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C H A P T E R T E N

The Classification of
Varieties

10.1 Introduction

Although varieties have brought some order to the diversity which we saw This section
needs a

rewrite. The
concepts of

Maltsev
condition

needs to be
defined more

precisely.
Walter says

he is leaning
toward

“Maltsev
classes” so I
think I will
wait to see

how he
handles that

in chapter
11. He also

suggest that I
say V-term

means a term
is the

language of
V.

among individual algebras, we can again see a great diversity in looking over
varieties themselves. Fortunately there have arisen various classifications of va-
rieties which help to bring some order to this further diversity. In this chapter we
will review and study some of the better known and more important properties
which concern congruence relations on the algebras of a given variety.

The prototype for most of the properties treated in this chapter is that of
congruence permutability, which we examined in §4.7 of Volume I. Recall that
we proved in Theorem 4.141 that a variety V is congruence permutable (i.e.,
θ ◦ φ = φ ◦ θ for all θ , φ ∈ ConA, A ∈ V) if and only if there exists a ternary
term p(x,y,z) such that V satisfies the equations

p(x,z,z)≈ x≈ p(z,z,x). (10.1.1) for:introEq1

In honor of this result of A. I. Maltsev 1954 varietal properties which can be
defined in a similar manner, i.e., by the existence of terms satisfying a certain
finite set Σ of equations, have come to be known as strong Maltsev conditions;
we will also say that such a property is strongly Maltsev definable. Until §10.8,
we will be examining properties P which are Maltsev definable; in most cases
P will have a natural definition which is not of the Maltsev type, and our job
will be to find a suitable set Σ of equations. In fact this Σ can be thought of as
defining the ‘most general’ variety satisfying P, in that for P to hold, we require
nothing more than the deducibility of the equations Σ. This can be made precise
by using the concept of the interpretation of one variety into another as defined
in §4.12. For example, Maltsev’s result cited above, can be stated as follows: a
variety V is congruence permutable if and only if the variety M is interpretable
into V, where M is the variety with a single ternary operation symbol p satisfying
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2 Chapter 10 The Classification of Varieties

(10.1.1). This is Theorem 4.141 of §4.12. The reader may want to review that
section before reading this chapter.

Actually, most of the properties P that we study in this chapter fail to be
strongly Maltsev definable, but satisfy the following more general situation in-
stead. There exist strong Maltsev conditions P1, P2, . . . such that each Pi implies
Pi+1 and such that P is logically equivalent to the disjunction of all Pi. (Equiva-
lently, there exist finite sets Σ1, Σ2, . . . of equations such that, if Vi is the variety
defined by Σi, then Vi+1 interprets into Vi and, for some i, Vi interprets into V.)
We emphasize that the similarity type of V need not be the same—nor even re-
lated in any way—to that of any of the Σi. We will call such a property Maltsev
definable; sometimes also we refer to P, or to the sequence Σ1, Σ2, . . ., as a
Maltsev condition.

Many of the varietal properties of this chapter arise naturally if one observes
the behavior of congruence relations in vector spaces and in lattices. For in-
stance, if θ is a congruence on a vector space V (over any field), then any two
congruence blocks a/θ and b/θ have the same number of elements; in our ter-
minology, the congruences are uniform. In §10.5 we will examine this and
some related properties, especially the somewhat weaker notion of congruence
regularity (if |a/θ | = 1, then |b/θ | = 1). Vector spaces are also congruence
permutable, and, as we saw in Theorem 4.67, permutability of the congruence
lattice implies its modularity. In §10.4 we present some Maltsev conditions for
congruence modularity. Except for modularity, these properties all fail for the
variety L of lattices, but L is even congruence distributive, as we saw in Chapter
2.

There is a geometric way of thinking about these sorts of problems which
some investigators have found helpful (see especially Wille 1970 and Gumm
1983). The traditional method (going back to Descartes) for constructing alge-
braic models of Euclidean geometry, i.e., analytic geometry, can be described as
follows. Let V be a real vector space of dimension n. One then defines ‘points’
to be elements of V and ‘lines’ to be cosets of 1-dimensional subspaces of V. In
other words, lines are congruence blocks a/θ with V/θ of dimension n−1 (and
flats of dimension k are blocks a/θ with V/θ of dimension n− k). If we extend
this terminology from V to an arbitrary algebra A, i.e., if we define all con-
gruence blocks a/θ to be ‘lines’ or ‘flats,’ then some properties of this chapter
have interesting geometric interpretations. For example congruence permutabil-
ity simply asserts the existence of the fourth corner of a parallelogram (given
a θ b φ c there exists d such that a φ d θ c), as illustrated in Figure 10.1.

Congruence uniformity asserts that any two ‘parallel’ lines or flats have the
same number of elements. (Here we are referring to a/θ and b/θ as ‘parallel.’)
We refer the reader to the references above for a full treatment from this point of
view; nevertheless various traces of these ideas will be seen in this chapter.

A lattice equation that holds identically in all the congruence lattices of the
algebras in a variety V is called a congruence identity of V. Theorem 1.144 of
the first volume gives a Maltsev condition for a variety to be congruence distribu-
tive. In §10.4 we give a Maltsev condition for a variety to be congruece modular
and in §10.6 we take up the subject of congruence identities in general.

Theorem 4.143 shows that arithmeticity of a variety is strongly Maltsev de-
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Figure 10.1: fig:introFig1

finable. Recall that V is arithmetical if it is both congruence permutable and
congruence distributive. In the presence of permutability, distributivity is equiv-
alent to the following ‘geometric’ condition: if {B1, . . . ,Bk} is a finite set of
congruence blocks such that no two have empty intersection, then B1 ∩ ·· · ∩Bk
is non-empty. (Compare with Helly’s Theorem in geometry for convex sets.)
This property is known as the Chinese Remainder property, since it generalizes
the corresponding fact for the ring of integers, which is known as the Chinese
Remainder Theorem (there the congruence blocks are simply arithmetic pro-
gressions).

rewrite this
next

paragraph
The main varietal property of this chapter which is not Maltsev definable is

the Abelian property, which was defined and discussed in §4.13. This property
asserts that the implications

t(x,u)≈ t(x,v)→ t(y,u)≈ t(y,v)

(one for each term t) hold over an entire variety. In combination with congruence
modularity this property turns out to be very strong: every congruence modular
Abelian variety is affine (i.e., derived from a ring and module in a simple manner
made precise in §10.8).

The theory of varieties is essential for the results of this chapter: most of the
results fail for algebras considered in isolation. For instance, any two element al-
gebra obviously has permuting congruences, but there exist two element algebras
with no Maltsev term p (such as we described at the beginning of this introduc-
tion). Nevertheless it is often the case that a stronger result than the result about
varieties obtains. For example, by Theorem 10.46 if V is a regular variety then
it is congruence modular. Although this result is not true for individual algebras,
it is true that if every subalgebra of A2 is regular then CON A is modular; see
Theorem 10.47. We loosely refer to these stronger results as local and call the
results about varieties global. Another local result that will be proved in §10.6 is
that if every subalgebra of A2 has a modular congruence lattice, CON A satisfies
the arguesian equation.



4 Chapter 10 The Classification of Varieties

10.2 Permutability of Congruences

First we recall some definitions and basic results from §4.7. If α and β are binary
relations on a set A, and α ◦β denotes their relational product (as defined in the
preliminaries of Volume I), α ◦1 β = α , α ◦k+1 β = α ◦ (β ◦k α). We say that α

and β k-permute if α ◦k β = β ◦k α . An algebra A is said to have k-permutable
conguences if every pair of congruences of A k-permute. If A has k-permutible
conguences then, by Lemma 4.66, α ∨β = α ◦k β for every pair of conguences
of A. In this situation, the terminolgy A has type k−1 joins is used since there
are k− 1 ◦’s in the expression α ∨ β = α ◦k β . Thus type 1 is the same as 2-
permutablity. In this case, we say that the algebra has permutable congruences.
We saw in Theorem 4.67 that if an algebra A has 3-permuting congruences then
CON A is modular. Later in this chapter we will construct a variety all of whose
algebras have 4-permuting congruences, which is not congruence modular. Of
course a variety is said to be k-permutable if each of its algebras is.

Permutability of congruences had a tremendous influence on the early de-
velopment of universal algebra and its relation to lattice theory. The fact that
permutability implies modularity goes back to R. Dedekind 1900. He derives
the modularity of the lattice of normal subgroups of a group from the fact that
any two normal subgroups permute with each other, i.e., AB = BA holds for
normal subgroups. Essentially the same proof shows that any permutable vari-
ety is modular. The fact that a lattice of permuting equivalence relations (and
hence of permuting congruence relations) is modular is explicit in Ore 1942.
Birkhoff’s application of Ore’s Theorem, Corollary 2.48, which yielded the re-
sults on unique factorization of Chapter 5, is a prime example of the importance
of permutability. Moreover various generalizations of the Jordan-Hölder theo-
rem to general algebra relied on congruence permutability, since they required
congruence modularity.

Our first new Maltsev condition of this chapter is for k-permutability of con-
gruences, and is due to J. Hagemann and A. Mitschke 1973.

perm1 THEOREM 10.1. For a variety V the following conditions are equivalent:

i. V has k-permutable congruences;

ii. FV(k+1) has k-permutable congruences;

iii. there exist terms p1, . . . , pk−1 for V such that the following are identities
of V:

x≈ p1(x,z,z)

p1(x,x,z)≈ p2(x,z,z)
...

pk−2(x,x,z)≈ pk−1(x,z,z)

pk−1(x,x,z)≈ z.

(10.2.1) for:permEq1
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Proof. Clearly (i) implies (ii). Assume (iii) and let A ∈ V and θ , φ ∈ ConA, and
a0, . . . ,ak ∈ A satisfy

a0 θ a1 φ a2 θ a3 · · · ak.

Let bi = pi(ai−1,ai,ai+1), for 1≤ i < k. Then

a0 = p1(a0,a1,a1) φ p1(a0,a1,a2) = b1

b1 = p1(a0,a1,a2) θ p1(a1,a1,a2) = p2(a1,a2,a2) θ p2(a1,a2,a3) = b2.

Continuing in this way, we obtain

a0 φ b1 θ b2 · · · ak,

showing that (i) holds.
To see that (ii) implies (iii), we let λ0 and λ1 be the endomorphisms of

FV(x0, . . . ,xk) such that λ0(xi) = x2bi/2c, 0 ≤ i ≤ k, λ1(x0) = x0, and λ1(xi) =
x2di/2e−1, 1≤ i≤ k, where dne and bnc denote the ceiling and floor functions.

A diagram
here?Thus λ0 maps x0 and x1 to x0, x2 and x3 to x2, etc. Let θi be the kernel of λi,

i = 0,1. Clearly we have

x0 θ0 x1 θ1 x2 θ0 x3 · · · xk.

Now by our assumption there are q1, . . . ,qk−1 ∈ FV(x0, . . . ,xk) such that

x0 θ1 q1 θ0 q2 θ1 q3 · · · xk.

Let ri be terms such that qi = ri(x0, . . . ,xk). Then

r1(x0, . . . ,xk) θ1 r1(x0,x1,x1,x3,x3, . . .),

and hence x0 θ1 r1(x0,x1,x1,x3,x3, . . .). But λ1 is the identity on the subalgebra
of FV(x0, . . . ,xk) generated by x0, x1, x3, . . .. Thus

x0 = r1(x0,x1,x1,x3,x3, . . .)

in FV(x0, . . . ,xk), and consequently V satisfies the equation

x0 ≈ r1(x0,x1,x1,x3,x3, . . .).

Similar arguments show that V satisfies the following equations.

r1(x0,x0,x2,x2, . . .)≈ r2(x0,x0,x2,x2, . . .)

r2(x0,x1,x1,x3,x3, . . .)≈ r3(x0,x1,x1,x3,x3 . . .)

...

For 1≤ i < k, define

pi(x0,x1,x2) = ri(

i times︷ ︸︸ ︷
x0, . . . ,x0,x1,

k− i times︷ ︸︸ ︷
x2, . . . ,x2).

It easy to verify that V satisfies the equations (10.2.1). �
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There are natural examples of varieties which are 3-permutable but not per-
mutable. In the exercises we present some of these examples. The next example
presents a variety constructed by S. V. Polin 1977 (see also Alan Day and Freese
1980) which is 4-permutable but not 3-permutable. In §10.6 we will see that this
variety is not congruence modular but nevertheless its congruence lattices satisfy
a nontrivial lattice equation.

polinexample EXAMPLE 10.2. For i= 0,1, let Ai = 〈{0,1},∧, ′,+〉where ∧ is the usual meet
operation and ′ and + are the unary operations given in the following tables.

A0 0 1
′ 1 0
+ 1 1

A1 0 1
′ 0 1
+ 1 0

Let A = A0×A1 and let P denote the variety generated by A. It is straigh-
forward to verify that CON A is the lattice of Figure 10.2, where we have used
juxtaposition to denote the elements of A = A0×A1.

Possible use
ηi notation

instead. 1A

0A

[00 11][11 01]

[00 11]
[00 01][11 10]

Figure 10.2: fig:permFig1

Thus P is not congruence modular and hence, by Theorem 4.67, not 3-
permutable. To see that it is 4-permutable, we define three terms:

p1(x,y,z) = x∧ (y∧ z+)+

p2(x,y,z) = [(x∧ y′)′∧ (z∧ y′)′∧ (x∧ z)′]′

p3(x,y,z) = z∧ (y∧ x+)+.

We need to verify that the equations (10.2.1) of Theorem 10.1 for k = 3 are
identities of P. Since p1(x,y,z) = p3(z,y,x) and p2(x,y,z) = p2(z,y,x), we need
only verify that x≈ p1(x,z,z) and p1(x,x,z)≈ p2(x,z,z) are identities of A. This
is just a matter of checking on the algebras A0 and A1.

Since both A0 and A1 have the meet operation and each has a unary operation
which is complementation, each is term equivalent (see Definition 4.139) to the
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two-element Boolean algebra. If Vi is the variety generated by Ai then

P= V0∨V1.

Thus the join of two distributive varieties need not be distributive, nor is it true
that the direct product of two algebras with permuting congruences has permut-
ing congruences. Exercise 10.4.18 shows that P is residually large. Hence the
join of two residually finite varieites can be residually large. No such counterex-
amples exist for congruence modular varieties. J. Hagemann and C. Herrmann
1979 have shown that the join of two distributive varieties in a modular vari-
ety is distributive. Moreover, the join of two residually small subvarieties of a
modular variety is residually small. Furthermore, the product of two algebras
in a modular variety with permuting congruences has permuting congruences.
These results can be found in Freese and Ralph McKenzie 1987 as Exercise 8.2,
Theorem 11.1, and Exercise 6.8, respectively.

For k≥ 5 there do not seem to exist any naturally occurring k-permutable va-
rieties which are not (k−1)-permutable. Of course, the equations (10.2.1) define
a variety Vk such that an arbitrary variety V is k-permutable if and only if Vk is
interpretable (see §4.12) into V.

It is not difficult to find an individual congruence lattice which is k-permutable
but not (k−1)-permutable (see Exercise 1), but finding a k-permutable vari-
ety which is not (k−1)-permutable is more difficult. [It is possible to modify
Polin’s example above to produce a variety which is 2k-permutible but not 2k−1-
permutable. The arguments are only slightly easier than the ones we will now
present.]

Perhaps
make this

into an
exercise.

The following example presents a variety which is k- but not (k−1)-permutable
for all k. This fact was first established by E. T. Schmidt 1972. It is of course
an immediate corollary of Schmidt’s theorem that the variety Vk is k-permutable
but not (k−1)-permutable.

kpermexample EXAMPLE 10.3. Fix k ≥ 3 and let Ai, i = 1, . . . ,k− 1, be algebras on the set
{0,1}with ternary operation symbols pi, i= 1, . . . ,k−1. The definition of p

A j
i is

given separately for i < k/2, i = k/2, and i > k/2. The second case only applies
if k is even, of course. In these definitions, x−y is an abreviation for x∧y′, where
y′ is the complement of y. First the case i < k/2:

p
A j
i (x,y,z) =



x∧ z for j < i
x− (y− z) for j = i
x for i < j < k− i
x∨ (z− y) for j = k− i
x∨ z for k− i < j.



8 Chapter 10 The Classification of Varieties

When i > k/2 we have

p
A j
i (x,y,z) =



x∧ z for j < k− i
z− (y− x) for j = k− i
z for k− i < j < i
z∨ (x− y) for j = i
x∨ z for i < j.

Finally in the case i = k/2 we define

p
A j
i (x,y,z) =


x∧ z for j < i = k/2
[(x∨ z)− y]∨ (x∧ z) for j = i = k/2
x∨ z for i = k/2 < j.

This definition is more clearly represented by a k− 1 by k− 1 table whose
i, jth entry is p

A j
i . In the case k = 6 this table is:

A1 A2 A3 A4 A5

p1 x− (y− z) x x x x∨ (z− y)

p2 x∧ z x− (y− z) x x∨ (z− y) x∨ z

p3 x∧ z x∧ z u x∨ z x∨ z

p4 x∧ z z− (y− x) z z∨ (x− y) x∨ z

p5 z− (y− x) z z z z∨ (x− y)

where u, the element in the very center, is [(x∨ z)− y]∨ (x∧ z). In the general
case, when k is even, the main diagonal is constant with value x− (y− z) un-
til the very middle element, which is u, and then it is constant with z∨ (x− y).
A similar situation holds for the sinister diagonal. What remains are four tri-
angular wedges, each of which is constant. When k is odd, the pattern is the
same except that the middle row and column are removed. Notice that if j ≤ t
then p

A j
i (x,y,z)≤ pAt

i (x,y,z) as elements of the free Boolean algebra generated
by {x,y,z}.

Let Pk−1 be the variety generated by A1, . . . ,Ak−1. It is evident from ele-
mentary set theory or Boolean algebra that in Pk−1 the operations p1, . . . , pk−1
obey the equations (10.2.1) of Theorem 10.1, and hence Pk−1 has k-permutable
congruences. For failure of (k−1)-permutability, it will be enough to establish
that the vectors

a1 = 〈1,1, . . . ,1〉
a2 = 〈0,1, . . . ,1〉

...
ak = 〈0,0, . . . ,0〉
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form a subuniverse of A1×·· ·×Ak−1. For we then define congruences θ and
φ on the corresponding subalgebra by x θ y if and only if xi = yi for all even i,
and x φ y if and only if xi = yi for all odd i. It is easy to check that 〈a1,ak〉 is in
θ ◦k φ but not in θ ◦k−1 φ .

Notice that {a1, . . . ,ak} is the set of those function in 2k−1 which are mono-
tone. To see that these elements form a subalgebra we need to show that if x, y,
and z are monotone, then pi(x,y,z) is also. That is, we must show

p
A j
i (x j,y j,z j)≤ p

A j+1
i (x j+1,y j+1,z j+1)

for all j.
Now those p

A j
i (x,y,z) which contain minus (−) fail to be monotone. Nev-

ertheless one easily checks that there always exists a monotone qi, j(x,y,z) such
that

p
A j
i (x,y,z)≤ qi, j(x,y,z)≤ p

A j+1
i (x,y,z)

For example, x− (y− z)≤ x≤ x∨ (z− y). Therefore, in every case

p
A j
i (x j,y j,z j)≤ qi, j(x j,y j,z j)

≤ qi, j(x j+1,y j+1,z j+1)

≤ p
A j+1
i (x j+1,y j+1,z j+1),

completing the argument.

Exercises 10.4ex10.2

1. The variety of lattices is not congruence permutable. For every k > 2 there
exists a lattice which is (k−1)-permutable but not k-permutable.

should we
put

Tschantz’s
example

here?

2. Recall from Chapter 9

put a better
reference

here

that a quasi-primal algebra is a finite algebra whose clone of term opera-
tions contains the ternary discriminator operation:

t(a,b,c) =

{
c if a = b
a if a 6= b.

Prove that every quasiprimal algebra generates a congruence permutable
variety.

3. If V has a 5-ary term q obeying the equations

x≈ q(x,y,y,z,z) q(x,x,y,y,z)≈ z

then V is congruence permutable.
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4. The variety defined by the following equations is congruence permutable:

F(x,x,z)≈ z

H(u,u,x,y,w,z)≈ x

H(F(x,w,z),F(y,w,z),x,y,w,z)≈ y.

(This example will be used in the exercises of §10.5 below. As we will see
in a later volume that it is in fact recursively undecidable whether a finite
set of equations defines a congruence permutable variety.)

exer:ImplicationAlgs 5. Implication algebras. (Mitschke 1971) The variety of implication alge-
bras has a single binary operation symbol,→, and is defined

this is the
same as Exer

6 p.age 205
ov vol I, but
I’ll leave it.

by the equations

(x→ y)→ x≈ x

(x→ y)→ y≈ (y→ x)→ x

x→ (y→ z)≈ y→ (x→ z).

Prove that this variety is 3-permutable but not permutable. (Hint. Implica-
tion algebras can be interpreted in Boolean algebras by defining x→ y as
y− x; the reader should look for a nonrectangular subuniverse of 〈2,−〉2.
To get 3-permutability, try something similar to the proof used in Exam-
ple 10.3 with k = 3. In this case one column of the matrix will use only
the Boolean operation −, and one can check that these same terms work
for implication algebras.)

exer:RightcomplementedSemigroups 6. Right-complemented semigroups. (Bosbach 1970). This variety has two

1969 ?? also
check if all

the equations
are correct

and
necessary for

3-perm.

binary operations, · and ∗, and is defined by the following equations:

x · (x∗ y)≈ y · (y∗ x)

(x · y)∗ z≈ y∗ (x∗ z)

x · (y∗ y)≈ x

Prove that right-complemented semigroups are 3-permutable but not per-
mutable. (Hint. This is similar to the previous exercise, except that now
we need to notice that right-complemented semigroups can be interpreted
in Boolean algebras by defining x · y to be x∨ y and x∗ y to be y− x. Now
again look at Example 10.3.)
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exer:HeytingAlgs 7. Heyting algebras. (Burris and Sankappanavar 1981) A Heyting algebra
has operations ∨, ∧,→, 0, 1 and is defined

does this
look like

B–S invented
them?

by the following equations, together with the equations of distributive lat-
tice theory with 0 and 1:

x→ x≈ 1
(x→ y)∧ y≈ y

x∧ (x→ y)≈ x∧ y

x→ (y∧ z)≈ (x→ y)∧ (x→ z)

(x∨ y)→ z≈ (x→ z)∧ (y→ z)

Prove that this variety is congruence permutable by verifying that

p(x,y,z) = (y→ x)∧ (y→ z)∧ (x∨ z)

is a Maltsev operation. (Hint: for a more conceptual approach, use the
equations to verify that

(x→ y)≥ a if and only if y≥ a∧ x,

i.e. x→ y is the largest element a such that a∧ x≤ y.)

exer:kBooleanAlgs 8. k-Boolean algebras. In this exercise we present the variety that E. T.
Schmidt used to show that k-permutability does not imply (k−1)-permut-
ability. The variety used in Example 10.3 is a reduct of this variety. For
fixed k ≥ 2, let Bk be the variety with the operations of lattice theory,
constants c1, . . . ,ck and unary operations f1, . . . , fk−1, which is defined by
the identities of distributive lattices together with these equations:

x∨ c1 ≈ c1

x∧ ck ≈ ck

[(x∨ ci+1)∧ ci]∨ fi(x)≈ ci

[(x∨ ci+1)∧ ci]∨ fi(x)≈ ci+1

for 1≤ i≤ k−1. In Bk we define B j,k, for 1≤ j ≤ k−1 to be the algebra
with universe {0,1} and with

fi(x) = 1 for i≤ j

f j(x) = x′

fi(x) = 0 for i≥ j

c1 = · · ·= c j = 1
c j+1 = · · ·= ck = 0
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Show that Bk is k-permutable but not (k−1)-permutable. (Hint: The proof
that Bk is not (k−1)-permutable is similar to that given in Example 10.3.
The k-permutability can be proved by letting

pi(x,y,z) = [x∧ ( fi(y)∨ z)]∨ [z∧ ( fk−i(y)∨ x)],

for 1≤ i≤ k−1, and verifying that the equations of (10.2.1) are identities
of Bk. It is much easier to appeal to the proof of Example 10.3 after first
establishing two relatively easy facts: each A j in that proof is the reduct
of B j,k to the operations p1, . . . , pk−1 and the algebras B j,k generate the
variety Bk (in fact, they are its only subdirectly irreducible algebras).

9. Give an example of a variety V such that FV(k) has k-permutable congru-
ences but V is not k-permutable.

10. (Wille 1970)

overlaps thm
4.68 Let θ ∈ CON A and f : A→ B is an onto homomorphism, with kernel φ .

The relation
f (θ) = {〈 f (a), f (b)〉 : 〈a,b〉 ∈ θ}

may fail to be transitive, and thus to be a congruence. But if θ ◦ φ ◦ θ ⊆
φ ◦θ ◦φ then f (θ) is a congruence. In fact, a variety V is congruence 3-
permutable if and only if for every A ∈ V, every congruence θ ∈ CON A,
and every onto homomorphism f : A→ B, f (θ) is a congruence. (Part of
this exercise is worked out in Theorem 4.68.)

11. If θ ◦ φ ⊆ φ ◦ θ for equivalence relations θ and φ on the same set, then
θ ◦φ = φ ◦θ = θ ∨φ . But the corresponding assertion for triple products
is false. Find an algebra A and congruences θ and φ on A such that θ ◦
φ ◦θ < φ ◦θ ◦φ . (It still follows that θ ∨φ = φ ◦θ ◦φ .) Is this situation
possible inside a 3-permutable variety?

12. Give two Maltsev terms which differ on all nontrivial Boolean algebras.

13. (Hagemann and Mitschke 1973). For a variety V, the following three con-
ditions are equivalent:

i. V is congruence k-permutable;
ii. for every A ∈ V and every reflexive subuniverse S of A×A,

S−1 ⊆
k−1 times︷ ︸︸ ︷
S◦ · · · ◦S

iii. for every A ∈ V and every reflexive subuniverse S of A×A,

k times︷ ︸︸ ︷
S◦ · · · ◦S⊆

k−1 times︷ ︸︸ ︷
S◦ · · · ◦S
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14. (Lakser 1982) If V is congruence k-permutable, A ∈ V, a, b, c, d ∈ A, and
if 〈c,d〉 ∈ Cg(a,b), then

c = t1(a,e1, . . . ,em)

t1(b,e1, . . . ,em) = t2(a,e1, . . . ,em)

...
tk−1(b,e1, . . . ,em) = d

for some V-terms t1, . . . , tk−1 and for some e1, . . . ,em ∈ A. Conversely if
all principal congruences in V can be expressed in this way, then V is con-
gruence k-permutable. Compare this with Theorem 4.13 of §4.3. (Hint.
Use the previous exercise.)

15. Suppose that every finite algebra in V has permutable congruences and that
V is generated by its finite members. Must V be congruence permutable?

16. A subuniverse S of A×B is called locally rectangular if and only if when-
ever 〈a,c〉, 〈b,c〉, 〈b,d〉 ∈ S, then 〈a,d〉 ∈ S. Prove that V is congruence
permutable if and only if every subuniverse of every product A×B ∈ V

is locally rectangular, and that this is equivalant to the property that every
subuniverse of every direct square A×A ∈ V is locally rectangular.

17. Show that if A is an algebra such that CON A contains a 0-1 sublattice
isomorphic to M3 then A has at most one Maltsev term p(x,y,z). The
results of §4.13 are helpful.

exer:PolinResLarge 18. Polin’s variety is residually large. Let P be the variety of Example 10.2
and let A0 and A1 be the algebras given in that example. Let I be a set and
let C = AI

1

I added this
10/26/87.

Check that
references

aren’t
screwed up.

and let B = A0×C. Let 1 ∈C be the element all of whose coordinates are
1. Let θ be the equivalence relation on B which identifies all pairs whose
second coordinates are equal except that 〈1,1〉 and 〈0,1〉 are not θ -related.
Show that θ is a completely meet irreducible congruence on B and that
|B/θ |= |I|+1. Thus Polin’s variety P is residually large.

do we need a
reference for

RL? Walter
has 2 1977

papers;
check if this

is the right
one.

We now present five exercises in which congruence permutability is ap-
plied to develop the theory of topological algebras. All these results may
be found in Taylor 1977b. In all these exercises, A = 〈A,F0,F1, . . .〉 is an
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algebra, and T a topology on A such that each Fi is continuous as a func-
tion Ani → A, where ni is the arity of Fi. This algebra is assumed to lie in
a congruence permutable variety V. We also assume that F0 is a Maltsev
operation: F0(x,x,z)≈ z≈ F0(z,x,x) are identities of V. Thus, these exer-
cises form a generalization of the theory of topological groups.

19. If θ is a congruence relation on A, then the closure θ (in the space A×A)
is again a congruence on A.

20. If U ⊆ A is open, and θ is any congruence on A, then {v ∈ A : 〈u,v〉 ∈
θ , for some u ∈U} is also open.

21. For θ ∈ CON A there exists a unique topology on A/θ so that all opera-
tions of A/θ are continuous and A→ A/θ is an open continuous map.

22. If A is T0, then A is Hausdorff.

23. In any case, A/0A is Hausdorff.

24. The last five exercises are false for topological algebras in general.
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10.3 Congruence Semidistributive Varieties

We need to prove the following thms.

THEOREM 10.5. The following are equivalent for a variety V:

(1) V is congruence meet semidistributive.

(2) [α,β ] = α ∧β for α , β ∈ CON A and for all A ∈ V.

(3) V has no nontrivial abelian algebra.

(4) V has a set of Willard terms. (EXPAND THIS)

Proof. NOTES: The equivalence of (2) and (3) is easy and should be in the
commutator chapter. (2) implies (1) is also easy. (Make sure something like KK
Theorem 2.19 is in the commutator chapter.) �

MORE NOTES: p 8 of KK states that it is shown in Kearnes Szendrei that if
V has a Taylor term, then Abelian algebras are affine. Using this, if A is Abelian
then A x A has an M3 (and so fails SD-meet), giving (1) implies (2). So we need
to show that (2) implies a Taylor term. This is done in Theorem 3.13 of KK,
which actually shows that no strongly abelian tolerance is equivalent to a Taylor
term. The proof is involved. But maybe a direct proof that no abelian congruence
implies Taylor term is easier. Lemma 3.5 may help.

thm: 3.1 THEOREM 10.6. The following are equivalent for a variety V:

(1) V is congruence semidistributive.

(2) V is congruence join semidistributive.

(3) V satisfies
γ ∩ (α ◦β )⊆ (α ∧β )∨ (β ∧ γ)∨ (α ∧ γ)

for congruences.

(4) For some k, V has terms d0(x,y,z), . . . ,dk(x,y,z) satisfying

d0(x,y,z)≈ x;
di(x,y,y)≈ di+1(x,y,y) if i≡ 0 or 1 (mod 3);
di(x,y,x)≈ di+1(x,y,x) if i≡ 0 or 2 (mod 3);
di(x,x,y)≈ di+1(x,x,y) if i≡ 1 or 2 (mod 3);
dk(x,y,z)≈ z.

(5) V satisfies an idempotent Maltsev condition that fails in the variety of semi-
lattices and in every non-trivial variety of modules.
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Proof. Clearly (1) implies (2). That (2) implies (3) is proved by considering
the congruences γ = Cg(x,z) α = Cg(x,y) and β = Cg(y,z) on FV(x,y,z). We
assume that V satisfies SD(∨). Since, α ∨ β = α ∨ γ = β ∨ γ it follows that
α ∨ (β ∧ γ) = β ∨ (α ∧ γ) = α ∨β . Then

α ∨ (β ∧ γ)∨ (α ∧ γ) = α ∨β ;

β ∨ (β ∧ γ)∨ (α ∧ γ) = α ∨β ;

and finally applying SD(∨) again we get

(α ∧β )∨ (β ∧ γ)∨ (α ∧ γ) = α ∨β ,

and it is easy to see (3) follows from this.
Next, (4) is an easy consequence of (3)—or rather of the corollary that (x,z)

belongs to the join of the three binary meets—using the usual characterization of
the relations f (x,y,z)≡ g(x,y,z) mod α , mod β , and mod γ .maybe refer

to something
in the

previous
section.

The Maltsev condition of (4) is idempotent and fails in the variety of semi-
lattices and in every nontrivial variety of modules, as the reader can show; see
Exercise XXXX.

[Put in a proof that (5) implies (2) and that (2) implies (1).] �
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10.4 Congruence Modularity

The early importance of modularity of the congruence lattice is evident in various
generalizations of the Jordan-Hölder theorem (see pp. xxx-yyy of section 2.4),
and the Birkhoff-Ore theory of factorization in modular lattices, later refined by
B. Jónsson to a theory of factorization of finite algebras with modular congruence
lattice (see Chapter 5). The varietal theory of congruence-modularity came into
its own with the advent of the commutator in modular varieties; we will devote
an entire chapter to this topic in a later volume.

Here our purpose is again the modest one of describing congruence-modularity,
especially by writing a Maltsev condition for it. It turns out that there are two
significant Maltsev conditions for modularity.

The modular law, which is a specialization of the distributive law, is:

(α ∨β )∧ γ ≤ (α ∧ γ)∨β if β ≤ γ. (10.4.1) for:modlaw

This is equivalent to the following inequality:

(α ∨ (β ∧ γ))∧ γ ≤ (α ∧ γ)∨ (β ∧ γ). (10.4.2) for:modlaw2

Just as we did for distributivity, we need an approximate form of the modular law
in which ◦ appears instead of ∨. It turns out that the most suitable approximation
is

(α ◦ (β ∧ γ)◦α)∧ γ ≤ (α ∧ γ)◦ (β ∧ γ)◦ (α ∧ γ)◦ · · ·︸ ︷︷ ︸
n factors

(Σn)

This approximation of modularity has the same shortcoming that we saw for
∆n in our discussion of distributivity in the previous section, namely, Σn does
not imply modularity of CON A when it is interpreted in the usual way. For a
counterexample, see Exercise 10.20.5. However, we shall see from the proof of
the next theorem that if we assume (Σn) holds for all β and γ ∈ ConA and for all
symetric, reflexive subuniverses of A2, then CON A is modular.

We can now present the main Maltsev condition for congruence modularity.

Day’s Theorem THEOREM 10.7 (A. Day1969). For a variety V, the following conditions are
equivalent:

i. V is congruence modular;

ii. Con FV(4) is modular;

iii. V satisfies some Σn (as a congruence identity);

iv. There exist 4-ary terms m0, . . . ,mn in the language of V such that the follow-
ing identities hold in

m0(x,y,z,u)≈ x

mi(x,y,y,x)≈ x for all i

mi(x,x,u,u)≈ mi+1(x,x,u,u) for i even (Mn)
mi(x,y,y,u)≈ mi+1(x,y,y,u) for i odd

mn(x,y,z,u)≈ u
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Moreover, V satisfies (iii) for a fixed value of n if and only if V satisfies (iv) for
the same value of n.

Proof. We first prove that for fixed n, (iii) and (iv) are both equivalent to the
auxiliary condition:

v. If α , β , and γ are the principal congruences on FV(x,y,z,u) generated by
{〈x,y〉,〈z,u〉}, {〈y,z〉}, and {〈x,u〉,〈y,z〉}, then

〈x,u〉 ∈ (α ∧ γ)◦β ◦ (α ∧ γ)◦ · · ·︸ ︷︷ ︸
n factors

(10.4.3) for:mod1

We obviously have (iii) implies (v). To see that (v) implies (iv) note that (10.4.3)
means that there are terms m0, . . . ,mn such that

x = mF
0 (x,y,z,u) α ∧ γ mF

1 (x,y,z,u) β mF
2 (x,y,z,u)

α ∧ γ mF
3 (x,y,z,u) β · · · mF

n (x,y,z,u) = u

where F = FV(x,y,z,u). Since β ≤ γ we have x γ mF
i (x,y,z,u) γ mF

i (x,y,y,x).
Since γ is trivial on the subalgebra of F generated by x and y, V satisfies
x≈ mi(x,y,y,x). Similar reasoning shows that the other equations of (iv) hold.Possibly

make a
general

lemma to
this effect for

§1 or 2.

To see that (iv) implies (iii), let α , β , and γ ∈ CON A for some A ∈ V and
suppose that 〈a,d〉 ∈ γ ∧ (α ◦ (β ∨ γ)◦α). Hence there are b and c ∈ A so that
the relations in Figure 10.3.

a d

b c

α

β ∧ γ

α

γ

Figure 10.3: fig:modfig1

Let
ei = mA

i (a,b,c,d) for 0≤ i≤ n

Now (iv) yields

e0 = mA
0 (a,b,c,d) = a

ei = mA
i (a,b,c,d) γ mA

i (a,b,b,a) = a for all i

ei = mA
i (a,b,c,d) α mA

i (a,a,d,d) = mA
i+1(a,a,d,d)

α mA
i+1(a,b,c,d) = ei+1 for i even

ei = mA
i (a,b,c,d) β mA

i (a,b,b,d) = mA
i+1(a,b,b,d)

β mA
i+1(a,b,c,d) = ei+1 for i odd

en = mA
n (a,b,c,d) = d
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Thus we have

a = e0 (α ∧ γ) e1 (β ∧ γ) e2 (α ∧ γ) e3 (β ∧ γ) e4 · · ·en = d,

showing that (Σn) holds. Thus (iii), (iv), and (v) are equivalent.
Now the fact that (i) implies (ii), and that (ii) implies (v) are both trivial. We

will show that (iv) implies (i), which will show that (i)–(v) are equivalent.
Let us first notice that if, in the above proof that (iv) implies (iii), we weaken

the assumption that α is transitive and assume only that α is a reflexive sym-
metric subuniverse of A2, then we still obtain the slightly weaker conclusion
that

〈a,d〉 ∈ (α ∧ γ)◦ (α ∧ γ)◦ (β ∧ γ)◦ (α ∧ γ)◦ · · · , (10.4.4) for:mod2

with the pattern of two (α ∧ γ)–factors followed by one β–factor repeating as
long as necessary. (To the above argument, we need only add the observation
that mA

i (a,b,c,d) γ mA
i (a,a,d,d), which is true since both are γ-related to a.) In

proving the modular law (10.4.2) from (iv) we will use (10.4.4) with α replaced
by the reflexive symmetric subuniverse

Γk = α ◦ (β ∧ γ)◦α ◦ (β ∧ γ)◦ · · · ◦α with 2k+1 factors

Since
⋃

k<ω(Γk ∧ γ) = (α ∨ (β ∧ γ))∧ γ , modularity will follow from the inclu-
sions

Γk ∧ γ ≤ (α ∧ γ)∨ (β ∧ γ)

which we will prove by induction on k. The inclusion is obvious for k = 0, and
for the inductive step, we first observe that Γk+1 = Γk ◦ (β ∧ γ) ◦α , and so if
〈a,d〉 ∈ Γk+1 ∧ γ we have that for some b, c ∈ A the situation of Figure 10.4
holds.

a d

b c

Γk

β ∧ γ

Γk

γ

Figure 10.4: fig:modfig2

Thus by (10.4.4) we have 〈a,d〉 is in a finite relational product of the rela-
tions Γk ∧ γ and β ∧ γ . Now by induction, we have 〈a,d〉 ∈ (α ∧ γ)∨ (β ∧ γ).
This completes the proof of the theorem. �

It is easy to see that the sublattice of FV(x,y,z,u) generated by the congru-
ences α , β , and γ defined in condition (v) is a homomorphic image of the lattice
diagrammed in Figure 10.5.

Obviously if V is congruence modular, the pentagon of Figure 10.5 must col-
lapse. One of the surprising consequences of Day’s result is that this is sufficient.
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γ = Cg({〈x,u〉,〈y,z〉})

β = Cg(y,z)

α = Cg({〈x,y〉,〈z,u〉})

Figure 10.5: fig:modfig3

pentagon COROLLARY 10.8. Let α , β , and γ be the congruences on FV(x,y,z,u) gen-
erated by {〈x,y〉,〈z,u〉}, {〈y,z〉}, and {〈x,u〉,〈y,z〉} (see Figure 10.5). Then V is
congruence modular if and only if β ∨ (α ∧ γ) = γ , which is equivalent to

〈x,u〉 ∈ β ∨ (α ∧ γ)

�

By Theorem 10.7, V is congruence modular if and only if CON FV(4) is
modular. This statement is false if 4 is replaced by 3. Indeed, the variety of
sets is not congruence modular, but CON FV(3) is the partition lattice on a three
element set, which is M3.

Notice that the congruence α of the corollary is the kernel of the endomor-
phism of FV(x,y,z,u) which maps x 7→ x, y 7→ x, z 7→ u, and u 7→ u. By the same
token, γ is also the kernel of a homomorphism from FV(4) onto FV(2). Since
the copy of N5 of Figure 10.5 lies above α ∧γ , the N5 lies in the congruence lat-
tice of a subdirect product of two copies of FV(2). Thus the next result follows
from the last corollary.

mod3 COROLLARY 10.9. A variety V is modular if and only if the variety generated
by FV(2) is. �

Mention
Walter’s

problem that
shows that

distributivi-
tiy cannot be

defined by
with 2

variable
terms—in

the last
section.

More intro
here too.

We will now use Theorem 10.7 to investigate other conditions equivalent to
congruence modularity for varieties. We begin with an important lemma.

mod3.5 LEMMA 10.10. Let V be a modular variety. Then there is a term d(x,y,z) such
that

i. V satisfies d(x,x,z)≈ z.

ii. If A ∈ V and α , β , and γ ∈ ConA, and if 〈a,b〉 ∈ α ∧ (β ∨ γ) then

a (α ∧β )∨ (α ∧ γ) d(a,b,b).
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In a modular
variety it is
easy to see
that a term

satisfying (i)
and (ii) will
also satisfy:

x θ y implies
x [θ ,θ ] d(x,y,y).

Indeed, in
A(θ),

〈x,x〉 η0∧
(∆θ ,θ ∨

η1) 〈x,y〉.
Hence by

(ii),
〈x,x〉∆θ ,θ 〈x,d(x,y,y)〉.

Now the
result

follows from
4.9 of Freese

and Ralph
McKenzie

1987.

Proof. Since V is modular there are terms such that V satisfies (Mn). Define
terms qi(x,y,z) inductively by letting q0(x,y,z) = z and

qi+1(x,y,z) =

{
mi+1(qi(x,y,z),x,y,qi(x,y,z)) i even
mi+1(qi(x,y,z),y,x,qi(x,y,z)) i odd

Now define d(x,y,z) = qn(x,y,z). A straighforward induction shows that V sat-
isfies qi(x,x,z)≈ z from which (i) follows.

Let θ = (α ∧β )∨ (α ∧ γ). Suppose that 〈x,y〉 ∈ α ∧ (β ∨ γ). Then x α y and
there are elements x j ∈ A such that x = x0 β x1 γ x2 · · · xk = y. We will show by
induction on i that

qi(x,y,y) θ

{
mi(y,y,x,x) i even
mi(y,y,y,x) i odd

This is trivial for i = 0. Assume i is even. Then

mi+1(qi(x,y,y),x,x,qi(x,y,y)) = qi(x,y,y)

θ mi(y,y,x,x)

= mi+1(y,y,x,x).

Hence we have the following relations.
mi+1(qi(x,y,y),x,x,qi(x,y,y)) θ mi+1(y,y,x,x)

β β

mi+1(qi(x,y,y),x,x1,qi(x,y,y)) α mi+1(y,y,x1,x)
γ γ

mi+1(qi(x,y,y),x,x2,qi(x,y,y)) α mi+1(y,y,x2,x)
β β

...
...

mi+1(qi(x,y,y),x,y,qi(x,y,y)) α mi+1(y,y,y,x)

Since θ =α∧(β ∨θ)=α∧(γ∨θ) by modularity, the first α can be replaced
with θ . Then the second α can be replaced with θ . Finally, using the definition
of qi and the last row, we obtain

qi+1(x,y,y) = mi+1(qi(x,y,y),x,y,qi(x,y,y)) θ mi+1(y,y,y,x).

For i odd the proof is similar (although somewhat more awkward since you use
the sequence x β x1 γ x2 · · · y backwards).

Thus when i = n, we obtain x θ d(x,y,y) as desired. �

The next corollary shows that in an algebra in a modular variety, the congru-
ences α ∧ (β ∨ γ) and γ ∨ (α ∧ β ) always permute. This is a surprising result
about modular varieties. But notice that in a distributive variety α ∧ (β ∨ γ) ≤
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γ ∨ (α ∧β ), and so obviously permute. This phenomenom of a result which is
nontrivial for modular varieties but trivial for distributive varieties is really part
of the commutator theory introduced in Chapter 4 of the first volume. We will
take up a thorough study of the commutator in a later volume.

cor1to10.8 COROLLARY 10.11. Let α , β , and γ ∈ ConA, where A is an algebra in a
congruence modular variety V. Then α ∧ (β ∨ γ) and γ ∨ (α ∧β ) permute.

Proof. As before let θ = (α ∧β )∨ (α ∧ γ) and assume that

x α ∧ (β ∨ γ) y γ ∨ (α ∧β ) z

Then we calculate

x θ d(x,y,y) γ ∨ (α ∧β ) d(x,y,z) α ∧ (β ∨ γ) d(x,x,z) = z.

Since θ ≤ γ ∨ (α ∧β ), this shows that γ ∨ (α ∧β ) and α ∧ (β ∨ γ) permute. �

COROLLARY 10.12. Suppose that A lies in a congruence modular variety
and that L is a sublattice of CON A isomorphic to M3. Then all the members
of L permute with each other. If in addition the least and greatest elements
of L are the least and greatest elements of CON A, then the term d(x,y,z) of
Lemma 10.10 is a Maltsev term for A, and thus V(A) is permutable.

Proof. The first part follows directly form the previous corollary. To see the rest,
let β , γ , and δ be three congruences pairwise meet to 0A and pairwise join to 1A.
By the first part, these congruences permute with oneanother and so A∼= B×C,
where B=A/β and C=A/γ . If b∈B and c, c′ ∈C, then 〈b,c〉 β ∧ (γ ∨δ ) 〈b,c′〉
and so Lemma 10.10

〈b,c〉 (β ∧ γ)∨ (β ∧δ ) d(〈b,c〉,〈b,c′〉,〈b,c′〉).

Since this congruence is 0A, c = d(c,c′,c′), showing that d(x,y,z) is a Maltsev
term for C. Similarly it is a Maltsev term for B, and thus for A. �

Abelian algebras are defined in section 4.13 and it is shown that an Abelian
algebra in a congruence permutable variety is polynomially equivalent to a mod-
ule over a ring (and conversely). It is pointed out that this is actually true under
the weaker assumption of congruece modularity. The next corollary shows that
if A is an Abelian algebra in a congruence modular variety, then V(A) is con-
gruence permutable and thus we see that an Abelian algebra in a congruence
modular variety is polynomially equivalent to a module over a ring.

COROLLARY 10.13. Let A be an Abelian algebra in a congruence modular
variety, then V(A) is congruence permutable.

Proof. Definition 5.151 defines ∆(A), a congruence on A2, by

∆(A) = CgA2
({〈〈x,x〉,〈y,y〉〉 : x, y ∈ A})
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Let ∆ = ∆(A). We claim that the projection kernels, η0 and η1, both join with ∆

to 1A2 and meet with it to 0A2 . The calculations for the join are straightforward.
For the meet suppose 〈〈x,y〉,〈x,z〉〉 ∈ η0∧∆, then 〈〈y,y〉,〈y,z〉〉 ∈ η1 ◦ (η0∧∆)◦
η1. Hence by modularity

〈〈y,y〉,〈y,z〉〉 ∈ η0∧ (η1∨ (η0∧∆)) = (η0∧η1)∨ (η0∧∆) = η0∧∆

Since A is Abelian, Theorem 4.152 implies y = z and so η0∧∆ = 0A2 .
The result now follows from the previous corollary. �
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awkward
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In the introduction we pointed out that congruence permutability could be
viewed as completing a parallelagram, see Figure 10.1. In modular varieties such
parallelagrams can be completed provided we have certain additional points. We
now investigate some of these geometric conditions which are equivalent to con-
gruence modularity. The first condition is due to H.-P. Gumm, who initiated this
type of condition.

We call a term d(x,y,z) a difference term or a 3-ary difference term or a
Gumm difference term for V if for any A ∈ V, α , β , γ ∈ ConA, and x, y, z,
u, and v ∈ A, the implication of Figure 10.6 holds.

u v

x y

z

β

α

γ implies

u v

x y

z

β

α

γγ ∨ (α ∧β )

dA(z,v,u)

Figure 10.6: fig:gumm

gummdiff THEOREM 10.14. A variety V is congruence modular if and only if V has
a difference term. Moreover, if there is a term d(x,y,z) such that V satisfies
conditions (i) and (ii) of Lemma 10.10, then d(x,y,z) is a difference term for V.

Proof. Assume V is congruence modular. Then it satisfies condition (iv) of
Theorem 10.7. Let d(x,y,z) be a term satisfying conditions (i) and (ii) of
Lemma 10.10. Assume that A ∈ V and that the relations of the left side of Fig-
ure 10.6 hold in A. It follows easily from condition (i) that d(z,v,u) α u. The
following relations are easily checked.

d(z,v,u) γ d(y,v,u) (10.4.5) for:gumm1

d(y,v,u) β d(y,y,x) = x (10.4.6) for:gumm2

d(y,v,u) α d(x,u,u) (10.4.7) for:gumm3

Since 〈x,u〉 ∈ β ∧(α∨γ), condition (ii) implies that d(x,u,u) (α∧β )∨(β ∧γ) x.
Hence by (10.4.7), d(y,v,u) α ∨ (β ∧ γ) x. So by (10.4.6), d(y,v,u) β ∧ (α ∨
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(β ∧ γ)) x. But β ∧ (α ∨ (β ∧ γ)) = (α ∧ β )∨ (β ∧ γ) and thus by (10.4.5),
d(z,v,u) γ ∨ (α ∧β ) x, as desired.

For the converse, see Exercise 10.20.1. �
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A useful variant of Gumm’s difference term is a four variable term discovered
by E. W. Kiss. This variant only requires 4 points but the term does depend on
all 4 of its variables.

mod5 THEOREM 10.15. The following are equivalent for a variety V.

i. V is congruence modular.

ii. If α , β , and γ ∈ CON A, A ∈ V, then

(α ∨ γ)∧ (β ∨ γ)⊆ (γ ∨ (α ∧β ))◦α.

iii. There is a term q(x,y,z,u) such that if α , β , and γ ∈ CON A, A ∈ V, then
the implication of Figure 10.7 holds.

u

x y

z

β

α

γ
implies

u

x y

z

β

α

γ
γ ∨ (α ∧β )

qA(x,y,z,u)

Figure 10.7: fig:kiss

Proof. Let α , β , and γ ∈ CON A, A ∈ V. By modularity and Corollary 10.11
we have

(α ∨ γ)∧ (β ∨ γ) = (α ∧ (β ∨ γ))∨ γ

= (α ∧ (β ∨ γ))∨ γ ∨ (α ∧β )

= [γ ∨ (α ∧β )]◦ [(α ∧ (β ∨ γ))]

⊆ [γ ∨ (α ∧β )]◦α,

proving that (i) implies (ii).
Assume (ii) and let α , β , and γ be the congruences on F = FV(x,y,z,u)

generated by {〈x,y〉,〈z,u〉}, {〈x,u〉}, and {〈y,z〉}, respectively. The inclusion
of (ii) immediately implies that there is an element qF(x,y,z,u) ∈ FV(x,y,z,u)
satisfying the indicated relations of Figure 10.7. It is easy to see that q(x,y,z,u)
satisfies (iii).
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To see that (iii) implies (i), let α , β , and γ be the congruences in Figure 10.5.
Now the relations of the first part of Figure 10.7 hold with the roles of β and γ

reversed. Thus by (iii) we have

x (β ∨ (α ∧ γ)) q(x,y,z,u) α u.

Since β ≤ γ , we have that u γ x γ q(x,y,z,u) and hence, u α ∧ γ q(x,y,z,u). Thus
x β ∨ (α ∧ γ) u and the modularity of V now follows from Corollary 10.8. �

mod6 LEMMA 10.16. Let q(x,y,z,u) be a term which satisfies condition (Iii) of the
last theorem. Then

i. q(x,x,u,u)≈ u is an identity of V.

ii. q(x,y,y,x)≈ x is an identity of V.

iii. r(x,y,z,u) = q(z,y,x,u) also satisfies condition (iii) of Theorem 10.15.

Proof. If we let β = γ = 0 then γ ∨ (α ∧β ) = 0, and so the implication of Fig-
ure 10.7 with x = u and y = z gives q(x,y,y,x) = x. A similar argument proves
(ii).

To see (iii), suppose that the relations indicated in the left side of Figure 10.7
hold for some A ∈ V. Note

r(x,y,y,u) β r(x,y,y,x) = q(y,y,x,x) = x

q(x,y,y,u) β q(x,y,y,x) = x

Moreover, r(x,y,y,u) α r(x,x,x,u)= q(x,x,x,u) α q(x,y,y,u). Thus r(x,y,y,u)α ∧β

q(x,y,y,u). Since r(x,y,z,u) γ r(x,y,y,u) and q(x,y,z,u) γ q(x,y,y,u), we have
that r(x,y,z,u) γ ∨ (α ∧β ) q(x,y,z,u). Moreover, r(x,y,z,u) α r(x,x,u,u)= q(u,x,x,u)=
u. From this it follows that q(x,y,z,u) satisfies condition (iii) of Theorem 10.15.

�

The next theorem shows that we can form a difference term from a 4-ary
difference term.

mod7 THEOREM 10.17. If q(x,y,z,u) is a term satisfing condition (iii) of Theorem 10.15,
then d(x,y,z) = q(x,y,z,z) is a 3-ary difference term.

Proof. Suppose that A is an algebra in V which has elements and congruences
satisfying the relations of the left side of Figure 10.6. By part (iii) of the last theo-
rem, the relations of the right side of Figure 10.6 hold if we replace dA(z,w,u) by
qA(z,y,x,u). But qA(z,y,x,u) and dA(z,w,u) = qA(z,w,u,u) are both α-related
to u, and clearly they are β -related. This implies that the relations of Figure 10.6
hold. �
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Now we come to Gumm’s Maltsev condition for congruence modularity.

gummterms THEOREM 10.18. For a variety V the following conditions are equivalent.

i. V is congruence modular.

ii. For any A ∈ V and any α , β , and γ ∈ ConA,

(α ◦β )∧ γ ≤ β ◦α ◦ [(α ∧ γ)∨ (β ∧ γ)].

iii. For some k, there exist terms p, d1, . . . ,dk in the language of V such that the
following equations hold identically in V:

x≈ p(x,z,z)

p(x,x,z)≈ d1(x,x,z)

di(x,y,x)≈ x for all i

di(x,x,z)≈ di+1(x,x,z) for i even (Gk)
di(x,z,z)≈ di+1(x,z,z) for i odd

dk(x,y,z)≈ z

Proof. To see (i) implies (ii), suppose that α , β , and γ ∈ ConA for some A ∈
V and that 〈a,c〉 ∈ γ , 〈a,b〉 ∈ α , and 〈b,c〉 ∈ β . Since V is modular, it has a
term d(x,y,z) satisfying conditions (i) and (ii) of Lemma 10.10. Using this we
calculate

a = d(c,c,a) β d(c,b,a) α d(c,a,a) (α ∧ γ)∨ (β ∧ γ) c.

Now assume (ii) holds. In FV(x,y,z) let α = Cg(x,y), β = Cg(y,z), and
γ = Cg(x,z). By (ii) there are three variable terms p and di, for i = 1, . . . ,k, such
that x β p(x,y,z), p(x,y,z) α d1(x,y,z), di(x,y,z) α ∧ γ di+1(x,y,z), for i even,
and di(x,y,z) β ∧ γ di+1(x,y,z), for i odd. These fact imply that V satisfies the
equations (Gk) by the usual arguments.

Given Gumm terms satisfying (iii), we can define Day tems by:

m0(x,y,z,u) = m1(x,y,z,u) = x

m2(x,y,z,u) = p(x,y,z)

m3(x,y,z,u) = d1(x,y,u)

m4(x,y,z,u) = d1(x,z,u)

and for i > 0:
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m4i+1(x,y,z,u) = d2i(x,z,u)

m4i+2(x,y,z,u) = d2i(x,y,u)

m4i+3(x,y,z,u) = d2i+1(x,y,u)

m4i+4(x,y,z,u) = d2i+1(x,z,u)

It is straightforward to verify that these terms satisfy (M2k+1). �
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We close this section with Gumm’s Shifting Lemma Gumm 1978a, which
plays an important role in the commutator theory.

shiftinglemma THEOREM 10.19 (THE SHIFTING LEMMA). If CON A is modular and α ,
β , γ ∈ ConA, then the implication of Figure 10.8 holds for x, y, z, and u ∈ A.
Moreover, if the implication of Figure 10.8 holds for all algebras in a variety V,
then V is congruence modular.

u

x y

z

β

α

implies

u

x y

z

β

α

γ γγ ∨ (α ∧β )

Figure 10.8: fig:shifting

Proof. To see the first statement, note that 〈x,u〉 ∈ β ∧ (α ∨ (β ∧ γ)) and so
by modularity 〈x,u〉 ∈ (α ∧ β )∨ (β ∧ γ). For the second statement, see Exer-
cise 10.20.6. �

Exercises 10.20ex10.4

exer:gummmod 1. Use Corollary 10.8 to show that if a variety V has a difference term, then
V is modular.

2. (Alan Day 1969) Show how to derive terms satisfying (M2) from a Maltsev
term p(x,y,z). Conversely, given terms satisfying (M2) derive a Maltsev
term.

3. Show that if V is 3-permutable with terms p1 and p2 which satisfy condi-
tion (iii) of Theorem 10.1 (with k = 3), then V satisfies (M3).
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4. Show that the variety of lattices satisfies (M3). Thus the converse of the
previous exercise is not true.

exer:notmod 5. Show that Polin’s algebra, given in Example 10.2, satisfies (Σ3), but is not
modular.

exer:shiftinglemma 6. Prove that if the implication of Figure 10.8 holds for all algebras in a vari-
ety V, then V is congruence modular.
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10.5 Congruence Regularity and Uniformity

A family F of equivalence relations on a set A is called regular if each θ ∈ F
is determined (within F) by each of its blocks, i.e., if θ , φ ∈ F and a/θ = a/φ

for some a ∈ A, then θ = φ . This property is evident for the family of partitions
of an affine space into parallel flats, and thus also for the congruence relations
on a vector space. Thus, in general, we call an algebra A congruence regular
if and only if ConA is a regular family of equivalence relations, and as usual,
we will call a variety congruence regular if and only if each of its algebras is
congruence regular. As we will see in §10.7, congruence regularity of a variety
V is stronger than modularity, but independent of distributivity; it also implies
that V is congruence k-permutable for some k. Later in this section we will
consider the even stronger properties of congruence uniformity and coherence.

Our first lemma shows that regularity can be established for an entire variety
by checking the above condition only for θ = 0.

reg1 LEMMA 10.21. V is congruence regular if and only if the following condition
holds for all A ∈ V, φ ∈ ConA, and all a ∈ A:

a/φ = {a}⇒ φ = 0.

Proof. The condition is a special case of the definition (namely θ = 0), and
hence follows from regularity. Conversely, let us suppose that the condition holds
for V. To prove regularity, let A ∈ V, and θ , φ ∈ ConA and suppose that a/θ =
a/φ for some a ∈ A. It easily follows that a/(θ ∧φ) = a/(θ ∨φ). Thus θ ∨φ Do we need

parentheses
around these

joins?

considered as a congruence on A/θ ∧ φ has a singleton block. The condition
tells us that θ ∨ φ is the zero congruence on A/θ ∧ φ . Thus θ ∨ φ = θ ∧ φ , so
θ = φ , establishing regularity. �

Before stating our Maltsev condition for regularity, we review congruence
generation in a form suitable for the application here and later in this chapter.
This is an easy reformulation of the Congruence Generation Theorem (4.13).

reg2 LEMMA 10.22. For any algebra A and any Z ⊆ A2, the congruence CgA(Z)
generated by Z consists of all pairs 〈c,d〉 such that for some e ∈ Ak, some (k+2)-
ary terms t1, . . . , tm, and some pairs 〈ai,bi〉 ∈ Z, we have

c = tA
1 (a1,b1,e)

tA
1 (b1,a1,e) = tA

2 (a2,b2,e)
...

tA
m (bm,am,e) = d.

�

Before presenting a Maltsev condition for regularity, let us remark that well This needs to
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same title.
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before the theory of Maltsev conditions, R. L. Vaught 1961 made some general
model-theoretic observations on regularity. His remarks, which were based on
Beth’s Theorem, held that, under regularity, there must exist some formulas of
first order logic yielding one congruence block in terms of another one. Of course
condition (iii) of the following Theorem yields such formulas very explicitly
(interpreting = as an arbitrary congruence).

Give credits
here to

Csakany and
Wille.

Should
Gratzer or

Hashimoto
get credit

also?

reg3 THEOREM 10.23. For a variety V, the following conditions are equivalent:

i. V is congruence regular;

ii. FV(3) is congruence regular;

iii. there are ternary terms g1, . . . ,gn in the language of V such that V satisfies
the implication [

n∧
i=1

gi(x,y,z)≈ z

]
←→ x≈ y.

iv. V has ternary terms g1, . . . ,gn and 5-ary terms f1, . . . , fn such that the fol-
lowing are identities of V:

gi(x,x,z)≈ z 1≤ i≤ n

x≈ f1(x,y,z,z,g1(x,y,z))

f1(x,y,z,g1(x,y,z),z)≈ f2(x,y,z,z,g2(x,y,z))

f2(x,y,z,g2(x,y,z),z)≈ f3(x,y,z,z,g3(x,y,z))
...

fn(x,y,z,gn(x,y,z),z)≈ y.

REMARK 10.24. In §10.7 we will be able to derive a slightly simpler version
of this Maltsev condition, one in which the fi’s do not depend on their fifth
variables.

Proof. The implications (iv)⇒ (iii) and (i)⇒ (ii) are immediate. For (iii)⇒ (i),
we will assume (iii) and derive the condition of Lemma 10.21. Given a singleton
congruence block a/φ , we will use the terms gi supplied by (iii) to prove that φ

is 0A. For any 〈b,c〉 ∈ φ we have, for each i,

gi(b,c,a) φ gi(b,b,a) = a

and so, by assumption
gi(b,c,a) = a

for each i. Now, by (iii), b = c, and thus φ = 0A
To complete the proof we will show that (ii) implies (iv). We will apply

regularity to two congruences θ and φ on the free algebra FV(x,y,z), which we
now define. First, θ is the kernel of the endomorphism extending the map

x,y 7→ x z 7→ z.
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And then φ is the congruence generated by

Z = {〈z,u〉 : u ∈ z/θ}.

It is obvious that φ ⊆ θ and z/θ ⊆ z/φ ; hence z/θ = z/φ . By regularity θ = φ

and hence in particular, 〈x,y〉 ∈ φ . By Lemma 10.22, we have

x = t1(z,g1,e1, . . . ,em)

t1(g1,z,e1, . . . ,em) = t2(z,g2,e1, . . . ,em)

...
tn(gn,z,e1, . . . ,em) = y

for some e1, . . . ,em,g1, . . . ,gn ∈ FV(x,y,z) such that 〈z,gi〉 ∈ θ for each i. From
the definition of θ it is clear that for each i, V identically satisfies gi(x,x,z)≈ z.
Now if we define

fi(x,y,z,u,v) = ti(u,v,e1(x,y,z), . . . ,em(x,y,z)),

then we obtain the equations (iv) by the usual reasoning of this chapter. � more details?

Groups of course are congruence regular; in fact the equations (iv) obtain
with n = 1, by defining

g1(x,y,z) = x−1yz f1(x,y,z,u,v) = xuz−1.

For some subtler examples of regularity, the reader is referred to Exercises 3, 4, check these
numbers18, 21, 22, 22, 24, 26, and Example 10.28 below.

A Maltsev condition is linear if it is defined by equations of the simple form
t(variables) ≈ x or t(variables) ≈ s(variales), where t and s are function sym-
bols.. The Maltsev conditions for k-permutability, for congruence distributivity cite Hobby

McKenzieand modularity are all linear whereas the one for congruence regularity give in
condition (iv) of Theorem 10.23 is not. The next theorem shows that congruence
regularity cannot be defined by a linear Maltsev condition. This theorem uses a
clever idea of Libor Barto. is there a

coauthor;
also maybe

say why this
is important

regnotlinear THEOREM 10.25. Congruence regularity cannot be defined by a linear Maltsev
condition.

Proof. We begin with Barto’s construction. Let B be an algebra and let A be
a set. Let f : B � A and g : A � B be maps with f (g(x)) = x. So A is a set
retraction of B. For each term t(x1, . . . ,xn) of B we define an operation tA by

tA(a1, . . . ,an) = f (tB(g(a1), . . . ,g(an))).

A is the algebra with these operations. It is easy to check that if B satisfies
a linear Maltsev condition then A also satisfies it. The reader can check, for
example, that if p(x,y,z) is a Maltsev term for B then pA(x,y,z) is a Maltsev
operation for A.
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One subtle point of this construction is that if, for example, q(x,y)= t(s(x,y),r(x,y))
it is not necessarily the case that qA(x,y) = tA(sA(x,y),rA(x,y)) which is why
nonlinear Maltsev condtions of B may fail in A.

Now let B = {〈0,0〉,〈0,1〉,〈1,0〉,〈1,1〉} with the 3-place operation x+ y+ z
modulo 2. As above the variety generated by B is congruence regular. Let A =
{0,1,2} and define maps f (〈x,y〉) = x+ y and g(0) = 〈0,0〉, g(1) = 〈1,0〉 and
g(2) = 〈1,1〉.

The terms for B have the form t(x1, . . . ,xn) = y1 + · · ·+ ym modulo 2, where
the y j’s are a subset of the xi’s and m is odd (so that t is idempotent).

We claim that the partition θ with blocks [0,2] and [1] is a congruence of
A. By symmetry it is enough to show tA(0,a2, . . . ,an) θ tA(2,a2, . . . ,an). We
may assume tA depends on its first variable. If tB(〈0,0〉,b2, . . . ,bn) = 〈u,v〉 then
tB(〈1,1〉,b2, . . . ,bn) = 〈u + 1,v + 1〉 modulo 2. Since f (〈0,1〉) = f (〈1,0〉) it
follows that θ is a congruence on A. We leave the details for the reader.

Thus A does not lie in a congruence regular variety which shows that con-
gruence regularity cannot be defined by a linear Maltsev condition. �

Notice that although condition (iii) of the last theorem is simpler than (iv),
condition (iii) involves implications while (iv) is expressed in terms of equa-
tions (and thus (iv) is a Maltsev condition). The next theorem shows that it is
always possible to convert a varietal condition expressed with implications into
a Maltsev condition. It is an immediate consequence of Lemma 10.22.

Horn2eq THEOREM 10.26. Let V be a variety and let si and ti, i = 0, . . . ,n, be k-ary
terms. The the following are equivalent:

i. V satisfies the implication[
n∧

i=1

si(x)≈ ti(x)

]
→ s0(x)≈ t0(x)

ii. For some m, V has (k+2)-ary terms f1, . . . , fm such that

s0(x)≈ f1(x,si1(x), ti1(x))

f1(x, ti1(x),si1(x))≈ f2(x,si2(x), ti2(x))
...

fm(x, tim(x),sim(x))≈ t0(x)

�

We now turn our attention to the closely related topic of congruence unifor-
mity. As we mentioned in the introduction to this chapter, a variety V is con-
gruence uniform if and only if each congruence θ on every algebra A ∈ V is
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a uniform equivalence relation in the sense that all blocks of θ have the same
cardinality. Now it is readily apparent from Lemma 10.21 that every congruence
uniform variety is congruence regular. As we will see in the exercises, unifor-
mity itself is not Maltsev definable, and in fact remains rather mysterious (even
though it figured importantly in Chapter 9, where we saw it deduced from nar- check this

referencerowness). Thus it turns out to be more fruitful, in the present context, to study a
slightly weaker, but Maltsev definable, property which is nevertheless still strong
enough to imply regularity.

We define a variety V to be weakly congruence uniform if and only if there
exists a cardinal function f , mapping the class of cardinals into itself, such that
|b/θ | ≤ f (|a/θ |) whenever A ∈ V, a, b ∈ A, and θ ∈ ConA. Uniformity, of
course, corresponds to the special case f (κ) = κ . Let us define the iterated
exponential in(κ), n ∈ ω , by

i0(κ) = κ in+1(κ) = 2in(κ).

We call a variety congruence n-uniform if it satisfies the definition of congru-
ence weakly congruence uniform with f (κ) = in(κ +ℵ0). We shall show that
a variety is weakly congruence uniform if and only if it is congruence n-uniform
for some n. Exercise 10.34.20 shows that if one block of a conguence of an al-
gebra in a weakly congruence uniform variety is finite, then all blocks are finite.
Hence the strongest of these conditions, congruence 0-uniformity, guarantees
that all the blocks of a congruence with an infinite block will have the same size.
Notice that even this is weaker than conguence uniformity. The next theorem
will show that these concepts are stronger than congruence regularity.

reg4 THEOREM 10.27. Every weakly congruence uniform variety is congruence
regular.

Proof. Suppose that V is weakly congruence uniform with f as in the definition.
By way of contradiction, we will assume that V is not congruence regular. Thus
by Lemma 10.21 above, V has an algebra A which has a congruence φ with both
a one-element block and a block with more than one element: |a/φ | = 1 and
|b/φ |= µ ≥ 2. Let ν be a cardinal satisfying 2ν > f (|A|). Let C = Aν and let φ

be the congruence on C that identifies x and y if and only if xi φ yi for 1≤ i < ν

(no restriction on the 0 coordinate). If we let a and b be the ν-tuples all of whose
coordinates are a and b, respectively, then, since a is congruent modulo φ only
to ν-tuples which differ in at most the zeroth coordinate, |a/φ |= |A| and

|b/φ | ≥ µ
ν ≥ 2ν > f (|A|) = f (|a/φ |),

in contradiction to the definition of weak uniformity. �

reg5 EXAMPLE 10.28. This example shows that there is a congruence regular vari-
ety which is not weakly congruence uniform.

Let V be the variety with operation symbols h, g1, and g2 defined by the
equations
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g1(x,x,z)≈ g2(x,x,z)≈ z

h(g1(x,y,z),x,y,z)≈ x

h(g2(x,y,z),x,y,z)≈ y.

It is obvious that V satisfies (iii) of Theorem 10.23, and hence is congruence
regular. For the failure of weak uniformity, we let µ be any ordinal ≥ 2, and
define ternary operations g1 and g2 on µ×{0,1} as follows:

g1(〈a, i〉,〈b, j〉,〈c,k〉) =

{
〈c,k〉if 〈a, i〉= 〈b, j〉
〈0, i+ j+ k〉otherwise

g2(〈a, i〉,〈b, j〉,〈c,k〉) =

{
〈c,k〉if 〈a, i〉= 〈b, j〉
〈1,k〉otherwise.

The addition here is modulo 2, of course. Notice that every set B withAdd a
phantom to

the above
display

2× 2 ⊆ B ⊆ µ × 2 is closed under g1 and g2. Given such a B, we consider the
following four conditions on a quaternary operation h,

h(〈0, i+ j+ k〉,〈a, i〉,〈b, j〉,〈c,k〉) = 〈a, i〉
h(〈1,k〉,〈a, i〉,〈b, j〉,〈c,k〉) = 〈b, j〉
h(〈c,k〉,〈a, i〉,〈a, i〉,〈c,k〉) = 〈a, i〉
h(〈∗,s〉,〈∗, i〉,〈∗, j〉,〈∗,k〉) = 〈∗,s+ j+ k〉

where the ∗’s represent arbitrary elements.
The first three conditions specify h on some special elements of B4. It is easy

to check that where these specifications overlap with one another they agree, and
so we easily obtain a partial operation obeying the first three conditions. But the
fourth condition holds for this partial operation (as one easily checks), and so it
is evidently possible to find a total operation h satisfying all four conditions.

It is now trivial to check that the algebra B = 〈B,h,g1,g2〉 satisfies the equa-
tions defining V. Moreover it is apparent from the fourth condition that second
coordinate projection defines a congruence θ on B. Since the image of the sec-
ond projection has only two elements, this congruence has exactly two blocks,

Bi = B∩ (µ×{i}) for i = 0,1.

By construction, the cardinalities of these blocks are completely arbitrary except
for the obvious constraint that 2≤ |Bi| ≤ µ . Since µ itself is arbitrary, we have
an obvious failure of weak uniformity.

We remark that any congruence regular variety which is not weakly congru-
ence uniform must be residually large see Exercise 10.34.17.
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The few examples of uniformity which we know (see, for example, Exer-
cises 10.34.21, 24 and 26) seem to have a general flavor reminiscent of group
theory, especially the cancellation available in group theory. But weak unifor-
mity, in its most general form, has a surprisingly different flavor, namely that
of infinitary combinatorics. In order to develop a Maltsev condition for weak
uniformity, we need a couple of lemmas from Ramsey theory. This theory began
with the famous theorem of F. P. Ramsey 1930, and was later developed by P.
Erdős, A. Hajnal and R. Rado.

Let X (n) denote the set of all n-element subsets of X . For finite n and cardinals
κ , λ , µ , the symbolic expression

κ → (λ )n
µ

abbreviates the following assertion: if κ(n)=
⋃
M with |M| ≤ µ , then there exists

D ∈M and Y ⊆ κ with |Y |= λ , such that Y (n) ⊆D. The famous theorem of F. P.
Ramsey (which appeared as a lemma to a theorem much less remembered) was
that for all finite l, m, n, there exits a finite k such that

k→ (l)n
m.

In fact, mml
··
·ml

(ml appearing n times) is large enough (see, e.g., pages 7–9 is this right
of Graham, Rothschild, and Spencer 1980).

reg6 THEOREM 10.29. (P. Erdős and R. Rado 1956)

(in(µ))
+→ (µ+)n+1

µ

for every n ∈ ω and every infinite µ . �

reg7 THEOREM 10.30. (P. Erdős, A. Hajnal and R. Rado 1965) The assertion

in(µ)→ (n+2)n+1
µ

fails for all n ∈ ω and all µ . �

The next theorem will use Theorem 10.29 to show that the class of weakly
congruence uniform varieties is defined by a Maltsev condition. Rather than ex-
plicitly presenting this Maltsev condition, which would be rather messy, we will
show that a variety V is weakly congruence uniform if and only if it satisfies
certain implications. Since, by Theorem 10.26 these implications are equiva-
lent to a Maltsev condition, we will be content to present the more perspicuous
implications.

For m ≥ n ≥ 0 and 0 ≤ i < j ≤ m, terms F1, . . . ,Fp of rank n+ 2 will be
called (a set of weak) uniformity terms for V of type 〈n,m, p, i, j〉 if V obeys
the equations

Ft(z,x, . . . ,x)≈ z
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and the (universal closure of the) implication[
p∧

t=1

∧
Ft(z,x)≈ Ft(z,y)

]
→ xi ≈ x j

where the second conjunction is over all of the (n+1)-sequences x and y from
{x0, . . . ,xm} with strictly increasing subscripts. For instance, if n = 0 or n = m,
then the only varieties having uniformity terms of type 〈n,m, . . .〉 are the trivial
ones (those satisfying x0 ≈ x1). For n = 1, m = 2, p = 1, i = 0 and j = 2, our
implication is simply

[F1(z,x0,x1)≈ F1(z,x0,x2)≈ F1(z,x1,x2)]→ x0 ≈ x2.

reg8 THEOREM 10.31. (W. Taylor 1974) The following statements are equivalent
for a variety V.

i. V is weakly congruence uniform.

ii. For some 0 ≤ n ≤ m, 0 ≤ i < j ≤ m, and p, V has uniformity terms of type
〈n,m, p, i, j〉.

iii. For some n, V has n-uniform congruences.

Moreover, if (ii) holds for some n, then (iii) holds with that same n.

Proof. We prove the last assertion first. Thus we are given uniformity terms
F1, . . . ,Fp. Let A ∈ V and let θ ∈ ConA. By way of contradiction, let us suppose
that |a/θ | ≤ µ , where µ ≥ℵ0, and that |b/θ | > in(µ). Let < be a total order
on b/θ . We divide (b/θ)(n+1) into µ = µ p classes

(b/θ)(n+1) =
⋃
{Dα : α ∈ (a/θ)p} (10.5.1) for:regEq1

where

Dα =
{
{b0, . . . ,bn} : b0 < · · ·< bn, Ft(a,b0, . . . ,bn) = αt , for 1≤ t ≤ p

}
.

(And thus (10.5.1) follows easily from the fact that Ft(z,x, . . . ,x) = z for each t.)
Now Lemma 10.29 yields the existence of an infinite set, and hence a set Y
with |Y |= m+1, such that Y (n+1) ⊆ Dα for a fixed α . Taking Y = {b0, . . . ,bm}
with b0 < · · · < bm, we see by definition of Dα that, for each t and for each
{bi0 , . . . ,bin} ⊆ {b0, . . . ,bm}, with bi0 < · · ·< bin , all values Ft(a,bi0 , . . . ,bin) are
equal. Therefore by the defining implications for uniformity terms, bi = b j, in
contradiction to the previously established relation that bi < b j. This contradic-
tion establishes the desired conclusion that |b/θ | ≤ in(µ).

Clearly (iii) implies (i). To complete the proof of the theorem, we assume
that V is weakly congruence uniform and show that V has uniformity terms. Let f
be the function defined on the cardinals which witnesses the weak uniformity
of V. Clearly we may assume that f is monotone. Let µ be an infinte cardinal
at least as large as the cardinality of the set of operation symbols for V and let
ν = f (µ).
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Let F = FV(xi : i < ν+) be the free algebra on ν+ generators. We then define
θ to be the kernel of the endomorphism of F which is specified as follows:

x0 7→ x0 and xi 7→ x1 if i > 0.

We further define Z ⊆ F2 to be the set of all pairs

〈gF(x0,xi1 , . . . ,xis),g
F(x0,x j1 , . . . ,x js)〉

where g is any V-term such that V identically satisfies g(x0,x1, . . . ,x1)≈ x0, and
where the subscripts are as follows: 0 < i1 < · · · < is and 0 < j1 < · · · < js.
Defining ψ to be the congruence on F generated by Z, it is obvious that Z ⊆ θ

and hence that ψ ⊆ θ . Therefore θ may be regarded as a congruence on F/ψ .
Let a and b denote the images of x0 and x1 in F/ψ . Clearly |a/θ | is the

number of ψ-blocks contained in the θ -block x0/θ . Every member of x0/θ is
clearly given by a term g(x0,xi1 , · · ·) with 0< i1 < · · · and with g(x0,x1, . . . ,x1)≈
x0 holding in V. Regardless of the sequence i1, i2, . . ., formally identical g’s yield
the same ψ-class; therefore the number of ψ-blocks in x0/θ is limited by the
cardinality of the language of V. Hence |a/θ | ≤ µ , and thus |b/θ | ≤ ν .

Now the θ -class of x1 in F obviously contains the ν+ distinct elements xi,
for 0 < i < ν+ (since we may assume V nontrivial). As we just saw, the image of
this class in F/ψ has at most ν elements, and so we obviously have xi ψ x j for
some i, j with 0 < i < j < ν+. Thus 〈xi,x j〉 is in the congruence generated by a
finite subset of pairs from Z. One may add fictitious variables so that the finitely
many g appearing in these pairs all have the same arity, which we may take to be
n+1 (thus defining n). Taking Ft(z,x1, . . . ,xn) to be g(z,x1, . . . ,xn) (with one Ft
for each of the formally distinct g’s appearing), and considering, without loss of
generality, each of the finitely many subscripts appearing to be a finite ordinal, it
is routine to verify that the desired implications hold in V. �

I don’t like
the change to

z here.
In the case of a countable set of operations, the implication (i) implies (iii)

follows from a general model-theoretic result of R. L. Vaught 1965. (See also
Theorem 7.2.6 of Chang and Keisler 1990.) Exercises 22 and 22 will show Walter is this

correct?, I
changed to

the 3rd
edition so the
page number

was wrong
(so I

eliminated it)
but the

number 7.2.6
seems right.

that (ii) of Theorem 10.31 does not imply (iii) for a smaller n.
We round out this section with a look at D. Geiger’s notion of coherence.

It is a Maltsev definable property which implies 0-uniformity, the strongest of
our weak uniformity conditions. An algebra A will be called coherent if the
following condition holds for all φ ∈ ConA and all subalgebras B of A: if B
contains a φ -block, then B is a union of φ -blocks. Naturally, a variety V is called
coherent if each A ∈ V is coherent.

I couldn’t
find this

Geiger paper.

reg9 THEOREM 10.32. (D. Geiger Geiger1974) A variety V is coherent if and only
if there exist terms H, F1, . . . ,Fn such that the following are identities of V:

Fi(x,x,z)≈ z for 1≤ i≤ n

H(y,F1(x,y,z), . . . ,Fn(x,y,z))≈ x.
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Proof. See Exercise 27. �

reg10 THEOREM 10.33. Every coherent variety is weakly congruence uniform and
permutable; in fact, it is congruence 0-uniform.

Proof. Let V be a coherent variety. To prove that it is congruence 0-uniform,
we need to show that if a, b ∈ A ∈ V and θ ∈ ConA with a/θ infinite, then
|b/θ | ≤ |a/θ |. This follows from the fact that if F1, . . . , Fn are the terms of
Theorem 10.32 then

x 7→ 〈F1(x,b,a), . . . ,Fn(x,b,a)〉

is a bijection from b/θ into (a/θ)n, which is easily verified.
To see that V is permutable, let

p(x,y,z) = H(z,F1(x,y,z), . . . ,Fn(x,y,z)).

It is easy to verify that p(x,y,z) is a Maltsev term. �

Exercise 28 gives a version of the last theorem for individual algebras.

Exercises 10.34ex10.5

1. The variety of distributive lattices is not congruence regular.

2. The variety of implication algebras (see Exercise 10.4.5) is not congru-remember
that this may
end up in ch

8

ence regular. (It helps to remember that every family of sets closed under
set difference forms an implication algebra by defining x → y to mean
y− x.)

exer:regEx3 3. If V has terms F and H obeying the equations

F(x,x,z)≈ z

H(F(x,y,z),y,z)≈ x,

then V is both coherent and congruence uniform. Thus, for example, the
variety of quasigroups (defined in §3.4) is both coherent and congruence
uniform. Hint: Look at the proof of Theorem 10.33.

exer:regEx4 4. (Varlet 1972). The variety of three-valued Lukasiewicz algebras is congru-
ence regular. This is the variety generated by 〈3,∧,∨,+,∗,0〉 where ∧ and
∨ are the are ordinary infimum and supremum on 3 = {0,1,2} ordered as
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usual, and + and ∗ are defined by the following table

∗ +

0 2 2
1 0 2
2 0 0

5. (Grätzer 1970). A is congruence regular if and only if for all a, b, c ∈ A this is the
one Paolo
says was

proved by
Hashimoto

in 1962

there exists a finite sequence 〈d0, . . . ,dm〉 of elements of A such that

Cg(a,b) =
m∨

i=0

Cg(c,di).

6. Give a direct proof that (iii) implies (iv) in Theorem 10.23.

7. For the V given in Example 10.28 find 5-ary terms f1, f2, . . . satisfying
condition (iv) of Theorem 10.23.

Fichtner has
2 1968

articles both
with almost

the same
name. We

need to
check if we

have the
right one

although it
looks like
either will

do.

8. (Grätzer 1970 [Hagemann, unpublished]; see also Fichtner 1968.) A va-
riety V with constant terms c1, . . . ,cn is said to be weakly congruence
regular with respect to c1, . . . ,cn if and only if each congruence θ on ar-
bitrary A ∈ V is determined by its n blocks c1/θ , . . . , cn/θ . That is, if θ ,
ψ ∈ ConA and ci/θ = ci/ψ , for i = 1, . . . ,n, then θ = ψ . Prove that V
is weakly congruence regular with respect to c1, . . . ,cn if and only if there
exist binary terms s1, t1, s2, t2, . . . , sm, tm and ternary terms r1, . . . , rm such
that the following equations hold identically in V:

si(x,x)≈ ti(x,x)≈ c j for i≡ j (mod m)

r1(s1(x,y),x,y)≈ x

ri(ti(x,y),x,y)≈ ri+1(si+1(x,y),x,y)

rm(tm(x,y),x,y)≈ y.

9. ([Hagemann, unpublished]). Define a variety V to be weakly congruence
regular with respect to unary operations g1, . . . , gn if and only if for
each A ∈ V and each θ ∈ ConA, the block x/θ is determined by the n
blocks g1(x)/θ , . . . , gn(x)/θ . Give a necessary and sufficient condition
for this form of regularity, in the style of the condition of the previous
exercise.

10. ([Hagemann, unpublished]). The variety of k-Boolean algebras (defined in
Exercise 10.4.8) is weakly congruence regular with respect to the constant
operations c1, . . . , ck−1.
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11. ([Hagemann, unpublished]). The variety of k-Boolean algebras is not
weakly congruence regular with respect to fewer than k−1 constants.

In the Exercises 10.4.17–22, we presented some exercises indicating how
some features of the theory of topological groups could be replicated for
topological algebras in permutable varieties. Here we continue this de-
velopment for topological algebras in congruence regular varieties. These
results are due to W. Taylor 1974 and 1977. Our assumptions on the al-
gebra A and the topology are exactly as stated before Exercise 10.4.17,
except that we are not assuming permutability.

12. If A lies in a congruence regular variety and 〈A,T〉 has an isolated point,
then 〈A,T〉 is discrete.

13. If A lies in a congruence regular variety and 〈A,T〉 is an infinite com-
pact metric space, then |A| = 2ℵ0 . Hint: Use the Baire category theorem.
It is known that every uncountable compact metric space has power at
least 2ℵ0 .

14. If B is a topological algebra in a congruence regular variety and A is a
topological subalgebra of BI such that A has an isolated point, then there
exists a finite set J ⊆ I such that the projection of BI onto BJ is one-to-one
on A.

In the next volume, we will see that the following exercise on congruence
regular topological algebras will extend to equationally compact algebras.

*15. If A lies in a congruence regular variety and A is embeddable in some
algebra which carries a compact Hausdorff topology, then |B2| ≤ 2B1 for
B1 and B2 any two infinite blocks of any congruence θ ∈ ConA. (See p.
351 of Taylor 1974 for a solution.)

16. If A is a congruence regular algebra, θ ∈ ConA and a, b ∈ A, then any
set of congruences on A which separates points of a/θ will also separate
points of b/θ .

exer:residsmall 17. Let V be a residually small, congruence regular variety in which each sub-
directly irreducible algebra has power ≤ µ . If A ∈ V and a, b ∈ A, then
|b/θ | ≤ µ |a/θ | for a/θ infinte. Hint: use the previous exercise together
with the method of proof for the Subdirect Representation Theorem (4.44).

exer:regEx18 18. Prove that the variety V presented in Example 10.28 has the following
property which is stronger than what we required there. For any family of
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cardinals µi≥ 2, for i∈ I, there exists an algebra B∈V and a congruence θ

on B which partitions B into blocks Bi with |Bi|= µi for all i. Prove more-
over that the above property still holds if we enrich V by adding binary
operations ∨ and ∧ and add the axioms of lattice theory. Thus regularity
and distributivity together do not imply weak uniformity.

19. Give a syntactic proof of Theorem 10.27 That is, deduce (iii) of Theo-
rem 10.23 from the existence of uniformity terms.

exer:wufinite 20. If V is weakly congruence uniform, then there exists a function f : ω→ ω

such that |b/θ | ≤ f (|a/θ |) whenever A ∈ V, a, b ∈ A, θ ∈ ConA, and a/θ

is finite. (But this condition does not guarantee uniformity.) (A first proof weak
univormity?arises more or less directly from the definition, by using the compactness

theorem. A more sophisticated argument will yield an explicit formula for
f (depending on the n, m and p appearing in uniformity terms for V). Here
one will need the explicit form of Ramsey’s Theorem mentioned prior to
Theorem 10.29.)

exer:uniform1 21. Prove that every discriminator variety is coherent. (Hint: there exist very
simple Geiger terms in the ternary discriminator, with n = 2.) Then prove
that every discriminator variety is congruence uniform. (In the case of
a congruence having a finite block, a special argument will be required,
utilizing our knowledge of the structure of congruences in a discriminator
variety—see ?? In the case of a finitely generated discriminator variety, put some

references
here.

uniformity follows from narrowness of the spectrum, according to a result
in Chapter ??–see Theorem ??.) Also use the ternary discriminator to

fill this inobtain regularity terms for such a variety.

exer:regEx22 22. Let V be defined by the equations:

F(x,x,z)≈ z

G(w,w,w,x0,x1)≈ x0

G(F(x0,x1,z),F(x0,x2,z),F(x1,x2,z),x0,x1)≈ x1

Clearly V has a uniformity term of type 〈2,3,1,0,1〉, and hence |b/θ | ≤
2|a/θ | whenever A ∈ V, θ ∈ ConA, and a,b ∈ A. The task here is to show
that the above estimate is best possible for this variety, i.e., for all infinite
µ , there exist A, θ , a,and b as above such that |a/θ |= µ and |b/θ |= 2µ .
Hint: Let A be the subset of {0,1}µ consisting of sequences α such that
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either α has finite support or α0 = 0. Now define

F(α,β ,γ)=



the majority value if |{α,β ,γ}|< 3; otherwise:
α +β + γ (mod 2) unless exactly two of α0, β0, and γ0

are 0, in which case:

{0,m}+ γ where m is the first place the two that
agree at 0 differ.

(Here, by {0,m} we mean the characteristic function, i.e. δ such that
δ (0) = δ (m) = 1 and δ (x) = 0 otherwise.) One may check that the kernel
of first coordinate projection is a congruence θ for this operation, and that
a corresponding G may be found so that θ remains a congruence.

exer:regEx23 *23. For 2 ≤ n < ω , there exists a variety Vn which has a uniformity term of
type 〈n,n+1,1,0,1〉, and such that for each infinite µ , Vn has an algebra
A with a congruence θ which has block of power µ and in(µ). Hint: The
equations involved form an obvious generalization of those of the previous
exercise. The construction of A uses the Erdős-Hajnal-Rado result (10.30);
it seems to be necessarily more complicated than it was for n = 2 in the
previous exercise. For a detailed solution, see pages 346–348 of Taylor
1974.

24. Weak uniformity is not definable by a strong Maltsev condition. (Use the
previous exercise.)

exer:uniform2 *25. Let V be defined by the following infinite collection of equations:

G1(x,x,z)≈ G2(x,x,z)≈ z

K(G1(x,y,z),G2(x,y,z),y,z)≈ x

Fi(x,x,z)≈ z for i ∈ ω

Hi(Fi(x,y,z),x,y,z)≈ x for i ∈ ω

Hi(Fj(x,y,z),x,y,z)≈ y for i 6= j

Prove that V is coherent and congruence uniform, but that every finite sub-
set of these equations defines a variety which is not congruence uniform.
(For a proof of the final assertion, see pages 353–355 of Taylor 1974.)
Thus, although coherence implies 0-uniformity (any congruence with an
infinite block must be uniform), it does not imply uniformity. Moreover,
uniformity is not equivalent to a Maltsev condition. Hint: we readily sat-
isfy the Maltsev condition for coherence by taking F1 (of the coherence
condition) to be G1, F2 to be G2 and F3 to be z.
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exer:uniform3 26. The variety axiomatized by the following equations is congruence uniform
and congruence permutable but not coherent:Should this

hint be
given?

F(x,x,z)≈ z

H(u,u,x,y,w,z)≈ x

H(F(x,w,z),F(y,w,z),x,y,w,z)≈ y.

Hint: show that H(F(z,z,y),F(x,y,y),z,x,z,y) is a Maltsev term. (See
page 356 of Taylor 1974 for the proof that this variety is uniform and not
coherent.)

exer:proofofThm 27. Prove Theorem 10.32.

exer:coherent 28. Prove that if A has a congruence with blocks of power µ and ν , where µ is
an infinite cardinal at least as large as the cardinality of the basic operations
of A and ν > µ , then A is not coherent.

29. Prove that the variety of Heyting algebras (define in Exercise 18 of §4.5) Possible add
some

exercises
from

Davey’s
paper in the

Huhn
volume.

is not congruence regular. Hint: Show that there is a three element Heyting
algebra which has a two-element homomorphic image.
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10.6 Congruence Identities

In this section we give a brief overview of the subject of lattice equations satisfied
by the congruence lattices of all the algebras in a variety. A more thorough
treatment will be contained in a later volume. As mentioned in §10.4, a latticecheck this
equation valid in all the congruence lattices of every member of a variety V is
called a congruence identity for V. Modularity and distributivity are the two
most important examples. We have seen, by the results of B. Jónsson and A.
Day, that both of these equations have a Maltsev condition associated with them.
After these results were proved, there was hope that, for any lattice equation
ε , the class of varieties whose congruence lattices satisfied ε would be Maltsev
definable. This question is still open. The only general result result we have
is the result of Pixley and Wille that such a class is weakly Maltsev definable.
However, it is still possible that every lattice equation has a Maltsev condition
associated with it; that is, we know of no lattice equation which is only weakly
Maltsev definable.

In his thesis, J. B. Nation (see Nation 1974) showed that there are lattice
equations ε , weaker than modularity, i.e., satisfied by some nonmodular lattice,
which nevertheless have the property that any variety for which ε is a congruence
identity is congruence modular. Let s≈ t be a lattice equation and let Σ be a set
of lattice equations. Then the notation

Σ |=con s≈ t

indicates that if V is any variety of algebras, such that all of the congruence lat-
tices of all the members of V satisfy the equations in Σ, then these congruence
lattices will also satisfy s≈ t. In this case we say that s≈ t is a congruence con-
sequence of Σ. Thus, in this terminology, Nation’s result was that there exists a
lattice equation ε such that modularity is a congruence consequence of ε , but not
a consequence of ε . Of course the statement ε2 is a congruence consequence of
ε1 will mean {ε1} |=con ε2. We call two sets Σ0 and Σ1 of lattice equations con-
gruence equivalent if each element of Σ0 is a congruence consequence of Σ1
and vice versa. At the time of Nation’s thesis only four congruence inequivalent
lattice equations were known: x ≈ x, x ≈ y, the distributive equation, and the
modular equation. However, using modular lattice theory, it is possible to con-
struct a lattice equation for each prime number p which holds in the congruence
lattice of a vector space over a field F if and only if the characteristic of F is p;
see Exercise 10.45.1. Thus all of these equations are congruence inequivalent.

E. Gedeonová 1972 and P. Mederly 1975 were able to show that for certain
lattice equations ε the class of varieties having ε as a congruence identity is
Maltsev definable. Moreover, there are nonmodular lattices which satisfy ε , but
not every lattice satisfies ε . However Day, using the techniques of Nation, was
able to show that each such ε is congruence equivalent to modularity, and thus his
Maltsev condition for modularity would also define the class of varieties having ε

as a congruence identity. The question of the existence of a lattice equation ε ,
not congruence equivalent to distributivity or modularity, such that the class of
varieties whose congruence lattice satisfy ε is Maltsev definable was settled by
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Freese in Freese and McKenzie 1987. Using the commutator theory it was shown
that there are infinitely many congruence inequivalent lattice equations ε such
that the class of varieties satisfying ε is Maltsev definable.

Another surprising result in this area of congruence identities is the fact that
if a variety is congruence modular it’s congruence lattices must also satisfy cer-
tain stronger equations as well. In this section we will introduce the Arguesian
equation and prove the result of Freese and Jónsson that if a variety is congru- maybe leave

out the ref to
freese and

jonsson

ence modular then it satisfies the Arguesian equation, see Theorem 10.43 below.

We begin with a proof of a version of Nation’s result. His original proof
took the weak Maltsev condition associated with a certain lattice equation and
derived the Maltsev condition for modularity, much in the same spirit as several
of the proofs of this chapter. The proof we give is local (as described in §10.1).
Starting with an algebra A with a nonmodular congruence lattice we use certain
algebraic constructions to build an algebra B ∈VVV (A) from A. Now CON A con-
tains N5 and we will show that CON B contains a larger subdirectly irreducible,
nonmodular lattice. Nation’s result can easily be derived from this.

10.1 THEOREM 10.35. Let A be an algebra with a nonmodular congruence lat-
tice. Then there is an algebra B ∈ SSS(A×A) such that CON B has a sublattice
isomorphic to the lattice diagramed in Figure 10.9.

Figure 10.9: fig:conidFig1

Proof. Since CON A is nonmodular, it has a sublattice isomorphic to N5, which
we label as indicated in Figure 10.10.

Of course γ is a subuniverse of A×A. We let B denote the corresponding
subalgebra. Since each of the projection homomorphisms is onto A, B is a sub-
direct product of two copies of A. We let η0 and η1 ∈ ConB denote the kernels
of the restrictions of the projection homomorphisms. If θ is any congruence on
A, we let

θi = {
〈
〈a0,a1〉,〈b0,b1〉

〉
∈ B×B : 〈ai,bi〉 ∈ θ} for i = 0,1. (10.6.1) for:conidEq1

First note that if θ ≥ γ then θ0 = θ1. For if 〈〈a0,a1〉,〈b0,b1〉〉 ∈ θ0 then
〈a0,b0〉 ∈ θ . But 〈a0,a1〉 and 〈a0,a1〉 are in γ . Since γ ≤ θ , a0,a1,b0,b1 are all
in the same θ class; thus 〈〈a0,a1〉,〈b0,b1〉〉 ∈ θ1.
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δ

η

α

γ

β

Figure 10.10: fig:conidFig2

By the Correspondence Theorem (Theorem 4.12) the map θ 7→ θi is a lattice
isomorphism of CON A onto the interval I[ηi,1B] of CON B, i = 0,1. In par-
ticular, θi ∨ψi = (θ ∨ψ)i, for i = 0,1. Next observe that η0 ∨η1 = γ0 (= γ1).
Indeed if 〈〈a0,a1〉,〈b0,b1〉〉 ∈ γ0 then all four elements are in the same γ-class.
Thus 〈a0,b1〉 ∈ B. Hence

〈a0,a1〉 η0 〈a0,b1〉 η1 〈b0,b1〉.

This proves that γ0 ≤ η0∨η1. The other inequality is obvious, since γ0 = γ1.
To see that β0 = (β0∧β1)∨η0, let 〈〈a0,a1〉,〈b0,b1〉〉 ∈ β0. Then

〈a0,a1〉 η0 〈a0,a0〉 β0∧β1 〈b0,b0〉 η0 〈b0,b1〉.

Using these facts it is easy to verify that CON B has the sublattice of Fig-
ure 10.11.

α0

γ0 β1

η1η0

β0

Figure 10.11: fig:conidFig3

This completes the proof. �

It is easy to check that N5 satisfies the following equation, see Exercise 10.45.3.

(x∧ y)∨ (x∧ z)≈ x∧ [(x∧ y)∨ (x∧ z)∨ (y∧ z)] (10.6.2) for:conidEq2

COROLLARY. If V is a variety all of whose congruence lattices satisfy (10.6.2),
then V is congruence modular.
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Proof. If V is not congruence modular, then by the last theorem there is an al-
gebra B ∈ V whose congruence lattice has a sublattice isomorphic to the lattice
pictured in Figure 10.9. It is easy to check that this lattice fails (10.6.2). �

After Nations’s original result several authors were able to show that there is
a wide class of lattice equations each of which has modularity as a congruence
consequence. It turned out to be difficult to construct a variety which was not
congruence modular, but for which some nontrivial lattice equation is a congru-
ence identity. The first such example was produced by S. V. Polin 1977. Polin’s
variety P is described in Example 10.2. That example showed that P had 4-
permutable congruences and that it is not congruence modular. Moreover P had
a binary operation symbol ∧ which is a semilattice operation on each algebra
in P.

10.2 THEOREM 10.36. The following equation is a congruence identity for Polin’s
variety P.

x∧ (y∨ z)≤ [x∧ (y∨ (x∧ (z∨ (x∧ (y∨ (x∧ z))))))]

∨ [x∧ (z∨ (x∧ (y∨ (x∧ (z∨ (x∧ y))))))].
(10.6.3) for:conidEq3
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Proof. It is easy to see that this equation fails in M3. Let α , β , and γ be congru-
ences of an algebra B ∈ P, and let 〈a,b〉 ∈ α ∧ (β ∨ γ). Since P is 4-permutable,
there are elements c, d, and e ∈ B such that the congruences indicated in Fig-
ure 10.12 hold.

α

γ

βγ

β

a b

e

d

c

Figure 10.12: fig:conidFig4

The following relations hold.
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a∧b α b

a∧b∧ c (α ∧β ) b∧ c

a∧b∧d (α ∧ (γ ∨ (α ∧β ))) b∧d

a∧b∧ e (α ∧ (β ∨ (α ∧ (γ ∨ (α ∧β ))))) b∧ e

a∧b = a∧b∧b (α ∧ (γ ∨ (α ∧ (β ∨ (α ∧ (γ ∨ (α ∧β ))))))) b∧b = b.

The first relation is obvious since a∧b α b∧b= b. Each of the others follows
easily from the previous ones.

By symmetry we have

a (α ∧ (β ∨ (α ∧ (γ ∨ (α ∧ (β ∨ (α ∧ γ))))))) a∧b,

Thus 〈a,b〉 is in the right side of the equation, proving the theorem. �

Actually P satisfies a simpler congruence identity, namely:

x∧ (y∨ z)≤ y∨ (x∧ (z∨ (x∧ y))), (10.6.4) for:conidEq4

see Theorem 7.1 in Alan Day and Freese 1980. The dual of this equation is alsopossibly
make this

into an
exercise.
Also that

semilattices
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identities

might make
an exercise.
In fact this
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a good

subsection.

a congruence identity of P. Moreover, they show that

y∧ ([x∧ (z∨ (x∧ y))]∨ (y∧ z))

≤ [x∧ (y∨ (z∧ (x∨ y)))]∨ (z∧ (x∨ y))
(10.6.5) for:conidEq5

is a congruence identity of P but that the dual of (10.6.5) is not a congruence
identity of P. Thus the set of congruence identities of a variety need not be self
dual.

The subspaces of a vector space form a complemented, algebraic, atomic
modular lattice, i.e., a projective geometry. These lattices actually satisfy an
equation stronger than modularity known as the Arguesian equation. As we shall
see, this equation is closely related to Desargues’ Law of projective geometry,
and thus the name. Let L be a lattice. A triangle in L is an element of L3.
Associated with any two triangles a = 〈a0,a1,a2〉 and b = 〈b0,b1,b2〉 are the
elements

p = (a0∨b0)∧ (a1∨b1)∧ (a2∨b2)

ci = (a j ∨ak)∧ (b j ∨bk) for {i, j,k}= {1,2,3}.
(10.6.6) for:argEq0

Triangles a and b are said to be centrally perspective ifGive defs of
c0, c1, and c2

separately? (a0∨b0)∧ (a1∨b1)≤ a2∨b2 (10.6.7) for:argEq0.5

and are said to be axially perspective if c2 ≤ c0∨c1. Desargues’ implication is
the statement that any two centrally perspective triangles are axially perspective.
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When the triangles a and b are centrally perspective, we call the element p the
center of perspectivity. A lattice L is said to be Arguesian if for all a, b, and
c ∈ L we havePerhaps

define
Desargues

“Theorem.”
(a0∨b0)∧ (a1∨b1)∧ (a2∨b2)≤ a0∨ (b0∧ (b1∨ (c2∧ (c0∨ c1)))). (10.6.8) for:argEq1

Of course this is equivalent to a lattice equation which is known as the Arguesian
equation.

argmod LEMMA 10.37. Every Arguesian lattice is modular but not conversely.

Proof. See Exercises 10.45.4 and 10.45.5. � If we add
more
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nonarg
lattices,
mention

them here.

In Theorem 4.67 we saw Jónsson’s result that a lattice of 3-permuting equiv-
alence relations is modular. The next result, also due to Jónsson, shows that a
lattice of permuting equivalence relations is Arguesian. Thus a permutable vari-

Put in
general

principles of
modular law
calculations

here?

ety is congruence Arguesian. In Theorem 10.43 we will prove the much stronger
result that if a variety is congruence modular then it is congruence Arguesian.
Along the way we will develop some of the theory of Arguesian lattices.

argaaa.0 THEOREM 10.38. Every lattice of permuting equivalence relations is Argue-
sian. If an algebra A has permuting congruences, then CON A is Arguesian.

Proof. Suppose that L is a lattice of permuting equivalence relations on a set
S, and that ai and bi, i = 0,1,2, are elements of L. Let 〈u,v〉 be in the left
side of (10.6.8). Then 〈u,v〉 ∈ ai ∨ bi = ai ◦ bi for i = 0,1,2. Hence there are
elements zi ∈ S such that the relations of Figure 10.13 hold. Note that 〈z0,z1〉 ∈
c2∧ (c0∨ c1). Using this and Figure 10.13 it is easy to verify that 〈u,v〉 is in the
right side of (10.6.8). �

u v

z2

z0

z1a1

a0

a2 b2

b1

b0

Figure 10.13: fig:argFig1

argaaa.1 THEOREM 10.39. Let L be a modular lattice. Then the following are equiva-
lent. more

credits?
i. L is Arguesian,
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ii. any two centrally perspective triangles of L are axially perspective,

iii. any two centrally perspective triangles a, b of L which satisfy

p∨ai = p∨bi = ai∨bi i = 0,1,2 (10.6.9) for:argEq2

are axially perspective.

Proof. Clearly (ii) implies (iii). We will first show that (iii) implies (i). As-
sume (iii). We need to show that (10.6.8) holds for arbitrary triangles a and b in
L. It suffices to show that (10.6.8) holds for triangles that satisfy (10.6.9). To see
this, suppose that (10.6.8) holds whenever a and b satisfy (10.6.9), and let a and
b be arbitrary triangles of L and let

a′i = ai∧ (bi∨ p), b′i = bi∧ (ai∨ p), i = 0,1,2.

Successive applications of modularity will establish that a′i ∨ b′i ≥ p for each i.
From this it readily follows that the new p′, defined like p, but using the primed
triangles, satisfies p′ ≥ p. On the other hand, the primed quantities are evidently
all below their unprimed counterparts, and so in fact p′ = p. Thus the primed
triangles satisfy (10.6.9) and so, by our assumption, they satisfy (10.6.8). Hence

p≤ a′0∨ (b′0∧ (b′1∨m′))

where m′ = c′2 ∧ (c′0 ∨ c′1). Since the primed elements are smaller than their
unprimed counterparts, it follows that (10.6.8) holds for the original (unprimed)
triangles.

Now assume that our centrally perspective triangles a and b satisfy (10.6.9).
Let b′ = b and a′ = 〈a0,a1,a2 ∨ (a0 ∧ (a1 ∨ b1))〉. Using (10.6.9) (for the un-
primed triangles) it is easy to show that the primed triangles are centrally per-
spective. Now notice that by modularity

p′ = (a0∨b0)∧ (a1∨b1)∧ (a2∨b2∨ (a0∧ (a1∨b1)))

= p∨ (a0∧ (a1∨b1)).

From this it is straightforward to verify that the primed triangles satisfy (10.6.9).
Thus we can apply (iii). Since c2 = c′2 and c1 = c′1, we have

c2 ≤ c1∨ ((b1∨b2)∧ (a1∨a2∨ (a0∧ (a1∨b1))))

= c1∨ ((b1∨b2)∧ (a2∨ [(a0∨a1)∧ (a1∨b1)]))

= c1∨ ((b1∨b2)∧ (a1∨a2∨ (b1∧ (a0∨a1))))

= c1∨ ((b1∨b2)∧ (a1∨a2))∨ (b1∧ (a0∨a1))

= c0∨ c1∨ (b1∧ (a0∨a1)).

Now if we meet both sides with a0 ∨ a1 and then join both sides with b1
we obtain b1 ∨ c2 = b1 ∨ (c2 ∧ (a0 ∨ a1)) ≤ b1 ∨ ((a0 ∨ a1)∧ (c0 ∨ c1)). But by
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modularity b1 ∨ c2 = (a0 ∨ a1 ∨ b1)∧ (b0 ∨ b1). By two applications of (10.6.9)
we have a0 ∨ a1 ∨ b1 = a0 ∨ p∨ b1 = a0 ∨ b0 ∨ b1 ≥ b0. Thus b1 ∨ c2 = b0 ∨ b1
and hence b0∨b1 ≤ b1∨ ((a0∨a1)∧ (c0∨ c1)). Meeting with b0 we getanother extra

step below?

b0 ≤ b0∧ [b1∨ ((a0∨a1)∧ (c0∨ c1))]

≤ b0∧ (b0∨b1)∧ [b1∨ ((a0∨a1)∧ (c0∨ c1))]

= b0∧ [b1∨ ((b0∨b1)∧ (a0∨a1)∧ (c0∨ c1))]

= b0∧ [b1∨ (c2∧ (c0∨ c1))]

= b0∧ [(a0∧b0)∨b1∨ (c2∧ (c0∨ c1))]

= (a0∧b0)∨ (b0∧ [b1∨ (c2∧ (c0∨ c1))])

Thus
p≤ a0∨b0 ≤ a0∨ (b0∧ [b1∨ (c2∧ (c0∨ c1))])

as desired.
To see that (i) implies (ii), let a and b be centrally perspective triangles of L.

Then it follows from (10.6.8) and the central perspectivity that

(a0∨b0)∧ (a1∨b1)≤ a0∨b1∨ (c2∧ (c0∨ c1)).

Now we join a0∨b1 to both sides and then we meet both sides with c2. The left
side becomes

c2∧ (a0∨b0∨b1)∧ (a0∨a1∨b1) = c2

Thus we have

c2 ≤ c2∧ (a0∨b1∨ (c2∧ (c0∨ c1)))

= [c2∧ (a0∨b1)]∨ [c2∧ (c0∨ c1)]

= c2∧ (c0∨ c1∨ (c2∧ (a0∨b1)))

≤ c0∨ c1∨ [a0∧ (b0∨b1)]∨ [b1∧ (a0∨a1)]

= [(a1∨a2)∧ (b1∨b2)]∨ [(a0∨a2)∧ (b0∨b2)]

∨ [a0∧ (b0∨b1)]∨ [b1∧ (a0∨a1)]

= [(b1∨b2)∧ (a1∨a2∨ (b1∧ (a0∨a1)))]

∨ [(a0∨a2)∧ (b0∨b2∨ (a0∧ (b0∨b1)))]

= [(b1∨b2)∧ (a2∨ ((a1∨b1)∧ (a0∨a1)))]

∨ [(a0∨a2)∧ (b2∨ ((a0∨b0)∧ (b0∨b1)))]

= [(b1∨b2)∧ (a1∨a2∨ (a0∧ (a1∨b1)))]

∨ [(a0∨a2)∧ (b0∨b2∨ (b1∧ (a0∨b0)))]

Since a and b are centrally perspective, a0 ∧ (a1 ∨ b1) ≤ a0 ∧ (a2 ∨ b2) and
b1∧ (a0∨b0)≤ b1∧ (a2∨b2). Thus we have
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c2 ≤ [(b1∨b2)∧ (a1∨a2∨ (a0∧ (a2∨b2)))]

∨ [(a0∨a2)∧ (b0∨b2∨ (b1∧ (a2∨b2)))]

= [(b1∨b2)∧ (a1∨a2∨ (b2∧ (a0∨a2)))]

∨ [(a0∨a2)∧ (b0∨b2∨ (a2∧ (b1∨b2)))]

= c0∨ (b2∧ (a0∨a2))∨ c1∨ (a2∧ (b1∨b2))

= c0∨ c1,

completing the proof. �

The last theorem has two interesting corollaries. The first was discovered by
A. Day and D. Pickering 1984, and the second by B. Jónsson 1972.

COROLLARY 1. A lattice is Arguesian if and only if it satisfies

(a0∨b0)∧ (a1∨b1)∧ (a2∨b2)≤ a0∨b1∨ (c2∧ (c0∨ c1)). (10.6.10) for:argEq3

Proof. By Exercise 10.45.4 each of (10.6.8) and (10.6.10) imply modularity.
Clearly (10.6.8) implies (10.6.10). Now our proof in the last theorem that (i)
implies (ii) only used (10.6.10), not (10.6.8). Thus (10.6.10) implies (ii) which
is equivalent to (i), the Arguesian equation. �

COROLLARY 2. The class of Arguesian lattices is self-dual.

Proof. Suppose that L is an Arguesian lattice, and let a, and b be centrally per-
spective triangles in the dual of L. Then, (a0∧b0)∨ (a1∧b1)≥ a2∧b2. Let

a′ = 〈a0∧a2,b0∧b2,a0∧b0〉 b′ = 〈a1∧a2,b1∧b2,a1∧b1〉

Then (a′0∨b′0)∧ (a′1∨b′1)≤ a2∧b2, and by the dual central perspectivity, this is
less than or equal to a′2 ∨ b′2, showing that a′ and b′ are centrally perspective in
L. Thus, by hypothesis and Theorem 10.39, they are axially perspective. Hence

[(a0∧a2)∨ (b0∧b2)]∧ [(a1∧a2)∨ (b1∧b2)]

= (a′0∨a′1)∧ (b′0∨b′1)

≤ [(a′0∨a′2)∧ (b′0∨b′2)]∨ [(a′1∨a′2)∧ (b′1∨b′2)]

≤ (a0∧a1)∨ (b0∧b1).

Thus a and b are axially perspective in the dual of L. Hence, by the previous
theorem, the dual of L is Arguesian, as was to be shown. �

Projective geometries and the lattices associated with them are defined in §4.8
of the first volume. Exercise 10.45.5 outlines the construction of a projective
plane whose lattice is not Arguesian. On the other hand the lattice associ-If we add

more
examples,
reference

them here.
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ated with any projective geometry, which is not a plane, is Arguesian, see Ex-
ercise 10.45.6. Roughly the argument runs as follows. It is easy to see that if a
and b are centrally perspective triangles which do not lie in the same plane, then
they are axially perspective. In fact c0, c1 and c2 lie in the intersection of the
planes determined by a and b. If a and b do lie in the same plane, but there is
a point of the geometry not in that plane, then it is possible to construct a third
triangle d not in the plane but centrally perspective to both a and b. Thus d is
axially perspective to both a and b and from this one can show that a and b are
axially perspective.

The next lemma, which is due to Jónsson, uses some of these ideas. In fact
the triangle d, constructed in the proof, can be shown to be centrally perspective
to both a and b, see Exercise 10.45.7.

argaaa.2 LEMMA 10.40. Let L be a modular lattice and let a and b be centrally per-
spective triangles in L which satisfy (10.6.9). Let u = a0∨a1∨a2∨b0∨b1∨b2,
and suppose that there exist q, r ∈ L such that

p∨q = p∨ r = q∨ r, u∧q = p∧a2, u∧ r = p∧b2.

Then a and b are axially perspective.

Proof. Let d be the triangle with di = (ai ∨ q)∧ (bi ∨ r). Figure 10.14 gives a
geometric representation of this situation. We begin by showing that

a0∧ (b0∨b1)≤ d0∨d1. (10.6.11) for:argEq4

This inclusion is proved with the following calculations.

d0∨d1 ≥ [(a0∨q)∧ (b0∨ r)]∨ (q∧ (b1∨ r))

= (a0∨q)∧ [b0∨ r∨ (q∧ (b1∨ r))]

= (a0∨q)∧ [b0∨ r∨ (b1∧ (q∨ r))]

≥ (a0∨q)∧ (b0∨ r∨ (b1∧ p))

= (a0∨q)∧ (b0∨ r∨ (b1∧ (a0∨b0)))

≥ (a0∨q)∧ (b0∨b1)∧ (a0∨a1)

≥ a0∧ (b0∨b1).

Now we show that

(a0∨q)∧ (b0∨b1∨ r)≤ d0∨d1. (10.6.12) for:argEq5

To see this note

(a0∨q)∧ (b0∨b1∨ r)≤ (a0∨ p∨q)∧ (b0∨b1∨ r)

= [(a0∨ p∨q)∧ (b0∨b1)]∨ r
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Figure 10.14: fig:bigargfig



10.6 Congruence Identities 55

Using the fact that b0∨b1 ≤ u and u∧q≤ p≤ a0∨b0, we see that the right
side is equal to [(a0∨b0)∧ (b0∨b1)]∨ r = (a0∧ (b0∨b1))∨b0∨ r. Thus

(a0∨q)∧ (b0∨b1∨ r)≤ (a0∨q)∧ [(a0∧ (b0∨b1))∨b0∨ r]

= [a0∧ (b0∨b1)]∨ [(a0∨q)∧ (b0∨ r)]

= [a0∧ (b0∨b1)]∨d0.

Now (10.6.12) follows from (10.6.11).
Using (10.6.12), we derive

d0∨d1 ≥ [(a0∨q)∧ (b0∨b1∨ r)]∨d1

= (a0∨q∨d1)∧ (b0∨b1∨ r)

= (a0∨q∨a1)∧ (b0∨b1∨ r)

≥ c2.

(10.6.13) for:argEq6

By an argument similar to the proof of (10.6.12) we obtain:

(a1∨a2∨q)∧ (b2∨ r)≤ c0∨d2.

Thus
c0∨d2 ≥ [(a1∨a2∨q)∧ (b2∨ r)]∨ c0

= (a1∨a2∨q)∧ (b2∨ c0∨ r)

= (a1∨a2∨q)∧ (b1∨b2∨ r)

≥ d1.

(10.6.14) for:argEq7

Similarly we have
d0 ≤ c1∨d2. (10.6.15) for:argEq8

Now by (10.6.13), (10.6.14), and (10.6.15) we have

c2 ≤ u∧ (d0∨d1)

≤ u∧ (c0∨ c1∨d2)

= c0∨ c1∨ (d2∧u).

Since we have q∧u≤ a2 and r∧u≤ b2, d2∧u = (a2∨q)∧u∧ (b2∨ r)∧u =
a2∧b2. Thus c2 ≤ c0∨ c1, completing the proof. �

Let A be an algebra and let α , β , γ , and δ ∈ ConA. Of course α is a
subuniverse of A×A. Let B denote the corresponding subalgebra. Let θ be any
congruence of A. As in the proof of Theorem 10.35, we let θi ∈ ConB, i = 0,
1, be the congruences {〈〈a0,a1〉,〈b0,b1〉〉 : 〈ai,bi〉 ∈ θ}. With this notation we
have the following lemma.
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argaaa.2.5 LEMMA 10.41. Let A and B be as described above. If α , β , γ , and δ satisfy

δ ≤ α ∧β = α ∧ γ = β ∧ γ (10.6.16) for:argEq10.5

then we have

α0∧β1 = α0∧ γ1 = β1∧ γ1 (10.6.17) for:argEq9

β1∨δ0 = α0∨β0 (10.6.18) for:argEq10

γ1∨δ0 = α0∨ γ0. (10.6.19) for:argEq11

Proof. The proof of Theorem 10.35 showed that η0 ∨ η1 = α0 = α1, where
η0 and η1 are the kernels of the projection homomorphisms. By assump-Walter

suggests a
picture here,

but I’m not
sure I could

make a
decent one.

tion (10.6.17) is true if we change all the subscripts to 0. Now the map θ0 7→ θ1
is a lattice isomorphism of I[η0,1B] onto I[η1,1B]. Thus (10.6.17) holds if all
the subscripts are changed to 1. Since α0 = α1 it follows that (10.6.17) holds.

To see (10.6.18) first note θ0 ≤ η0 ∨ θ1 for any congruence θ on A. For
suppose that 〈a0,a1〉 θ0 〈b0,b1〉. Then a0 θ b0 and thus

〈a0,a1〉 η0 〈a0,a0〉 θ1 〈b0,b0〉 η0 〈b0,b1〉.

Now (10.6.18) and (10.6.19) can be derived from this, symmetry, and the fact
that η0∨η1 = α0 = α1. �

argaaa.3 LEMMA 10.42. Let V be a variety and let K be the class of all lattices which
can be embedded into the dual of CON A for some A ∈ V. Then, for any L ∈K,
and any p,s, t,u ∈ L which satisfy p∨ s = p∨ t = s∨ t ≤ u, L has an extension
L′ ∈K such that, for some q, r ∈ L′,

p∨q = p∨ r = q∨ r, q∧u = p∧ s, r∧u = p∧ t.

Proof. This is immediate from the last lemma. �

Put some
introductory

remarks
here.

With these lemmas we can prove the following theorem of Freese and Jóns-
son 1976.

argaaa.4 THEOREM 10.43. Let V be a congruence modular variety. Then V is congru-
ence Arguesian.

Proof. Let A ∈ V and let L be the dual of CON A. Let a and b be centrally
perspective triangles in L which satisfy (10.6.9). Applying Lemma 10.42, with
s = a2 and t = b2, we embed L into a modular lattice L′ possessing elements q
and r satisfying the condition stated in Lemma 10.42. Now by Lemma 10.40 a
and b are axially perspective. By Theorem 10.39, L is Arguesian, and so, by the
second corollary to that theorem, CON A is Arguesian. �

The proof of the last theorem shows that it is really a local theorem:
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COROLLARY 10.44. If all the subalgebras of A×A have modular congru-
ence lattices, then CON A is Arguesian. �

Exercises 10.45Ex10.6

exer:inftymany 1. This exercise shows that there are infinitely many congruence inequivalent credit
herrmann

and Huhn?
lattice equations.

a. The concept of a spanning n-frame in a lattice is defined in Exer-
cise 4.89.15 in the first volume. Let x0, . . . ,xn be elements of a mod-
ular lattice and define

u =
n∧

i=0

∨
j 6=i

x j

v =
n∨

i=0

∧
j 6=i

∨
k 6=i, j

xk

ai = (xi∨ v)∧u = (xi∧u)∨ v. (10.6.20) for:ai

Show that 〈a0, . . . ,an〉 is an n-frame spanning the interval sublat-
tice I[v,u].

b. Let 〈A0, . . . ,An〉 be a spanning n-frame in the lattice of subspaces of
a vector space V. Show that

V∼= A0×·· ·×An−1.

Let { fλ : λ ∈ Λ} be a basis for An. By the above there are elements
ei,λ ∈ Ai such that fλ = ∑

n−1
i=0 ei,λ . Show that {ei,λ : λ ∈ Λ} is a basis

for Ai. Put a hint
here? That

An and ∑Ai
are comple-

ments.

c. Let 〈a0,a1,a2,a3〉 be a 3-frame in a modular lattice. Let

c = [(a1∨a2)∧ (a0∨a3)]∨ [(a0∨a1)∧ (a2∨a3)]

and define r0 = a2 and inductively

rk+1 = (a2∨a3)∧ (a0∨ (c∧ (a1∨ rk))).

Now let 〈A0,A1,A2,A3〉 be a spanning 3-frame in the lattice of sub-
spaces of a vector space V over a field F. Using the previous part,
show that the subspace corresponding to rk as defined above is spanned
by

{ke0,λ + ke1,λ + e2,λ : λ ∈ Λ}.
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Hint: By the last part we can find a basis, {ei,λ : λ ∈ Λ} of Ai, for
i = 0, 1, 2, so that {e0,λ +e1,λ +e2,λ : λ ∈Λ} is a basis of A3. Using
this show that the subspace corresponding to c defined above is{

∑
λ∈Λ

cλ e0,λ +(cλ +dλ )e1,λ +dλ e2,λ : cλ , dλ ∈ F, λ ∈ Λ

}
.

Now use induction to prove the result.Is this hint
necessary? d. Let a0, . . . ,an be the lattice terms in the variables x0, . . . ,xn defined

by (10.6.20). Then rk can be viewed as a term in these variables. If F
is a field and VF is the variety of all vector spaces over F, then VF
satisfies the congruence equation

rk ≈ a2

if and only if the characteristic of F divides k. Thus there are in-
finitely many congruence inequivalent congruence equations.

2. (A. Day and J. B. Nation, see B. Jónsson 1980) Let x, y, and z be variables
and let y1 = y, z1 = z, yn+1 = y∨ (x∧ zn), and zn+1 = z∨ (x∧ yn). Let δn
be the inclusion

x∧ (y∨ z)≤ (x∧ yn)∨ (x∧ zn).

Show that if L is a 2n-permutable sublattice of the congruence lattice of a
semilattice then L satisfies δ2n. Notice that Theorem 10.36 follows from
this exercise.

exer:verify 3. Verify that (10.6.2) holds in N5. Hint: First show that it holds in any
distributive lattice and thus one can assume that in any failure x, y, and z
are assigned to a generating set of N5.

exer:argmod 4. Show that every Arguesian lattice is modular. Also show that any lattice
satisfying (10.6.10) is modular. Hint: Derive the modular law by applying
either (10.6.8) or (10.6.10) to the triangles a = 〈x∧ y∧ z,x,x〉 and b =
〈y∨ z,y∧ z,y〉.

exer:nonarg 5. Recall from Definition 4.78 and Exercise 4.89.6 that a projective plane is
a pair πππ = 〈P,Λ〉 such that P is a set and Λ is a set of subsets of P and the
following axioms are satisfied.

i. Any two distinct points belong to one and only one line.

ii. Any two distinct lines contain one and only one point.

iii. There exist four points, no three of which are collinear.

A partial projective plane is a pair πππ = 〈P,Λ〉 satisfying

i′. Any two distinct points belong to at most one line.



10.6 Congruence Identities 59

ii′. Any two distinct lines contain at most one point.

(Notice that ii.′ follows from i.′) Let πππ0 = 〈P0,Λ0〉 be a partial projective
plane satisfying (iii). This partial plane can be completed to a projective
plane using the free plane construction of Marshall Hall described below.
Inductively define πππn+1 = 〈Pn+1,Λn+1〉 from πππn = 〈Pn,Λn〉 as follows. If
n is even, enlarge Λn by adding a new line for each pair of points of Pn
not contained on a line. At this stage, each of these new lines contains
only two points. If n is odd, the dual construction is used: a new point is
added for each pair of nonintersecting lines. Let P =

⋃
Pn and Λ =

⋃
Λn

and πππ = 〈P,Λ〉.

a. Show that πππ is a projective plane.

b. Let πππ be the plane obtained from the above construction starting with
P0 a four element set and Λ0 =∅. Show that the lattice Lπ associated
with this plane (defined in §4.8) is modular but not Arguesian. Hint:
A confined configuration in a (partial) projective plane is a pair 〈Q,Γ〉
where Q is a finite, nonempty subset of the set of points and Γ is a
finite, nonempty subset of the set of lines such that each element of Q
lies on at least three lines in Γ and each line in Γ contains at least three
points of Q. Show that πππ contains no confined configuration. Then
show that if 〈a0,a1,a2〉 and 〈b0,b1,b2〉 are triangles in a projective
plane which are centrally perspective from p, and which are also
axially perspective, then the ten points p, a0, a1, a2, b0, b1, b2, c0,
c1, and c2 (the ci are defined by (10.6.6)) are contained in a confined
configuration which also has ten lines. A general-

ization of
10.62exer:3arg 6. The lattice associated with a projective geometry is defined in §4.8. Show

I have not
done this or
the next yet.

that the lattice associated with a projective geometry, which is not a pro-
jective plane, is Arguesian. Hint: See the remarks before Lemma 10.40.

exer:3arg2 7. Show that the triangle d defined in the proof of Lemma 10.40 is centrally
perspective with both a and b of that lemma.
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10.7 Relationships

In this section we examine briefly the relative strengths of some of the more
important classes which comprise our classification scheme for varieties. The
varietal properties under consideration will include the following ones from ear-
lier work in this chapter:

U : congruence uniformity
C : coherence

WU : weak uniformity
R : regularity
P : permutibility of congruences

P3 : 3-permutability
P∗ : k-permutibility for some k

D : distributivity of congruences
M : modularity of congruences

We will use these same letters to denote the class of all varieties satisfying
the corresponding property. Thus R is also used to denote the class of all regular
varieties. We will also introduce some new properties, E, NL and Kn, n > 1.
E is the class of all varieties which have (10.6.3) as a conguence identity. The
definitions of the other properties will be given later. We propose to establish all
the implications indicated in Figure 10.15.fix the

downright
arrow D −−→ E

@↘
U −−→ WU −−→ R −−→ M

�
↗

�
↗@↘

C −−→ P −−→ P3 −−→ P∗ −−→ NL

�
↗

·· · −−→ K3 −−→ K2

Figure 10.15: fig:relsFig1

Moreover, we will see that none of the arrows can be reversed. It may be
possible that there are some true relationships not implied by this diagram; for
example, it is possible that K2 → P∗. However, from our examples it will beHow about

U→ P. clear that very few further implications could hold.
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We first concentrate on the ten implications which do not involve the new
properties. Of these, five are trivial:

U→WU D→M D→ E P→ P3→ P∗

Jónsson’s implication P3 → M was established in Theorem 4.67. By Theo-
rem 10.27, WU→ R. Theorem 10.33 gives C→WU and C→ P. It remains
for us to show that R→M and R→ P∗. Both of these are unpublished results of
J. Hagemann dating from about 1973. The first result has both a local proof and
a global proof. We present the global one first.

rels1 THEOREM 10.46. Every congruence regular variety is congruence modular.

Proof. If V is congruence regular, then V has terms fi, gi, for 1≤ i≤ n, satisfying
condition (iv) of Theorem 10.23. Now we define new V-terms m0, . . . ,m2n+1 as
follows:

m0(x,y,z,w) = x

m2i−1(x,y,z,w) = fi(x,w,w,w,gi(y,z,w)) for 1≤ i≤ n

m2i(x,y,z,w) = fi(x,w,w,gi(y,z,w),w) for 1≤ i≤ n

m2n+1(x,y,z,w) = w.

We claim that these terms satisfy Day’s equations for congruence modular-
ity given in Theorem 10.7. To verify that these equations hold, we make the
following deductions from the regularity equations of Theorem 10.23.

m2i−1(x,y,y,x)≈ fi(x,x,x,x,gi(y,y,x))

≈ fi(x,x,x,x,x)

≈ x.

A similar calculation yields m2i(x,y,y,x)≈ x. Now,

m0(x,x,w,w)≈ x

≈ f1(x,w,w,w,g1(x,w,w))

≈ m1(x,x,w,w)

m2n(x,x,w,w)≈ fn(x,w,w,gn(x,w,w),s)

≈ w

≈ m2n+1(x,y,z,w).

Finally
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m2i−1(x,y,y,w)≈ fi(x,w,w,w,gi(y,y,w))

≈ fi(x,w,w,gi(y.y.w),w)

≈ m2i(x,y,y,w)

m2i(x,x,w,w)≈ fi(x,w,w,gi(x,w,w),w)

≈ fi+1(x,w,w,w,gi+1(x,w,w))

≈ m2i+1(x,x,w,w).

�

The above theorem tells us that if CON A is nonmodular, then some B ∈
HSP(A) has nonregular congruences. The following local result tells us that
such a B may be found in S(A2). This result is due to S. Bulman-Fleming,
A. Day and W. Taylor 1974.

rels2 THEOREM 10.47. If every subalgebra of A2 is congruence regular, then CON A
is modular.

Proof. Let α , β , and γ be elements ConA with β ≤ γ . We will show by induction
that

(α ◦n
β )∧ γ ≤ (α ∧ γ)∨β . (10.7.1) for:relsEq1

We extend the definition of α ◦n β given in §10.2 to include the case n = 0 by let-
ting α ◦0 β = 0A. Since α ◦1 β =α , the cases n= 0 and 1 are trivial. Now assume
that (10.7.1) holds for a particular n, where n > 1. Of course α ◦n β is a subuni-
verse of A2. We let B be the corresponding subalgebra. As in §10.6, for any
ψ ∈ ConA, and for i = 0, 1, we let ψi ∈ ConB be defined by 〈a0,a1〉 ψi 〈b0,b1〉
if ai ψ bi. Let θ = (α ∧γ)∨β , and note that θ ≤ γ . Thus θ0∧θ1 ≤ γ0∧θ1. Now
if

〈a,a〉 γ0∧θ1 〈b0,b1〉

then a θ b1. Since 〈b0,b1〉 ∈ B, (10.7.1) implies that 〈b0,b1〉 ∈ θ . Thus a θ b0
and hence

〈a,a〉 θ0∧θ1 〈b0,b1〉.

This shows that the 〈a,a〉-block of θ0 ∧θ1 and γ0 ∧θ1 are the same. Thus θ0 ∧
θ1 = γ0∧θ1 by regularity.

Now suppose that 〈a,c〉 ∈ (α ◦n+1 β )∧ γ . Then there are elements b and d
such that the relations of Figure 10.16 hold.

Clearly 〈a,b〉 and 〈c,d〉 are in B and 〈a,b〉 γ0 ∧ θ1 〈c,d〉. Hence 〈a,b〉 θ0 ∧
θ1 〈c,d〉. Thus a θ c, completing our inductive argument. Of course modularity
follows from (10.7.1). �

COROLLARY. If every finite algebra in a variety V is congruence regular, then
every finite algebra in V is congruence modular. �
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a

dc

b

γ

α

β

α ◦n−1 β

Figure 10.16: fig:relsFig2

Of course, Hagemann’s Theorem 10.46 is also a corollary of the last the-
orem; in fact the proof of the theorem, when applied to the appropriate free
algebra, yields Hagemann’s terms seen in the proof of Theorem 10.46. (See Ex-
ercise 10.51.1.) The exponent 2 appearing in the theorem is best possible in the Be careful

these are
absolute

references

sense that there exists an eight element algebra A with CON A nonmodular, but
such that every subalgebra of A is congruence regular (see Exercise 10.51.2).

rels3 THEOREM 10.48. (J. Hagemann) Every congruence regular variety is con-
gruence n-permutable for some n.

Proof. If V is congruence regular, then V has terms fi, gi, for i = 1, . . . ,n, sat-
isfying the equations in condition (iv) of Theorem 10.23. Now we define new
V-terms p1, . . . , pn as follows:

pi(x,y,z) = fi(x,z,z,gi(y,z,z),gi(x,y,z))

It is easy to verify that the Hagemann-Mitschke equations of Theorem 10.1 hold.
�

We still do not know any local proof for this last result. Nevertheless, it
has an interesting corollary which simplifies the equations for regularity given in
Theorem 10.23.

COROLLARY. A variety V is congruence regular if and only if there exist
ternary terms g1, . . . ,gn and 4-ary terms f1, . . . , fn such that the following equa-
tions hold identically in V.

gi(x,x,z)≈ z for 1≤ i≤ n

x≈ f1(x,y,z,z)

f1(x,y,z,g1(x,y,z))≈ f2(x,y,z,z)
...

fn(x,y,z,gn(x,y,z))≈ y

Proof. We return to the proof of Theorem 10.23, especially the part (ii) implies
(iv). As before, we take φ to be the congruence generated by Z. But instead of
applying Lemma 10.22, we apply H. Lakser’s special description of congruence
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generation for congruence n-permutable varieties given in Exercise 10.4.14 of
§10.2. The details are left to the reader. �Check this

reference.
Now we turn to the new concepts introduced in Figure 10.15. NL is simply

the class of varieties in which no algebra of more than one element admits a
linear ordering. (We say an algebra A admits an order ≤ if 〈A,≤〉 is a partially
ordered set such that each basic operation of A is monotone. That is, if xi ≤ yi
for 1≤ i≤ n, then, for each basic operation f , we have

f (x1, . . . ,xn)≤ f (y1, . . . ,yn).

We let Kn be the class of varieties in which no algebra has a universe which
can be written as the union of n proper subuniverses. Thus Kn+1 implies Kn
a fortiori. The remaining implications of Figure 10.15, P∗→ NL and K2→ NL,
follows from the next result. This result, which is local, is due to S. Bulman-
Fleming and W. Taylor 1976.

rels4 THEOREM 10.49. If A admits a linear order and |A| ≥ 2, then A2 is the union
of two proper subuniverses, and for each n ≥ 2, there exists a subalgebra B of
An with CON B not n-permutable.

Proof. If A admits the linear order ≤, it is obvious that

A2 = {〈x,y〉 : x≤ y}∪{〈x,y〉 : y≤ x}.

Moreover, each of these two sets is a subuniverse of A2. If |A| ≥ 2, each is a
proper subuniverse.

For a failure of n-permutability, we define B to be the subalgebra of An with
universe

B = {〈x1, . . . ,xn〉 : x1 ≤ x2 ≤ ·· · ≤ xn}.

Define congruences θ and φ on B as follows

〈x1, . . . ,xn〉 θ 〈y1, . . . ,yn〉 if x1 = y1, x3 = y3 · · ·

and
〈x1, . . . ,xn〉 φ 〈y1, . . . ,yn〉 if x2 = y2, x4 = y4 · · ·

Since |A| ≥ 2, there exist a, b ∈ A with a < b. If we let a = 〈a, . . . ,a〉 and
b = 〈b, . . . ,b〉, then it is easy to check that a θ ∨φ b. Suppose that

b = c0 θ c1 φ c2 · · · cn = a

for some c0, . . . ,cn ∈ B. Then, if we let π j be the jth projection,

b = π1(c1)≤ π2(c1) = π2(c2)≤ π3(c2) = π3(c3)≤ ·· · ≤ πn(cn) = a

This implies that b≤ a, a contradiction. Thus θ and φ do not n-permute. �
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Now we will give examples showing that none of the implications of Fig-
ure 10.15 can be reversed. In most cases either well known or previous examples
show that the reverse implication fails. For example the variety of groups shows
that K2 does not imply K3. The idempotent reduct of groups shows that NL does
not imply K2. The variety of lattices shows that M does not imply NL and hence
M implies neither R nor P3.

E. T. Schmidt’s variety of k-Boolean algebras was presented in Exercise 10.4.8.
The variety of 3-Boolean algebras and the variety of implication algebras (see make sure

this is
correct.

Exercise 10.4.5) show that P3 implies neither R nor P. It follows that neither M
nor P∗ imply R. Heyting algebras show that P does not imply R, and hence P
does not imply C. Polin’s variety (Example 10.2) and 4-Boolean algebras show
that P∗ does not imply P3. Example 10.28 shows that R does not imply WU;
Exercise 10.34.22 shows that WU does not imply U. Finally, Exercise 10.34.26
shows that WU does not imply C.

The only possible reverse implication remaining for consideration is NL im-
plies P∗. For an example blocking this implication, take V to be the variety of al-
gebras 〈A,∨,∧,0,1, f 〉, where 〈A,∨,∧,0,1〉 is a lattice with least element 0, and
greatest element 1, and f is a unary operation obeying f (0) ≈ 1 and f (1) ≈ 0.
Using finite chains, it is easy to see that V does not have n-permutable congru-
ences for any n, that is V /∈ P∗. Now suppose A∈V, with |A| ≥ 2, admits a linear
order ≤ (not to be confused with the lattice order). Thus 1 6= 0, and so, without
loss of generality, 0 < 1 in the linear order on A. Hence, 1 = f (0) < f (1) = 0.
This contradiction establishes that such an A cannot admit a linear order, and
hence that V ∈ NL.

Although we do not propose to consider every possibility, we will conclude
this section with examples blocking two possible further implications in Fig-
ure 10.15. The first example is Polin’s variety which we saw in Example 10.2 is
4-permutable but not modular. Thus we conclude that P∗ does not imply M.

Finally, we will close the section with the result of E. T. Schmidt that regu-
larity does not imply permutability. We extend this result by showing that weak
uniformity of congruences does not imply permutability. Perhaps the most im-
portant remaining problem in this area is whether uniformity implies permutabil-
ity. We do know that this holds for locally finite varieties, see ?? where is

this?

Schmidt
wrote 2

papers in
1970; check

that this is
the right one.

rels5 THEOREM 10.50 (Schmidt 1970). There is a variety which is weakly congru-
ence uniform (and hence regular) but not permutable.

Proof. We take V to be the variety generated by two four-element algebras A0
and A1. Each Ai is a lattice (as depicted below) with six unary operations, µ0,
µ1, λ0, λ1, c0, and c1 and four constants 0, 1, a0, and a1. We define the lattice
structure of A0 by Figure 10.17.

The unary operations are defined by
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a0 e0

0

1 = a1

Figure 10.17: fig:relsFig3

µ0(x) = x

µ1(x) =

{
1 if x = 1
a0 otherwise

λ0(x) = x∨a0

λ1(x) =

{
0 if x = a0

x otherwise

c1(x) = ¬x

c0(x) = (¬x)∨a0.

Here ¬x denote the complement of x. For the purposes of this proof only, we
define the dual of a term (or formula) to be the usual lattice theoretic dual term
except that we also interchange the subscripts 0 and 1 of a0 and a1 and the six
unary operations. Now A1 is the lattice diagrammed in Figure 10.18.

e1 a1

0 = a0

1

Figure 10.18: fig:relsFig4

The unary operations are defined by duality as described above. Thus, for exam-
ple, the formula in A1 we have

λ0(x) =

{
1 if x = a1

x otherwise
.



10.7 Relationships 67

Obviously, the variety V defined in this way is self-dual: its set of identities is
closed under the formation of dual equations.

In order to see that V is not congruence permutable, we leave it to the reader
to check that the sublattice of A0×A1 given in Figure 10.19 is in fact a subalge-
bra. Now the failure of permutability is evident from the fact that this subuniverse
contains 〈0,a0〉, 〈a0,a0〉, and 〈a0,1〉 but not 〈0,1〉, and thus the two coordinate
projections do not permute.

〈0,a0〉

〈a1,1〉

〈a0,a0〉

〈a1,e1〉

〈a1,a1〉

〈e0,a1〉

〈e0,a0〉〈0,a1〉

〈a1,a0〉〈a0,a1〉

〈a1,1〉 〈a1,e1〉

Figure 10.19: fig:relsFig5

By Jónsson’s Theorem 7.??, V is residually finite. Therefore, by Exer- get this
referencecise 10.34.17 weak uniformity of V will follow from the regularity of V. Now to

check thisprove regularity, we will establish condition (iii) of Theorem 10.23. That is, we
will describe ternary V-terms gi, for 1 ≤ i ≤ 4, such that, for any x, y ∈ A ∈ V,
x = y if and only if gi(x,y,z) = z for all z ∈ A. We will in fact continue to use our
notion of duality; for this reason we will prefer to denote our four V-terms by gi
and g′i for i = 0,1, giving explicit definitions only for i = 0, and allowing duality
to take care of the case i = 1. We proceed by first defining some auxiliary terms.
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t0(x,y) = [c0(x∨a0)∧ (y∨a0)]∨ [(x∨a0)∧ c0(y∨a0)]

s0(x,y) = µ0(t0(x,y))

ẑ = a1∧ (z∨a0)

q0(x,y,z) = s0(x,y)∨ ẑ

r0(x,y,z) = s0(x,y)∧ ẑ

g0(x,y,z) = z∨ (q0(x,y,z)∧ c1(ẑ))

g′0(x,y,z) = z∧ c0(r0(x,y,z))

Before proving that the terms g0, g′0, g1, and g′1 are as required, we first leave
it to the reader to verify that A0 satisfies the following equations and their duals.

c1(x)≤ a1 x∨ c1(x)≈ x∨a1

c1(a1)≈ 0 x∧ c1(x)≈ 0
λ0(µ0(x))≥ x µ0(x)≤ a1

a0 ≈ µ0(a0)≈ λ0(a0) µ0(x∨a0)≥ a0

and thus these equations and their duals hold on V. It is now easy to verify
the following are identities of V.

t0(x,y)≥ a0

s0(x,y)≥ a0

r0(x,y,z)≥ a0

t0(x,x)≈ a0

s0(x,x)≈ a0

q0(x,x,z)≈ a0∨ ẑ≈ ẑ

r0(x,x,z)≈ a0∧ ẑ≈ a0

g0(x,x,z)≈ z∨ (ẑ∧ c1(ẑ))≈ z

g′0(x,x,z)≈ z∧ c0(a0)≈ z

Thus, if x = y we have (by duality)

g0 = g′0 = g1 = g′1 = z. (10.7.2) for:relsEq2

To complete the proof we will assume (10.7.2) and use the identities of V to
prove that x = y. We first deduce that q0(x,y,z) = ẑ and dually, as follows.

z∧a1 = g0(x,y,z)∧a1

= [(q0(x,y,z)∧ c1(ẑ))∨ z]∧a1

= (q0(x,y,z)∧ c1(ẑ))∨ (z∧a1)
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In the last step we have used the distributivity of V and the fact that

q0(x,y,z)∧ c1(ẑ)≤ a1.

And now, continuing,

ẑ = (z∧a1)∨a0

= (q0(x,y,z)∧ c1(ẑ))∨ (z∧a1)∨a0

= (q0(x,y,z)∧ c1(ẑ))∨ ẑ

= q0(x,y,z)∧ (c1(ẑ)∨ ẑ)

= q0(x,y,z)∧a1 = q0(x,y,z)

In the last equation we have used the identity µ0(x) ≤ a1 and the definition
of q0. We next deduce that r0(x,y,z) = a0, and dually, as follows.

a0∨ z = a0∨g′0(x,y,z) = a0∨ (z∧ c0(r0(x,y,z)))

= (a0∨ z)∧ c0(r0(x,y,z)),

since a0 ≤ c0(u) for all u. Now, since a0 ≤ r0(x,y,z), a0 = (z∨ a0)∧ a0 ∧
r0(x,y,z). Using one of our first identities x∧ c0(x)≈ x∧a0, we have

a0 = (z∨a0)∧ c0(r0(x,y,z))∧ r0(x,y,z)

= (z∨a0)∧ r0(x,y,z) = r0(x,y,z).

Now, recalling that q0(x,y,z) = ẑ from above, we have

s0(x,y) = s0(x,y)∧ (s0(x,y)∨ ẑ) = s0(x,y)∧q0(x,y,z)

= s0(x,y)∧ ẑ = r0(x,y,z) = a0

By duality, we also have s1(x,y) = a1. Now observe that

a0 = λ0(a0) = λ0(a0)∧ t0(x,y)

= λ0(s0(x,y))∧ t0(x,y) = λ0(µ0(t0(x,y)))∧ t0(x,y) = t0(x,y).

And so, by duality, we have a0 = t0(x,y) and a1 = t1(x,y). Since t0 is merely
the symmetric difference for the (Boolean) interval I[a0,1], we deduce that x∨
a0 = y∨a0. Likewise, by using t1 on I[0,a1], we deduce that x∧a1 = y∧a1, and
hence also that x∧ a0 = y∧ a0. Now by distributivity it follows that x = y, see
Theoren 2.51. This completes the proof. �

Exercises 10.51relsEx
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1. Show that the method of proof of Theorem 10.47, if applied to appropriate
congruences α , β , and γ on FV(x,y,z,w), yields precisely the Hagemann
formulas occurring in the proof of Theorem 10.46.

2. (A. F. Bravtsev, B. Csákány) Let A be an eight element cube with one edge
direction stipulated as “vertical,” and let G be the eight element group
consisting of all rigid motions of A which map each vertical face into a
vertical face. (G is obviously isomorphic to the dihedral group D4.) Define
A to be the algebra with universe A and with each g ∈ G acting as a unary
operation, i.e., a G-set, as defined in Chapter 3. Prove that CON A is not
modular, but that every subalgebra of A has regular congruences.

3. (B. Csákány) If A is an algebra with regular but not modular congruences,
then A has at least eight elements.

4. Show that P∗→ NL does not hold for individual algebras.

5. Strengthen the varietal implication P∗ → NL by showing that if V is k-
permutable for some k, then no algebra in V admits any nontrivial order-
ing, i.e., any ordering with a < b for some a and b with a 6= b.

6. Give a local proof of the varietal implication R→ NL. This is of interest,
since we still do not know whether there exists a local proof of R→ P∗.

7. The variety of groups is in K2 but not in K3.

8. The variety of 3-groups is in NL but not in K2.Is this
defined?

9. The variety of lattices is in D but not in K2. Thus, in fact, we see from
the previous two exercises that none of our varietal properties implies K2,
except of course Kn for n≥ 2.

10. (Bulman-Fleming and Taylor 1976) V ∈ Kn if and only if the V-free alge-
bra on n generators is not the union of n proper subuniverses.

11. (Bulman-Fleming and Taylor 1976) If V= HSPA for A a finite quasipri-
mal algebra, then the relation V ∈ Kn depends on both n and on the sub-
algebra structure of A. For instance, if |A|= n+1 and the proper subuni-
verses of A are precisely the singletons, then V ∈ Kn−Kn+1.

12. If A is primal (quasi-primal with all elements as constants), then V =
HSPA ∈ Km−1 −Km for m =

(k
2

)
, where k = |A|. Consequently, if A

is any finite algebra with |A|= k then V /∈ Km.Check this.
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13. If FV(2) is finite and V is nontrivial, then V /∈ Kn for n = |FV(2)|.

14. Prove that the 12 element subset of A0×A1 given in Figure 10.19 is in
fact a subuniverse.

15. For the Schmidt variety defined in the proof of Theorem 10.50, exhibit
terms fi of the sort required for condition (iv) of Theorem 10.23.
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10.8 Abelian Varieties

In this section we will continue our study of Abelian varieties, which began
in §4.13. We will also study certain concepts which are closely related. The
properties considered in this section have a somewhat different flavor from those
that have come before. They are not defined by Maltsev conditions, and as we
shall see, in conjunction with modularity, they define a very special class of
varieties, namely the class of affine varieties. A algebra A is affine if, for some
ring R, it is polynomially equivalent to an R-module with universe A. A variety
is affine if all its members are.

Recall that an algebra A is Abelian if Z(A) = 1A, where Z(A) is the center
of A as defined in §4.13. That definition says that A is Abelian if and only if it
satisfies the implication

t(x,u)≈ t(x,v)→ t(y,u)≈ t(y,v) (10.8.1) for:abelEq1

for each term t appropriate for A. A variety V is Abelian if all of its algebras
are Abelian, i.e., if each implication (10.8.1) follows from the identities of V.
The prototypical examples of Abelian varieties are module varieties and unary
varieties. The reader can easily check (10.8.1) in these cases.

Such a collection of implications is very different from a Maltsev condition.
Somewhat closer in spirit to the rest of this chapter is L. Klukovits’s closely
related notion of a Hamiltonian variety. An algebra A is called Hamiltonian
if every subuniverse of A is a block of some congruence on A, and a variety V

is called Hamiltonian if each algebra in A is Hamiltonian. This nomenclature
honors W. R. Hamilton (1805-1865), who invented quaternions. The closely
allied eight element quaternion group is Hamiltonian, i.e., each of its subgroups
is normal. The following characterization of Hamiltonian varieties, which is due
to L. Klukovits 1975, is not generally regarded as a true Maltsev condition, since
it involves the universally quantified function variable f . For a discussion of
these more general sorts of conditions, see Chapter 11.Clone

Theory
abel1 THEOREM 10.52. A variety V is Hamiltonian if and only if for every V-term f

there exists a V-term h, such that the following equation is an identity of V.

f (x0,x2, . . . ,xn)≈ h(x0,x1, f (x1, . . . ,xn))

Proof. First, suppose that V is Hamiltonian, and consider the free algebra FV(x0,x1, . . . ,xn).
The subuniverse U generated by x0, x1, and f (x1, . . . ,xn) must be a θ -block for
some congruence θ . Since x0 θ x1, we have

f (x0,x2, . . . ,xn) θ f (x1,x2, . . . ,xn),

i.e., f (x0,x2, . . . ,xn) ∈U . This means that

f (x0,x2, . . . ,xn) = h(x0,x1, f (x1, . . . ,xn))

for some ternary term h. The desired equation now follows.
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Conversely, let us suppose that the appropriate terms h exist for every f , and
then prove that V is Hamiltonian. Let B be a subalgebra of an algebra A∈V, and
consider the congruence θ generated on A by Z = B2. Obviously B is contained
in a single θ -block; to complete the proof, it will suffice to show that this θ -
block contains nothing outside B. In other words, given a θ b with b ∈ B, we
must prove that a ∈ B. Now according to Lemma 10.22, we have

b = f1(b1,b′1,e)

f1(b′1,b1,e) = f2(b2,b′2,e)
...

fm(b′m,bm,e) = a

for some V-terms fi, and some bi, b′i ∈ B.
Now our hypothesis (on the existence of h) can be applied both to the term

f1(x1, . . . ,xn) and to the term f1(x2,x1,x3, . . . ,xn) yielding the identities

f1(u,x2, . . . ,xn)≈ h1(u,x1, f1(x1, . . . ,xn))

f1(x1,w,x3, . . . ,xn)≈ k1(w,x2, f1(x1, . . . ,xn))

for appropriate V-terms h1 and k1. Thus we have

f1(b′1,b1,e) = k1(b1,b′1,h1(b′1,b1, f1(b1,b′1,e)))

= k1(b1,b′1,h1(b′1,b1,b)),

and thus f1(b′1,b1,e) ∈ B. Continuing in like manner, we inductively prove
that fi(b′i,bi,e) ∈ B and thus a ∈ B. �

abel2 LEMMA 10.53. Every Hamiltonian variety is Abelian.

Proof. In order to establish the implication (10.8.1) for a Hamiltonian variety,
we take for each term t, another term h such that

t(y,u)≈ h(y,x, t(x,u)).

The implication (10.8.1) is now evident. �

We do not know any example of an Abelian variety which fails to be Hamil-
tonian. We will see that every Abelian algebra in a modular variety is Hamilton- What did

Matt prove?ian, see Theorem 10.57.

abel3 LEMMA 10.54. If a variety is congruence modular and is Abelian, then it has
permutable congruences.
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Proof. By Theorem 10.18, V has some Gumm terms, p, d1, . . . ,dm satisfying the
equations

x≈ p(x,z,z)

p(x,x,z)≈ d1(x,x,z)

di(x,y,x)≈ x for all i

di(x,z,z)≈ di+1(x,z,z) for i odd
di(x,x,z)≈ di+1(x,x,z) for i even

dm(x,y,z)≈ z.

Thus V satisfies
di(z,x,z)≈ z≈ di(z,z,z).

Now from (10.8.1) we deduce di(x,x,z) ≈ di(x,z,z), for all i. Using Gumm’s
equations we obtain di(x,x,z)≈ di+1(x,x,z). Hence

p(x,x,z)≈ d1(x,x,z)≈ ·· · ≈ dm(x,x,z)≈ z,

from which it follows that p is a Maltsev term for V. �

LEMMA 10.55. An algebra A is affine if and only if, for some ring R, an R-
module M = 〈A,+,−,0, . . .〉 can be defined on A in such a way that

p ∈ CloA⊆ PolM

where p is the ternary term p(x,y,z) = x− y+ z.

Proof. Suppose first that A is affine, i.e., that PolA = PolM for some M with
universe A. Obviously CloA ⊆ PolM, and so it remains to be proved that CloA
contains p. Since x− y is a polynomial of M it is a polynomial of A. Thus

x− y = F(x,y,a1, . . . ,an)

for some A-term F and some a1, . . . ,an ∈A. But F itself must be an M-polynomial,
and so

F(x,y,z1, . . . ,zn) = mx+ny+∑ pizi + c

for some c ∈ A and m, n, p1, . . . , pn ∈ R. By substituting 0 for x and y, we see
that mx = x and nx =−x, for all x ∈M. Thus an easy calculation yieldsmore details?

F(x,F(y,z,x, . . . ,x),x, . . . ,x) = x− y+ z

and so p ∈ CloA.
Conversely, suppose that we have an R-module M defined on A satisfying

the conditions of the Lemma. From this it is not hard to see that every unary
operation in PolA has the form

f (x) = mx+a

for some m ∈ R and a ∈ A. One may easily check that the set of all such m forms
a (unital) subring R0 of R, and that PolA = PolM0, where M0 is the R0-reduct
of M. �
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Now we are ready to present Herrmann’s beautiful theorem connecting affine
and Abelian algebras. McKenzie (unpublished; see R. McKenzie 1978) and
Gumm 1978 had earlier established this result for permutable varieties. The
proof in that case was presented in Theorem 4.155.

abel4 THEOREM 10.56 (Herrmann 1979). An algebra A is affine if and only if A is
Abelian and HSPA is congruence modular.

Proof. If A is affine, then it generates a permutable, hence modular, variety by
the previous lemma. Elementary linear algebra establishes the implication (10.8.1)
for all operations in PolA = PolM; hence every affine A is Abelian.

Conversely, let us suppose that A is Abelian and lies in a congruence modular
variety V. By Theorem 10.54, V is congruence permutable. Now the result
follows from Theorem 4.155. �

abel5 COROLLARY 10.57. Let V be congruence modular. Then V is Abelian if and
only if it is Hamiltonian.

Proof. If V is Hamiltonian then it is Abelian by Lemma 10.53. On the other had
if V is modular and Abelian then it is affine, and from this it easily follows that
V is Hamiltonian. �

At this point
Walter

presented
some results

about the
clone

associated
with an
abelian

variety. I am
omitting
them for
now; but

after I see
the clone

chapters, I
may reinstate

them.

In our next corollary, we look at the special form taken by idempotent affine
varieties. (Recall that a variety V is idempotent if V satisfies F(x, . . . ,x)≈ x for
each operation F of V.)

abel6 COROLLARY 10.58. V is an idempotent affine variety if and only if V is equiv-
alent to reduct of a module variety to some operations ∑rixi with ∑ri = 1 and
this reduct contains the operation x− y+ z.

Proof. See Exercise 14. �

We now conclude our discussion of Abelian varieties, and our discussion of
Maltsev conditions, with a sort of “anti-Abelian” property of varieties. A variety
V is called semidegenerate if no algebra in V has a one-element subuniverse,
other than, of course, the one-element algebra itself.

abel7 THEOREM 10.59 (Csákány 1976; Kollár 1979). For a variety V, the following
conditions are equivalent:

i. V is semidegenerate;

ii. if A ∈ V and B is a subuniverse of A with B 6= A, then B is not a block of any
congruence on A;

iii. for each A ∈ V, 1A is a compact element of CON A;

iv. for each A ∈ V, 1A is a countably compact in CON A;
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v. for some n, there exist unary V-terms f1, . . . , fn and g1, . . . ,gn and ternary
V-terms p1, . . . , pn such that the following are identities of V.

x≈ p1(x,y, f1(x))

p1(x,y,g1(x))≈ p2(x,y, f2(x))
...

pn(x,y,gn(x))≈ y

Proof. We leave the easy equivalence (i) and (ii) to the reader. The rest of the
proof will proceed (iii)→ (iv)→ (i)→ (v)→ (iii). The first of these implications
is obvious. For (iv) → (i) let us assume that V is not semidegenerate, i.e., that
some nontrivial A ∈ V has a one-element subuniverse {e}. To show that (iv)
fails for V, we will show that 1B is not countably compact in CON B, where B
is the “weak direct power” consisting of all sequences in Aω which are equal to
e in all but finitely many places. For each i ∈ ω , we define a θi b if a j = b j for
all j ≥ i. It is easy to see that each θi < 1 but

∨
θi = 1, contradicting countable

compactness.
For (i) → (v), we assume that V is semidegenerate, and consider the free

algebra FV(x,y). Let B be the subalgebra generated by x, and θ the congruence
generated by Z = B2. Since B/θ is a one-element subalgebra of FV(x,y)/θ , this
latter algebra must itself have only one element, and thus 〈x,y〉 ∈ θ . According
to Lemma 10.22, we have the following equations holding in FV(x,y), for some
terms qi, hi, and ki:

x = q1(x,y,h1(x),k1(x))

q1(x,y,k1(x),h1(x)) = q2(x,y,h2(x),k2(x))

q2(x,y,k2(x),h2(x)) = q3(x,y,h3(x),k3(x))
...

qm(x,y,km(x),hm(x)) = y.

We now obtain the Maltsev condition of (v) if we define n = 2m, and let

p2i−1(x,y,u) = qi(x,y,u,ki(x))

p2i(x,y,w) = qi(x,y,ki(x),w)

f2i−1 = g2i = hi

g2i−1 = f2i = ki

for i = 1, . . . ,m. We leave the details to the reader.
Finally, for (v) → (iii), we will use the equations (v) to prove that, on any

algebra A ∈ V, 1A is compact, i.e., finitely generated. We will in fact show that,
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for any a ∈ A, the congruence θ generated by the n pairs 〈 fi(a),gi(a)〉, with fi
and gi as in (v), is 1A. Thus we have, for arbitrary b, c ∈ A:

p1(a,b, f1(a)) = a = p1(a,c, f1(a))

p1(a,b,g1(a)) θ p1(a,c,g1(a))

By the equations (v), we have

p2(a,b, f2(a)) θ p2(a,c, f2(a)),

and hence,
p2(a,b,g2(a)) θ p2(a,c,g2(a)).

Continuing in a like manner, we finally arrive at

pn(a,b,gn(a)) θ pn(a,c,gn(a));

in other words, 〈b,c〉 ∈ θ . Thus θ = 1A and the proof is complete. �

From condition (ii) of this theorem it is evident that the Hamiltonian prop-
erty is completely incompatible with semidegeneracy, in that the only variety
having both properties is the trivial variety defined by x ≈ y. In the next theo-
rem we prove something a bit stronger. For a related fact concerning congruence
distributivity, see Exercise 21.

abel8 THEOREM 10.60. No nontrivial Abelian variety is semidegenerate.

Proof. Supposing V to be Abelian and semidegenerate, we will prove V trivial
by an argument almost exactly like the one which ended our last proof. For b, c
any elements of any algebra A ∈ V, we need to prove b = c. Taking any a ∈ A,
and taking the terms pi, fi, and gi as supplied by the previous theorem, we have

p1(a,b, f1(a)) = a = p1(a,c, f1(a)).

Since V is Abelian, we have

p1(a,b,g1(a)) = p1(a,c,g1(a)),

and hence, by the equations for pi, fi, and gi, we have

p2(a,b, f2(a)) = p2(a,c, f2(a)).

Continuing in like manner, we finally obtain b = c. �

One may easily observe that the variety of bounded lattices (i.e., lattices with
0 and 1 explicitly in the similarity type) is semidegenerate since in such a lattice
with more than one element, 0 6= 1, and hence all subalgebras have at least two
elements. A similar argument applies to rings with unit. A few more examples
appear in the exercises. We conclude the main body of this chapter with an-
other look at Magari’s Theorem. Our argument for (iv)→ (i) in Theorem 10.59
comes from Kollár 1979; his argument turned out to repeat an important step
from Magari 1969; thus we now present Magari’s Theorem as a corollary to
Theorem 10.59.
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COROLLARY 10.61 (Magari 1969). Every nontrivial variety contains a sim-
ple algebra.

Proof. Let V be a nontrivial variety. If V is semidegenerate, then V contains a
nontrivial algebra A such that 1A is compact. Zorn’s Lemma yields a maximal
proper congruence θ . Clearly A/θ is simple.

Otherwise V is not semidegenerate, and so has an algebra A with both a one-
element subuniverse {e} and a further element a 6= e. Let Q be the subalgebra
of A2 generated by {〈e,e〉,〈a,e〉,〈e,a〉,〈a,a〉}, and take R to be the smallest
equivalence relation on A containing Q. (R is not necessarily a congruence.) One
easily checks that B = e/R is a subuniverse of A, and that in the corresponding
subalgebra B, the congruence Cg(a,e) = 1B. Thus 1B is compact, and so B has
a simple homomorphic image as before. �

Exercises 10.62abelEx

1. The Hamiltonian property of varieties is not definable by a Maltsev condi-
tion. Likewise the Abelian property.

2. (R. McKenzie) A variety V is called strongly Abelian if and only if V

satisfies the following implication for every V-term t:

t(x,u)≈ t(y,v)→ t(x,w)≈ t(y,w).

Prove that if V is strongly Abelian, then V is Abelian, and provide an
example showing that the converse is false. Also, give an example of a
nontrivial V which is strongly Abelian.

3. Give an example of a Hamiltonian variety which is not congruence per-
mutable.

4. (W. Taylor) Every k-permutable Abelian variety is affine. (Hint: Use thepossibly
promote this
to a theorem.

Maltsev condition for k-permutability given in Theorem 10.1, while trying
to imitate the first part of the proof of Lemma 10.54; for the details, see
page 16 of Taylor 1982.)

5. An algebra A is affine if and only if HSPA is congruence permutable and
{〈a,a〉 : a ∈ A} is a block of a congruence on A×A.

Call a class of algebras κ-categorical, or categorical in power κ , if it
contains, up to isomorphism, only one algebra of power κ . In a later
volume we will prove that if a variety V is κ-categorical for sufficiently
large κ , then either V is affine or V is strongly Abelian (as defined in Ex-
ercise 2 above). The following seven exercises provide a description of
some κ-categorical affine varieties, and along the way show some inter-
esting examples of reducts of module varieties.
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6. Show that if V is κ-categorical and affine then it is a reduct of a module
variety.

exer:defMFG 7. Let L be a left ideal of a ring R with unit. The variety VR,L has ternary
operations Fr for each r ∈ R, and unary operations Gα for each α ∈ L. It
is defined by the laws

Fr(x,x,z)≈ z

F0(x,y,z)≈ z

F1(x,z,z)≈ x

F1(x,z,y)≈ F1(y,z,x)

Frs(x,z,z)≈ Fr(Fs(x,z,z),z,z)

Fr+s(x,y,z)≈ F1(Fr(x,y,z),z,Fs(x,y,z))

F1(x,y,F1(z,v,w))≈ F1(F1(x,y,z),v,w)

Fr(x,y,z)≈ F1(F1(Fr(x,u,u),u,F−r(y,u,u)),u,z)

Fr(F1(x,u,y),u,u)≈ F1(Fr(x,u,u),u,Fr(y,u,u))

F1+α(x,y,z)≈ F1(Gα(x),Gα(y),z)

Gα(Gβ (x))≈ Gα+β+αβ (x)

for all r, R and all α ∈ L. Prove that every algebra A ∈ VR,L can be
embedded in an algebra 〈M,Fr,Gα〉 where M is an R-module and, on M,
we define

Fr(x,y,z) = rx− ry+ z

Gα(x) = (1+α)x.

Conversely each such 〈M,Fr,Gα〉 is in VR,L. (Hint: if A ∈ VR,L, consider
the free R-module F generated by the set A and consider the smallest sub-
module M such that the map a 7→ a is a homomorphism A→ F/M for the
operations Fr and Gα .) Moreover, in some cases, e.g., R = Z and L = 2Z,
there exists such an A which is not isomorphic to any 〈M,Fr,Gα〉.

8. Conclude from the previous exercise that the correspondence

Fr(x,y,z) 7→ rx− ry+ z

Gα(x) 7→ (1+α)x

establishes an equivalence of VR,L with the reduct of the variety of all
R-modules to the linear expressions ∑rixi with ∑(ri−1) ∈ L.
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9. Now assume that the ideal L has a finite orthogonal R-basis of idempotents
e1, . . . ,ek. (This means that

eie j =

{
ei if i = j
0 otherwise,

and that L = Re1 + · · ·+Rek.) Prove that for every A ∈ VR,L there exists
a ∈ A with Gα(a) = a for all α ∈ L. Conclude that every A ∈ VR,L is
isomorphic to 〈M,Fr,Gα〉 (defined in Exercise 7) for some R-module M.

10. We now let R be the ring of n×n matrices over a skew field K, and L its
left ideal consisting of all matrices whose first m columns are zero. Prove
that VR,L is categorical in power κ unless κ = |k| ≥ℵ0. Prove, moreover,
that if K is finite, then m, n and |k| can be recovered from the equivalence
type (see §4.12) of VR,L. Specifically, this information can be recovered
from the sequence 〈ωi〉 where ωi is the size of the i-generated free algebra
in VR,L. (By the result of S. Givant 1979 and E. A. Palyutin 1975, these
varieties (with K finite) are the only affine varieties which are categorical
in all powers.)

check with
walter if

these are the
right refs.

11. (Aliev 1966; Baldwin and Lachlan 1973) Let the variety V be defined by
the following axioms in one binary operation:

xx≈ x xy≈ yx

x(yx)≈ y≈ (xy)x (ux)(yv)≈ (uy)(xv)

Prove that V is equivalent to VR,L for some R and L. [For a different
approach to this variety, see Exercise 3.12.10.]

12. Prove that if V=VR,L for some R, L, then the varietal power V[k] is equiv-
alent to VR′,L′ for some R′ and L′. Give an explicit description of R′

and L′. (One example of the varietal power V[k] was discussed in Exer-
cises 4.38.18 and 19. For the precise definition of V[k] one may consult
Garcia and Taylor 1984, pages 22–24.)Check to see

if McKenzie
will have

defined the
varietal

power at this
point.

13. For each varietal property P considered in this chapter, we may ask whether
either of the following implications holds, where V[k] denotes the varietal
kth power.

P(V)→ P(V[k])

P(V[k])→ P(V)
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Investigate to what extent these hold. [For some information, see (Garcia
and Taylor 1984, pages 22–24).]

exer:pfofCor 14. Prove Corollary 10.58.

exer:qp 15. If A is a finite quasi-primal algebra with no one-element subalgebras, then
V(A) is semidegenerate. Write out the terms for condition (v) of Theo-
rem 10.59 in the special case that A = 〈A,T, f 〉, where T is the ternary
discriminator and f : A→ A has no fixed point.

exer:sdandperm 16. If V is semidegenerate and congruence permutable (such as, e.g., the vari-
ety of Exercise 15), then (v) of Theorem 10.59 is satisfied with n = 1.

17. Quackenbush 1982 If V has constants a1, . . . ,ak and a ternary operation m,
obeying the equations

m(x,x,y)≈ m(x,y,x)≈ m(y,x,x)≈ x

and
m(· · ·m(m(x,a1,y),a2,y), . . . ,ak,y)≈ y,

then V is semidegenerate. (Hint: get terms for condition (v) of Theo-
rem 10.59.) Incidentally, these equations hold on any algebra with ex-
actly k elements having a ternary majority function, if we treat each ele-
ment as a constant.

18. Quackenbush 1982 If condition (v) of Theorem 10.59 holds for V, then
for all A ∈ V, 1A ∈ ConA is the join of n principal congruences. Prove
that this condition fails for V= HSPA, with A = 〈A,m,a1, . . . ,ak〉 where
A = {a1, . . . ,ak}, k ≥ 2n+ 2, m is a majority function, and if x, y, z ∈ A
are distinct, then m(x,y,z) = a1. (Hint: first establish that CON A is the Walter had

a0.same as the congruence lattice of the meet semilattice with universe A di-
agrammed in Figure 10.20. Thus, by Exercise 16, some semidegenerate
varieties are not permutable. Moreover, it is now evident that semidegen-
eracy is not definable by a strong Maltsev condition.

. . .

a1

a2 a3 ak

Figure 10.20: fig:abelFig1

19. Quackenbush 1982 Write a Maltsev condition for the following property
of a variety V: every compact congruence on every algebra in V is the
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join of n principal congruences. Prove that E. T. Schmidt’s variety of k-
Boolean algebras given in Example 10.3 satisfies this condition for n = k
but not for n = k−1.

20. Csákány 1964 Consider the following property of a variety V: if A ∈ V,
B1, . . . ,Bn are subuniverses of A, and F is an n-ary operation of A, then
{F(b1, . . . ,bn) : b1 ∈ B1, . . . ,bn ∈ Bn} is also a subuniverse. Prove that V
satisfies this condition if and only if for every n and for all n-ary opera-
tions F and G of V, there exists n-ary terms σ1, . . . ,σn such that V satisfies
the following equations.

F(G(x11, . . . ,x1n), . . . ,G(xn1, . . . ,xnn))

≈ G(σ1(x11, . . . ,x1n), . . . ,σn(xn1, . . . ,xnn))

exer:abeldist 21. No nontrivial Abelian variety is congruence distributive. This is a easy
corollary of Theorem 10.56 but here we suggest trying a direct proof: ap-
ply the Abelian implication (10.8.1) to the Jónsson identities.

22. Let V be a variety with a constant 0. Show that V is semidegenerate ifThis and the
next exercise

came from
Davey’s note
to walter and

me.

and only if for some n ≥ 1 there are binary terms t1, . . . , tn and constants
a1, . . . ,an and b1, . . . ,bn such that V satisfies

0≈ t1(x,a1)

t1(x,b1)≈ t2(x,a2)

...
tn(x,bn)≈ x.

23. Let A = 〈{0,1},m, ′〉 be the algebra where m is the majority function and ′

is complementation. Show that the variety generated by A is semidegen-
erate but has no constant and no unary term which satisfies t(x)≈ t(y).



10.9 Notes and Perspectives 83

Sections Yet to Come

10.9 Notes and Perspectives
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