary, (u~)2:= qo(u, (u~) 1). It is sufficient to show 

that  B(A, G) is analytic (resp. algebraic) in a neighborhood of (u0, vo). Since G is analytic 

(resp. algebraic), it is locally defined by the vanishing of holomorphic (resp. algebraic) 

functions f l ,  ..., f~ in a neighborhood of (u~, Vo) �9 U' x V, where u~:= ((u~) 1, (u~) 2). Then 

for (u,v) close to (no,v0), the condition (u, v)�9 G) is equivalent to the vanishing 

of fj(q)-l(U'l,~(u,u'l)),v ) for all j=l,...,s, and u'l�9 ~ close to (u~)l, because U~ is 

connected. The last condition is analytic (resp. algebraic) which proves the statement. [] 

4. Jets  of  ho lomorphic  maps  and jets  of  complex  submanifo lds  

4.1. Constructions of jets. Let X,X'  be connected complex manifolds, xcX  and let 

k~>0 be an integer. Recall that  a k-jet at x of a holomorphic map from X into X '  is 

an equivalence class of holomorphic maps from a neighborhood of x in X into X '  with 

fixed partial derivatives at x up to order k. Denote by J~(X, X') the space of all such 

k-jets. The union jk  (X, X'):= U~ex J~(X, X') carries a natural fiber bundle structure 

over X. For f a hotomorphic map from a neighborhood of x in X into X' ,  denote by 
"k k 3~:fEJ~(X,X') the corresponding k-jet. If X and X '  are smooth algebraic varieties, 

J~(X, Z') and Jk(x ,x ' )  are also of this type. 

Furthermore, we shall need the k-jets of d-dimensional submanifolds. Let gd(X) 

be the set of all germs at x of d-dimensional submanifolds of X.  We say that  two 

germs V, V ' c g d ( x )  are k-equivalent, if, in a local coordinate neighborhood of x of the 

form U1 x U2, V and V' can be given as graphs of holomorphic maps ~, ~t: [71--+U2 such 

that  -k "k 3~1qo-=3~1~', where x=(xl,z2)eglxU2. Denote by J~,d(x) the space of all k- 

equivalence classes at x and by jk'd(x) the union [J~ez Jk'd(X) with the natural fiber 

bundle structure over X. Furthermore, for vccd(x),  denote by -k k d 3~(Y)eJ"~' (X) the 

corresponding k-jet. For gEjk'd(x) we use the notation g(O):=x, if g is a k-jet at x. 

If X is a smooth algebraic variety, Jk'd(X) and Jk'a(X) are also of this type. 

4.2. Jet compositions. Let gCjk'd(X) and jCJk(X,X ') be k-jets at some xEX 
represented by a d-dimensional submanifold VEC~(X) and a local holomorphic map 
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f: UCx)--+X' respectively. Our goal here will be to define a composing map (J, g)~-+jog 

sending .k (3~ f, J ky )  into j~(~)f(Y). 

Warning. Even in the simplest nontrivial case X = X ' = C  2, k = d = l ,  a map c: 

J~(C 2, C 2) • J~'1(C2)--+ j1'1(C2 ) with j~(~)fCY)=c(jkf,  j ky ) ,  whenever I (V)  is smooth 

at x, need not exist. Indeed, take x =  C 0, 0), f (  z, w):= (z 2, w) and Y:= {w=az2}, where 

d e C  is arbitrary. Then f (Y)={w'=az ' } .  Clearly j~ f (V)  depends on a, but j ~ f  and 

jkoV do not. 

In view of this we construct a composing map for k~> 1, defined on the subset 

T~:={(j ,g)eJkCX, X')•  (15) 

where l(j) and l(g) denote the linear parts of j and g respectively. 

LEMMA 4.1. There exists exactly one holomorphic mapping c: T~--+jk'd(x')  such 

=c(2xf,3xV), whenever x, V and f are as before and .k .k (3x/,3 Y)en. that j~(x)I(V) .k .k 

If X and X I are algebraic, then c is also algebraic. 

Proof. Fix (j0, go) E T~ and their representatives fo and V0. There exists a coordinate 

neighborhood U1 • U2 near x0:= go (0) = j0 (0) such that  V0-- U1 • { (x0)2 }. Without loss 

of generality, x0 =(0, 0). 

Since dimCl(jo)ol(go))=d , there exists a coordinate neighborhood U~xU~ near 

X~o:=JoCxo) such that  the map ul~-+(fo),Cul,O) is locally invertible at 0, where (fo)l 

denotes the first component. Then the map h/ :  ul ~-~fl (ul, 0) is locally invertible at j(0) 

for every jCJk(X ,  X' )  sufficiently close to j0 and its representative f .  

Denote by h} 1 the local inverse near jC0). Without loss of generality, g is represented 

by the graph V of a holomorphic map sy: U1--~U2. Then f (V)  equals the graph of the 

map ~Ly:=f2o(h~l,  syoh]l) .  The k-jet j](~)f(V) is given by the derivatives of ~ / ,y  

at j(0) up to order k. Hence j](~)f(Y) depends only on j and g, and we can write 

jk(~)f(V) =: cCj , g). Clearly cCj , g) is holomorphic in (j, g) a n .  If X and X '  are algebraic, 

all constructions can be done algebraically. [] 

4.3. The inclusion relation for the jets of complex submanifolds. Our next goal will 

be to define an inclusion relation and prove its analyticity (rasp. algebraicity), if the 

ambient space X is an analytic (rasp. an algebraic) submanifold of C n. 

Definition 4.2. Let O<<.d<~d' be integers, gCjk 'd(x)  and g'cjk 'd ' (x)  be arbitrary 

k-jets. We say that  g is contained in g' and write gCg', if g(O)=g'(O) and there exist 

representatives VC g and V'E g' such that  VC V'. 
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LEMMA 4.3. Define 

I :---- {(g, g') e Jk 'd(x)  x jk 'd ' (x ) :  g C g' }. (16) 

Then I c Jk,d( x )  x jk,d'( x )  is a closed analytic subset. I f  X is an algebraic submanifold 

of C n, then I is an algebraic subset of Jk 'd(Cn)x  jk 'd '(on).  

Proof. Let (go ,g~ )c j k ' d ( x ) xJk ,d ' ( x )  be arbitrary. It is sufficient to prove that  I 

is analytic (resp. algebraic) in a neighborhood of (go, g~). Without loss of generality, 

go(O)=g~(O)=:xo and d ' > d > 0 .  Let VoeCdo(X), ' d' X V~ ECxo ( ) be representatives of go and 

g~ respectively. Then there exists a coordinate neighborhood U1 x U2 x U3 of x0 in X 

such that  V0 is locally the graph of a holomorphic map U1 --~ U2 x U3 and V~ is locally the 

graph of a holomorphic map [71 x U2--~ U3. 

Every jet g E j k ' d ( x )  that  is sufficiently close to go can be represented by the 

graph of a unique polynomial map ~g:U1--*U2xU3 of degree k. Similarly every jet 
! i 

g E jk,d (X) that is close to g~ can be represented by the graph of a unique polynomial 

map Cg,: U1 x U2--*U3 of degree k. The coefficients of polynomials can be seen as coor- 

dinates in the corresponding jet spaces. Every other representative of g (resp. of g') is 

locally a graph of a holomorphic map ~g: U1 --+/-72 x U3 (resp. ~9': U1 x U2--*U3) such that  

jk ,~og=jkl~g ( r e s p . - k  , r ,=j~x,,x~)~bg,) ' (17) 

where x=(xl ,x2 ,x3):=g(O)  (resp. x'=(x~,x'2, z '  "3).=g"O"( )). 

By Definition 4.2, gCg'  means x = x '  and the existence of ~g and Cg, such that  

( g(ul))3 =  g,(Ul, 

By differentiating at xl up to the order k, we obtain 

�9 k ~ t - k  ~ , \  3~1(~g)3 = (J(~,x2) g )~ jk~(~g)2) �9 

By (17), this is equivalent to 

Jk~ (~Og)3 = t3(x~,~)" -k ~b g , 'o(id, j~(~9)2 ) . )  (18) 

We have showed that  the inclusion gCg  t implies x = x  ~ and (18). Conversely, suppose 

that  (18) holds. This means that  the graph V of the map 

is a representative of g. Clearly V is a subset of the graph of Cg,. Hence g C g  ~. 
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Thus we have proved that  the inclusion gCg' is equivalent to x=x  ~ and (18). Since 

(18) is an algebraic condition on the coefficients of ~g and r I is algebraic in the given 

coordinates near (g0, g~). This finishes the proof. [] 

4.4. Operations with jets and families of analytic subsets. Let (U, V,F) and 

(U', V', F ' )  be holomorphic or algebraic families such that  V is an open subset of W. 

Analogously to A(F, F ' )  define 

A k ( F , F ' ) : = { ( u , v , u ' ) e U x V •  (u ' , v ) eF ' ,  .k .k , 3~F~c3vF~,}. (19) 

Then Ak(F, F') is the preimage of I (defined by (16)) under the holomorphic (resp. 

algebraic) map (u, v, u ' ) ~  (j~F~, .k , 2v F ' , ) ,  defined on the subset 

A(F,F ' ) := { ( u , v , u ' ) C U x V x U ' : ( u , v ) e F ,  (u ' ,v)~F'} .  

As a consequence of Lemma 4.3 we obtain 

LEMMA 4.4. Let ( U, Is', F) and (U', V', F' ) be holomorphic ( resp. algebraic) families, 

where V is an open subset of V'. Then A k ( F , F ' ) c U x V x U  ' is a closed analytic (resp. 

algebraic) subset. 

It follows that  Ak,v(F, F ' ) D  A k+l (F, F ' )  for all integers k >/0. Since the fibers F~, C V, 

uE U, are connected, inclusions of their k-jets for all k imply inclusions of the fibers, i.e. 

A~(F, F')= Nk Ak~,v( F, F') for all u e  U and veF~. Therefore 

7~-I(A(F,F')) = N Ak(F,F') ,  (20) 
k)O 

where ~: A(F, F')--~ U x U' denotes the natural projection. 

LEMMA 4.5. Let (U,V,F) and (U',V',F') be holomorphic families such that V 

is an open subset of Y', and (u,v)GF, (u',v)CF' be such that FuCF~,.  Then there 

exist domains UcU,  U'cU' ,  VCV 'CV and an integer k>/O such that the following is 

satisfied: 

(1) (u , v )GUxV and (u ' ,v )eU'xV;  

(2) (U, V, F) and (U', V', F') are holomorphic families, where/~:=FM(Ux V) and 

(3) ~-I(A(F,  F'))=Ak(F,  F'). 

Proof. By (20), ~-I(A(F,F ' ) )  equals the intersection of the decreasing sequence 

of analytic subsets Ak(F, F ) ,  k~>0. Hence this sequence stabilizes after some k~>0 in 

the sense of germs at (u,v, u~). This means that  we can choose an integer k~>0 and a 
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neighborhood W I =  Ul x Vl x U~ of ( u, v , u' ) in U x V x U' such that ~r- I ( A ( F, F '  ) ) M W1 = 

A k ( F , F ' ) ~ W 1 .  By Lemma 3.2, there exists domains /J'cU~ and V'CV1 satisfying 

conditions (1) and (2). The proof is completed by applying Lemma 3.2 to ( u , v ) � 9  

FN (U1 x l~'). [] 

For 0~<d~<dim V, define 

Ak'd( F) := {(g, u) �9 Jk 'a(V) x U: g(O) �9 F~, g c jk(o)Fu}. (21) 

LEMMA 4.6. Let (U, V, F )  be a holomorphic (resp. algebraic) family. Then Ak'd(F) 

is a closed analytic (resp. algebraic) subset of j k ' d ( v ) x  U. 

Proof. Set d':= dim F~, u � 9  U. The subset A k ' d (F )CJ k ,d ( v )  x U is the preimage of I 

given by (16) under the holomorphic (resp. algebraic) map (g, .k u) ~-~ (g, Jg(0) F~), defined 

on the subset {(g, U)e jk'd(v) • V : g(O)EFu}. [] 

5. P r o o f  of  T h e o r e m  1.1 

5.1. Reflections of jets of holomorphic maps. The following proposition is an important 

part of the proof of Theorem 1.1. We use the notation of w Roughly speaking, it shows 

under the assumptions of Theorem 1.1 that the restriction of f to a Segre variety of M 

is algebraically determined by two different k-jets of f.  Set 

Z4 ~ := {~ = (zl, ~, z) c V • 0 • U: (zl, ~) �9 Z4, (z, ~) �9 M}. (22) 

PROPOSITION 5.1. Let f:  U-- ,C n' be a local holomorphism between connected real- 

algebraic submanifolds M C  C n and M~C C '~'. Suppose that M is generic and condition 

(ii) in Theorem 1.1 is satisfied. Then there exist a point x � 9  an open neighborhood 

E of (x,~,x) in Ad 2 and an integer k such that for every nonempty open subset E'CE 

there exists another nonempty open subset E"CE'  and an algebraic holomorphic map 

q2: f~--.C n' defined in an open subset f~C U x J k ( C  n, C n') • J k ( c n ,  C n') with 

Z "k .k  ( and f(z )  (Zl = ,J~f,J~f) (23) 

for all (zl, w, z) �9 E". 

Proof. By shrinking U, we may assume that condition (ii) in Theorem 1.1 holds 

for all x E M n U .  By Proposition 3.3, there exist neighborhoods U, V c U  of x such that 

(U, V, JtdM(Ux V) )  is an algebraic family. 

By the construction, the image of MMU under the diagonal mapping ZH(Z,  2) is a 

generic submanifold of Ad. By Lemma 3.5, there exist domains U1cU, VICV, V~CV' 
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w 

and a point xoEMVIUINV1 such that f(V1)c~'~ and (U1, 1~, F )  is a holomorphic family, 

where 

F := {(z, $ (~) ) :  z E  UI, w e  Q~ NV1}. (24) 

Without loss of generality we can assume that U=U1 and A41cUtxV~. Set for 

simplicity V:=V1, ' N V :=V(. By Definition 3.1, f ( Q z ) c V '  is a connected submanifold 

whose dimension is constant independently of zEU. Set d :=d im f(Q~). Then the jet 

jk, f(Q~)EJk'd(Y') is defined for w'Ef(Q~). We now consider the subsets A(F,.A4')C 

U• U', Ak(F, .h4')C U x ~ x U' and Ak'd(J~ ') C jk,d(~9) • g '  as defined by (12), (19) and 

(21) respectively. For the reader's convenience, we recall the constructions in our case: 

A(F,.A4') := { ( z , z ' ) E V x V ' :  f (Q~)cQ~,},  

Ak(F, A/I') := {(z, ~', z') E U• W x U': w'E f(Q~), w'E Q'z,, 3~,(f(Q~))c .k , 

Ak'd(A4'):= {(~,z')E Jk'd(W)• g(O)EQ'~,, g C 3g(o)'k Q~,, }. 

By Lemmata 3.6, 4.4 and 4.6, these subsets are closed and analytic, Ak,d(J~ ~) is even 

algebraic. 

We write 

A~(F, .M' ) :={z 'EU': f (Q~)cQ: ,} ,  zEU, 

Akz,~,(F, A4 ') := {z'E U': w'EQ~z ,, .k .k , 3~,( f (QD)c3~,Qz,} ,  z~U,  w'~f(Q~),  
i . k  i A~'d(M ') :={z 'eU'  : g(O)eQ~,, gc3g(0)Q~,}, ~ e J k ' d ( W ) ,  

for the corresponding fibers. 

It follows from Proposition 2.4 and the construction that 

where 

A k-  (F, A4') k,d , (25) ~,f(~) = A~(z,~) ( M ) ,  

~(z, ~)  := j~(w)f(Qz) E jk,d(~~). 

Fix xEM. By Lemma 4.5, 

(26) 

A~ - (F,M')=A~(F, A4') 
, f ( - )  

for k sufficiently large and (z,~)EA/I close to (x,2).  By replacing U with a smaller 

neighborhood of x, we may assume that this holds for all (z, W)E A4. Together with (25) 

the last identity implies 

k,d ' ( z ' eU'  Q'~,~f(Qz)}. (27) Ag(z,~) (.M ) = 
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Since f(Q~) is a connected manifold, it follows from Definition 2.6 tha t  

rx ~ germ of A k'd {/t'4~ g(~,~)~,., j at f(x) (28) 

for all x r MM U. 

By replacing U, V with smaller neighborhoods of x, we may assume that  (27) holds 

for all (z, ~)  CA/[. Fhrthermore we can choose U and V such that  all Segre varieties Qz c V  
become connected for zE U. By the invariance of Segre varieties (Proposition 2.4) and 

the connectedness of Q~, Q'l(z)D f(Qz), i.e. the right-hand side of (27) contains the point 

f(z) E U'. Hence 

Ak,d I f(z) E ~(~,~)(M ) for all (z, z~) E M .  (29) 

Set 

.M:={([l(z,~), f(z)):(z,~)CM} and ~l:={(9(z ,2) , f (z)):zEU}.  

Then M is a real-analytic submanifold of jk ,d(~)  X U t. By (29), it is contained in the 

algebraic subset Ak'd(Mt)CJk'd(~)x U'. Hence we are in the situation of Lemma 3.4 

with S=Ak,d(.Ad'). Let U~,...,U'CU', WEft4 be open subsets and NCJk'd(Y 9) be an 

algebraic submanifold given by Lemma 3.4. 

We write for simplicity 

GJ:=Ak'd(M')N(NxU~), j=l , . . . , s .  

In the following we use the notation of w Define 

Bg :=B0(GJ, M'  ) = 0{Q'~,: z'ea~}, Bg :=B~N. . .MBg 

and 

B := {(g,z ' )e  ~ x V ' :  z'e B~}. 

By Lemma 3.7, B C N x  V ~ is a closed algebraic subset. 

Since GJC Ak'd(JM ')  for every j =  1, ..., s, it follows from (27) that  

f(Q~)cN{Q'z,:z'EAk'd(_, )(A4')} cBg( , ,~ )  for all ( f , w ) e A 4 .  (30) 

In particular, for every xEMMU, f(x)EBg(~,x). 
On the other hand, property (iii) in Lemma 3.4 in our situation means that  for every 

A k d " " G j for xEMMU, every local irreducible component  of gi~,x)(Wl) at f(x) intersects g(~,z) 

some j = l ,  ..., s. Now we use the simple fact that  the intersection of Q~z' for all z ~ in an 

irreducible analytic set A coincides with the intersection of Q~z, for z ~ in an open subset 
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of A. Using this fact for the local irreducible components of A k'd (A,4~ 9(~,~)~,.,: at f (x)  we 

conclude that  
2 r~ D germ of Bg(~,~) at f (x)  (31) 

for all xEMMU. Here the inclusion instead of the equality is due to the fact that  the 

sets G j may have some additional irreducible components. 

By Proposition 2.3, (z, ,v)EM is equivalent to (w, 2)EJVI for z, wE UNV. Then we 

can replace U and V with UMV and rewrite (30) as 

f(Q,,)  c B~(~,~) for all (z, ~) E JVI. (32) 

We also replace U' and V' with U'nV',  set J~ := Jk'd(v") and J2 := jk 'd(v ') ,  and define 

C := { (~h,g2,z') E Jl x J2 x U': zl E A~ff (A4)MBg2}. 

Let ~=(Zl,~,z)EY~42 be arbitrary. Then, by (29) and (32), 

and, by (28) and (31), 

f (z l )  c C(0(zl,~),g(~,~)) 

r~Mr~ D germ of C(~(~,~),g(~,~)) at f(x)  

(33) 

(34) 

for all xEMNU.  Together with condition (ii) in Theorem 1.1 this implies that  f (x)  is 

isolated in C(g(~,x),g(~,x)). Since CC J1 • J2 • U I is an algebraic subset, all fibers C9l,g 2 

are discrete by the upper semicontinuity of the fiber dimension in a neighborhood of 

every point of the form (g(x, 2), g(2, x), f (x)) ,  x E M n U .  

Without loss of generality, rank~(fiQ~)=d for all (z ,~)EAd.  Fix xEMMU. Then 

it follows from the rank theorem that  there exists a coordinate neighborhood U1 • U2 C U 

of x such that  dim U1 = d and 

dim d~f(T~Qz,~) = d 

for all (z,~)GJPI close to (x, 2), where 

(35) 

Q~,~:= {vEQ~: vu=z2}. 

Without loss of generality, U=UlxU2. Then for every (z,N)EA4, -k -k N (3~f,3zQz,w) is con- 

tained in T~, where 7~ is defined by (15). By Lemma 4.1, 

=c(J zf, ' -  (36) 
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where c: T~---~jk'd(x') is an algebraic holomorphic map. 

Let Z'CA42 be a nonempty open subset. By (33), the subset 

~~J : =  {(g(Z1, ?D), g(~, Z), f ( z l ) ) :  (zl, z~, z) e Z'} 

is contained in the algebraic subset CCJ1 • J2 x U'. Let C ' c C  denote the (algebraic) 

Zariski closure of ~' .  Then there exists at least one point 

(.0(Zl ~ w-~ g ( ~ ,  z~ f (z~  e 

outside both the singular locus of C'  and the branch locus of the projection to J1 • J2. 

Hence near this point, C'  can be represented as a graph of an algebraic holomorphic 

map ~:Nj--~U',  where N j  is an algebraic submanifold in J l x J 2 .  Furthermore, in a 

neighborhood of (~(z ~ w~ ~ z~ ~ can be extended to an algebraic holomorphic 

map r f~j--*U', where f~j is an open subset in J1 x J2. In particular, this means that  

f (z l )  ---- r @), g(w, z)) (37) 

holds for all ( z l ,w ,z )eY] / / :={(Zl ,W,Z)C~' :  (~ (Z l ,~ ) , g (~ , z ) ) e l2 j } .  Together with (26) 

and (36) this yields 

: ( z l )  .k - c (3 f, 

By setting 

~ ( z l , ~ , j 2 ) "  �9 .k ~ c(32,3zQ~,w)), �9 =r " .k - 

where w:=jl(O) and z:=j2(O), we obtain an algebraic holomorphic map defined in a 

neighborhood of 0 .k "k P0 :---- (zl, 3~o f ,  3zO f )  in the submanifold 

S := { ( z l , ~ , j 2 )  E U • Jk(Cn,  Cn') x Jk(Cn,  Cn' ) : 
( a s )  

( j l ,  .k - 

We finish the proof by extending ~ as an algebraic holomorphic map to a neighborhood 

f~ of P0 in Ux Jk(Cn,  C n') x Jk(Cn,  Cn'). [] 

5.2. Iterated complexifications and jet reflections. Our goal here will be to iterate 

the construction of the previous section. Let M C  C n be a real-analytic submanifold and 

(U, Q(z, 2)) be a defining function. For every integer j ) 0  set 

U for j even, 
V j  ", ~ 

U for j odd, 
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and 

{0(~j,Gj 
-1) for j even, 

oj(Gj,Gj-1) := 0(Gj,Gj-1) for j odd. 

Definition 5.2. The iterated complexifications .Mq, q ) 1 ,  of M are defined as follows: 

JMq:={G=(~q , . . . ,Go)EUqx . . . xUo:o j (Gj ,Gj_ I )=O for all l<~j<.q}.  (39) 

q--  q Then the Segre sets Q~o- Qw( U, o) (see Definition 2.9) are equal to the corresponding 

fibers or their conjugations as follows directly from the construction. We formulate this 

as a lemma here. The proof is left to the reader. 

LEMMA 5.3. Set 

J~q 1= {Gq E Uq: 3 (Gq-1,'", El), (Gq,..., G1, w) E M q}. (40) 

q -  q and q -  q for odd, where w E U  is arbitrary. Then Q w - A d ~  for q even Q ~ - j t 4 ~  q 

The main disadvantage of the Segre sets is the lack of analyticity in general for q~>2. 

For this reason we prefer to deal with Adq instead. 

LEMMA 5.4. Let M c C  n be a generic real-analytic (resp. algebraic) submanifold. 

Then for every q>~l and x E M ,  fldq is a complex (resp. algebraic) submanifold of 

Uo x ... • Uq near the point x q :-- (x, 5:, x, ... ) . Furthermore, every projection 7r j : ]td q --* Uj 

is of the maximal rank n at x q. 

Proof. By Lemma 3.3, there exists neighborhoods U(x) and V(x)  such that  

(V (x ) ,Y (x ) , .Mr3(U(x )  x Y(x))) is a holomorphic (resp. algebraic) family. By the in- 

duction on q we prove that  there exists a product neighborhood 

W(x q) - -w  1XW 2 C V 0 x ( v l X . . . X U q )  

such that  (W1, W2, A4 q N W(xq))  is a composition of q holomorphic (resp. algebraic) fam- 

ilies in the sense of (11) and is therefore a holomorphic (resp. algebraic) family. This 

proves the first statement and the second for j = 0 .  

For j = q ,  consider the canonical involution T: Uq x ... x Uo--~Uo x ... x Uq defined by 

{(G0, 
...,Gq) for q even, 

~-(Gq,--., Go) := (Go,---, ~q) for j odd. 

Then T(.Adq)=j~ q, and the last statement for j = q  follows from the statement for the 

case j = l .  For 0 < j < q  it suffices to notice that  34q can be identified with the fiber 

product of M j and J~q-J over Uj. [] 

Given U ' c C  ~' we define Uj in a similar way as Uj. By differentiating the identity 

in (23) we obtain 
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PROPOSITION 5.5. Under the assumptions of Proposition 5.1 there exist a point 

xEM,  an open neighborhood E of (x,2, x) in r 2 and an integer k such that for every 

nonempty open subset E' C ~ there exists another nonempty open subset E" C Z' and for 

every integer s>~O an algebraic holomorphic map ~ :  12~--*Js(U2, U~) defined in an open 

subset fl s C U x ja+~ (C~, C~,) x jk+~ (C~, C ~') with 

�9 k + s  . k + s  . k  s . k + s  . k + s  
( z~ ,~  f ,~ f ) �9  and ~0 (Zl,3w f,3z f)  (41) 3~1f = 

for all (Zl,W,Z)CZ". 

For O~j~q  we use the notation 

f f(z) for j even, 
fj(z) 

I f (z)  for j odd. 

In the following proposition we iterate the identity in (41). 

PROPOSITION 5.6. Under the assumptions of Proposition 5.1 for every q~2 and 

s>~O, there exists an integer l>~l, a nonempty open subset EC.s q and an algebraic 

holomorphic map H~:12q---~js(uq, uq) defined in an open subset ~qCEXJt (Ul ,V~)x  

J~(Uo, U~) with 

(~,j~,f,j~of)El2q and j~qfq=Hq(~, j~f , j~of  ) (42) 

for all ~cE.  

Proof. We prove the proposition by induction on q~>2. For q=2 the statement fol- 

lows from Proposition 5.5. Fix s>~0 and q~>3. Let k, x and ECA42 be given by Proposi- 

tion 5.5. Choose neighborhoods V(x)C U(x )cU with .A42N(U(x)• U(x) x U(x))C~ and 

such that QzNU(x)r  for zEU(x). The induction for q - 1  applied to the real sub- 

manifold MNU(x)CC ~ yields a nonempty open subset EICAZl q-l,  an integer l~>l and 
S . 8 ~ S ! an algebraic holomorphic map Ha_ 1. ~q-1 g (Uq-1, Uq_l) such that 

. s  H s . l  - . l  ..?~q_,fq-l: q-X((,3~,f,g~of) (43) 

for all ~ C El. 

Furthermore, by the choice of U(x), the set 

~ '  := { (~2,6 ,  ~0) c ~ : 3 (~q, ..., ~3), (~ ,  ..., 6 )  �9 ~ } 

is nonempty. Proposition 5.5 yields another nonempty subset ~"C ~' and an algebraic 

holomorphic map kO: ~--~C ~' satisfying (41) for all (z l ,w,z)EZ".  By the construction 

of Z', the open subset 

E : =  { ( ~ q ,  . . . ,  ~ o )  �9 .A/~q : (~q ,  . . . ,  ~1 ) �9 El, (~2, ~1, ~o) �9 E"} 
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is also nonempty. Then for (~q, ..., ~0)EE, (43) can be rewrit ten as 

�9 s _ s ~l ,2~2f ,2~l f ) .  (44) 3 ~ f q - - H q - l ( ( q , ' " ,  - .z .l - 

z l + k ~  : l + k  ~: To finish the proof, it remains to express J~2f in terms of j~l j and J~0 J using (41), 

and then to increase l by k. [] 

5.3. The end of  the proof. Suppose that  the assumptions of Theorem 1.1 are fulfilled. 

Without  loss of generality, M C  U is generic and of finite type at every point. By the 

criterion of Baouendi, Ebenfelt and Rothschild (Proposition 2.10), there exists q>0  such 

tha t  A~ q contains an open subset of C n for every w E U .  

Let E c A 4  q+l be given by Proposition 5.6 and fix (Xq+l, .-., Xo)EE .  Then the iden- 

t i ty  in (42) implies that  the restriction of f to 

Mq+l  
x~,~o :=  {~q+l : 3 (~q, ..., ~2), ( ~ + 1 ,  ..., ~2, x l ,  x0)  �9 M ~+1 } 

is algebraic. Since A4 q+l - ^Aq and the latter contains an open subset of C ~, f is itself 
X I l X O  - -  " ~ LX1 

algebraic. This finishes the proof of Theorem 1.1. 

Note added in the proof. After this paper  was submit ted for publication, the author 

received the preprint "On the partial algebraicity of holomorphic mappings between real 

algebraic sets" by J. Merker, containing related results. 
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