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1. INTRODUCTION

1.1.

A dimension for a triangulated category has been introduced in Rouquier
(to appear), which gives a new invariant for algebras and algebraic varieties under
derived equivalences. For related topics see also Bondal and Van den Bergh (2003)
and Happel (1988, p. 70).

Let � be a triangulated category with shift functor �1�, � and � full
subcategories of �. Denote by ��� the smallest full subcategory of � containing
� and closed under isomorphisms, finite direct sums, direct summands, and shifts.
Any object of ��� is isomorphic to a direct summand of a finite direct sum

⊕
i Ii�ni�

with each Ii ∈ � and ni ∈ �. Define � � � to be the full subcategory of � consisting
of the objects M , for which there is a distinguished triangle I −→ M −→ J −→
I�1� with I ∈ � and J ∈ � . Now define ���0 �= �0�, and ���n �= ����n−1 � ���� for
n ≥ 1. Then ���1 = ���, and ���n = ���� � · · · � ����, by the associativity of � (see
Bondal and Van den Bergh, 2003). Note that ���� �= ⋃�

n=0���n is the smallest thick
triangulated subcategory of � containing � .

By definition, the dimension of �, denoted by dim���, is the minimal integer
d ≥ 0 such that there exists an object M ∈ � with � = �M�d+1, or � when there is
no such an object M . See Rouquier (to appear).
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 2 CHEN ET AL.

Let A be a finite-dimensional algebra over a field k. Denote by A-mod the
category of finite-dimensional left A-modules, and by Db�A-mod� the bounded
derived category. Define the derived dimension of A, denoted by der.dim�A�, to be
the dimension of the triangulated category Db�A-mod�. By Rouquier (to appear)
and Krause and Kussin (2006), one has

der	dim�A� ≤ min�l�A�
 gl	dim�A�
 rep	dim�A��


where l�A� is the smallest integer l ≥ 0 such that radl+1�A� = 0, gl.dim�A� and
rep.dim�A� are the global dimension and the representation dimension of A (for the
definition of rep.dim�A� see Auslander, 1971), respectively. In particular, we have
der.dim�A� < �.

Our main result is

Theorem. Let A be a finite-dimensional algebra over an algebraically closed field k.
Then der.dim�A� = 0 if and only if A is an iterated tilted algebra of Dynkin type.

1.2.

Let us fix some notation. For an additive category �, denote by C∗��� the
category of complexes of �, where ∗ ∈ �−
+
 b� means bounded-above, bounded-
below, and bounded, respectively; and by C��� the category of unbounded
complexes. Denote by K∗��� the corresponding homotopy category. If � is abelian,
we have derived category D∗���.

For a finite-dimensional algebra A, denote by A-mod, A-proj, and A-inj the
category of finite-dimensional left A-modules, projective A-modules and injective A-
modules, respectively.

For triangulated categories and derived categories we refer to Verdier (1977),
Hartshorne (1966), and Happel (1988); for representation theory of algebras we
refer to Auslander et al. (1995) and Ringel (1984); and for tilting theory we refer to
Ringel (1984) and Happel (1988), in particular, for iterated tilted algebras we refer
to Happel (1988, p. 171).

2. PROOF OF THEOREM

Before giving the proof of theorem, we make some preparations.

2.1.

Let A = ⊕
j≥0 A�j� be a finite-dimensional positively-graded algebra over k, and

A-gr the category of finite-dimensional left �-graded A-modules with morphisms
of degree zero. An object in A-gr is written as M = ⊕

j∈� M�j�. For each i ∈ �,
we have the degree-shift functor �i�: A-gr −→ A-gr, defined by M�i��j� = M�i+j�,
∀j ∈ �. Let U � A-gr −→ A-mod be the degree-forgetful functor. Then U�M�i�� =
U�M�, ∀i ∈ �. Clearly, A-gr is a Hom-finite abelian category, and hence by
Remark A.2 in Appendix, it is Krull–Schmidt. An indecomposable in A-gr
is called a gr-indecomposable module. The category A-gr has projective covers
and injective hulls. Assume that �e1
 e2
 	 	 	 
 en� is a set of orthogonal primitive
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 ALGEBRAS OF DERIVED DIMENSION ZERO 3

idempotents of A�0�, such that �Pi �= Aei =
⊕

j≥0 A�j�ei 
 1 ≤ i ≤ n� is a complete set
of pairwise nonisomorphic indecomposable projective A-modules. Then Pi (resp.,
Ii �= D�eiA� =

⊕
j≤0 D�eiA�−j��) is a projective (resp., injective) object in A-gr. One

deduces that �Pi�j� 
 1 ≤ i ≤ n
 j ∈ �� is a complete set of pairwise nonisomorphic
indecomposable projective objects in A-gr, and �Ii�j� 
 1 ≤ i ≤ n
 j ∈ �� is a complete
set of pairwise nonisomorphic indecomposable injective objects in A-gr.

Let 0 �= M ∈ A-gr. Define t�M� �= max�i ∈ � 
M�i� �= 0� and b�M� �= min�i ∈
� 
M�i� �= 0�. For a graded A-module M = ⊕

i∈� M�i� �= 0, set top�M� �= M�t�M�� and
bot�M� �= M�b�M��, both of which are viewed as A�0�-modules. Denote by �n (resp.,
�n

A�0�
) the nth syzygy functor on A-gr (resp., A�0�-mod), n ≥ 1. Similarly, we have

�−n and �−n
A�0�

.
We need the following observation.

Lemma 2.1. Let M be a nonzero, nonprojective, and noninjective graded A-module.
With notation above, we have:

(i) Either b���M�� = b�M� and bot���M�� = �A�0�
�bot�M��, or b���M�� > b�M�;

(i)′ Either t��−1�M�� = t�M� and top��−1�M�� = �−1
A�0�

�top�M��, or t��−1�M�� <

t�M�.

Proof. We only justify (i). Note that rad�A� = rad�A�0��⊕ A�1� ⊕ · · · , and that for
a graded A-module M , the projective cover P of M/rad�A�M in A-mod is graded. It
follows that it gives the projective cover of M in A-gr. Since A is positively-graded, it
follows that b�P� = b�M�, and that bot�P� is the projective cover of bot�M� as A�0�-
modules. If bot�P� = bot�M�, then b���M�� > b�M�. Otherwise, b���M�� = b�M�
and bot���M�� = �A�0�

�bot�M��. �

2.2.

Let A = ⊕
j≥0 A�j� be a finite-dimensional positively-graded algebra over k. The

category A-gr is said to be locally representation-finite, provided that for each i ∈ �,
the set

��M� 
M is gr-indecomposable such that M�i� �= 0�

is finite, where �M� denotes the isoclass in A-gr of the graded module M . By degree-
shifts, one sees that A-gr is locally representation-finite if and only if the set

��M� 
M is gr-indecomposable such that M�0� �= 0�

is finite, if and only if A-gr has only finitely many indecomposable objects up to
degree-shifts.

If A is in addition self-injective, then A-gr is a Frobenius category. In fact,
we already know that A-gr has enough projective objects and injective objects, and
each indecomposable projective object is of the form Pi�j�; since A is self-injective,
it follows that Pi is injective in A-mod, so is Pi�j� in A-gr; similarly, each Ii�j� is a
projective object in A-gr.
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 4 CHEN ET AL.

Note that the stable category A-gr is triangulated (see Happel, 1988, Chap. 1,
Sec. 2), with shift functor induced by �−1.

Proposition 2.2. Let A = ⊕
i≥0 A�i� be a finite-dimensional positively-graded algebra

which is self-injective. Assume that dim�A-gr� = 0 and gl	dim�A�0�� < �. Then A-gr is
locally representation-finite.

Proof. Since dim�A-gr� = 0, it follows that A-gr = �X� for some graded module
X. Without loss of generality, we may assume that X = ⊕r

l=1 M
l, where Ml’s are

pairwise nonisomorphic nonprojective gr-indecomposable modules. It follows that
every gr-indecomposable A-module is in the set ��i�Ml�
 Pj�i� 
 i ∈ �
 1 ≤ l ≤ r
 1 ≤
j ≤ n�. Therefore, it suffices to prove that for each 1 ≤ l ≤ r, the set

�j ∈ � 
�j�Ml��0� �= 0�

is finite.
For this, assume that gl	dim�A�0�� = N , b�Ml� = j0, and t�Ml� = i0. Since

gl	dim�A�0�� < �, it follows from Lemma 2.1(i) that if b���M�� = b�M�, then
p	d�bot���M��� = p	d�bot�M��− 1 as A�0�-modules, and otherwise b���M�� >
b�M�. By using Lemma 2.1(i) repeatedly we have

if j ≥ max�1
−j0N�
 then b��j�Ml�� > 0	

Dually, if j ≥ max�1
 i0N�, then t��−j�Ml�� < 0. Note that b��j�Ml�� > 0
(resp., t��−j�Ml�� < 0) implies that �j�Ml��0� = 0 (resp., �−j�Ml��0� = 0). It follows
that the set considered above is finite. �

2.3.

Let us recall some related notion in Bongartz and Gabriel (1982) and Gabriel
(1981). Let A and �e1
 e2
 	 	 	 
 en� be the same as in 2.1, and M the full subcategory
of A-gr consisting of objects �Pj�i� 
 1 ≤ j ≤ n
 i ∈ ��. Then M is locally finite-
dimensional in the sense of Bongartz and Gabriel (1982). One may identify A-gr
with mod�M� such that a graded A-module M is identified with a contravariant
functor sending Pj�i� to ejM�−i�. Now it is direct to see that A-gr is locally
representation-finite if and only if the category M is locally representation-finite in
the sense of Bongartz and Gabriel (1982, p. 337).

Let us follow Gabriel (1981, pp. 85–93). Let G be the group �. Then G acts
freely on M by degree-shifts. Moreover, the orbit category M/G can be identified
with the full subcategory of A-mod consisting of �Pj 
 1 ≤ j ≤ n�. Hence we may
identify mod�M/G� with A-mod. With these two identifications, the push-down
functor F� � mod�M� −→ mod�M/G� is nothing but the degree-forgetful functor U �
A-gr −→ A-mod. The following is just a restatement of Theorem d) in 3.6 of Gabriel
(1981).

Lemma 2.3. Let k be algebraically closed, and A be a finite-dimensional positively-
graded k-algebra. Assume that A-gr is locally representation-finite. Then the degree-
forgetful functor U is dense, and hence A is of finite representation type.
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 ALGEBRAS OF DERIVED DIMENSION ZERO 5

2.4. Proof of Theorem

If A is an iterated tilted algebra of Dynkin type, then by Theorem 2.10 in
Happel (1988, p. 109), we have a triangle-equivalence Db�A-mod� � Db�kQ-mod�
for some Dynkin quiver Q. Note that kQ is of finite representation type, and
that Db�kQ-mod� = �M�0��, where M is the direct sum of all the (finitely many)
indecomposable kQ-modules. It follows that der	dim�A� = der	dim�kQ� = 0.

Conversely, if dimDb�A-mod� = 0, it follows from the fact that Db�A-mod�
is Krull–Schmidt (see, e.g., Theorem B.2 in Appendix) that Db�A-mod� has
only finitely many indecomposable objects up to shifts. Since Kb�A-proj� is a
thick subcategory of Db�A-mod�, it follows that Kb�A-proj� has finitely many
indecomposable objects up to shifts. Consequently, s	gl	dim�A� < � (for the
definition of s	gl	dim�A� see B.3 in Appendix).

By Theorem 4.9 in Happel (1988, p. 88), and Lemma 2.4 in Happel (1988,
p. 64), we have an exact embedding

F � Db�A-mod� −→ T�A�-gr


where T�A� = A⊕DA is the trivial extension algebra of A, which is graded with
degA = 0 and degDA = 1. Since gl	dimA ≤ s	gl	dim�A�− 1 < � (see Corollary B.3
in Appendix), it follows from Theorem 4.9 in Happel (1988) that the embedding F
is an equivalence. Now by applying Proposition 2.2 to the graded algebra T�A� we
know that T�A�-gr is locally representation-finite. It follows from Lemma 2.3 that
T�A� is of finite representation type, and then the assertion follows from a theorem
of Assem et al. (1984), which says the trivial extension algebra T�A� is of finite
representation type if and only if A is an iterated tilted algebra of Dynkin type (see
also Theorem 2.1 in Happel, 1988, p. 199, and Hughes and Waschbüsch, 1983).

�

APPENDIX

This appendix includes an exposition on some material we used. They are well-
known, however their proofs seem to be scattered in various literature.

A. Krull–Schmidt Categories

This part includes a review of Krull–Schmidt categories.

A.1.

An additive category � is Krull–Schmidt if any object X has a decomposition
X = X1 ⊕ · · · ⊕ Xn, such that each Xi is indecomposable with local endomorphism
ring (see Ringel, 1984, p. 52).

Directly by definition, a factor category (see Auslander et al., 1995, p. 101) of
a Krull–Schmidt category is Krull–Schmidt.

Let � be an additive category. An idempotent e = e2 ∈ End��X� splits, if there
are morphisms u � X −→ Y and v � Y −→ X such that e = vu and IdY = uv. In this
case, u (resp., v) is the cokernel (resp., kernel) of IdX − e; and End��Y� � eEnd��X�e
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 6 CHEN ET AL.

by sending f ∈ End��Y� to vfu. If in addition IdX − e splits via X
u′−→ Y ′ v′−→ X,

then
(
u

u′
)
� X � Y ⊕ Y ′. One can prove directly that an idempotent e splits if and only

if the cokernel of IdX − e exists, if and only if the kernel of IdX − e exists. It follows
that if � has cokernels (or kernels) then each idempotent in � splits; and that if
each idempotent in � splits, then each idempotent in a full subcategory � splits if
and only if � is closed under direct summands.

A ring R is semiperfect if R/rad�R� is semisimple and any idempotent in
R/rad�R� can be lifted to R, where rad�R� is the Jacobson radical.

Theorem A.1. An additive category � is Krull–Schmidt if and only if any idempotent
in � splits, and End��X� is semiperfect for any X ∈ �.

In this case, any object has a unique (up to order) direct decomposition into
indecomposables.

Proof. For X ∈ �, denote by addX the full subcategory of the direct summands
of finite direct sums of copies of X, and set R �= End��X�

op. Let R-proj denote the
category of finitely-generated projective left R-modules. Consider the fully-faithful
functor

X �= Hom��X
−� � addX −→ R-proj	

Assume that � is Krull–Schmidt. Then X = X1 ⊕ · · · ⊕ Xn with each Xi

indecomposable and End��Xi� local. Set Pi �= X�Xi�. Then RR = P1 ⊕ · · · ⊕ Pn

with EndR�Pi� � End��Xi� local. Thus R is semiperfect by Theorem 27.6(b) in
Anderson and Fuller (1974), and so is End��X� = Rop. Note that every object P ∈
R-proj is a direct sum of finitely many Pi’s: in fact, note that �Si �= Pi/rad�Pi��1≤i≤n

is the set of pairwise nonisomorphic simple R-modules and that the projection
P −→ P/rad�P� = ⊕

i S
mi
i is a projective cover, thus P � ⊕

i P
mi
i . It follows that P is

essentially contained in the image of X , and hence X is an equivalence. Consider
R-Mod, the category of left R-modules. Since R-Mod is abelian, it follows that any
idempotent in R-Mod splits. Since R-proj is a full subcategory of R-Mod closed
under direct summands, it follows that any idempotent in R-proj splits. So each
idempotent in add�X� splits. This proves that any idempotent in � splits.

Conversely, assume that each idempotent in � splits and Rop = End��X� is
semiperfect for each X. Then again by Theorem 27.6(b) in Anderson and Fuller
(1974), we have R = Re1 ⊕ · · · ⊕ Ren where each ei is idempotent such that eiRei is
local. Since 1 = e1 + · · · + en and ei splits in � via, say X

ui−→ Yi
vi−→ X, it follows

that X � Y1 ⊕ · · · ⊕ Yn via the morphism �u1
 · · · 
 un�
t with inverse �v1
 	 	 	 
 vn�.

Note that End��Yi� � eiEnd��X�ei = �eiRei�
op is local. This proves that � is Krull–

Schmidt.
For the last statement, it suffices to show the uniqueness of decomposition in

addX for each X. This follows from the fact that X is an equivalence, since the
uniqueness of decomposition in R-proj is well known by Azumaya’s theorem (see,
e.g., Theorem 12.6(2) in Anderson and Fuller, 1974). This completes the proof. �
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 ALGEBRAS OF DERIVED DIMENSION ZERO 7

A.2.

Let k be a field. An additive category � is a Hom-finite k-category
if Hom��X
 Y� is finite-dimensional k-space for any X
 Y ∈ �, or equivalently,
End��X� is a finite-dimensional k-algebra for any object X.

Corollary A.2. Let � be a Hom-finite k-category. Then the following are equivalent:

(i) � is Krull–Schmidt;
(ii) Each idempotent in � splits;
(iii) For any indecomposable X ∈ �, End��X� has no non-trivial idempotents.

Remark A.2. By Corollary A.2(ii), a Hom-finite abelian k-category is Krull–
Schmidt.

In particular, the category of coherent sheaves on a complete variety is Krull–
Schmidt (see Atiyah, 1956, Theorem 2(i)).

B. Homotopically-Minimal Complexes

In this part, A is a finite-dimensional algebra over a field k.

B.1.

A complex P• = �Pn
 dn� ∈ C�A-proj� is called homotopically-minimal provided
that a chain map �• � P• −→ P• is an isomorphism if and only if it is an
isomorphism in K�A-proj� (see Krause, 2005).

Applying Lemma B.1 and Proposition B.2 in Krause (2005), and duality, we
have the following proposition.

Proposition B.1 (Krause, 2005). Let P• = �Pn
 dn� ∈ C�A-proj�. The following
statements are equivalent:

(i) The complex P• is homotopically-minimal;
(ii) Each differential dn factors through rad�Pn+1�;
(iii) The complex P• has no nonzero direct summands in C�A-proj� which are

null-homotopic.

Moreover, in C�A-proj� every complex P• has a decomposition P• = P ′• ⊕ P ′′•

such that P ′• is homotopically-minimal and P ′′• is null-homotopic.

B.2.

For P• ∈ C�A-proj�, consider the ideal of End
C�A-proj��P

•�:

Htp�P•� = ��• � P• −→ P• 
�• is homotopic to zero�	

Lemma B.2. Assume radl�A� = 0. Let P• be homotopically-minimal. Then
�Htp�P•��l = 0.
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 8 CHEN ET AL.

Proof. Let �• ∈ Htp�P•� with homotopy �hn�. Then �n = dn−1hn + hn+1dn. Since
by assumption both dn−1 and dn factor through radicals, it follows that �n factors
through radPn. Therefore, for k ≥ 1 morphisms in �Htp�P•��k factor through the
kth radicals. So the assertion follows from radl�A� = 0. �

Denote by C−
b�A-proj� the category of bounded above complexes of
projective modules with finitely many nonzero cohomologies, and by K−
b�A-proj�
its homotopy category. It is well known that there is a triangle-equivalence p �
Db�A-mod� � K−
b�A-proj�.

The following result can be deduced from Corollary 2.10 in Balmer and
Schlichting (2001). See also Burban and Drozd (2004).

Theorem B.2. The bounded derived category Db�A-mod� is Krull–Schmidt.

Proof. Clearly, Db�A-mod� is Hom-finite. By Corollary A.2 it suffices to show that
End

Db�A-mod�
�X•� has no nontrivial idempotents, for any indecomposable X•.

By Proposition B.1 we may assume that P• �= pX• is homotopically-minimal.
Since P• is indecomposable in K−
b�A-proj�, it follows from Proposition B.1(iii) that
P• is indecomposable in C�A-proj�. Since idempotents in C�A-proj� split, it follows
that End

C�A-proj��P
•� has no nontrivial idempotents. Note that

End
Db�A-mod�

�X•� = End
K−
b�A-proj��P

•� = End
C�A-proj��P

•�/Htp�P•�	

Since by Lemma B.2 Htp�P•� is a nilpotent ideal, it follows that any idempotent in
the quotient algebra End

C�A-proj��P
•�/Htp�P•� lifts to End

C�A-proj��P
•�. Therefore,

End
C�A-proj��P

•�/Htp�P•� has no nontrivial idempotents. �

B.3.

For X• = �Xn
 dn� in Cb�A-mod�, define the width w�X•� of X• to be the
cardinality of �n ∈ � 
Xn �= 0�. The strong global dimension s	gl	dim�A� of A is
defined by (see Skowronski, 1987)

s	gl	dim�A� �= sup�w�X•� 
X• is indecomposable in Cb�A-proj��	

By Proposition B.1 an indecomposable X• in Cb�A-proj� is either
homotopically-minimal, or null-homotopic (thus it is of the form · · · −→ 0 −→
P

Id−→ P −→ 0 −→ · · · , for some indecomposable projective A-module P). So we
have

s	gl	dim�A� = sup�2
 w�P•� 
P• is homotopically-minimal

and indecomposable in Cb�A-proj��	

Let M be an indecomposable A-module with minimal projective
resolution P• �−→ M . Denote by �≥−mP• the brutal truncation of P•, m ≥ 1. By
Proposition B.1(ii) �≥−mP• is homotopically-minimal.
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 ALGEBRAS OF DERIVED DIMENSION ZERO 9

If �≥−mP• = P ′• ⊕Q• in Cb�A-proj� with P• = �Pn
 dn�, P ′• = �P ′n
 �n�, and
Q• = �Qn
 �n�, then both P ′• and Q• are homotopically-minimal. Assume that P ′0 �=
0, and set t0 �= max�t ∈ � 
Qt �= 0�. Then −m ≤ t0 ≤ 0. Since M is indecomposable
and both P ′• and Q• are homotopically-minimal, it follows that t0 �= 0, and
hence Qt0 ⊆ Kerdt0 ⊆ rad�Pt0� = rad�P ′t0 ⊕Qt0�, a contradiction. This proves the
following lemma.

Lemma B.3. The complex �≥−mP• is homotopically-minimal and indecomposable in
Cb�A-proj�.

As a consequence we have the following corollary.

Corollary B.3 (Skowronski, 1987, p. 541). Let A be a finite-dimensional algebra.
Then

s	gl	dim�A� ≥ max�2
 1+ gl	dim�A��	
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