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Abstract

In this paper, we study certain partial and false theta functions in connection to vertex
operator algebras and conformal field theory. We prove a variety of results concerning the
asymptotics of modified characters of irreducible modules of certain W-algebras of singlet type,
which allows us in particular to determine their (analytic) quantum dimensions. Our results are
fully consistent with the previous conjectures on fusion rings for these vertex algebras. More
importantly, we prove quantum modularity (à la Zagier) of the numerator part of irreducible
characters of singlet algebra modules, thus demonstrating that quantummodular forms naturally
appear in many “sufficiently nice” irrational vertex algebras. It is interesting that quantum
modularity persists on the whole set of rationals as in the original Zagier’s example coming
from Kontsevich’s “strange series”. In the last part, slightly independent of all this, we also
discuss Nahm-type q-hypergometric series in connection to tails of colored Jones polynomials of
certain torus knots and characters of modules for the (1, p)-singlet algebra.

1 Introduction

It is well-known that characters of modules of rational vertex operator algebras (e.g. WZW models,
lattice vertex algebras, Virasoro minimal models) often take the form (throughout q = e2πiτ )

f(τ)

η(τ)k
,

where f(τ) is the “numerator” part, expressible as a (linear combination) of theta functions and

their derivatives, while the denominator has a fixed power of η(τ) := q
1
24
∏∞

j=1(1 − qj) for all
irreducible modules. The power k can be viewed as a rank, for instance the rank of an integral
lattice. The numerator usually comes from considerations and specializations in the BGG-type
resolutions of modules and may involve both positive and negative coefficients in the q-expansion.
Alternatively, formulas of this sort also arise from free field realizations of modules, possibly with
different k. For rational vertex operator algebras with certain additional properties (cf. Section
2.2), the numerator part (and of course the η-power) is always a modular form of weight k
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suitable congruence subgroup [17]. This fact alone is extremely useful for purposes of getting the
explicit S-matrix, very precise asymptotics, just to mention a few examples.

In rational conformal field theory, it is important to analyze the following quotient of characters

chM (τ)

chV (τ)
, (1.1)

where M is a module for the vertex operator algebra V , for the purposes of computing quantum
dimensions of modules [14]. Similar quotients also appear in computations of correlations functions,
where we usually divide with the partition function, which is roughly the size of chV (τ) (cf. [29]).

In this article, and continuing further in [11], we are mostly concerned with different properties
of characters, including their quotients (1.1), for certain families of irrational vertex algebras which
lack the usual modular properties. We do not focus on vertex algebras whose numerator part of the
character is just a finite q-series, as these algebras are too generic to carry nice fusion properties
[30]. Instead, we put emphasis on vertex algebras for which the numerator is a certain q-series
similar to theta series but with ”wrong” signs, often dubbed false theta series. Examples of vertex
algebras of this kind have already appeared in the literature on representation theory of W -algebras
[12, 13, 30, ?], and also implicitly in connection to affine Lie superalgebras in the work of Kac and
Wakimoto [26]. Our starting point is an observation made in [12], and even earlier in [3, 30] that
some numerators of atypical characters of the so-called (1, p)-singlet algebra are false theta series
of Rogers [6]. Singlet vertex algebras are never C2-cofinite (e.g. Zamolodchikov W-algebra at
c = −2) so its representations theory is more delicate compared to other C2-cofinite and rational
W-algebra extensions. Yet, the singlet algebras are instrumental in connection to various models
in (logarithmic) conformal field theory.

In the theory of modular forms, false theta series have played a peculiar role. On the one hand,
they arise in investigations of q-series and partition identities. We would like to single out a beautiful
identity of Warnaar for partial thetas [34] (see also Section 4) as well as other identities, some due
to Ramanujan [6]. More recently, starting with [36], it was discovered that certain false theta series
also appear in connection to Kontsevich’s “strange series” coming from the Vassiliev invariants of
3-manfiolds, in the sense that they both share the same values and derivatives of all orders at all
roots of unity. Functions of a similar type also occurred in [27] in connection with the Witten-
Reshetikhin-Turaev invariants of knots. All these instances are formalized later in an influential
work of Zagier [38] under the umbrella of quantum modular forms. A quantum modular form lives
at the natural boundary of the upper-half space P1

Q, is defined only asymptotically, rather than
exactly, and has a transformation behavior of a quite different type with respect to some modular
group. There is an additional requirement that such a function extends to an analytic function
defined in both upper and lower half-plane. This way one obtains a fairly non-standard object:
an analytic function in the upper half-plane which drips throughout the quantum set (typically
a proper subset of Q) into the lower half-plane. There are further interesting occurences of such
functions, see [20] for one such example. This has led to a whole family of new examples of quantum
modular forms [20]. There are also examples coming from negative index Jacobi forms [10], which
are closely related to characters of representations of affine Lie superalgebras.

Our present work is motivated by several considerations, which are however not mutually ex-
clusive. Firstly, we are presenting more evidence (after [12]) that characters of irrational vertex
algebras such as W-algebras also enjoy nice analytic properties, including interesting asymptotics.
Secondly, we would like to furnish more examples of quantum modular forms coming from “natural
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constructions” (e.g. vertex algebra theory) with the quantum set being all of Q. Thirdly, here and
especially in [11], we give more indication that irrational W-algebras are closely related to certain
infinite-dimensional quantum groups at root of unity. There are perhaps other ramifications of
this line of work such as possible connections with the knot invariants via tails of colored Jones
polynomials of alternating knots, although at this stage we deem them as largely accidental.

Let us summarize our main results in two theorems whose proofs are given in Sections 2-6.
We use Mr,s to denote atypical irreducible modules of the (1, p)-singlet algebra (see Section 3, and
[12]).

Theorem 1.1. For p ∈ N with p ≥ 2, we have:

(a) For 1 ≤ s ≤ p and r ∈ Z, dimq(Mr,s) = s. Moreover, quantum dimensions of irreducible
(1, p)-singlet modules are bounded above by p.

(b) The numerator of chMr,s(τ) is a quantum modular form of weight 1
2 with quantum set Q.

(c) The full asymptotic expansion of chMr,s(τ) is given in Proposition 4.5 and Remark 4.8.

This result gives additional evidence for the correctness of the fusion rules conjectured in [12],
including Kazhdan-Lusztig type correspondence with quantum groups at root of unity.

Next, we switch to the (p+, p−)-singlet algebra introduced in [4]. These series of vertex operator
algebras are closely related to the more familiar rational Virasoro minimal models [33].

Theorem 1.2. Let p+, p− ≥ 2 be relatively prime, and let Jr,s;n be an atypical irreducible (p+, p−)-
singlet module (see Section 6, and [31], [13]). Then the following properties hold:

(a) We have dimq(Jr,s;n) = rs. Moreover, quantum dimensions of irreducible (p+, p−)-modules
are bounded above by p+p−.

(b) The numerator of chJr,s;0(τ) is a quantum modular form of mixed weight 3
2 and 1

2 , while for
n 6= 0, it is a mixed quantum modular form (a linear combination of modular and quantum
modular forms).

(c) The full asymptotic expansion of chJr,s;0(τ) is given in Proposition 5.2.

Again, this result is in the agreement with [13] and [31].
In the remainder of the paper (Section 7) we discuss at great length q-series identities between

certain Nahm-type sums and characters of the (1, p)-singlet modules. These identities dovetail
nicely with similar Nahm-type sums which already appear in the context of knot theory [22]. We
provide a somewhat uniform approach to all these identities without any reference to representation
or knot theory.

In Part 2 of this series [11], we introduce higher “rank” generalizations of classical partial and
false theta functions, now in the setup of ADE type root lattices and Lie algebras (the classical
case corresponding to g = sl2) and study their asymptotic properties with an eye on quantum
modularity.

2 “Generalized” quantum dimensions and fusion rules

The aim of this section is to introduce and discuss several basic objects coming from considerations
of representations of vertex (operator) algebras and their characters.
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2.1 Quantum dimensions

Throughout this section V is a vertex operator algebra as defined in [28]. We use M or sometimes
Mj (if the index set is given) to denote irreducible V -modules. Following [1], a vertex operator
algebra is said to be rational if every admissible module is completely reducible (for definition of
an admissible module see also [1]). Essentially the same definition of rationality was previously
given by Zhu [39]. Given a vertex operator algebra V , we let C2(V ) := SpanC{a−2b : a, b ∈ V },
where we use an, n ∈ Z, to denote the Fourier modes of the vertex operator Y (a, x). Then V is
called C2-cofinite [39] if the subspace C2(V ) is of finite codimension in V . It is widely believed
that rationality implies C2-cofiniteness. On the other hand, C2-cofiniteness alone does not imply
rationality (see for instance [3]). Rationality and C2-cofiniteness independently imply that there
are, up to isomorphism, only finitely many irreducible modules [16].

To simplify the presentation, we say that V is regular if it is both C2-cofinite and rational. We
also say that V is strongly regular if it is regular, simple, self-dual (meaning that V ′ ∼= V ) and
dim(V (0)) = 1, where V =

⊕∞
n=0 V (n).

In this paper, a key role is played by the character (aka modified graded dimension) of an
irreducible module M :

chM (τ) := trMqL(0)−
c
24 =

∞∑

n=0

dim(M(n))qhM+n− c
24 , (2.1)

where hM ∈ C denotes the lowest conformal weight of M , M(n) the graded subspace of conformal
weight hM + n, and c is the central charge. We focus on vertex operator algebras and modules for
which chM (τ) is holomorphic in H.

Characters of modules can be used to define other important gadgets such as quantum dimen-
sions of modules. The analytic quantum dimension of a V -module M , or simply the q-dimension,
is defined as [14]:

dimq(M) := lim
y→0+

chM (iy)

chV (iy)
. (2.2)

Clearly, dimq(V ) = 1, but for general M it is often nontrivial to compute (2.2). In fact, for
arbitrary V and M , the limit might not even exist [30]. Observe that (2.2) only depends on the
“numerators” of M and V as discussed in the introduction. What is interesting about (2.2), is that
for vertex algebras where the category V -Mod is braided and rigid [24], it is expected to be related to
another quantum dimension coming from purely categorical properties of V -Mod. This categorical
dimension, which we denote by d̃imq, typically a real number, behaves as a multiplicative character
under the tensor product ⊠ in the category of V -modules (also known as the fusion product [24]):

d̃imq(Mr ⊠Mj) = d̃imq(Mr) · d̃imq(Mj).

If the category V -Mod is in addition semi-simple, then

Mr ⊠Mj =
n∑

k=1

Nk
r,jMk,

where Nk
r,j ∈ N are the fusion rules, and we have

d̃imq(Mr) · d̃imq(Mj) =

n∑

k=1

Nk
r,j d̃imq(Mk),
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meaning that d̃imq(·) defines a character of the fusion ring. All these properties follow easily from

the definition of d̃imq (see [9] for details). It is not clear whether the two quantum dimensions are
equal - but as we shall see in a moment - for a sufficiently nice V this seems to be the case.

The concept of analytic quantum dimension has the following natural generalization that is
relevant for vertex algebras studied in this paper. For s = h

k ∈ P1
Q, we define “quantum dimension

at s” as the limit towards h
k in the upper half-plane:

dims
q(M) := lim

y→0+

chM (s+ iy)

chV (s+ iy)
.

Assume that a representative of s is chosen with h and k relatively prime and let x, y ∈ Z satisfy
xh+ zk = 1. Consider A :=

(
h −z
k x

)
∈ SL2(Z) and its inverse A−1. Also, let τs,y := s+ iy. Assume

that V is regular and that the irreducible characters are given by chMr(τ), r = 0, ..., n, such that
the zero label is used for the vertex algebra, meaning V = M0. Then, by Zhu’s modular invariance
theorem [39], we have

chMr(B · τ) =
n∑

j=0

Br,jchMj
(τ),

for any B ∈ SL2(Z). If V is strongly regular, then this representation is realized by unitary matrices
(cf. Proposition 3.7 and Corollary 3.8 in [17]). Hence B−1

r,j = B̄j,r, and the entries Br,j lie in a
cyclotomic extension of Q.

Theorem 2.1. Let V be regular, s ∈ Q, and A be as above. Assume that A0,0 6= 0 and that lowest
conformal weights satisfy hMr > 0, 1 ≤ r ≤ n. Then

dims
q(Mr) =

Ar,0

A0,0
.

Proof: Clearly, A−1 · τs,y =
iyx+ 1

k

−kiy . As y → 0+, the right hand-side tends to i∞. Formula (2.1)

implies that chMr admits a q-expansion inside qhMr− c
24C[[q]]. We clearly have

dims
q(Mr) = lim

y→0+

chMr

(
A ·
(
A−1 · (s+ iy)

))

chM0 (A · (A−1 · (s+ iy)))
= lim

y→0+

∑n
j=0Ar,jchMj

(
A−1 · τs,y

)
∑n

j=0A0,jchMj
(A−1 · τs,y)

.

We can eliminate the prefactor q−
c
24 from both the numerator and denominator. The result follows

immediately because hMr > 0, so that only the chM0(τ) summand contributes to the limit.

Of course, Theorem 2.1 is well-known for s = 0, for which A =
(

0 1
−1 0

)
is the usual S-matrix:

dimq(Mr) =
Sr,0

S0,0
,

(see [14], where more generally the zeroth label was replaced with a module with the minimal lowest
conformal weight; see also [15]).

If V is strongly regular, an important theorem due to Huang [23, 24] says that the category
V -Mod is modular (for more about modular tensor categories see [9] and loc.cit.). Under the
assumption of Theorem 2.1 on Mr, it was recently shown in [17] that

d̃imq(Mr) = dimq(Mr),

where the left hand side is known to be real and ≥ 1.
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2.2 Asymptotics

In addition to obvious categorical considerations, another reason why quantum dimensions are
useful has to do with the relative growth of dimensions of graded pieces of modules. Therefore we
may ask to determine another limit

lim
n→∞

dim(M(n))

dim(V (n))
, (2.3)

simply from the knowledge of dimq(M) and other properties of the vertex algebra. One expects that
(2.3) and dimq(M) are equal whenever one of the limits exists. For instance, if 0 is the “dominant
cusp”, this limit can be deduced by using a Tauberian result of Ingham [33].

Theorem 2.2. Let f(τ) = qλ ·∑∞
n=0 anq

n be a holomorphic function in H such that an ≤ an+1 for
all n ≫ 0. Assume there exist c, d ∈ R and N ≥ 0 such that

f(τ) ∼ c · (−iτ)−de
2πiN

τ .

Then
an ∼ c√

2
N− 1

2(d−
1
2)n

1
2(d−

3
2)e4π

√
Nn.

An application of this type of result was given by Kac and Peterson [25] in their study of the
growth of graded dimensions of highest weight modules for affine Kac-Moody Lie algebras and
related string functions (see also [33] for other applications).

Observe that for strongly regular vertex operator algebras, higher asymptotics of chM (τ)
chV (τ) are

easy to describe. In this case, chM (τ) is a modular form of weight zero on a congruence subgroup
of SL2(Z) (see Theorem I, [17]), and thus there exist aM ∈ Q such that for all n ∈ N

chM (iy) ∼ αMe
− 2πaM

y (1 +O(yn)).

Thus,
chM (iy)

chV (iy)
∼ αM

αV
e
− 2π(aM−aV )

y (1 +O(yn)). (2.4)

Under the assumptions of Theorem 2.1, we get that aM = aV and dimq(M) = αM

αV
.

If we deal, as in this paper, with non-rational vertex algebras, then clearly Theorem 2.1 cannot
be used, and nothing like (2.4) holds true. Still we are interested in q-dimensions of irreducible
representation, including their full asymptotic expansion. If the numerator of chM (iy) is a false
like theta series, we first seek full asymptotics expansion:

fM (iy) ∼ yaeby

(
n∑

k=0

aky
k +O

(
yn+1

)
)
,

where n ∈ N0, and use it to determine asymptotics of chM (iy) and of chM (iy)
chV (iy) . We show that

sufficiently “nice” irrational vertex operator algebra, such as the (1, p)-singlet algebra, (p+, p−)-
singlet, and higher rank generalizations [11], all have q-dimensions which are real and ≥ 1. Figuring
out asymptotics expansion and generalized quantum dimensions is directly related to quantum
modularity addressed in Sections 4 and 6.
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3 Virasoro, singlet, triplet, and lattice vertex operator algebras

In this section, which also contains much introductory material, we start by introducing the main
objects of the paper. Although a fair amount of vertex algebra theory is needed to properly define
specific algebras and their modules, we try to emphasize only those features that are directly
related to characters of modules needed for our considerations. Specifically, we omit any detailed
definitions pertaining to Virasoro algebra representations. The reader unfamiliar with the vertex
algebra theory can simply skip all algebraic constructions and focus on explicit character formulas
(see Sections 3.1 and 3.2).

For p ∈ N with p ≥ 2, consider the rank one lattice (L, 〈 , 〉), where

L = Zα, 〈α, α〉 = 2p.

Alternatively, consider L =
√
2pZ with the usual multiplication. To this L, following [28] for in-

stance, we associate the lattice vertex algebra VL := M(1)⊗C[L], whereM(1) := C[α(−1), α(−2), · · · ]
denotes the Heisenberg vertex algebra of rank one and C[L] is the group algebra of L generated

by eα, α ∈ L. We are interested in central charges cp,1 = 1 − 6(p−1)2

p , p ≥ 2, thus we choose the
conformal vector

ω =
1

4p
α(−1)21+

p− 1

2p
α(−2)1 ∈ M(1).

We also define certain rational numbers

hp,qr,s :=
(ps− rq)2 − (p− q)2

4pq
.

With this central charge, the generalized vertex algebra VL◦ , where L◦ denotes the dual lattice of
L, admits two screenings:

Q̃ = e
−α

p

0 and Q = eα0 .

Then we let

W(p) := KerVL
e
−α

p

0 .

We obtain a vertex subalgebra of VL, called the triplet algebra. As shown in [4], W(p) is strongly
generated by the conformal vector ω and three primary vectors

F = e−α, H = QF, E = Q2e−α.

There is another useful description of W(p) [4, 19]. As a module for the Virasoro algebra, VL is not
completely reducible but it has a semisimple filtration whose maximal semisimple part (or socle)
is W(p). More precisely,

W(p) = socV ir(VL) =
∞⊕

n=0

2n⊕

j=0

U(V ir).Qje−nα ∼=
∞⊕

n=0

(2n+ 1)L
(
cp,1, h

p,1
1,2n+1

)
,

where L(c, h) denotes the highest weight Virasoro module of central charge c and lowest conformal
weight h, and soc is the socle. Following the notation from [2], we can restrict the above kernel to
the Heisenberg subalgebra and define

W(2, 2p− 1) := KerM(1)Q̃ ⊂ M(1).
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This structure is called the (1, p)-singlet vertex algebra of central charge cp,1 and is usually denoted
by W(2, 2p − 1) (we try to avoid using W(2, 2p − 1), as it is a bit cumbersome 1). The vertex
operator algebra W(2, 2p− 1) is clearly completely reducible as a Virasoro algebra module and the
following decomposition holds:

W(2, 2p− 1) = socV ir(M(1)) =

∞⊕

n=0

U(V ir).Qne−αn ∼=
∞⊕

n=0

L
(
cp,1, n

2p+ np− n
)
.

3.1 Irreducible W(p)-modules and their characters

The tripletW(p) is known to be C2-cofinite but irrational [4]. It also admits precisely 2p inequivalent
irreducible modules [4, 19], which are usually denoted by:

Λ(1), . . . ,Λ(p),Π(1), . . . ,Π(p),

where Λ(1) := W(p). Decomposition of irreducible representations into irreducible Virasoro mod-
ules follows the pattern as of W(p).

The characters of irreducible W(p)-modules are computed in many papers on logarithmic con-
formal field theories starting with [19]. For 1 ≤ j ≤ p, the formulas are

chΛ(j)(τ) =
jΘp,p−j(τ) + 2∂Θp,p−j(τ)

pη(τ)
,

chΠ(j)(τ) =
jΘp,j(τ)− 2∂Θp,j(τ)

pη(τ)
,

where

Θj,p(τ) :=
∑

n∈Z
q

(2np+j)2

4p , ∂Θj,p(τ) :=
∑

n∈Z

(
n+

j

2p

)
q

(2np+j)2

4p .

Note that Λ(p) and Π(p) are precisely lattice vertex algebra modules.

3.2 Irreducible (1, p)-singlet modules and their characters

The aim here is to give explicit formula for irreducible W(2, 2p− 1) characters. We mostly follow
[12] here. (Admissible) irreducible W(2, 2p− 1)-modules fall into two categories:

• (Typical or generic) Fλ, those isomorphic to irreducible Virasoro Fock spaces, where λ does
not satisfy a certain integrability condition [12].

• (Atypical or non-generic) Mr,s, certain subquotients of Fock spaces F r−1
2

√
2p+ s−1√

2p
, r ∈ Z, and

1 ≤ s ≤ p [12]. Each Mr,s is isomorphic to an infinite direct sum of Virasoro irreducible
representations.

The character of Fλ is simply

chFλ
(τ) =

q
(λ−α0

2 )
2

2

η(τ)
,

1Another notation used in the literature is M(1) (see [2])
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where α0 :=
√
2p−

√
2
p .

Since Mr,s decomposes as an infinite direct sum of irreducible Virasoro algebra (for explicit
decomposition formulas see [3, 12]), we get

chMr,s(τ) =

∑∞
n=0

(
q
p
(

n+ r
2
− s

2p

)2

− q
p
(

n+ r
2
+ s

2p

)2)

η(τ)
.

We can rewrite this as
Pp,pr−s(0, τ)− Pp,pr+s(0, τ)

η(τ)
,

where

Pa,b(u, τ) :=

∞∑

n=0

zn+
b
2a qa(n+

b
2a)

2

, z := e(u). (3.1)

As the sum in (3.1) doesn’t run over a full lattice, it is called a partial theta function and its
properties are well-recorded in the literature [6]. In particular, for M1,1 = W(2, 2p− 1), we get

chM1,1(τ) =

∑
n∈Z sgn(n)q

p
(

n+ p−1
2p

)2

η(τ)
,

which is essentially the false theta function of Rogers. For brevity, let

Fj,p(τ) :=
∑

n∈Z
sgn(n)q

(

n+ j
2p

)2

,

where we use the convention sgn(n) = 1, for n ≥ 0 and −1 otherwise. Observe that F0,p(τ) = 1
and

chM1,s(τ) =
Fp−s,p(pτ)

η(τ)
.

Also,

chMr,p(τ) =
qp(

r
2
− 1

2)
2

η(τ)
,

so Mr,p can be regarded as a generic module.
Thus, for atypical modules, from now on, we may assume that 1 ≤ s ≤ p − 1 and r ∈ Z.

However, when we study characters, it is very useful to express them via false theta function Fj,p,
with 1 ≤ j ≤ 2p− 1.

Proposition 3.1. Every atypical character admits a decomposition

chMr,s(τ) =
Fj,p(pτ) + qr,s(τ)

η(τ)
,

where 1 ≤ j ≤ 2p− 1 and where qr,s(τ) is a finite q-series (possibly zero).
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3.3 Verlinde-type formula for (1, p)-singlet modules

In [12], the second author and Creutzig formulated a Verlinde-type conjecture for the fusion of
(1, p)-singlet modules motivated by computation of what they end up calling regularized Verlinde
algebra of characters. As a consequence, they formulated

Conjecture 3.2. The following relations are valid inside the (conjectural) Grothendieck ring of
W(2, 2p− 1)-modules:

[Fλ]× [Fµ] =

p−1∑

ℓ=0

[Fλ+µ+ℓα− ],

[Mr,s]× [Fµ] =

s∑

ℓ=−s+2
ℓ+s=0 (mod 2)

[Fµ+αr,ℓ
],

[Mr,s]× [Mr′,s′ ] =

min{s+s′−1,p}∑

ℓ=|s−s′|+1
ℓ+s+s′=1 (mod 2)

[Mr+r′−1,ℓ]

+
s+s′−1∑

ℓ=p+1
ℓ+s+s′=1 (mod 2)

(
[Mr+r′−2,ℓ−p] + [Mr+r′−1,2p−ℓ] + [Mr+r′,ℓ−p]

)
.

This conjecture seems to be difficult to prove by the existing methods unless we impose strong
conditions on the category of modules, which are presumably even harder to verify (for instance,
we do not even know if there is a braided category structure on W(2, 2p− 1)-Mod).

In this paper, we provide further evidence for correctness of this conjecture by examining asymp-
totic properties of characters and computation of their q-dimensions of modules.

4 Asymptotic properties of W(2, 2p− 1) characters

In this section we derive the full asymptotic expansion for atypical (1, p)-singlet (by using two
methods) and prove that the numerator part is a quantum modular form as announced earlier.

4.1 Quantum modularity of W(2, 2p− 1) characters

Following [38], we say that f : Q\S → C (S appropriate subset of Q) is a quantum modular form of
weight k and multiplier ε for Γ ⊂ SL2(Z), if for all γ ∈ Γ the functions hγ : Q \

(
S ∪ γ−1(∞)

)
→ C

defined by

hγ(x) := f(x)− ε(γ)(cx+ τ)−kf

(
ax+ b

cx+ d

)

satisfies a “suitable” property of continuity or analyticity (now with respect to the real topology).
This definition is purposely ambiguous to accommodate a variety of examples. Note that any finite
q-series (with rational powers) can be viewed as a quantum modular form of any weight.
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Note that

Fj+2p,p(τ) = −2q
j2

4p2 + Fj,p(τ),

F0,p(τ) =
∑

n∈Z
sgn(n)qn

2
= 1,

Fp,p(τ) =
∑

n∈Z
sgn(n)q(n+

1
2)

2

=
∑

n≥0

q(n+
1
2)

2

−
∑

n<0

q(n+
1
2)

2

= 0.

Thus we may throughout assume 0 < j < 2p, j 6= p. To state the main result of this section, we let

εd :=

{
1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4).

We then prove

Theorem 4.1. The function Fj,p(τ) is a strong quantum modular form of weight 1
2 , multiplier

χj

(
a b
c d

)
:= e

πiabj2

2p
(pc

d

)
ε−3
d , group Γ1(4p), and quantum set Q.

Remark 4.2. Theorem 4.1 implies that Fj,p(pτ) is also a quantum modular form on Q.

To prove Theorem 4.1, we proceed as in [36] and define for τ ∈ H− := {τ ∈ C; Im(τ) < 0} the
non-holomorphic Eichler integral

F ∗
j,p(τ) :=

√
2

∫ i∞

τ

fj,p(z)

(−i(z − τ))
1
2

dz,

where fj,p(z) :=
∑

n∈Z

(
n+ j

2p

)
q

(

n+ j
2p

)2

. A key step in the proof of Theorem 4.1 is to show that

Fj,p(τ) agrees for τ = h
k ∈ Q with F ∗

j,p(τ) up to infinite order and that F ∗
j,p(τ) satisfies a nice

transformation law. We start with the first claim. For this, we need the following lemma.

Lemma 4.3. Let C : Z → C be a periodic function with mean value 0. Then the associated L-series
L(s, C) :=

∑∞
n=1

C(n)
ns (Re(s) > 1) extends holomorphically to all of C and we have for t > 0

∞∑

n=1

C(n)e−n2t ∼
∞∑

r=0

L(−2r, C)
(−t)r

r!
.

If C is odd, then
∞∑

n=1

C(n)Γ

(
1

2
; 2n2t

)
en

2t ∼
√
π

∞∑

r=0

L(−2r, C)
tr

r!
,

where Γ(s; t) :=
∫∞
t e−uus−1du denotes the incomplete gamma function. Moreover, if M is a period

of C, then

L (−r, C) = − M r

r + 1

M∑

n=1

C(n)Br+1

( n

M

)
(4.1)

with Bℓ(x) the ℓth Bernoulli polynomial.
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Proof: The claim on the analytic continuation of the L-series and the first asymptotic claim is
given in [27]. The second claim can be proved as in [27]. We leave the details to the reader.

We next show that Fj,p and F ∗
j,p asymptotically agree.

Lemma 4.4. We have as t → 0+ for (h, k) = 1

Fj,p

(
h

k
+

it

2π

)
∼

∞∑

r=0

Lj(h, k;−2r)

(
− t

4p2

)r

r!
,

F ∗
j,p

(
h

k
− it

2π

)
∼

∞∑

r=0

Lj(h, k;−2r)

(
t

4p2

)r

r!
,

where Lj(h, k;−2r) is the analytic continuation of the L-series

Lj(h, k; s) :=
∑

±
±

∑

n≥1
n≡±j (mod 2p)

e
2πin2h

4p

ns
. (4.2)

In particular, Fj,p and F ∗
j,p “agree to infinite order” at rational points in the sense of Lawrence and

Zagier (see p.103 of [27]).

Proof: Write for t > 0

Fj,p

(
h

k
+

it

2π

)
=

∑

n>0
n≡j (mod 2p)

e
2πin2h
4p2k

− tn2

4p2 −
∑

n>0
n≡−j (mod 2p)

e
2πin2h
4p2k

− tn2

4p2 =
∑

n≥1

C(n)e
− tn2

4p2 ,

where we define

C(n) :=





e
2πin2h
4p2k if n ≡ j (mod 2p),

−e
2πin2h
4p2k if n ≡ −j (mod 2p),

0 otherwise.

(4.3)

Clearly C is odd, periodic of period 2pk and has mean value 0 since

∑

n (mod 2pk)
n≡j (mod 2p)

e
2πin2h

2pk −
∑

n (mod 2pk)
n≡−j (mod 2p)

e
2πin2h
4p2k = 0

by changing n → −n. Lemma 4.3 thus gives the claim for Fj,p.
We next turn to F ∗

j,p. A direct calculation gives that its Fourier expansion is given by (τ =
x+ iy ∈ H−)

F ∗
j,p(τ) =

1√
π

∑

±
±

∑

n>0
n≡±j (mod 2p)

q
n2

4p2 Γ

(
1

2
;−4πn2 y

4p2

)
.

Thus for t > 0,

F ∗
j,p

(
h

k
− it

2π

)
=

1√
π

∑

n>0

C(n)e
n2t
4p2 Γ

(
1

2
;
2n2t

4p2

)

with C given in (4.3). Now Lemma 4.3 finishes the claim about the asymptotic expansions.
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We now obtain the following explicit asymptotic expansion.

Corollary 4.5. We have

Fj,p(it) ∼
∞∑

r=0

2r+1(−1)r+1πr

r!(2r + 1)
B2r+1

(
j

2p

)
tr.

In particular

chM1,s(it) =
Fp−s,p(pit)

η(it)
∼

√
te

π
12tFp−s,p(pit).

Proof: The claim follows directly by using formula (4.1) and Bn(1− r) = (−1)nBn(r).

Theorem 4.1 now directly follows from the following transformation law for F ∗
j,p.

Lemma 4.6. We have for M =
(
a b
c d

)
∈ Γ1(4p)

F ∗
j,p

(
aτ + b

cτ + d

)
χj(M)−1(cτ + d)−

1
2 − F ∗

j,p(τ) = r− d
c
(τ)

with

rα(τ) :=
1√
p

∫ i∞

α

fj,p(pz)

(z − τ)
1
2

dz.

Proof: The proof is standard, using that by Proposition 2.1 of [32], we have for
(
a b
c d

)
∈ Γ1(4p)

fj,p

(
p
az + b

cz + d

)
= e

(
abj2

4p

)(pc
d

)
ε−3
d (cz + d)

3
2 fj,p (pz) .

The quantum modularity now follows since rα extends to R and is real analytic on R\{α}.

Corollary 4.7. (Generalized quantum dimensions) If u = h
k ∈ P1

Q, then

dimu
q (M1,s) =

Lp−s(h, k; 0)

Lp−1(h, k; 0)
,

provided Lp−1(h, k; 0) 6= 0, where Lj(j, k; r) is defined in (4.2) (analytically extended to r = 0).

Now we consider characters ofMr,s for general r. To prove quantummodularity of the numerator
part of chMr,s(τ), it suffices to make a few trivial observations:

(i) If n ∈ N, then any polynomial in q
1
n is a quantum modular form of arbitrary weight.

(ii) By Proposition 3.1, chMr,s(τ) can be expressed as 1
η(τ)(Fj,p(pτ) + qr,s(τ)), where qr,s is a

polynomial in q
1
4p and 0 < j < 2p. Quantum modularity still holds by adding any polynomial

to Fj,p.
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We also aim to determine

dimq(Mr,s) = lim
y→0

Pp,pr−s(iy)− Pp,pr+s(iy)

Fp−1,p(ipy)
,

where we assume r > 0. Lemma 4.4 gives the leading asymptotics

Fj,p(ipy) ∼ L0,1,j(−2r) = B1

(
2p− j

2p

)
−B1

(
j

2p

)
= 1− j

p
.

Similarly,

Pp,pr−s(iy)− Pp,pr+s(iy) ∼ B1

(
rp+ s

2p

)
−B1

(
rp− s

2p

)
=

s

p
. (4.4)

Remark 4.8. A full asymptotic expansion of chMr,s(τ) can be easily obtained directly from Propo-
sition 4.5 by adding the qr,s(τ) part.

Corollary 4.9. We have
dimq(Mr,s) = s.

Also, for all λ,
dimq(Fλ) = p.

Proposition 4.10. Conjecture 3.2 is true at the level of quantum dimensions.

Proof: Generic modules have quantum dimension p and this is obviously compatible with the
first two formulas in (3.2). So we only consider the third formula for atypical modules. Let
0 ≤ k, ℓ ≤ p− 1 and assume first that min{k + ℓ− 1, 2p− k − ℓ− 1} = k + ℓ− 1 with k ≥ ℓ. Thus
k + ℓ ≤ p and we have

k+ℓ−1∑

j=(k−ℓ)+1;2

j = (k − ℓ)ℓ+
2ℓ−1∑

j=1

j = kℓ− ℓ2 + ℓ2 = kℓ

as predicted. Here ; 2 indicates that the increment in the summation is 2 rather than 1. Similarly,
we verify the case min{k + ℓ− 1, 2p− k − ℓ− 1} = 2p− k − ℓ− 1.

Using Theorem 2.2 and the asymptotics (4.4) immediately gives the following result.

Proposition 4.11. As in Section 2.3, denote by Mr,s(n) the n-th graded component of the module
Mr,s. Then we have

lim
n→+∞

Mr,s(n)

M1,1(n)
= s.

Proof: By definition Mr,s =
∐∞

n=0Mr,s(n), where

Mr,s(n) := {v ∈ Mr,s : L(0)v = (n+ hr,s)v}

and hr,s denotes the lowest weight of Mr,s. We are done once we show that the graded dimensions
are eventually increasing. Consider the Virasoro operator

L(−1) : Mr,s(n) → Mr,s(n+ 1).
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Suppose that Ker(L(−1)) 6= 0. Then L(−1)v = 0 for some v ∈ Mr,s(n), so v is vacuum-like. As
Mr,s is irreducible, such a v must be a highest weight vector with hr,s = 0. An easy inspection
shows that this can occur only if (r, s) = (1, 1) and n = 0 (the vertex algebra). Therefore, in the
Fourier expansion of

chMr,s(τ) = qhr,s−
cp,1
24

∞∑

n=0

dim(Mr,s(n))q
n

we have dim(Mr,s(n)) ≤ dim(Mr,s(n + 1)) except for n = 0 and (r, s) = (1, 1). Hence, the only
instance where the graded dimension is decreasing occurs at the first term in the q-expansion of
chM1,1 :

chM1,1(τ) = q−
cp,1
24
(
1 + q2 + · · ·

)
.

Ingham’s Theorem 2.2 applies and gives

Mr,s(n) ∼
s

p
· p(n),

where p(n) denotes the number of partitions of n. The proof now follows from (4.4).

Remark 4.12. There is another approach to quantum modularity of Fj,p that we would like to
emphasize here, which leads to a strictly smaller quantum set, but allows us to explicitly compute
the radial limit. We let

Sp :=

{
h

k
∈ Q : (h, k) = 1, 2p | k

}
.

We can find a representation for Fj,p which exists at a certain subset of Q. For this, we use the
following identity (see [34])

∞∑

n=0

(
q; q2

)
n

(
aq; q2

)
n
(aq)n

(−aq)2n+1
=

∞∑

n=0

(−1)nanqn(n+1).

This gives that

Fj,p(τ) = q

(

j
2p

)2 ∞∑

n=0

(
q; q2

)
n

(
−q

j
p ; q2

)
n
(−1)nq

jn
p

(
q

j
p

)
2n+1

−q

(

1− j
2p

)2 ∞∑

n=0

(
q; q2

)
n

(
−q

2− j
p ; q2

)
n
(−1)nq

n
(

2− j
p

)

(
q
2− j

p

)
2n+1

.

A direct calculation now shows that these sums terminate for h
k ∈ Sp.

4.2 Asymptotic formulas via Jacobi forms

Here we use a second approach to determine asymptotics of Fj,p by employing Jacobi forms. For
x := e2πiz let

Fj,p(τ, z) :=
∞∑

n=0

(
xn + . . .+ 1 + . . .+ x−n

)(
q

(

n+ j
2p

)2

− q

(

n+ 2p−j
2p

)2)
,

which can be also viewed as the numerator part of the full character of a certain triplet algebra
module. Obviously

Fj,p(τ) = CTx [Fj,p(τ, z)] ,
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where CTx stands for the constant term. Recall the Jacobi theta function

Θα,β(τ, z) :=
∑

n∈Z
q
β
(

n+ α
2β

)2

x2n+α.

Using the theta transformation law, we obtain

Θ±j,p(τ, z) = (−2piτ)−
1
2 e±2πijzΘ−2z,± j

2p

(
−1

τ
,
1

2p

)
. (4.5)

Now we easily see

Fj,p(τ) = CTx



x2−jΘj,p

(
τ
p , z
)
− xjΘ−j,p

(
τ
p , z
)

x2 − 1


 .

To write the right hand-side as an integral, observe that this function is invariant under z 7→ z+ 1
2

and the pole in the denominator in canceled by a root in the numerator. Thus, by Cauchy,

Fj,p(τ) = 2

∫ 1
4

− 1
4

e2πi(2−j)zΘj,p

(
τ
p , z
)
− e2πijzΘ−j,p

(
τ
p , z
)

e4πiz − 1
dz.

We next use (4.5) to get

Fj,p(it) = 2(2t)−
1
2

∫ 1
4

− 1
4

1

e4πiz − 1

(
e4πizΘ−2z, j

2p

(
ip

t
,
1

2p

)
−Θ−2z,− j

2p

(
ip

t
,
1

2p

))
dz.

It is not hard to see that

Θ−2z,± j
2p

(
ip

t
,
1

2p

)
∼ e

− 2πz2

t
∓ 2πijz

p ,

where throughout the following terms in the asymptotic expansion are exponentially smaller. Thus

Fj,p(it) ∼ 2(2t)−
1
2

∫ 1
4

− 1
4

(
e
4πiz− 2πijz

p − e
2πijz

p

)
e−

2πz2

t

e4πiz − 1
dz.

Turning the integral into an integral over R only introduces an exponentially small error. Thus

Fj,p(it) ∼ 2(2t)−
1
2

∫

R

(
e
4πiz− 2πijz

p − e
2πijz

p

)

e4πiz − 1
e−

2πz2

t dz.

We next rewrite

e
4πiz− 2πijz

p − e
2πijz

p

e4πiz − 1
=

∞∑

ℓ=0

(
B2ℓ+1

(
1− j

2p

)
−B2ℓ+1

(
j
2p

))

(2ℓ+ 1)!
(4πiz)2ℓ,

and easily obtain

Fj,p(it) ∼
∞∑

ℓ=0

B2ℓ+1

(
j

2p

)
2ℓ+1πℓ(−1)ℓ+1

(2ℓ+ 1)ℓ!
tℓ,

in agreement with Corollary 4.5.

Remark 4.13. Although the above asymptotic expansion was previously obtained via quantum
modularity, we leave this independent derivation as it generalizes nicely to higher ranks [11].
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5 The (p+, p−)-singlet vertex algebras and its characters

In this section, we consider a two-parameter generalization of the singlet algebra W(2, 2p − 1).
To avoid further notational difficulties, we refer to these new algebras as (p+, p−)-singlets. Let us
briefly recall their construction following [4] (also [13]).

5.1 Characters of irreducible (p+, p−)-modules

Let p+ and p− be relatively prime integers ≥ 2. Consider again the vertex algebra VL, where
L = Zα but now with 〈α, α〉 = 2p+p− and let L0 be the dual lattice. In the generalized vertex

algebra VL0 we have two screening operators e
α/p+
0 and e

−α/p−
0 . Now consider these operators acting

on M(1) ⊂ VL ⊂ VL◦ . Then the (p+, p−)-singlet is defined as

(
KerM(1)e

α
p+

0

)
∩
(
KerM(1)e

− α
p−

0

)
.

This is a conformal vertex algebra of central charge cp+,p− = 1− 6(p+−p−)2

p−p+
generated by the Virasoro

vector and a primary vector of degree (2p+ − 1)(2p− − 1), thus it is of singlet type. Furthermore,
this vertex algebra is an extension of the well studied (p+, p−) Virasoro minimal model VOA [34].

Irreducible singlet (p+, p−)-modules can be classified and fall into three categories:
(i) (atypical) Modules Jr,s;n, where 1 ≤ r ≤ p+, 1 ≤ s ≤ p−, and n ∈ Z. They come with the
decomposition

Jr,s;n =

∞⊕

k=0

L

(
cp+,p− ,∆(r, p− − s; |n|+ 2k + 1)− (p− − p+)

2

4p−p+

)
, (5.1)

where

∆(r, s;m) :=
(p+s− p−r +mp+p−)2

4p+p−
.

(ii) (small) Minimal (p+, p−) Virasoro models of central charge 1− 6(p+−p−)2

p−p+
[33]:

Lr,s; 1 ≤ r ≤ p+ − 1, 1 ≤ s ≤ p− − 1.

Due to symmetry, there are precisely 1
2(p+ − 1)(p− − 1) of these.

(iii) (typical) Irreducible Fock spaces Fλ, as introduced in Section 2.
Next, we discuss atypical characters. The characters of irreducible Virasoro modules appearing

in the decomposition of Jr,s;n are known (but interestingly much less studied in the literature,
perhaps due to their “false” behavior). For sake of brevity we first let

χr,s;n(τ) := chJr,s;n(τ).

Then the formula (5.1) yields

η(τ)χr,s;n(τ) =

∞∑

m=0

mq
p−p+

(

m+
|n|
2
− p+s+p−r

2p+p−

)2

+

∞∑

m=0

mq
p−p+

(

m+
|n|
2
+

p+s+p−r

2p+p−

)2

−
∞∑

m=0

mq
p−p+

(

m+
|n|
2
+

p+s−p−r

2p+p−

)2

+
∞∑

m=0

mq
p−p+

(

m+
|n|
2
− p+s−p−r

2p+p−

)2

.
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The character χr,s;n with r = p+ (resp. s = p−) can be written in the form
Fj,p(pτ)+h(τ)

η(τ) , where

p = p− (resp. p+), with h(τ) a finite q-series. Therefore their numerators are already quantum
modular by virtue of results from Section 4. Similarly, we can easily derive full asymptotics.

Thus we can assume 1 ≤ r ≤ p+ − 1 and 1 ≤ s ≤ p− − 1. If we let n = 0, then this character
simplifies to

χr,s;0(τ) =

∑

m∈Z
|m|q∆(r,p−−s;2m−1) −

∑

m∈Z
|m|q∆(r,s;2m)

η(τ)
.

Characters with n = 0 are somewhat distinguished as they correspond to certain “top” components
of Fock spaces.

For n 6= 0 we distinguish between n even and n odd. For n even, we can write

η(τ)χr,s;n(τ) = η(τ)χr,s;0(τ) + fr,s;n(τ)−
|n|
2

(
∑

m∈Z
q
p+p−

(

m+
p+s+p−r

2p+p−

)2

−
∑

m∈Z
q
p+p−

(

m+
p+s−p−r

2p+p−

)2
)
,

where fr,s;n(τ) is a finite q-series. For n odd and positive we first observe that

η(τ)χr,s;n(τ) = −η(τ)χr,p−−s;n−1(τ)+

∞∑

m=0

(
q
p+p−

(

m+(n
2
− 1

2)−
p+s+p−r

2p+p−

)2

− q
p+p−

(

m+(n
2
− 1

2)−
p+s−p−r

2p+p−

)2
)
.

Furthermore, keeping n odd, we get

∞∑

m=0

(
q
p+p−

(

m+(n
2
− 1

2)−
p+s+p−r

2p+p−

)2

− q
p+p−

(

m+(n
2
− 1

2)−
p+s−p−r

2p+p−

)2
)

= gr,s;n(τ) +
1

2
(A(τ) +B(τ)) ,

where gr,s;n(τ) is a finite q-series and

A(τ) :=
∞∑

m=0

q
p−p+

(

m− p+s+p−r

2p+p−

)2

−
∞∑

m=0

q
p−p+

(

m+
p+s+p−r

2p+p−

)2

+

∞∑

m=0

q
p−p+

(

m+
p+s−p−r

2p+p−

)2

−
∞∑

m=0

q
p−p+

(

m− p+s−p−r

2p+p−

)2

,

B(τ) :=
∑

m∈Z
q
p−p+

(

m+
p+s+p−r

2p+p−

)2

−
∑

m∈Z
q
p−p+

(

m+
p+s−p−r

2p+p−

)2

.

By using results from Section 4, we see that A is a sum of two quantum modular forms while
B is a modular form of weight 1

2 . To summarize, in order to prove mixed quantum modularity of
χr,s;n it is sufficient to prove quantum modularity of χr,s;0. This is accomplished in Section 6.

The (p+, p−)-singlet vertex algebra is no longer simple, instead it is an extension of L1,1 and
J1,1;0 (its maximal ideal) and is denoted by K1,1. On the level of characters we can write this

chK1,1(τ) = chL1,1(τ) + χ1,1;0(τ).
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5.2 Asymptotic properties of χr,s;n

In this section we determine the asymptotic behavior of χr,s;n(it) as t → 0+. For this, we first note
that we may rewrite

χr,s;n

(
it

2π

)
η

(
it

2π

)
=

∞∑

m=0

me
−p−p+t

(

m+
|n|
2
− p+s+p−r

2p+p−

)2

+

∞∑

m=0

me
−p−p+t

(

m+
|n|
2
+

p+s+p−r

2p+p−

)2

−
∞∑

m=0

me
−p−p+t

(

m+
|n|
2
+

p+s−p−r

2p+p−

)2

−
∞∑

m=0

me
−p−p+t

(

m+
|n|
2
− p+s−p−r

2p+p−

)2

.

Via symmetry, we may assume that s
p−

≥ r
p+

> 0. We require a general lemma [37], which fol-

lows from the Euler McLaurin summation formula. Suppose that f : (0,∞) → C has an asymptotic
expansion

f(t) =

∞∑

n=0

bnt
n

(
t → 0+

)
,

where by “=” we mean that f(t) =
∑N

n=0 bnt
n +O(tN+1) for any N ∈ N. Define

If :=

∫ ∞

0
f(u)du.

Lemma 5.1. If If < ∞, then we have for a > 0

∑

m≥0

f ((m+ a)t) =
If

t
−
∑

n≥0

bn
Bn+1(a)

n+ 1
tn.

For our purposes, define for α > 0

Fα(t) :=
∑

m≥0

me−t(m+α)2 .

We aim to first determine the asymptotic behavior of Fα and write

Fα(t) =
1√
t

∑

m≥0

f1

(√
t(m+ α)

)
− α

∑

m≥0

f2

(√
t(m+ α)

)

with

f1(x) := xe−x2
= x+O

(
x3
)
,

f2(x) := e−x2
= 1 +O

(
x2
)
.

Now, by Lemma 5.1,

Fα(t) =
If1
t

− 1

2
B2(α)−

αIf2√
t

+ αB1(α) +O
(√

t
)
,

and hence

∞∑

m=0

me−t(m+n−α)2 +

∞∑

m=0

me−t(m+n+α)2 =
2If1
t

− 2nIf2√
t

+ n2 + α2 − 1

6
+ O

(√
t
)
.
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Now we can compute the leading term in the asymptotic expansion of η(it)χr,s;n(it). The terms
2If1
t and

2nIf2√
t

cancel out, so we can freely substitute 2πp+p−t for t. The result is

η(it)χr,s;n(it) ∼
rs

p−p+
.

We also record

lim
t→0+

χr,s;n(it)

χ1,1;0(it)
= rs. (5.2)

Proposition 5.2. Asymptotically,

η(it)χr,s;0(it) =

∞∑

n=0

(−1)n(2πp+p−)ntn

n!

(
2αB2n+1(α)− 2βB2n+1(β)

2n+ 1
− B2n+2(α)−B2n+2(β)

n+ 1

)
,

where α := p+s+p−r
2p+p−

and β := p+s−p−r
2p+p−

.

Clearly, the previous proposition and formulas in Section 5.1 can be now used to write down
asymptotic expansion for η(it)χr,s;n(it). As the formula is rather messy we omit it here.

Next, we consider the remaining irreducible modules. The following result pertaining to minimal
models can be found for example in [34]:

Lemma 5.3. The characters of (p+, p−) minimal models are given by:

chLr,s(τ) =
1

η(τ)

(
θp+s−p−r(τ)− θp+s+p−r(τ)

)
,

where r and s are as before. Moreover, we have the following asymptotics

chLr,s(it) ∼ Ar,s
p+,p−e

πd
p+,p−
12t (t → 0+).

Here dp+,p− := 1− 6
p+p−

and

Ar,s
p+,p− := (−1)(r+s)(r′+s′)

√
8

p+p−
sin

(
πrr′

p−
(p+ − p−)

)
sin

(
πss′

p+
(p+ − p−)

)
,

with (r′, s′) the unique integers satisfying 1 ≤ r′ ≤ p−− 1 and 1 ≤ s′ ≤ p+− 1 and r′p+− s′p− = 1.

We summarize everything into the following result

Theorem 5.4. We have

(i) For all n ∈ Z,
dimq(Jr,s;n) = rs.

(ii) For all r, s we have
dimq(Lr,s) = 0.

(iii) For all λ ∈ C,
dimq(Fλ) = p+p−.
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Proof: Assertion (i) essentially follows directly from formula (5.2). We are interested in

dimq(Jr,s;n) = lim
t→0+

χr,s;n(it)

χ1,1;0(it) + chL1,1(it)
.

Simplifying and noting that η(it)chL1,1(it) ∼ A
1,1
p+,p−

1√
t
e−

πp+p−
2t , the additional term in the denom-

inator does not contribute, so as before in (5.2), we get

dimq(Jr,s;n) = lim
t→0+

χr,s;n(it)

χ1,1;0(it)
= rs.

For (ii), we used previously χ1,1;0(it) ∼ 1
p−p+

√
te

π
12t and chLr,s(it) ∼ A

r,s
p+,p−e

πd
p+,p−
12t . It is sufficient

to observe that
√
t tends to zero much slower compared to e−λt for λ > 0, so the limit is zero. Part

(iii) follows immediately once we observe that chFλ
(τ) = qλ̃

η(τ) , for some λ̃.

Remark 5.5. Our results in Theorem 5.4 are in agreement with the proposed fusion rules among
irreducible (p+, p−)-singlet modules given in [31] and [13], in the sense that dimq(·) defines a
representation of the (conjectural) Verlinde algebra. Let us illustrate this in a few cases.

Suppose first that r + r′ ≤ p± + 1 and s + s′ ≤ p± + 1. Then the fusion rules obtained by a
Verlinde-type formula in [31] read

[Jr,s;n]× [Jr′,s′;n′ ] =

r+r′−1∑

ℓ=|r−r′|+1;2

s+s′−1∑

j=|s−s′|+1;2

[Jℓ,j;n+n′ ].

By using Theorem 5.4 (i), we easily infer that the q-dimension of the right-hand side equals rr′ss′.
Similarly, one checks the other cases in formula (4.24a) in [13, 31].

For representations in (ii), we expect that

[Lr,s]× [Jr′,s′;n] = 0,

which again agrees with our result. In fact, the minimal models Lr,s are expected to form a full
tensor ideal in K1,1-Mod, which is clearly consistent with our formula as two minimal models are
expected to fuse nontrivially only among themselves (producing another module with q-dimension
zero!).

For representations in (iii), the proposed fusion rules among Jr,s;n and Fλ can be found in
formula (4.14) in [13, 31]. We omit details and only note that [Jr,s;n]× [Fλ] decomposes as a sum
of rs generic modules each with q-dimension p+p−.

5.3 Example: (2, 3)-singlet

Here we analyze in more details the simplest (p+, p−)-singlet with p+ = 2 and p− = 3. This case
is clearly degenerate as L1,1 = C (the trivial vertex algebra!). Our vertex algebra K1,1 is thus an
extension of the one-dimensional space L1,1 and J1,1;0, whose character is given by

χ1,1;0(τ) =
q

1
24
∑

n∈Z |n|q6n
2−5n+1 − q

1
24
∑

n∈Z |n|q6n
2+n

η(τ)
.
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We can rewrite the numerator as

q
1
24

(
−
∑

n∈Z
(−1)n

∣∣∣∣
n

2
+

1

12

∣∣∣∣ q
(3n2+n)

2 +
1

12

∑

n∈Z
sgn(n)q6n

2+n +
5

12

∑

n∈Z
sgn(n)q6n

2+7n+2

)
.

The first sum is known to be a quantum modular form of weight 3
2 for SL2(Z) with quantum

set Q as it already appeared in the analysis of Kontsevich’s “strange q-series” (after Zagier’s paper

[36]). After inclusion of the fudge factor q
1
24 , the second and third sum now read

∑

n∈Z
sgn(n)q6(n+

1
12)

2

and
∑

n∈Z
sgn(n)q6(n+

7
12)

2

,

respectively. Both are quantum modular forms of weight 1
2 with quantum set Q (see Section 4). In

the next section we prove a more general statement for all Jr,s;n modules.

6 Quantum modularity of χr,s;0

In this section we consider quantum modularity of the numerator ηχr,s;0.

Theorem 6.1. The numerator ηχr,s;0 is a quantum modular form of mixed weight 1
2 and 3

2 , with
quantum set Q. For n 6= 0, ηχr,s;n is a mixed quantum modular form.

Remark 6.2. Combined with results from Section 5, this also proves mixed quantum modularity
of ηχr,s;n for all n.

For the proof, we define the Gauss sum

G(a, b, c) :=
∑

m (mod c)

e
2πi
c (am2+bm).

We require the following properties.

Lemma 6.3. (i) If b = 0 and (a, c) = 1, then we have

G(a, 0, c) =





0 if c ≡ 2 (mod 4),

εc
√
c
(
a
c

)
if c is odd,

(1 + i)ε−1
a

√
c
(
c
a

)
if a is odd, 4|c.

(ii) If 4|c, (a, c) = 1, and b is odd, then G(a, b, c) = 0.

(iii) We have for (c, d) = 1 that

G(a, b, cd) = G(ac, b, d)G(ad, b, c).

(iv) If (a, c) > 1, G(a, b, c) = 0 unless (a, c)|b, in which case

G(a, b, c) = (a, c)G

(
a

(a, c)
,

b

(a, c)
,

c

(a, c)

)
.
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Proof of Theorem 6.1: Via symmetry, we may assume that p+s− p−r ≥ 0. We may write

η(τ)χr,s;0(τ) =
1

P

∑

j∈{1,2}
±

(−1)j+1
∑

m≥0
m≡±Aj (mod P )

mq
m2

2P +
1

P

∑

j∈{1,2}
(−1)jAj

∑

m∈Z
sgn(m)q

P
2

(

m+
Aj
P

)2

,

where P := 2p+p−, A1 := p+s+ p−r, and A2 := p+s− p−r. Let us replace τ with 2τ for simplicity.
Then the second term on the right hand-side equals

1

P

∑

j∈{1,2}
(−1)jAjFAj ,

P
2
(Pτ)

and is thus quantum modular by the previous results. Thus we are left to show that

G(τ) :=
∑

j∈{1,2}
±

(−1)j
∑

m≥0
m≡±Aj (mod P )

mq
m2

P

has quantum set Q. For this, let h
k ∈ Q with (h, k) = 1. Then for t > 0

G

(
h

k
+ it

)
=
∑

m≥0

mγ(m)e−
2πtm2

P

with

γ(m) :=




e

2πihm2

Pk if m ≡ ±A1 (mod P ),

−e
2πihm2

Pk if m ≡ ±A2 (mod P ).

Theorem 6.1 is proven once we show that γ has mean value 0, which is equivalent to

0 =
∑

j∈{1,2}
±

(−1)je
2πihA2

j
Pk

∑

m (mod k)

e
2πih
k (Pm2±2Ajm). (6.1)

Equation (6.1) follows once we show that

e

(
hA2

1

Pk

)
G (hP,±2hA1, k) = e

(
hA2

2

Pk

)
G (hP,±2hA2, k) ,

where e(x) := e2πix. Changing in the Gauss sum m → −m we only have to consider the + sign.
Now write k = 2νk′ (ν ∈ N0, k

′ odd). By Lemma 6.3 (iii), we have

G (hP, 2hAj , k) = G
(
2νhP, 2hAj , k

′)G
(
k′hP, 2hAj , 2

ν
)
. (6.2)

We evaluate both factors. For the first factor, let ℓ := (k′, P ). Using the conditions on p− and p+,
it is not hard to see that ℓ|A1 ⇔ ℓ|A2. Thus we may assume that ℓ|Aj since otherwise the Gauss
sums vanish by Lemma 6.3 (iv). Completing the square, we obtain by Lemma 6.3 (i),

G
(
2νhP, 2hAj , k

′) = ℓe


−

h
[
2ν P

ℓ

]
k′
ℓ

(
Aj

ℓ

)2

k′
ℓ


 ε k′

ℓ

√
k′

ℓ

(
2νhP

ℓ
k′
ℓ

)
,
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where throughout [a]b denotes the inverse of a (mod b). Note that only the exponential factor is
relevant as the other contribution is independent of Aj .

We next consider the second Gauss sum (if ν ≥ 1) in (6.2). Let 2n := (2ν , P ). As before
2n|2A1 ⇔ 2n|2A2. By Lemma 6.3 (iv), we may thus assume that 2n|2Aj . Then

G
(
k′hP, 2hAj , 2

ν
)
= 2nG

(
k′h

P

2n
, h

Aj

2n−1
, 2ν−n

)
.

We now first consider the case 2n ∤ A1 ⇔ 2n ∤ A2. By Lemma 6.3 (ii), we obtain that the Gauss
sum vanishes unless ν = n or ν = n+ 1 in which case it equals 1 or 2, respectively. Next if 2n|Aj ,
we may again complete the square. The sum on m then becomes

e


−

h
[
P
2nk

′]
2ν−n

(
Aj

2n

)2

2ν−n




∑

m (mod 2ν−n)

e

(
hk′ P2nm

2

2ν−n

)
.

The sum on m now equals 1 if ν = n, vanishes if ν = n+ 1, and otherwise equals

(1 + i)ε−1
hk′ P

2n

√
2ν−n

(
2ν−n

hk′ P2n

)
,

so is in any case independent of Aj .
We now distinguish two cases. Firstly if 2n ∤ Aj , we have to show that

hA2
j

Pk
−

h
[
2ν P

ℓ

]
k′
ℓ

(
Aj

ℓ

)2

k′
=: fj

is independent of Aj (mod Z). Write

fj =
h
(

Aj

2n−1ℓ

)2

4
(

P
2nℓ

) (
k

2nℓ

)
(
1−

[
2ν

P

ℓ

]

k′
ℓ

2ν
P

ℓ

)
.

Now
(

P
2nℓ ,

k
2nℓ

)
= 1 and a direct calculation gives that

f1 ≡ f2 (mod
P

2nℓ
),

f1 ≡ f2 (mod
k′

ℓ
), (6.3)

f1 ≡ f2 (mod 4 · lcm
(
2ν−n, 2ord2(

P
2n )
)
). (6.4)

If 2n|Aj , we require that

hA2
j

Pk
−

h
[
2ν P

ℓ

]
k′
ℓ

(
Aj

ℓ

)2

k′
−

h
[
P
2nk

′]
2ν−n

(
Aj

2n

)2

2ν−n
=: gj
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is independent of Aj (mod Z). Write

gj =
h
(

Aj

2nℓ

)2

(
P
2nℓ

) (
k

2nℓ

)
(
1−

[
2ν

P

ℓ

]

k′
ℓ

2ν
P

ℓ
−
[
P

2n
k′
]

2ν−n

P

2n
k′
)
.

We have to show that

g1 ≡ g2 (mod
k

2nℓ
),

g1 ≡ g2 (mod
P

2nℓ
),

which again follows by a direct calculation. This finishes the claim.

7 The tail of colored Jones polynomials, Nahm-type sums, and

false theta functions

In this part we investigate various Nahm-type expressions for characters of the (1, p)-singlet algebra
modules in connection with knot invariants.

As already mentioned in [12], there is a close relationship between characters of the (1, p)-singlet
vertex algebra and “limits” of normalized colored Jones polynomials of certain alternating knots.
As shown in [21], alternating knots have the remarkable property that their Jones polynomials
Jn,K(q) satisfy the stability property, that is, suitably normalized polynomials Ĵn,K(q) approach to
a fixed infinite q-series ΦK(q), called the tail of K. In [21], many examples of tails were computed.
The concept of tail can be used to prove various q-series identities. This was first utilized by
Armond and Dasbach in [7], where they showed that the Andrews-Gordon identity can be proven
using two methods for computing the tail of the (2, 2p+ 1) torus knots.

Example 7.1. (Torus knot (2, 2p)) The tail of the Jones polynomial of the (2, 2p) torus knot is
given by (see [21], [22] for instance):

Φp(q) =
∑

n∈Z
sgn(n)qpn

2+(p−1)n.

By using skein theoretical techniques, very recently Hajij in [22] obtained another representation of
Φp(q) as a multi q-hypergeometric series. It is not clear to us if this is the same Nahm-type sum
that comes from the work of Garoufalidis and Le [21]. In any event, Hajij’s result reads as

Φp(q) = (q; q)∞
∑

(n1,...,np−1)∈Np−1
0

qN
2
1+···+N2

p−1+N1+···+Np−1

(q; q)2np−1
(q; q)n1 · · · (q; q)np−2

, (7.1)

where Nj :=
∑p−1

k=j nk and (a; q)n =
∏n−1

j=0 (1− aqj). In particular, for p = 2, one gets

Φ2(q) = (q; q)∞

∞∑

n=0

qn
2+n

(q; q)2n
,

an identity going back to Ramanujan.
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We have already seen in Section 2 that

chW (2,2p−1)(τ) =

∑
n∈Z sgn(n)q

p
(

n+ p−1
2p

)2

η(τ)
.

To get rid off all non-integral q-powers, we normalize chW (2,2p−1)(q) by letting

c̃hW (2,2p−1)(q) :=

∑
n∈Z sgn(n)q

pn2+(p−1)n

(q; q)∞
=

Φp(q)

(q; q)∞
.

Thus, by (7.1),

c̃hW (2,2p−1)(q) =
∑

(n1,...,np−1)∈Np−1
0

qN
2
1+···+N2

p−1+N1+···+Np−1

(q; q)2np−1
(q; q)n1 · · · (q; q)np−2

, (7.2)

where the Nj are as above. Recall also characters of related W (2, 2p− 1)-modules M1,s and their
modified graded dimension (here 1 ≤ λ ≤ p):

c̃hM1,p−λ
(q) =

∑
n∈Z sgn(n)q

pn2+λn

(q; q)∞
∈ Z[[q]]. (7.3)

Related to (7.2), but different, q-series identities also appeared a few years earlier in [18] in
the context of vertex algebras. The main result in [18] gives q-hypergeometric type expressions
for certain characters of the so-called doublet vertex algebra. These character formulas come from
(combinatorial) quasiparticle bases of modules. Writing the generating function for quasi-particle
bases results in the following identity: For 1 ≤ λ ≤ p− 1, we have

c̃hΛ(p−λ)⊕Π(p−λ)(q) =

∑
n∈Z nq

p
4
n2−λn

2

(q; q)∞

=
∑

(n+,n−,n1,...,np−1)∈Np+1
0

q
p
4
(n++n−)2+λ

2
(n++n−)+N2

1+···+N2
p−1+Np−λ+···+Np−1+(n++n−)(N1+···+Np−1)

(q; q)n−(q; q)n+(q; q)n1 · · · (q; q)np−1

.

(7.4)

The next argument, relying heavily on [18], uses the previous formula to compute Nahm-type
representation of (7.3). There are two observations to be made here. First, a basis of Λ(p − λ) ⊕
Π(p − λ) is obtained by using generators of the doublet vertex algebra a+, a− and the Virasoro
generator (for details see [18], [5]). The Z-grading on a basis element is defined as the number
of appearances of a+ minus the number of a−. This is analogous to the charge grading for the
lattice vertex algebra VL and also for free fermions. The way the doublet modules decompose into
Z-graded pieces coincides with the decomposition with respect to the singlet algebra. Thus we are
only interested in the graded dimension of the subspace of Λ(p− λ)⊕Π(p− λ), where the number
of a+ appearances equals the number of a−. Finally, we note that n+ variable in the summation
of (7.4) controls the number of a+, while n− takes care of a−. We are essentially done, because we
only have to put n+ = n− = n in the above character (details can be found in [18]). We conclude
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c̃hM1,p−λ
(q) =

∑

(n,n1,...,np−1)∈Np
0

qpn
2+λn+N2

1+···+N2
p−1+Np−λ+···+Np−1+2n(N1+···+Np−1)

(q; q)2n(q; q)n1 · · · (q; q)np−1

. (7.5)

In particular, for λ = p− 1, where M1,1 = W(2, 2p− 1), we have

c̃hW (2,2p−1)(q) =
∑

(n,n1,...,np−1)∈Np
0

qpn
2+(p−1)n+N2

1+···+N2
p−1+Np−λ+···+Np−1+2n(N1+···+Np−1)

(q; q)2n(q; q)n1 · · · (q; q)np−1

. (7.6)

To proceed, we make several observations. Clearly (7.2) and (7.6) give two different Nahm-type
expressions for the same character, at least if λ = p−1. Observe that for fixed p ≥ 2, formula (7.2)
involves p− 1-fold summation but (7.2) gives a p-fold summation. Second, both proofs of identities
are based on non-elementary techniques. For instance, (7.5) requires a variety of techniques from
vertex algebra theory and is by no means elementary. On the other hand Hajij’s proof employs
many knot theoretical results.

The next result proves both formulas in a somewhat unifying manner without relying on any-
thing but Andrews-Gordon identities and some manipulations with q-series. Also it explains why
(7.2) simplifies, compared to (7.6), only for λ = p− 1.

Proposition 7.2. Formulas (7.2) and (7.5) hold.

Proof: Our proof is based on some ideas of Warnaar [35] in his proof of Flohr-Grabow-Koehn’s
conjectures for the characters of irreducible modules for the triplet vertex algebra. Following
Andrews’ notation, we let

Qp,ℓ(x) :=
1

(xq; q)∞

∞∑

j=0

(−1)jq(
j
2)+pj2+(p−ℓ+1)p

(
1− xℓqℓ(2j+1)

) (xq; q)j
(q; q)j

.

The Andrews-Gordon identities [8] then give that

Qp,ℓ(x) =
∑

(n1,...,np−1)∈Np−1
0

xN1+···+Np−1qN
2
1+···+N2

p−1+Nℓ+···+Np−1

(q; q)n1 · · · (q; q)np−1

.

To prove (7.5), we consider Qp,p−λ(q
2n) and observe that its right hand-side can be written as

∞∑

n=0

qpn
2+nλ

(q; q)2n
Qp,p−λ

(
q2n
)
.

Rewriting gives

1

(q2n+1; q)∞

∑

j,n≥0

(−1)j
qpn

2+nλ+2npj+(j2)+pj2+(λ+1)j
(
1− q(p−λ)(2j+2n+1)

)

(q; q)2n

(
q2n+1; q

)
j

(q; q)j

=
1

(q; q)∞

∑

j,n≥0

(−1)j
qp(n+j)2+λ(n+j)+(j2)+j

(
1− q(p−λ)(2(j+n)+1)

)

(q; q)2n

(
q2n+1; q

)
j

(q; q)j
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=
1

(q; q)∞

∞∑

n=0

n∑

j=0

(−1)j
qpn

2+λn+(j2)+j
(
1− q(p−λ)(2n+1)

)

(q; q)2n−j

(q; q)2n−j

(q; q)j
,

where for the last equality we changed n into n+ j and sum j from 0 to n.
Now we utilize the identity

1 =

n∑

j=0

(−1)jq
j(j+1)

2

[
2n− j

n− j

]

q

[
n

j

]

q

=
n∑

j=0

(−1)j
q

j(j+1)
2 (q; q)2n−j

(q; q)j(q; q)2n−j

,

which follows from a version of q-Chu-Vandermonde summation, where
[
n
j

]
q
denotes the q-binomial.

This gives the desired formula.
To prove (7.2), we first isolate the np−1 variable from N2

1 +N1 + · · ·+N2
p−1 +Np−1 and obtain

N2
1 + · · ·N2

p−2+N1+ · · ·+N2
p−2+(p−1)n2

p−1+(p−1)np−1. We also write n for np−1 for simplicity.

We now proceed as before by using Qp−1,1(q
2n), so the right hand-side in (7.2) equals (we omit

some details like shifting the sum in n)

∞∑

n=0

q(p−1)n2+(p−1)n

(q; q)2n
Qp−1,1

(
q2n
)

=
1

(q; q)∞

∞∑

n=0

n∑

j=0

(−1)jq(p−1)n2+(p−1)n+(j2)
(
1− q2n+1

) (q; q)2n−j

(q; q)2n−j(q; q)j
. (7.7)

We also record another consequence of q-Chu-Vandermonde summation

qn
2
=

j∑

j=0

(−1)jq
j(j−1)

2

[
2n− j

n− j

]

q

[
n

j

]

q

=

n∑

j=0

(−1)j
q

j(j−1)
2 (q; q)2n−j

(q; q)j(q; q)2n−j

.

Thus, the expression in (7.7) equals

∞∑

n=0

q(p−1)n2+n2+(p−1)n
(
1− q2n+1

)
=

∑
k∈Z sgn(n)q

pn2+(p−1)n

(q; q)∞
,

finishing the proof. It is now clear that similar “compressed” identities cannot be obtained from
Qp−1,ℓ(q

2n) for ℓ 6= 1.

Remark 7.3. It is an open problem to find a knot theoretical interpretation of atypical (p+, p−)-
characters and to determine their q-hypergeometric formulas.
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