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Abstract: The coset construction is the most important tool to construct rational
conformal field theories with known chiral data. For some cosets at small level, so-called
maverick cosets, the familiar analysis using selection and identification rules breaks down.
Intriguingly, this phenomenon is linked to the existence of exceptional modular invariants.
Recent progress in CFT, based on studying algebras in tensor categories, allows for a
universal construction of the chiral data of coset theories which in particular also applies
to maverick cosets.

1 Coset conformal field theories

The coset construction is among the oldest [1] tools for obtaining rational two-dimensional
conformal field theories and has been very successful. It has been used to construct
prominent classes of models, such as (super-)Virasoro minimal models and Kazama-Suzuki
models. Still, it presents a number of mysteries, even in the case of unitary conformal
field theories, to which we will restrict ourselves in this contribution.

The coset construction is based on the following data: A (finite-dimensional, complex,
reductive) Lie algebra g together with a choice k of levels, i.e. a positive integer for each
simple ideal of g, and a Lie subalgebra g′ of g. The embedding of g′ into g determines
the levels k′ of g′. The aim of the coset construction is to obtain conformal field theories
whose chiral data – like conformal weights, fusion rules, braiding and fusing matrices –
are completely known, and moreover can be expressed entirely in terms of the chiral data
for (g, k) and (g′, k′). This goal can indeed be achieved. However, as will become evident
below, the way this aim is reached is quite a bit more subtle than one might anticipate.

At first sight, understanding coset theories proceeds according to the following well-
known pattern: The g/g′ coset theory has a description in terms of a gauged WZW sigma
model [2] with target space the Lie group G (the compact simply connected covering group
associated to g), in which the action of the subgroup G′ of G is gauged. For constructing
the space of states, this immediately suggests to start with positive energy representations
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of the (centrally extended) loop algebra ĝ based on g at level k, and require, à la Gupta-
Bleuler, that the states of the coset theory are annihilated by the positive modes of the
g′-currents Ja′

(and some more operators):

Ja′

n v = 0 for n > 0 .

This selects the highest weight spaces of ĝ′; the candidate spaces of states of coset theories
are thus the branching spaces Hλ

λ′ that appear in the decomposition

Hg
λ =

⊕
λ′ Hλ

λ′ ⊗Hg′

λ′

of irreducible highest weight g-modules Hλ into g′-modules Hλ′ .
Looking at simple examples reveals the following properties of these spaces:
Some branching spaces can be zero.
Some branching spaces can be isomorphic – not just as graded vector spaces, but even

as modules over the coset chiral algebra (which is the commutant of the chiral algebra of
(g′, k′) in the chiral algebra of (g, k)).

Some branching spaces can be reducible as modules over the coset chiral algebra.

The first two features – selection rules and “field identification” – already arise in the
simplest example, the Ising model, which is realized by the coset

su(2)1 × su(2)1

su(2)2

.

The branching spaces Hl1,l2
l of this theory are labeled by three integers l1,2 ∈{0, 1} and

l∈{0, 1, 2} (twice the respective su(2) spins). By the spin coupling rules, branching spaces

can be non-zero only if l1 + l2− l is even. Moreover, Hl1,l2
l and H1−l1,1−l2

2−l are isomorphic
Virasoro modules, reflecting the familiar symmetry of the Kac table of the Ising model.

The selection rules and field identifications are, at least at first sight, well-understood
in the Lagrangian setting: One actually gauges the adjoint action of the subgroup G′ on
the group G [3], so that the common center Z := Z(G)∩Z(G′) acts trivially. As a conse-
quence, the group relevant for gauging is G′/Z, which is non-simply connected. Both the
selection rules and the field identifications are implemented by summing over inequivalent
G′/Z bundles [4]. In an algebraic formulation, simple currents are the appropriate con-
cept to explain these effects [5]; the selection rules eliminate branching spaces of non-zero
monodromy charge, and isomorphic branching spaces form simple current orbits. In this
setting also the problem of “fixed point resolution”, i.e. of understanding the structure of
reducible branching spaces, can be addressed [6].

2 Maverick coset theories

In a maverick coset theory the pattern of field identifications and selection rules gov-
erned by simple currents breaks down – there are more vanishing branching spaces, and
more identifications. The observation that such maverick cosets exist came as a big sur-
prise. The first example was presented in [7]; more examples were found in [8, 6, 9]. A
classification is not known to date, but in all known maverick cosets the level is small.

The existence of maverick cosets would not have been that astonishing, though, had
one only taken the lesson of conformal embeddings seriously. For a conformal embedding
of (g′, k′) in (g, k) the Virasoro central charges of the respective WZW models coincide,
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c(g′,k′) = c(g,k), so that the corresponding coset theory has central charge zero and hence is
trivial as a chiral CFT: For such cosets all branching spaces are either zero or the trivial
one-dimensional c = 0 Virasoro module. Maverick cosets are thus intermediate between
‘ordinary’ cosets and conformal embeddings.

Let us have a look at the simplest known example [7], su(2) embedded via its three-
dimensional representation into su(3). The coset theory at level 2, su(3)2/su(2)8, is mave-

rick. The ordinary selection rules allow all branching spaces H(l1 l2)
q with q even, and the

expected identifications as Virasoro modules are H(l1 l2)
q

∼=H(l1 l2)
8−q . However, comparison

with the Kac table for the tetracritical Ising model shows that the branching spaces

H(00)
2

∼=H(00)
6 , H(20)

2
∼=H(20)

6 , H(02)
2

∼=H(02)
6 , H(10)

0
∼=H(10)

8 , H(01)
0

∼=H(01)
8 , H(11)

0
∼=H(11)

8

which a priori are allowed by the selection rules actually vanish as well, and that there
are additional identifications

H(00)
0

∼=H(00)
8

∼=H(11)
4 χ(q) = 1 + q2 + 2q3 + 3q4 + 4q5 · · ·

H(11)
2

∼=H(11)
6

∼=H(00)
4 1 + 2q + 2q2 + 4q3 + 5q4 + 8q5 · · ·

H(10)
2

∼=H(10)
6

∼=H(02)
4 1 + q + 2q2 + 3q3 + 5q4 + 7q5 · · ·

H(01)
2

∼=H(01)
6

∼=H(20)
4 1 + q + 2q2 + 3q3 + 5q4 + 7q5 · · ·

H(20)
0

∼=H(20)
8

∼=H(01)
4 1 + q + 2q2 + 2q3 + 4q4 + 5q5 · · ·

H(02)
0

∼=H(02)
8

∼=H(10)
4 1 + q + 2q2 + 2q3 + 4q4 + 5q5 · · ·

For all known maverick cosets, it has been observed that there exists a modular invari-
ant torus partition function of extension type for the WZW based on g⊕ g′ in which

only such pairs (λ, λ′) of representations of g and g′ appear that correspond to non-
vanishing branching spaces Hλ

λ′ , and in which
the way these pairs are combined into irreducible representations of the extended chiral

algebra reflects also the additional identifications.
Moreover, in all maverick cases this modular invariant for the g⊕ g′ WZW model is not of
simple current type, but exceptional . Having mentioned the term partition function, it is
worth pointing out that here our aim is to understand coset theories as chiral conformal
field theories. 1 Accordingly, the g⊕ g′ torus partition function in question is nothing but
the charge conjugation modular invariant with respect to the extended chiral algebra.

Recently, the study of conformal field theories on surfaces with boundary has given
many new insights in the structure of modular invariant partition functions (see [11] and
references therein). In particular, novel techniques for exceptional modular invariants
have become available. In the rest of this note we present some of these techniques and
explain how they allow us to gain a better understanding of maverick cosets.

3 Algebras in tensor categories

The first step is to find a convenient basis-independent way to encode the chiral data
of a given rational chiral CFT. This is provided by the representation category C of the
given chiral algebra, which has the structure of a modular tensor category . The objects
V of C are representations of the chiral algebra, and the morphisms f : V→W of C are
intertwiners. Fusion of chiral algebra representations is encoded by a tensor product

⊗ : C × C → C

1 Indeed, already as chiral theories, they are useful in physical applications [10].
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that is associative, with the vacuum representation 1 acting as unit,
1⊗V = V . Braid group statistics, obeyed by quantum fields in low
dimensions, yields a braiding on C, i.e. for every pair (V, W ) of objects
an isomorphism cV,W : V ⊗W→W ⊗V . Pictorially, the braiding is
shown in figure 1. Non-degeneracy of CFT two-point functions gives
rise to a notion of dual object (conjugate field), and the fractional
part of the conformal weight defines a ‘twist’ for every object.

These structures are subject to quite a few axioms, of course. Most
of them just amount to the statement that a visualization in terms
of ribbon graphs like in figure 1 is possible. In addition, it is required
that the matrix with entries sλ,µ := tr(cλ,µ ◦ cµ,λ) is non-degenerate.
(This trace, depicted in figure 2, is the invariant of the Hopf link in
the three-manifold S3; the Vµ are representatives for the isomorphism
classes of simple objects of C.)

V

W

W

V

Figure 1

Vλ Vµ

Figure 2

In the case of coset theories we are given two modular tensor categories, G and G ′, for
the chiral data of the WZW models based on (g, k) and (g′, k′). The goal we would like
to achieve is then to express the category Q for the coset theory in terms of G and G ′.

To this end, we use the fact that algebra and representation theory can be developed
not just for (real or complex) vector spaces, but also in the much more general context of
tensor categories. An algebra (A, m, η) in a tensor category C consists of an object A of
C, a multiplication m: A⊗A→A that is associative, i.e. fulfils

m ◦ (idA⊗m) = m ◦ (m⊗ idA) ,

and a unit η: 1→A. The latter should be thought of as the generalization of the map
C→A that acts as ξ 7→ ξe for an algebra A with unit element e in the case that A is a
complex vector space. A (left-) representation (M, ρM) of A can be defined similarly: It
is an object M of C together with a morphism ρM : A⊗M →M that obeys

ρM ◦ (m⊗ idM) = ρM ◦ (idA⊗ ρM) and ρM ◦ (η⊗ idM) = idM .

A particular class of algebras in modular tensor categories, called symmetric special
Frobenius algebras , is relevant in conformal field theory. All information about a full
local CFT based on a given chiral CFT is encoded in such an algebra [11]. For instance,
the coefficients of the torus partition function are given by the dimension of the space of
intertwiners of certain A-bimodules:

Zλ,µ = dim HomA|A(α−
A (Vλ), α

+
A (Vµ)) .

(It follows from general results that this is always modular
invariant.) This partition function is of extension type if
A is commutative in the sense that m ◦ cA,A = m. In that
case, the algebra describes just the vacuum sector of the
extension, while the other sectors of the extended theory
correspond to so-called local A-modules. Locality of an A-
module means that the relation displayed in figure 3 is sat-
isfied. The category C`oc

A of local modules over a symmetric
special Frobenius algebra A in a modular tensor category C
is again modular. This gives a very concise handle on the
chiral data of the extended theory:

A M

M

ρM

=

A M

M

ρM

Figure 3

Cext = C`oc

A .
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The vacuum sector Hg
Ω of the g-theory decomposes in terms of sectors of the g′-theory

and of the coset theory according to

Hg
Ω =

⊕
λ′ HΩ

λ′ ⊗Hg′

λ′ .

It follows that the modular tensor category G of the g-theory can be expressed as

G = (Q⊗G ′)`oc

A (1)

through the categories Q and G ′ and a suitable commutative symmetric special Frobenius
algebra A in Q⊗G ′ that encodes the decomposition of the g-vacuum Hg

Ω given above.

For the understanding of the coset category Q the following result is crucial:

Theorem [12]: There exists a (braided-) commutative symmetric special Frobenius alge-
bra B in the modular tensor category G ⊗G ′ such that

Q = (G ⊗ G ′)`oc

B . (2)

This algebra B corresponds to a modular invariant of extension type for the g⊕ g′ theory.

This is the desired expression of the chiral data Q of the coset theory in terms of
the chiral data G and G ′ of the parent WZW models. The category G ′ in the theorem is
obtained in a straightforward manner from G ′. Basically, one applies complex conjugation
to all chiral data. For details we refer to [12]. Also, B can be constructed explicitly
from the embedding g′ ↪→ g, and modularity of the tensor category Q is derived from the
modularity of G and G ′ (and from some much weaker assumptions on Q).

A detailed discussion of the proof of the theorem is beyond the scope of this note. Let
us, however, mention three crucial aspects.

In [13, 12], commutative algebra in a braided setting is developed. This theory turns
out to be much richer than ordinary commutative algebra for vector spaces (which is al-
ready a rich theory). New notions, like local modules, two different centers of an algebra,
and new types of induction functors, play an essential role in the proof.

Another important ingredient is the unitarity of the modular matrix S of rational
CFTs. This property, which means that the braiding in two-dimensional CFTs is, in a
sense, maximally non-degenerate, allows to “solve” the equality (1) for Q in the form (2).

All sectors appearing in the algebra B contain fields of coset conformal weight 0. The
transition to local B-modules can therefore be thought of as a means for removing “re-
dundant” vacua in the collection of branching spaces.

4 Conclusions

Despite the progress reported here, the coset construction still presents open problems:
The classification of coset theories (g, g′, k) that are maverick remains open.
Mavericks seem to be a low level phenomenon. For the group manifold as a sigma model

target space, low level means large curvature. An understanding of the additional selection
rules and identifications in maverick cosets as large curvature effects in a Lagrangian
setting seems to be far beyond the reach of today’s methods.

Finally we point out that the results presented here arose within a larger research
program [11, 14], which aims at constructing full local CFTs on world sheets of arbitrary
topology from chiral CFTs using algebras in tensor categories. It is gratifying that the
tools developed in this approach also shed new light on old and mysterious problems like
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the existence of exceptional modular invariants associated to maverick coset theories.
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