ALGEBRAS GENERATED BY
 SYMMETRIC IDEMPOTENTS

David Choate

Abstract

Let F be a field. If A is an F-algebra with involution that is generated (as a space) by symmetric idempotents, then A is a subdirect product of copies of F if and only if every idempotent in A is symmetric.

1. Introduction

This paper arose from the study of the questions raised by Herstein [2] concerning when the vector space generated by the symmetric idempotents in a simple ring with involution is equal to itself. If S is a simple ring and $C(S)$ the centroid of S, then $C(S)$ is a field and S is a $C(S)$-algebra. Let $E^{*}(S)$ be the $C(S)$-subspace generated by the non-zero symmetric idempotents. Chaung and Lee [1, Example 4$]$ showed that $E^{*}(S)$ can be a ring and yet not be S itself. Observe that if $E^{*}(S)$ is a ring, then $E^{*}(S)$ is an algebra generated as a vector space by symmetric idempotents, the object of our investigation.

Let F be a field. In this paper we show that if A is an F-. algebra with involution * that is generated (as a space) by symmetric idempotents, then A is a subdirect product of copies of F if and only if every idempotent in A is symmetric.

Recei:ved 14 November 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ \mathrm{~A} .00+0.00$.

2. A commutivity condition

In this section we require only that A be an F-algebra generated by idempotents. If we ask when A is commutative, then we are led to

THEOREM 1. Suppose F is a field and A is an F-algebra generated by idempotents. The following are equivalent:
(i) A is commutative;
(ii) A has no non-zero nilpotent elements;
(iii) A is F-isomorphic to a subdirect product of copies of F.

Proof. Take A to be commutative. We let I denote the set of nonzero idempotents in A. Any non-zero element in A can be written in the form $\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}$ where $0 \neq \lambda_{i} \in F, 0 \neq e_{i} \in I, e_{i}^{\prime \prime s}$ distinct, and n is minimal. We call n the length of the element. If A has a non-zero nilpotent element, then choose one of minimal length among all such elements. Denote the element by w and express it as above. So for each $i=1, \ldots, n$,

$$
\omega-w e_{i}=\sum \lambda_{j}\left(e_{j}-e_{j} e_{i}\right),
$$

where $j=1, \ldots, n$ and $j \neq i$, is an element of length less than n or $w-w e_{i}$ is zero. But $w-w e_{i}$ is nilpotent; so the latter must hold and $w=w e_{i}$. Observe that

$$
w^{2}=\left(\lambda_{1}+\ldots+\lambda_{n}\right) w
$$

and then inductively we have

$$
0=w^{k}=\left(\lambda_{1}+\ldots+\lambda_{n}\right)^{k-1} w,
$$

where k is the index of nilpotency of w. Consequently,

$$
\left(\lambda_{1}+\ldots+\lambda_{n}\right)^{k-1}=0
$$

or

$$
\lambda_{1}+\ldots+\lambda_{n}=0 .
$$

Let x_{j} be the product of the idempotents $e_{j}, e_{j+1}, \ldots, e_{n}$, $j=1, \ldots, n$. Then

$$
w x_{1}=w e_{1} x_{2}=w x_{2}=\ldots=w e_{n}=w,
$$

but

$$
\begin{aligned}
\omega x_{1} & =\left(\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}\right) x_{1} \\
& =\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{1} \\
& =\left(\lambda_{1}+\ldots+\lambda_{n}\right) x_{1} \\
& =0
\end{aligned}
$$

So $w=0$ and A has no non-zero nilpotent elements. Thus (i) implies (ii).

One obtains (i ii) from ($i i$) by recalling that in a ring without nilpotent elements the idempotents are central. So we may consider A to be commutative and without nilpotent elements. Using an F-algebra version of the Krull-McCoy Theorem, that a ring without nilpotent elements is isomorphic to a subdirect product of integral domains, we have that A is a subdirect product of F-algebras, A_{i}, i running over some index set Λ, where each A_{i} is without zero divisors. Each A_{i}, being an F_{-} homomorphic image of A, must also be generated as an F-vector space by idempotents. Since $A_{i} \neq(0)$, it contains a non-zero idempotent. But since A_{i} is a ring without zero divisors, this idempotent is a unit element, say 1_{i}. In fact, since the idempotents in A must go into 0 or l_{i} under the i th projection F-homomorphism, each element of A_{i} is of the form $I_{i} \cdot \lambda \in F$ and consequently A_{i} is a field which is isomorphic to F.

It is immediate that (iii) implies (i).
A corollary to this theorem is of interest when A is noncommatative.
COROLLARY 1. Suppose F be a field and A is an F-algebra generated by idempotents. All of the nilpotent elements in A are found in its commutator ideal.

Proof. Let C be the commutator ideal of A. Then A / C is a
commutative F-algebra generated by idempotents. If n is a nilpotent element in A, then $n+C$ is a nilpotent element in A / C. By Theorem 1 we must have $n+C=C$, or $n \in C$.

3. A *-version

We now suppose that A is an F-algebra with involution $*$ that is generated by symmetric idempotents and ask when A is commutative.

THEOREM 2. Suppose F is a field and A is an F-algebra with involution generated by symmetric idempotents. The algebra A is commutative if and only if every idempotent in A is symmetric.

Proof. Suppose every idempotent in A is symmetric. Then if e_{1} and e_{2} are idempotents in A, so is $e_{1}+e_{1} e_{2}-e_{1} e_{2} e_{1}$. Then we must have

$$
\begin{aligned}
e_{1}+e_{1} e_{2}-e_{1} e_{2} e_{1} & =\left(e_{1}^{+e_{1}} e_{2}^{\left.-e_{1} e_{2} e_{1}\right)^{*}}\right. \\
& =e_{1}^{*}+e_{2}^{*} e_{1}^{*}-e_{1}^{*} e_{2}^{*} e_{1}^{*} \\
& =e_{1}+e_{2} e_{1}-e_{1} e_{2} e_{1}
\end{aligned}
$$

Consequently, $e_{1} e_{2}=e_{2} e_{1}$ for any two symmetric idempotents in A. This is enough to show that A is commutative.

Now suppose that A is commutative. We let S denote the set of non-zero symmetric idempotents in A. Any non-zero element in A can be written in the form $\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}$ where $0 \neq \lambda_{i} \in F, 0 \neq e_{i} \in S$, e_{i} 's distinct, n minimal. We call n the length of the element. If A has an idempotent that is not symmetric, then choose one of minimal length among all such elements. Denote this element by e and express it as above. So for each $i=1, \ldots, n$,

$$
e-e e_{i}=\sum \lambda_{j}\left(e_{j}-e e_{j}\right),
$$

where $j=1, \ldots, n$ and $j \neq i$, is an idempotent of length less than n, and hence $e-e e_{i}$ must be symmetric. So we know

$$
e-e e_{i}=e^{*}-e^{*} e_{i}
$$

for each i. Multiplying by λ_{i} we have

$$
\lambda_{i} e-e\left(\lambda_{i} e_{i}\right)=\lambda_{i} e^{*}-e^{*}\left(\lambda_{i} e_{i}\right)
$$

Summing over i from 1 to n we get

$$
\left(\lambda_{1}+\ldots+\lambda_{n}\right) e-e=\left(\lambda_{1}+\ldots+\lambda_{n}\right) e^{*}-e^{*} e
$$

If $\lambda_{1}+\ldots+\lambda_{n}=0$ then $e=e^{*} e$ which implies e is symmetric. If $\lambda_{1}+\ldots+\lambda_{n}=1$, then $e^{*} e=e^{*}$. So $e=e^{*} e$. Thus we may assume below that

$$
\lambda_{1}+\ldots+\lambda_{n} \neq 0,1
$$

Let x_{i} be the product of the idempotents $e_{i}, e_{i+1}, \ldots, e_{n}$, $i=1, \ldots, n$, If we multiply

$$
e=\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}
$$

by x_{1}, then we obtain

$$
\begin{aligned}
e x_{1} & =\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{1} \\
& =\left(\lambda_{1}+\ldots+\lambda_{n}\right) x_{1} .
\end{aligned}
$$

After squaring and subtracting we have

$$
\left[\left(\lambda_{1}+\ldots+\lambda_{n}\right)^{2}-\left(\lambda_{1}+\ldots+\lambda_{n}\right)\right] x_{1}=0
$$

This implies $x_{1}=0$. Now set $e-e e_{i}=s_{i}, i=1, \ldots, n$. Then

$$
\begin{aligned}
0 & =e x_{1} \\
& =e e_{1} x_{2} \\
& =e-s_{1} x_{2} \\
& =e x_{2}-s_{1} x_{2} \\
& =e e_{2} x_{3}-s_{1} x_{2} \\
& =e x_{3}-s_{2} x_{3}-s_{1} x_{2} \\
& : \\
& =e-s_{n}-s_{n-1} x_{n}-s_{n-2} x_{n-1}-\ldots-s_{1} x_{2} .
\end{aligned}
$$

Since s_{i} and $x_{i}, i=1, \ldots, n$, are symmetric elements, e is symmetric.

COROLLARY 2. Suppose F is a field and A is an F-algebra with involution * generated by symmetric idempotents. If e is an idempotent in A, then $e-e^{*}$ is an element in its commutator ideal.

Proof. We again denote the commutator ideal of A by C. Define $C^{*}=\left\{c^{*} ; c \in C\right\}$. Since $C=C^{*}$ we know A / C is a commutative F algebra having involution which is generated by symmetric idempotents. If e is an idempotent in A, then $e+C$ is an idempotent in A / C. By Theorem 2 we know $e+C=e^{*}+C$, or $e-e^{*} \in C$.

If we combine Theorem 1 and Theorem 2, then we imediately obtain
THEOREM 3. Suppose F is a field and A is an F-algebra with involution generated by symmetric idempotents. The following are equivalent:
(i) A is commutative;
(ii) every idempotent in A is symmetric;
(iii) A has no non-zero nilpotent elements;
(iv) A is F-isomorphic to a subdirect product of copies of F.

References

[1] C.L. Chaung and P.H. Lee, "Idempotents in simple rings", J. Algebra 56 (1979), 510-515.
[2] I.N. Herstein, Rings with involution (University of Chicago Press, Chicago, 1979).

Department of Mathematics, Xavier University of Louisiana, New Orleans, Louisiana 70125, USA.

