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Abstract. The structures of Poisson Lie groups on a simple compact group are
parametrized by pairs (a,u), where aeR, ue A*hy, and by is a real Cartan
subalgebra of complexification of Lie algebra of the group in question. In the
present article the description of the symplectic leaves for all pairs (a, u) is given.
Also, the corresponding quantized algebras of functions are constructed and their
irreducible representations are described. In the course of investigation Schubert
cells and quantum tori appear. At the end of the article the quantum analog of the
Weyl group is constructed and some of its applications, among them the formula
for the universal R-matrix, are given.

Introduction

0.1. Let G be a finite-dimensional simply connected simple complex Lie group. G
is called a Poisson Lie group ([3])if it is a Poisson manifold and the multiplication
1:G x G—G is a morphism of Poisson manifolds. There exist many Poisson Lie
group structures on the fixed group G. All of them are listed in [1].

Let KCG be a maximal compact subgroup. The results of [1] imply (see
[28,29] and Sect.1 below) that all Poisson Lie group structures on K are
parameterized essentially by pairs (a, u), where a is a real number, ue 42y and by is
a real Cartan subalgebra of the Lie algebra g=LieG.

Fix pair (a, u). The corresponding Poisson Lie group is denoted by K(a, u). In
Drinfeld’s theory [3], the group K(a, u) may be viewed as a classical object that is
subject to quantization. To formulate this in the language of algebras of functions,
consider the algebra of regular functions C[G] on a Poisson Lie group G. This is a
Poisson Hopf algebra in the sense of [3], ie. the comultiplication ¢:C[G]
->C{GI®C[G] is a Poisson algebra homomorphism. Consider the algebra of
K-finite functions C[K] consisting of restrictions fl|g, where fe@[G]. The
algebra C[K] has involution (complex conjugation f+ f), and the comultiplica-
tion ¢ : C[K]->C[K]®C[K] is a homomorphism of algebras with involution
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As a Hopf algebra with involution, €[K] is isomorphic to (C{G], *), where f*(g)
= f(wy(g)). Here wq: G—G is the Cartan anti-involution such that K is the set of
fixed points of w,.

The result of quantization of K(a, u) is the family C[K(a, u)], of Hopf algebras
with involution, where ¢g=1 is quantization parameter and C[K(a,u)],
=C[K(a,u)]. One constructs this family in two steps. First, one quantizes the
Poisson Hopf algebra €[ G(a,u)] as indicated in [3]. The result is the family
C[G(a,u)], of Hopf algebras, where ge €\0 (and g isn’t a root of unity).

To make the second step, recall that €[ G(a, u)], is a Hopf algebra consisting of
matrix elements of finite-dimensional representations of the quantized universal
enveloping algebra U,(g). It follows that in C[G(a,u)],, g€ IR, one can introduce
an involution *. By the Hopf algebra C[ K(a, u)],, we mean the pair (€[ G(a, u)],, *).
We also call it the algebra of K-finite functions on quantum group K(a, u) or the
quantized algebra of K-finite functions on group K(a, u).

The cases g=1 and g £1 being analogous, we may and shall assume that g > 1.

0.2. In this paper we’ll deal with irreducible *-representations of the algebra
C€C[K(a,u)], in a Hilbert space, by bounded operators. In the case g=1 the
description of such representations is trivial: all irreducible representations are
one-dimensional and correspond to points of group K.

In the case g=1 the situation changes drastically: there exist infinite-
dimensional irreducible representations of the algebra C[K(a, u)],. Let n be one of
these representations; then  determines two-sided *-ideal I, =Kern C C[K(a, u)],.
As g—1, the ideal I, “tends” to a Poisson *-ideal I,CC[K(a,u)]. = being
irreducible, T, is a max1ma1 Poisson *-ideal. Hence, there is a minimal Poisson
submanifolds in K(a,u) (i.e. symplectic leaf) corresponding to I,. We see that
representations of C[K(a,u)], are closely related to symplectic leaves of the
Poisson structure in K(a, u). The picture of these leaves depends on parameters
(a,u). In the case a=0, u=0 the symplectic leaves are points, C[K(0, 0)],=C[K],
and all (irreducible #-) representations are one-dimensional. In the case a+0, u=0,
symplectic leaves are naturally isomorphic to Schubert cells of the full flag
manifold K/T, where T is the maximal torus. As it turns out (see [28, 29} and
Sect. 3 below), the geometry of Schubert cells and that of flag variety govern the
representation theory of the corresponding quantized algebra of functions. One
can develop this relation further. For one possible direction see [14] and Sect. 5
below. This is a quantum analog of the Weyl group. Here is an illustration for the
typical case a=1. For the sake of brevity, denote C[K(1,0)], by C[K], and note
that for every element w of the Weyl group W there exists an irreducible
representation n,, of algebra €[ K], which is in a sense a representation with the
highest vector e, (see [29] and Sect. 3 below). This allows to define the functional
on the algebra €[ K], as follows: w(f)=(x,(f)e,. e,). It turns out thatif {s;}7- , are
simple reﬂectlons then for {5;}1. | the Coxeter relations hold. This is due to the fact
that if w=s;,...5; is a reduced expression, then =, 27, ®...Q7,,, where the
right side is mdependent of the choice of reduced expresswn The relation §; §t=1
doesn’t hold; nevertheless, one manages to construct Hopf algebra containing all
5. In contrast to the classical case g=1, this algebra is infinite-dimensional. It is
the quantum analog of the minimal Hopf algebra containing the universal
enveloping algebra U(g) and simple reflections {s;}7% ;.

Let’s go back to a description of irreducible representations of the algebra
C[K(a,u)],. As it was noted, in the case a+0, u=0 these representations are
described in terms of geometry of Schubert cells and that of flag variety. In the case
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a=+0, u=#0 we have essentially a different picture. Here the symplectic leaves are a
“perturbation in parameter u” of the Schubert cells. There appear everywhere
dense symplectic leaves and the space of these leaves becomes non-semiseparable
with the natural topology. In the representation theory of the algebra C[K(a, u)],
the main examples for non-commutative geometry by Connes, namely the
quantum tori, appear (for references on the latter see, for example, [23]). We
believe this is of interest because quantum tori aren’t quantum groups.

In the last case a =0, u 30 Schubert cells do not play any role but quantum tori
still do.

0.3. Recall briefly the history of the subject in question. The first results were
announced by the second author and Vaksman at the Winter Voronezh
Mathematical School (January, 1985; unpublished). They had described all
irreducible representations of the algebra C[SU(3)],. Later this result was
generalized by the second author in [28] for C[SU(n)], and in [29] for C[K],. In
these articles the relations with Schubert cells and geometry of the flag variety were
also established. The case SU(n) (but without relations to geometry) was
independently considered in [10]. The case K(1,u) and relations to quantum tori
were studied by the first author in [13].

As the first published results on representations of quantum algebras of
functions, one should view preprints [26, 27] (part of the results were published in
[31]) and article [37]. All these articles dealt with C[SU(2)],. They contain much
more than just a description of representations. For example, in [26, 27, 31] the
representation theory of €[SU(2)], was used to construct the harmonic analysis
on the quantum group SU(2). One of the consequences of this theory is the relation
between quantum groups and the theory of g-special functions (this relation was
discovered independently in [21, 11]). For the later developments in this direction,
see the review [12].

Also, in [37] the elements of harmonic analysis and differential calculus on the
quantum group SU(2) were constructed. Later, in [38] the axiomatric approach
for compact quantum groups was developed. It should be noted that [38] didn’t
contain the algorithm for quantization of an arbitrary simple compact Lie group.
This algorithm (described in Subsect. 0.1) follows from results [3]. There exists
another method of quantization, based on the notion of the quantum R-matrix (see
[5]). The methods of [38] and [5] are more algebraic-geometric than that of [3],
since the former start from a coordinate ring of an algebraic variety. The approach
[3] is similar to that of the representation theory and differential geometry (one
starts from an infinitesimal object, namely, the quantum universal enveloping
algebra). A more systematic “algebraic-geometric” approach may be found in
[20]: coordinate rings of quantum linear spaces are initial objects and coordinate
rings of quantum groups appear as Hopf algebras of their (co-)}endomorphisms.

In the abovementioned [5, 20, 38] the authors do not investigate the
representations of quantum algebras of functions, but in these articles useful
information about the structure of these algebras may be found.

We do not mention here the articles on quantum algebras of functions on non-
compact groups since they have no immediate connections with the present article.

0.4. Inthe present article we give a full description of irreducible representations of
algebras of functions on compact quantum groups, the latter being supposed to
arise as the results of quantization of Poisson structures from the list in [1]. Our
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description is based essentially on [13, 297 and we reproduce part of their results
here, one of the reasons being the misprints in [29] (there were none of them in the
preprint).

0.5. In Sect. 1 of the present article the “classical theory” is described, i.e. compact
Poisson Lie groups, Schubert cells and symplectic leaves. In Sect. 2 the quantized
universal enveloping algebras and the corresponding quantized algebras of
functions are introduced. The representation theory of quantized algebras of
functions for the case a0, u=0 (i.e. when leaves are isomorphic to Schubert cells)
is developed in Sect. 3. The generalization of results of Sect. 3 is given in Sect. 4,
where quantum tori appear. In the case a= 0, u =0 the representation theory is the
“semidirect product” of the results of Sect. 3 and of the representation theory of
quantum tori.

At the end of Sect. 4 the last case a =0, u =0 is considered. Here the same ideas,
as in the case a=+0, u=+0, allow to reduce the representation theory to one of
quantum tori and one of some factor-algebras of (classical) algebras of functions on
group K. Note that this case can be put into the framework of deformation
quantization by Rieffel (see, for example, [23]). Also, in this case one can attempt to
state and solve all the problems of the theory of quantum tori (see [23] for a review
on the latter).

An algebra of functions on a compact quantum group admits C*-completion.
In the case of Sect. 3 (i.e. for a=+0, u=0) we obtain an algebra of type L, but in the
case of Sect. 4 (a0, u=+0) we obtain algebras of other type for almost ail u and q.
One can see that on the “quasi-classical level” already the general case of Sect. 4
corresponds to irrational rotations of torus and to non-semiseparable spaces of
symplectic leaves. This indicates the relations to the theory of wild Lie groups.

In Sect. 5, the definition of quantum Weyl group [14] and some applications
are given, all of them being related to the case of Sect. 3 only, i.c. to the case of the
standard Poisson structure on a compact group. We omit proofs given in [ 14], but
sometimes we give proofs of the results that were only stated in [14].

At the beginning of each section we give a brief abstract of the results it contains.

0.6. The present article isn’t a review of the representation theory of quantum
algebras of functions and the bibliography is not exhaustive. Some of the results
were discovered several times and we refer to the earliest articles we know of.

0.7. Notations. The letter G denotes a simple complex Lie group, g=LieG is its
Lie algebra. We fix a triangular decomposition g=n_@h®Pn,, where n, are
nilpotent subalgebras and § is a Cartan subalgebra. Let 4=4,u4_ be the
correspondmg decomposition of the root system. We fix a basis {a;}7-  in 4, an
invariant inner product (, ) on h*, Cartan-Weyl basis {X,},. ,U{H; }l ; in g such
that H; corresponds to «; under isomorphism h* x~.

Let wy: X,,—— X _,, be an antilinear Cartan involution 1t defines the real Lie

subalgebra kCg, the real Cartan subalgebra hy= @ RH,; and the maximal

compact subgroup K C G. The letter W denotes the Weyl group of K and T denotes
the maximal torus in K. U(g) denotes the universal enveloping algebra.

The set of dominant (of regular dominant) weights of g is denoted by P, (P, ).
The set of weights of a simple g-module L(A4) with the highest weight A is denoted
by P(4).
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1. Compact Poisson Groups

1.1. In this section we give the description of all structures of Poisson Lie groups
on a simple compact Lie group. They are parameterized by pairs (a,u) with aeR
and ue A*hg. For all pairs (a, u) the symplectic leaves are described. The pictures
differ significantly in cases: 1) a=0, u=0; 2) a+0, u=0; 3) a=+0, u+0; 4) a=0,
u+0. There is also the dependence on u =0, but “for almost all” u 40 the picture is
essentially the same (and depends on whether a=0 or not).

1.2. Let €[ G] denote the algebra of regular functions on group G. It is well-known
that €[G] consists of matrix elements Z(g(g)v) of finite-dimensional analytic
representations ¢: G—>End V. Let

r=3 ¥ (X.®X,~X,®X Jeds.
aed+

Fix aeR, ue A*hg and define on G a Poisson structure as follows:

{/1(91(g)v1)a fz(Qz(g)vz)}
=(£1®7,)([(01®02) (ar+u), 0,(8)®0x(g)] v, ®v,). (1.1)

In (1.1), Z{o{2)V;) are matrix elements and [,] is the commutator of linear
operators.

Definition [3]. Let G be a Lie group equipped with a Poisson structure. G is
called a Poisson Lie group if the multiplication map u: G x G—Gis a Poisson map,
G x G being equipped with the product Poisson structure.

1.2.1. Proposition [28, 29]. a) Formula (1.1) equips G with a Poisson Lie group
structure.

b) The restriction of bracket (1.1) on K makes K a Poisson Lie group.

¢} For every Poisson Lie group structure on K there exist acR, ue A%hy such that
the corresponding Poisson bracket can be reduced to form (1.1) by means of an inner
automorphism of K and multiplication of bracket by complex number.

Proof. a) is well-known and b) follows from a). ¢) Sects. 6 and 8 of [1] imply that a
general form of a real (i.e. wy-invariant) solution of a modified Yang-Baxter
equation is just ar + u. Each such solution defines a Poisson Lie group structure on
K and it remains to note that one can multiply a Poisson bracket by complex
number and get a Poisson Lie group structure.

The Poisson Lie groups corresponding to (a, u) will be denoted by G(a, u) and
K(a,u).

1.3. In this subsection, we’ll describe symplectic leaves [35] corresponding to
Poisson structures from Proposition 1.2.1 with a=+0, u=0. We can assume thata
Poisson structure on K is defined by the Yang-Baxter tensor

=335 (X ®X,~X.®X.)
then (cf. (1.1)). For the sake of brevity we use here notations G, K for the
corresponding Poisson Lie groups G(1,0), K(1,0).
For an element w of Weyl group W choose its representative in K as in [34].
This representative will be denoted by w, too. Finally,let K= [} K, be a Bruhat
decomposition [34]. weW
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1.3.1. Proposition [28, 29, 36]. Let a=0, u=0. Then a) every symplectic leaf lies in
its entirety in some Bruhat class K, and

b) every symplectic leaf XCK,, is of the form X, -t (or t,- 2, ).

Here 2, is standard symplectic leaf through w, and ¢, t; € T, where T is the
maximal torus in K.

Proof. Symplectic leaves may be described by means of [24] provided “the classical
double” for K [3] is constructed. One sees easily that this double is just the group
G, provided the dual group to K in the sense of Drinfeld is identified with subgroup
AN in the Iwasawa decomposition G=KAN. This follows from decomposition
g=k®Lic AN since the summands k and Lie AN are isotropic with respect to the
imaginary part of the Killing form.

1.2.3. Let ie[1,m] be a vertex of Dynkin diagram of Lie algebra g and let
;- SU(2)— K be the canonical Poisson Lie group embedding corresponding to this

vertex. Recall that
D= {( a__b>eSU(2) b<0}
ba

is a symplectic leaf in SU(2) [31] and set 2,=y/(9).

1.3.3. Proposition. a) X; is a symplectic leaf in K.
b) If w=s;,...s,, is areduced expression in Weyl group, then 2, ... %, is a symplectic
leaf in K which coincides with the leaf X, from Proposition 1.3.1b).

Proof follows from the definition of a Poisson Lie group since y; is a Poisson
embedding.

1.3.4. Remark. Note that the multiplication by an element of maximal torus T
from the left or from the right is a Poisson map. Hence, on the flag manifold K/T

the Poisson structure such that projection n: K—K/T is a Poisson map is well
defined.

1.3.5. Corollary. a) Every symplectic leaf in K is isomorphic to a product of two-
dimensional leaves or coincides with the point of T.
b) Let K/T= {) X, be a Schubert cell decomposition [24]. Then X ,=n(X,)is a

weW
symplectic leaf and every symplectic leaf in K/T is of this form.

1.3.6. Remark. The decomposition of K/T in Schubert cells is the consequence of
Bruhat decomposition. The “symplectic” point of view on Bruhat decomposition
is given by Corollary 1.3.5b): the Poisson manifold K/T is the union of symplectic
leaves.

1.4. Here we consider the case a+0, u+0. We may assume that the Poisson
structure is determined by tensor r,+iu; the corresponding Poisson Lie group
K(1,u) will be denoted by K in this subsection.

The Killing form Q in g is defined by conditions

Q(XwX—a)=1’ Q(Hi’Hi)=(ai9°‘i)’ Q(XwHi)ZO'

Let #1:h% —>hg be the operator corresponding to tensor u € A%hy under isomor-
phism by =bF defined by the Killing form. Set

br=>+2i)bg, g3=br®n,, g =k=LieK.
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1.4.1. Proposition. The triple (g,g.,g%) is a Manin triple in the sense of [1].
Proof is analogous to that of Proposition 1.3.1: g, and g% are both isotropic
with respect to imaginary part of the Killing form.

14.2. Let B* be a subgroup in G corresponding to Lie algebra g4%. We have
G=KB"*. Note that B°=AN.

1.4.3. Proposition [ 13]. a) Every symplectic leaf Z* of the Poisson Lie group K* lies
in some Bruhat class K,,.

b) If 2*CK,, isaleaf through a pointt-w,wheretc T,then 2*=T, -t - X, where X,
is the standard symplectic leaf from Proposition 1.3.1.b), T,,=exp(i(ii—w ™ 'tiw)bhg)
is a subgroup in T and 6i:hg—by is the operator corresponding to tensor ue A%hy.

Proof. A general form of element of the group B* is x,exp((I+_2i#)/) where
X, €N, Zebf. It follows from [24] that the symplectic leaf through y is of the
form 2%(y)=B*yB*nK, ie.

X"y)={zeK|3p,qe B*:py=zq}.
This and equality N , w=2X N, give Z%y)=T, -t- 2, and to conclude the proof
we note that Poisson manifolds K, K* are disjoint unions of their symplectic leaves.

1.5. Now we consider the last case a=0, u0. The corresponding Poisson Lie
group is denoted by K(0,u). The “classical double” for group K(0,0) is T*K
= K x k* with multiplication (g,,4,) - (82, 42) =(g182, 4> + Ad}%; :14,) and the “clas-
sical double” for the corresponding bialgebra Lie [3] k is 2(k)=k@k*, where the
bracket on k is initial, the bracket on k* is trivial and the bracket on 9(k) is defined
by

[x+¢&y+n]l=[x,y]+ad¥n—ad*

for all x, yek, & nek*.
These results give the following propositions:

1.5.1. Proposition. a) The “classical double” for the Poisson Lie group K(0,u) is
T*K =K x k* with the multiplication law introduced above.

b) The group dual to K(0, u) in the same sense of Drinfeld is a subgroup in T*K with
Lie algebra (I + %) (ib})* ®v*, where k=ihg ®v is an orthogonal decomposition with
respect to Killing form and (ibg)*, v* are dual subspaces in k*.

Proof. 1t suffices to note that (2(k), k, (I + 4) (ihg)* @v*) is a Manin triple, provided
the invariant bilinear form in (k) is given by the usual formula

A& y+m=em+{n&, x,yek, Enek*.
1.5.2. Proposition. Symplectic leaf through a point g in K(0,u) is of the form
Zy={exp(dh)g exp(—dpr; Ad}_ (4, &)A€ (ibhg)*, Eev*],
where pr, :(ibp)*@v* —(ibg)* is a projection.
Proof is analogous to that of Proposition 1.4.3.

1.6. Remark. In the next sections we’ll obtain the quantum counterparts of results
of Subsect. 1.3 in the spirit of the Kirillov-Kostant method of orbits: we’ll attach to
each symplectic leaf an (irreducible) representation of the quantum algebra of
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functions. This correspondence can fail for some u+0 (i.e. in the cases considered
in 1.5, 1.4). In addition, for almost all =0 the space of symplectic leaves is non-
semiseparable and these two facts are closely related. Really, it is well-known [24]
that symplectic leaf through the point geK coincides with the orbit through g of
the right (or left) dressing action by the dual Poisson Lie group in the sense of
Drinfeld. If K is equipped with the trivial bracket then the dual group is coalgebra
k* equipped with a Lie-Berezin-Kirillov bracket and the dressing action is the
usual coadjoint action. Non-semiseparableness of the space of orbits indicates that
K is a wild Lie group [7]. For such a group the correspondence “leaf «
representation” can fail. We encounter with the same effect here.

2. Quantized Universal Enveloping Algebras and Quantized Algebras of Functions

2.1. Atthe beginning of the section we recall some basic definitions related to Hopf
*-algebras. After these we give the examples, namely, quantized universal
enveloping algebras and quantized algebras of functions.

2.2. Let F be a commutative unital ring and let A—1 be an involutive
automorphism of F. We consider quantum groups A4 over F. This means [3] that 4
is a Hopf algebra over F with invertible antipode S: 4A— 4.

2.2.1. Definition [5, 26, 28, 29, 38]. A4 is called a Hopf =-algebra if it is equipped
with an involution a~»a* such that for all a, be 4, AeF:
a) (la)*=7la*,
b) (ab)* =b*a*,
c) A(a*)=A(a)*.
Here (a®b)* =a*®@b*.

Note that a)—<) imply (S(S(a)*))* =a (cf. [38]).

For Hopf *-algebra A the dual Hopf algebra 4¥=Homg4, F) is a Hopf
x-algebra as well, the involution being defined by

¥(@)=£(S(a)*) (2.1)

for all ae A.
2.3. Let C, be a category of A-modules which are free over F and have finite rank

over F. One defines associative tensor multiplication in C,:for M, M, e ObC , the
F-module M, (X M, is equipped with A-module structure by formula
F

a-(m,@my)=A(a)- (m;®@m,), (22)

where (x®y)(m, ®m,)=xm, ®ym,. Furthermore, for every A-module M one
defines its left dual MY =Homg(M, F) by formula

(a-2)(b)=1(S(a)b) (2.3)

for every /e M”, a, be A.

Let B be the set of matrix elements of objects from C ,, i.e. B consists of pairs
(¢,m), whereme M, MeOb C,,/ e M”. Then B can be equipped with Hopf algebra
structure with invertible antipode. Note that the multiplication is given by formula

(£1,my) - (£2,my)=(£1 @, m; ®my) , (2.4)

the A-module structure in M, ® M, being defined by (2.2).
Clearly, B is a Hopf subalgebra in A4".
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2.3.1. Definition. Let A be Hopf *-algebra over € and MeObCC,. M is called a
unitarizable module provided it can be equipped with sesquilinear inner product
{,» such that

lamy,my>=<{my,a*m,) . (2.5

Let C, be a full subcategory in C 4, consisting of unitarizable A-modules. From
(2.1), it follows that B is a Hopf *-subalgebra and that the Hopf subalgebra BC B,
consisting of matrix elements of objects from C, is also a Hopf *-subalgebra.

2.4. Fix g>1. Quantized universal enveloping algebra Uj(g) [3, 8] is a complex
Hopf algebra with generators {X*, ki }7, and defining relations
kiik‘,:_'— =k‘lj_‘—kii 3 kt+k]- =kj_ki+ 5 ki+ki- =1 3
ki XE=qE @ XFEkE, kT XF=q X Ek
(ki) — (k)

—1 >

—4q

2.6)
[X, X;]1=4;

K= K

for i+ j. In formula (2.6), g, = ¢*»*¥*, n;;=1 —a,;, where ((a;;)) is the Cartan matrix
of Lie algebra g, and

(n)_(t"—l)(t"‘l—1)...(t"“"“—1)
K/, (- 11—

The comultiplication in U,(g) is given by

z”o(—l)"(””) gi KRV X E(X K =0,
qi

AXP)=XF Rk +k7 ®XF,  Akd)=kI @k, 2.7

and the counit ¢ and the antipode § are given by formulae
gXt)=0, ek)=1, (2.8)
S(XF)=—a ' XF,  Skif)=k . (2.9)
The Hopf algebra U,(g) is equipped with a Hopf =-algebra structure by formulae
(Xii)*=Xi¢ > (kii)*=kii' (2.10)

2.5. Let F=C[h] be the ring of formal series in h. U,(g) denote an C[h]-algebra
generated (in the h-adic sense, i.e. as an algebra complete in the h-adic topology) by
generators {X 7, H;}™, and defining relations

[HyH]=0, [H,Xi]=+(wa)X},

sh <g H i)
[Xi+’Xj—] =5ij‘”’*’ﬁ*‘,
sh 3
the last relation in (2.6) being included. The Hopf #-algebra structure is defined by
formulae (2.7)-(2.10) with ki =exp < + ﬁH i) provided an involution in C[A] is

given by Ah=1h, where Ae C.

2.11)
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2.5.1. Remark. For Hopf =-algebra U,(g), one can repeat all constructions of
Subsects. 2.2 and 2.3, considering all modules as free topological modules over
C[h], complete in h-topology, and assuming all morphisms to be continuous.

2.5.2. Introduce in U,(g) the new comultiplication by
4,(8)=exp(—ihu/2)4(¢) exp(ihu/2), (2.12)

where £ e U,(g) and 4 is given by (2.7). Since u* =u, (2.11) yields 4,(E*¥)= 4,(&). This
means that we’ve obtained a Hopf *-algebra U, (g).

2.6. In this subsection, we set A= U(g). Consider the full subcategory 2, in C,
consisting of objects M such that the spectrum of the morphism k*: MM
consists of positive numbers. It is well-known that &, C C, and that every module
M eObg,is a “quantum deformation” of a finite-dimensional g-module M [15].

Using category 2 ,, construct the Hopf algebra & C B of matrix elements in a way
of 2.3.

2.6.1. Definition. The Hopf algebra Z is called the algebra of regular functions on
the quantum group G, corresponding to fixed g, and is denoted by C[G],.

According to 2.3.1, C[G], is a Hopf *-subalgebra in the Hopf *-algebra U,(g)".
The involution in C[G], is denoted by the same sign .

2.6.2. Definition. The pair (C[G],, #) is called the algebra of K-finite functions on
the quantum group K, corresponding to fixed ¢ and is denoted by C[K],.

2.7. In this subsection, we set A= U, ,(g). The category C, copsists of topological
A-modules of finite rank over C[[h]] which are free over €[] and complete in
h-adic topology. The corresponding Hopf #-algebra will be denoted by €[G*],. It
is generated by matrix elements of indecomposable modules from C ;. It is known
[4] that there exists bijection between indecomposable objects from C , and finite-
dimensional simpje g-modules. This is the case for the category from 2.6 as well.

Let L(A4) be a finite-dimensional simple U ,(g)-module with the highest
weight 4. Fix*an inner product in I{4) satisfying (2.6) and choose an orthonor-
mal weight basis {v}?} in L(4) and dual weight basis {#?,} in L*(4). Then we can
write every matrix element in the form

D0 D) =CA, 5. 0(8),

where Q=(j,i)eINx N, {eU(g) and g,: U g)—=EndL(A) is the representation
corresponding to this element.
We’'ll use this notation for indecomposable representations of U, (g) as well.
If weight space L(4), (or L*(4)_ ) is one-dimensional then we may and shall
assume that Q is an element of IN x 1 (or 1 x IN). We shall also use the following

notation ) )
/(-j)u(QA(é) US{)) = C{u,j, i &,

If the weight space is one-dimensional, then the corresponding index is omitted.
For example: C2, ; ,, C4,,4 4, where we W is an element of Weyl group.
From (2.12), we deduce the following formula:

A1 . (42
C—h.#x,!h C“/lz,uz,ﬂz

ih
= exP(E((j-n}-z)u - (ﬂl::uZ)u)> Ciﬁl,m,gl ’ C/izlz,ﬂz,ﬂz . (2.13)
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Here on the right (on the left) stands the multiplication - in C[G*], (the
multiplication - in C[G], where g=exp(h/2)) and (x,y),=(ix,y), where
#i:h*—>h* is the operator corresponding to tensor ue A%hy under isomorphism
defined by Killing form.

One sees easily that (2.13) is in accordance with the comultiplication J in the
Hopf algebra C[G"],.

2.7.1. Definition. a) The Hopf algebra over € generated by matrix elements
C4,...0€CLG],, g=exp(h/2), the multiplication law being defined by (2.13), is
called the twisted algebra of regular functions on the quantum group G*
(corresponding to parameters g and u) and denoted by C[G"],.

b) Let « be defined by (2.1). The pair (C[G"],, *) is called the twisted algebra of
K-finite functions on the quantum group K (corresponding to parameters g and )
and denoted by C[K"],.

2.7.2. Remark. The Hopf algebras C[G],, C[G"],, C[K],, C[K"], introduced in
2.6.1,2.6.2,2.7.1 are the quantizations of Poisson Hopf algebras [3] C{G], C[G*],
C[K], C[K"].

The Hopf algebra C[G(0,u)], is defined as the algebra generated by matrix
elements C4, QE(D[G] the multiplication law being given by (2.13) with the
multiplication in C[G] in the right side. In complete analogy with
Definition 2.7.1b) we obtain that of the Hopf algebra C[K(0,u)],. The algebras
C[G(0,u)],, C[K(0,u)], are quantizations of the Poisson Hopf algebras C[ G(0, u)],
CLK(0,u)].

2.7.3. Remark. Considerations of this section show that one may view C[K"],
(CLK(0,u)],) as “perturbation in parameter u € 42" of C[K],, (C[K]). We'll see

below that th1s principle works in the representation theory of these algebras as
well.

2.8. Proposition [29]. In C[K],, the following equality holds:
(C’l l,u,ﬂ)* — q—(l—u)(é)cl—, vzo‘ﬁﬂ ,

where w, € W is the longest element in the Weyl group, and g€ f corresponds to the
element =% Y oaebh* under canonical isomorphism h* =

aed
Proof. Let Q=(ij). This means C%, , J(&)=¢9,(0,&)v), where ¢,:U(g)
—End L(4) is the finite-dimensional representation with the highest weight A,
U/g), £9,e L¥(4)_,, v € L(4),. L(A) being unitarizable, we can fix the inner
product (,) in it such that (2.5) holds. Then we have

(ct A,u,g)*(€)=(QA(S€)UE{)’ Uff))L(A)' (2.14)

Note that U, (g)-module L(—wyA) is isomorphic to L*(A), the isomorphism being
defined by the quantum analog of linear Cartan involution, i.e. by the linear
automorphism w: U,(g)—U,(g) such that

oXF)=—q¢F X[, ok)=k.

Set a=¢*?€ U(g). It is well-known [4] that S*(¢)=aéa™* for all £ U(g), where
§ is the antipode in U,(g). Define the inner product in L(4) by formula

(1, V2) (= woay=(01,04(S~ Ya~ 1)Uz)L(A) .
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This is a unitarizing inner product for ¢, w. Further, let {v?,} and {v?} be
orthonormal weight bases in L{—wy4) and L(A), the enumeration in the former
being determined by isomorphism L(—wgA) = L*(A). Then from (2.14) the desired
result follows.

2.8.1. Corollary. Proposition 2.8 holds in C[K"], and in C[K(0,u)],.

Proof. The formula for involution is independent of u.

3. Irreducible Representations of Quantized Algebra
of Functions and Schubert Cells

3.1. In this section we study irreducible *-representations of algebra €G], in a
Hilbert space, by bounded operators. We'll call them the irreducible represen-
tations of C[K],. This is consistent with Definition 2.6.2.

First we’ll establish the quantum analog of Proposition 1.3.1: each irreducible
representation corresponds to the unique symplectic leaf X,-¢ (or t-2). The
points of maximal torus T correspond to one-dimensional representations and all
others are infinite-dimensional representations. If the representation z,, corre-
sponds to the leaf X, and 7, corresponds to the point ¢ € T, then the representation
n,,®71, corresponds to the leaf X, - r. Next, we’ll establish the quantum analog of
Proposition 1.3.3: if w=s;,...s;, is a reduced expression and 7, corresponds to
theleaf X; ,thenn, =1, ® ®r . The proof of this statement isbased ona joint
article by the second author and Vaksman [31], where the case K=SU(2) (i.e.
representations 7, ) had been studied. At the end of the section Gelfand-Naimark-
Segal states w corresponding to representations =, are introduced. It is proved that
GNS-states 5, satisfy Coxeter relations. This allows to define the quantum analog
of the Weyl group in Sect. 5.

From now on, a representation of =-algebra means s-representation. We
assume all Hilbert spaces to be separable.

3.2. Let A€ P, andlet A, be a subalgebra in €[G], generated by matrix elements
of the form C_,l 4.0 Set

Ay= @ Ay, Ari= @ Ay, A_=A%, A__=A4%,,
AeP AeP 4
where X* denotes the image of X under involution in €[ G],. The next result can be
derived from [22], for example.

3.2.1. Proposition. a) A bilinear map A_QA,—CL[G], is an epimorphism of
C-vector spaces.
b) Substitute A, , for A, and A__ for A_; then the statement a) still holds.

One of the main results of this section is the next theorem.

3.3. Theorem. For every irreducible representation n: C[K],~End H in a Hilbert
space H there exists (A, )-invariant straight line e H.

3.3.1. Remark. Theorem 3.3 shows that the representation theory of algebra
C[K], resembles that of algebra U(g) with A, in the part of U(b ).
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We shall divide the proof in two subsections. In the course of the proof we’'ll
establish some results which are interesting per se.

34. Fix AeP,, A€ P(4) and consider in C[K], the following ideals:

a) #o(4, A), namely, the minimal two-sided =-ideal containing all matrix elements
C%,.; 4 such that

V2 #U (b )(LAA)y);

b) #(4, A), namely, the minimal two-sided *-ideal containing ail matrix elements
C4, ;. 4 such that

uEa <wewrite,ugi iff /,t—/’l=z_kioci,ki;0>.

¢) #,(4, 4), namely, the minimal two-sided *-ideal containing all matrix elements
C4,.; 4 such that p<A.

Clearly, #,(, A)C #,(4, AYC #5(4, A). Let we W. If we set A=wA in a}-c), then
we obtain the ideals which will be denoted by #y(w, 4), £,(w, 4), Z(w, A).

3.4.1. Proposition. In €[K],/ #,(4, A), the following relations hold:

v A An+HLmeda v
Clupya Coiia=4a CLhiaCliup v

A A (A, D+ ) A e
Clirpa Cliia=q ClaiaCoupa

Proof. From definition of multiplication in €[ K], and a general form of universal
R-matrix of Lie algebra (Sect. 13 of [3]) it follows that

v WaZ:! AN A A Wal’
CLupya Conia=d CZhia Clupyg

+ Z fa(q)clll+a,xm C'iu a, Po,y,q° (31)

acd.
where Z,(g) € €. To complete the proof it suffices to use the definition of #Z,(4, A).

3.4.2. Definition. Irreducible representation n:C[K],~End H is said to corre-
spond to Schubert cell X, (see 1.3.5) provided for each Ae P, the following
conditions hold: a) n(/o(w A))=0;b) n(C2,,, ) =*0.

3.4.3. Theorem. [29]. Each irreducible representation © of algebra C[K], corre-
sponds to unique Schubert cell X .

In the rest of Subsect. 3.4 we prove Theorem 3.4.3.

Proposition 3.2.1 implies the existence of 4 P, such that n(4,)=+0. Hence,
there exists the matrix element C%, ; , such that z(C%, ; ,)=0. Consider the set
Do A) consisting of ue P(4) such that there exists the matrix element C2, ; , with
the property n(C4, ; ,)=0. Our considerations imply Zo(4)=+ 0. Let 91(/1) be the
set of minimal elements of Z,(A) with respect to the usual partial order on
weights (see 3.2b)). We have 9,(4)%0 and if 1€ 2,(A) then r( #,(4, 4))=0.

From Propositions 2.8 and 3.4.1 it follows that

n(CL,,;, A¥(CL5 A=q WATEIYCA, L In(CL )
Since g>1, this and the boundedness of n(CA 104 vield —(4, A)+(Z A)=0.

Therefore, A=wA for somewe Wand C4, ; ,=C%,,, ,. Moreover,n(C%,,, isa
normal operator.
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3.4.4. Proposition. Kern(C2,, ,)=0.
Proof. This follows from 3.4.1 and irreducibility of =.

3.4.5. Proposition. The spectrum of the operator n(C%,, ,) is of the form
o(n(C2,, 1. ))=Eu{0}, where E is a bounded set having no limit points in C\0.

Proof. Let Zy e o(n(C4,, 1, )\O. From 3.4.1 we can easily derive that there exists an
open proper subset QCC such that

a) Zyef2.

b) Q is invariant under the group generated by homotheties with coefficients
g @A m where {w;}7 , is the set of fundamental weights of Lie algebra g and
ue P(w).

Let E,, be the spectral projection of operator n(C2,,, ,). From 3.2.1 and 3.4.1 it
follows that Eqn(f)=n(f)E, for all feC[K], We conclude that Eo=C-1d,
where Ce €. Now it is easy to understand that Z, is a point of the discrete
spectrum and that 0e o(n(C4,, ,)). From this and properties a), b) the description
of the spectrum follows.

Since n(C4,,, ,) is a normal operator, from 3.4.5 it follows that H can be
decomposed as follows:

H= @EHv(W: A), where H,(w,A)={xeH|n(C%, , Jx=yx}.
ve
In E, we introduce the following partial order: y; =y, if and onty if |y,| = |y,|. From
3.4.5 it follows that there exists the maximal element y, = y(w, A) with respect to
this order.

3.4.6. Proposition. Let ve H,(w, A). Then for every matrix element C2,; 4 with
p+wA we have n(C4, ; ,)v=0.

Proof. From 3.4.1 it follows that if n(CZ,; ,Ju+0 the it is an eigenvector of
(C2, 4 4) with the eigenvalue yoqt P~ ™4#M >y But this contradicts the
maximality of y,.

So far the weight A€ P, was assumed fixed. Hence we W depended on A.
Now we omit this assumption.

3.4.7. Proposition . Let A;, A,€ P , satisfy the condition (A, )+0,i=1,2, and let
w,€ W be determined as in 3.4.3. Then w,=w,.

PrOOf. (Al’ A2)=(W1A1, W2A2) implies WI =W2.

From 3.2.1b) it follows that there exists a weight satisfying the conditions of
Proposition 3.4.7. Let we W be the corresponding element in the Weyl group. It is
easy to see that the following result holds.

3.4.8. Proposition. n(C%,,,. ,)+0 for all fundamental weights w;, 1<i<m.
By Proposition 3.4.8, n(C%,; ;)*+0 VieP,.

3.4.9. Proposition. For every Ae P, the set 9,(A) (see 3.4.3) consists of one
element.

Proof. Let w, A€ %,(A), w, A+ wA. From our considerations it follows that by
3.44 Kern(C2,,, 4. ,)=0 and by 3.4.6 Kern(C%, , ,)+0. Hence, w, 4 =wA.
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3.4.10. In this subsection, we conclude the proof of Theorem 3.4.3. It remains to
show that n( #y(w, 4))=0. Set E (4)=U,b.)v,, and consider a matrix element
CA, 4 u<wd, thenC2, ; s € Fo(w, A)and n(C2, ; ,)=0 (see 3.4.3). Further, if
pEwd and p<wA, then i(C2, ; ,)=0 as well. For proof, we can choose a linear
ordered chain of weights of 2(A) which contains p. The minimal element of this
chain belongs to 2,(A) and differs from w4, but this contradicts 3.4.9. The last
case, when p>wA but vi? ¢ E, (1), can be considered in complete analogy with the
second one [one should use (3.1) and Proposition 3.4.6]. We obtain n(C%, ; ,)=0
once more and the proof of Theorem 3.4.3 is completed.

3.5. Let yo(w, 4) be the eigenvalue determined in 3.4.5.
3.5.1. Proposition. [y,(w, 4)|=1.

Proof. Let T, be a matrix consisting of the matrix elements of representation
04:U,(g)—~End L(4) in orthonormal weight basis. It is easy to show that (T4)*T,
=T,(T})*=1, where (T})* is obtained by action of involution on each element of
the transposed matrix T}. It follows that

Z (C{u,i,A)*Cllu,i,Azl s
i
and it remains to use Proposition 3.4.6.

3.5.2. Remark. From Proposition 3.5.1, it follows that if #:C[K],—~EndV is a
representation in a preHilbert space V it extends to a representation in H=17,
where V is the completion of V.

3.5.3. Proposition. dim H,,, 4w, 4)=1.

Proof. Let % be a commutative =-subalgebra in End H generated by normal
operators m(C%,, ), AeP,. For fixed AeP, we have %(H,,, 4w,A1)
CH,,, 4(w, A4) and to complete the proof we use 3.4.1, 3.5.1 and the irreducibility
of 7.

3.5.4. Corollary. H, ., 1(w,A) is independent of A.
Proof. This follows from 3.5.1, 3.5.3 and commutativity of %.

3.5.5. Let H,(w) denote H,, «(w,4). Since H,(w)=Cv*, where v* eH, we
have n(f)v* =x(f)v* for all feA,, where x(f)eC. Clearly, y determines the
homomorphism of 4, into €. From Propositions 3.4.6 and 3.5.3, we complete the
proof of Theorem 3.3.

3.5.6. Definition. The homomorphism y: A4, —C is called the highest weight of
irreducible representation 7.

3.5.7. Remark. One can show that a space H of irreducible representation of
C[K], is a completion of a unitarizable simple C[G],-module V. It is easy to show
that this gives the bijection “space H«—>module V.

3.5.8. Proposition. The irreducible representations of C[K], are equivalent iff their
highest weights are equal.

Proof is analogous to that of Theorem 1b), in Part III, Chap. VII, Sect. 3 of
[25]. In the course of the proof Remark 3.5.7 is used.
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3.5.9. Remark. a) Considerations from previous subsections show that in the
representation theory of the algebra C[ K], there is an analog of Borel subalgebra
(i.e. A,) but no analog of Cartan subalgebra. Nevertheless, for every we W there
exists an analog of Cartan subalgebra, ic. *-subalgebra generated by C%,,,. ..
1<i<m (see 3.5.3).

b) There is further analogy between representation theory of C[K], and that of
U(g): one can define “Verma modules over €[G],” and develop the theory of the
highest weight modules over C[G],. In particular, this allows to construct the
irreducible representations of C[ K], with given highest weights [28]. In the next
subsections, we’ll develop another method of construction of representations.

3.6. Let i be a fixed vertex of Dynkln diagram of the Lie algebra g. U(sl(2);
denotes the Hopf *-subalgebra in U (g) generated by X, X;, ki, k;. Let
U,(s1(2))—U,g) be embedding and ¢F: C[K],~C[SU(2);], be the corre-
sponding epimorphism of the algebra of functions. Recall that irreducible
representations of C[SU(2),], were described in [31] where #,(Z ., )-realizations of
the former were obtained. In [31] it was proved that irreducible representations of
C[SU(2);], are parameterized by simplex leaves of Poisson group SU(2). Let

o= {3 7)<

be a symplectic leaf in SU(2) through the point (_0 . é) and let n,: C[SU(2);],

—End/,(Z ) be the corresponding representation (in formuia (3.2) of [31], this
representation was denoted by g,). Set m,=m,e @}, where s;e W is a simple
reflection. It is easy to see that 7, is an irreducible representation of algebra C[K],,
corresponding to Schubert cell X .

3.6.1. Proposition [29]. Let we W satisfy ssw>w and let ©n be irreducible and
corresponds to the Schubert cell X,,. Then n, @ is irreducible and corresponds to
the Schubert cell X,

We'll give the scheme of the proof.
Step 1. Let AeP,, and C4 wr, 1€ Fo(Swa, A). Consider the following equality
(ns,-®7'f) (CI1 u,K,A) = AZ nsi(C{u,K, /1,1')®7'5(C/1 Ay Nk (3.2)

»J

Since U,(b.)-module E,,,(4)=Uyb.)V,,,, is invariant under X, it follows that
the right side in (3.2) is zero. Hence, (n, ® ) (£,(s;wA, 4)=0 for all AP, ..

Step 2. In (3.2), set u=s;wA. Then the arguments of Step 1 give

(nsi® TC) (C’V1 SiWA, A) = 71:si(cv1 s;wA, wA)® TC(C{ wA, A) . (33)

From Sect. 6 of [31], we can compute explicitly ¢}(C4,,,4 4 and show that
7'[:s, ((:11 siwA, wA) 4: 0

Step 3. Now we can prove the irreducibility of ng,®n. Let H, CHs,®H be a
subspace of irreducible representation corresponding to Schubertcell X, , w; e W.
Clearly, the only case w;=<sw is possible. Let {ex}x>o be the standard
orthonormal basis in Hy,=¢ 2(Z+) and {f,,}mzo be an orthonormal basis in H.
From (3.2) and formulae (3.2) of [7], it follows that {;® f,,}i.m>0 is @ complete
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system of eigenvectors of the operator (7, ®7)(C4,, 4. o). From (3.3), it is now easy
to derive that the condition w, <s;w doesn’t hold. Comparing the modules of
eigenvalues of the operator (z,,®n)(C4,,,, o) We see that in the case w,=sw
there exists unique subrepresentation H,,C H, ® H,,, corresponding to Schubert
cell X, Hence, H,,,=H,®H,,

3.6.2. Corollary. If w=s;,,...s;,is a reduced expression in Weyl group W then the

representation n, ®... Q7 is irreducible and corresponds to Schubert cell X .
It is also easy to prove two following propositions.

3.6.3. Proposition. Let 1:C[K],—~C be one-dimensional representation. Then t

corresponds to Schubert cell X,, where e is the unit in W. All one-dimensional
representations are parameterized by points of maximal torus T CK.

3.6.4. Proposition. If irreducible representation n corresponds to Schubert cell X ,
and 1 is one-dimensional representation, then the representations 1®7t and T® are
irreducible and correspond to Schubert cell X,,.

Let i, j be two vertices of Dynkin diagram and let m;; be the order of the element
s;8; in Weyl group W.
3.6.5. Proposition [29]. Representations 1, @n,, ®n,®... and n, @7, Qn, ®...
(my; factors in each expression) are isomorphic.

For proof compare the highest weights of these representations.

3.6.6. Corollary. For each reduced expression w=s,, ...s;  the representation m,
=1, ®...Qmn,_isirreducible and independent of (up to isomorphism) the choice
of reduced expression.

Proof. This is a corollary of 3.6.2, 3.6.5.

We can unite the results of previous sections and obtain all irreducible
representations of C[K],.

3.6.7. Theorem. a) For every irreducible representation n of C[K], there exist
unique we W and unique t € T such that 7 is isomorphic to a representation of the
form n, ®...@mn, @1, where w=s;,...s;, is a reduced expression and t, is one-
dimensional representation, corresponding to a point t.

b) The set of irreducible representations corresponding to Schubert cell X ,, is of the
form {ﬂ:w®rt}ts T

3.6.8. Remark. Theorem 3.6.7 is the quantum analog of Propositions 1.3.1 and
1.3.3.

3.7. Consider Gelfand-Naimark-Segal state corresponding to representation 7,
and vector e,:

S =(ns(f)eo, €0). (3.4)
Clearly, 5;e C[K]!, where C[K]} is the Hopf algebra dual to C[K],.
3.7.1. Proposition. For i=j the following “quantum Coxeter relation” hold

§l§]§l =Sj§l§)’



158 S. Levendorskii and Y. Soibelman

(m;; factors in each product ), where m; is the order of the element s;s; in (usual)
Weyl group.

3.7.2. Remark. In Sect.5, we’ll use Proposition 3.7.1 in construction of the
quantum analog of the Weyl group. For the case K=SU(2), the quantum Weyl
group was constructed in [26] (see also [31]).

4. Representations of Twisted Algebras of Functions
and Quantum Tori

4.1. In this section we investigate irreducible representations of algebras C[K*],
=C[K(1,u)], and C[K(0, u)], in Hilbert space. The corresponding theorems are
the quantum analogs of 1.4.3 and 1.5.2. Most considerations in the case of C[K"],
are in analogy with Sect. 3, the appearance of the quantum tori being due to the
non-commutativity of the subalgebra generated by n(C%,,. ,), 1<i<m [see
(3.5.9)]. This subalgebra was commutative in Sect. 3 and now it is a quantum torus.

In the case of C[K(0,u)], quantum tori appear in a similar way.

We do not know whether there exist analogs of theorems of Subsect. 3.6 and the
“twisted” quantum Weyl group.

First we consider representations of C[K"], and then those of C[K(0,u)],.

We adopt notations from Sect. 3.

4.2. Note that in C[K“], all the ideals from 3.4 are well-defined. Definition 3.4.2
also makes sense in C[K*],. In complete analogy with 3.4, the following theorem
can be proved.

4.2.1 Theorem. Every irreducible representation n of €[ K"], corresponds to unique
Schubert cell X,

In the proof, we use the following proposition instead of 3.4.1.
4.2.2. Proposition. In C[K"],/ #,(4, A), the following relation holds:
Cau,v,ﬂ o Cll}.,j,A = q—(A,)’)+(}.,M)+i(A,}’)u‘i(l,ﬂ)uC-’i AiA® Czu,v,!?’
where (x,y), was defined in 2.7.

4.2.3. Corollary. Let a representation  of €[K"], correspond to Schubert cell X ,.
Then for every A, ue P, the following relation holds:

n(cl—._ wa, A)n(c“— wi, u) = qi(l’ B iwi, Wll)un(cl_‘tvl& +u), A+ u) .

43. Let #,,, be minimal two-sided #-ideal in €[K"],, containing all ideals
Fowa, A), AeP,. Set C[K"], ,=C[K"],/Z, . Clearly, there is a bijection
between the set of irreducible representations = of C[K*], ,, corresponding to X,
and that of irreducible representations = of C[K"], ,, such that

Kern(C%,, ,)=0 VieP,. 4.1)

In the theory of irreducible representauons of C[K"],, a unital «-subalgebra P, ,
CC[K"], w» generated by elements C; =C~, ,, lePJr, plays the part of Cartan
subalgebra (we use the notation C* ,, , forimage of C* ,,, ; € C[K*], in the factor-
algebra C[K"], ).
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For 4, ue P, set

ew,u(la /l) = (Aa :u)u - (Wj'a W,LL)u 5 (42)
6(}'5 ,u)=0-q,u,w(}“s u)=qi9w,u(l,u) . (43)
4.3.1. Proposition. a) In algebra P, , ,, the following relations hold:
C,Cu=0(h i)C e
C,C,=0l4,p)*C,C,,
C,Ck=0(u,A)*CiC,.
b) In P, , , the elements 9,=C}5C,=C,C¥ are central.
Proof. See (2.13) and Subsects. 2.8.1, 4.2.2.

From 4.2.2, it follows that algebra P, , ,, is generated by C;=C,, 1Sj<m.
The following result is immediate.

4.3.2. Proposition. In C[K"], ., the following commutation relations between %,
=9, and matrix elements hold:

DCP o pa=qPPICE, oD,
DACL, p ) =q PP u)(Cl‘#,P,l)*@ja

where k{1, ) =(@;, 1) — (W, ) 2 0.
Note that for a given par (4, u) with z+wA there exists j such that x4, ) >0.

4.4. Let n:C[K"],—~End H be irreducible representation corresponding to a
Schubert cell X . With analogy to 3.4.5, one can show that the spectrum of the
selfadjoint operator n(2,) is {0} UE;, where E;is a discrete set of eigenvalues with 0
as the unique limit point.

A tuple y=(y,,...,y,)e EX¥E, x ... x E,, will be called a weight of represen-
tation 7.

Note that E is partially ordered: y=v' iff y, =] for all je[1,m].

4.4.1. Definition. In E, a maximal element with respect to this ordering is called a
maximal weight of representation 7.

Let H,={VeH|n(Z)V=y;V} be a weight space of the weight 7. We have
H= (—]—% H.,. Let y° be a maximal weight of representation 7. Let 7} be the maximal

eigeny\jalue of n(%) and let H(y?,2;) be the corresponding eigenspace.

4.4.2. Propesition. For every je[1,m],

a) algebra P, , acts irreducibly in H(9,9)),

b) H(*)=H(7,2)).

Proof. a) Let H CH(y?, %)) be invariant under n(P, , ,,). From 4.3.2, it is easy to
derive that

CIK,, ) ECAS ¥ H.9),

Ys S Y

where H(y,, 2;) is the eigenspace of (2 ), corresponding to eigenvalue y,. Since 7 is
irreducible, H H(,2).



160 S. Levendorskii and Y. Soibelman

b) Due to a),
HY, 9)=n(P,, v YveHY,2)

and due to 4.3.1, H= n(Pq «w@®H,, where H, denotes a subspace spanned by
vectors of welghts y<y] Now, let j;=j. H(y], 2;) being invariant under n(Z;,), we
can assume VeH(y},9;,) (from 432 it follows that if veH(y), Z;,), then
HC @ H(y, @jl)) Hence,

Y =75y
HGS, 2;)=n(P, , )JvCH(S, D).
By substitution j, for j and vice versa we obtain
H(V})a 9,') = H(V?p «@j,) = H('Vo) .

4.4.3, Proposition. The maximal weight of the irreducible representation m is equal to

=(1,1,...,1).

Proof is analogous to that of Proposition 3.5.1, use being made of Proposi-
tions 4.3.2, 4.4.2b) and the following formula:

n(P)=m(CHn(C)=1 on H("). (4.4)

4.5. Recall the definition of quantum tori (see, for example, the review [23]). Let P
be an abelian group and x: P x P—R be antisymmetric bilinear form. Set (4, p)
=exp(ix(4, u)). A(P, o) denotes the unital =-algebra with generators U;, A€ P, and
defining relations

UsU,=U,U*=I, 4.5)
U,U,=0( U - (4.6)

4.5.1. Let ¢ denote two-sided -ideal in P, , ,, generated by 2,—1, j=1,...,m.
From 4.3.1 and (4.4) it follows that irreducible representation = : C[K"], ,—~End H
satisfying the condition (4.1), determines unique irreducible representation y of
factor-algebra P, , ,/.# in H(y°). Also, P, ./.# = A(P,0), where P is the integer
root lattice and 6=0,, ,, is defined by (4.2), (4.3).

4.5.2. Definition. The *-representation y: A(P, ¢)—End H(y°) is called the highest
weight of irreducible representation =.

4.5.3. Proposition [13]. Irreducible representations corresponding to the Schubert
cell X, are equivalent iff their highest weights are equivalent.

4.5.4. Theorem [13]. For each we W and for each irreducible representation y of
A(P,s,, ) in a Hilbert space there exists the irreducible representation n, which
corresponds to Schubert cell X, and has the highest weight y.

Proof. Set P=PoP, (4, ), (A, ) = g # )™ @ A%l CIK“]; .
=C[K"], ,®A(P,5) and introduce an involution in (E[K“]q . by (a®b)*
=a*®b* Further, define =-algebra embedding j:C[K"], ,—C[K"] ],
by J(C?,i3,00=C2,:2,x®U, , and 1dent1fy A(P,0) with subalgebra A(P', ")
CA(P, o), where P'= {( wi, 2)1,16P} 0’ =G|p « p- In the next subsection, we’ll
construct *-representation y : A(P, §)—End H such that H, CH, and §(f)= x(f)for
all fe A(P,0). Here H (H,) is the representation space of X (of 7
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Let ,,: €[ K], ,~End H be irreducible representation defined in 3.6.2. Then
fi=n®y s a representation of C[K*];,, in H® H,. Denote by H the completion of
the space HQ H,. Let /€ H be the unique n(_A+) -invariant straight line. Set H’
=n(C[K"], ,) ((®H,). This is a subspace in H. From weight considerations, it is
easy to show that in H’ there exists unique n(C[K"], ,-invariant proper subspace
H". Hence, H©H" is a space of irreducible representation we need.

The existence of ¥ follows from the next lemma.

4.5.5. Lemma. Let P, P, C P be subgroups of abelian group P suchthat P=P,®P,,
and let A(P,&) and A(P,,0,) be quantum tori such that ¢, =6lp, . p,.

Then for every representation y of A(P,,0,)in a Hilbert space H, there exist
Hilbert space H;> H, and representation §: A(P,)—End H;, such that y(f)=i(f)
for all fe A(P,,0,).

Proof. Set H =A(P, 6) ® H, note that H= @ H, where H

. APyaq) . pePy
={U,®x|xeH,} and introduce inner product in H as follows:

<u}.®x’ uu®y>=5}.u<x’y> Vla.uEPZ'

The completion H is the representation space we’re looking for.

u

4.6. Inthis subsection, we discuss the relation between irreducible representations
of C[K"], and symplectic leaves of a Poisson Lie group K*=K(1,u) (see 1.4.3).
First we obtain several results relevant to quantum tori.

Set =0, ,, Pz={Al0o(1, y)=1, Yue P} and denote by Z(P, ¢) the center of
algebra A(P, o). An irreducible representation y: A(P, 0)—End H determines the
character yz:Z(P,0)—C but a character may correspond to several represen-
tations of A(P, ). Nevertheless, the following result holds.

4.6.1. Proposition. Ker y =A(P, o)(Ker x,).
Proof. Let ueKer y\ A(P, o) (Ker y) be of the form u= Z du, with the minimal

number of non-zero summands. It is easy to show that there exist ueP, ;, A,eM
such that o(4,, u) F06(4,, #) and the element

u'=u—o(dy, W~ 'u_,Uu,eKer y\A(P, o) (Ker x,)
is of the form
ul= Y du, with d;+0

AeM\Ay
This contradicts the choice of u and the proposmon is proved.
Set P=P/P, and note that ¢ determines é: P x P>R. The following result is
straightforward.

4.6.2. Proposition. A character y; determines a x-isomorphism y: A(P, g)/Ker y
—A(P, 6).

4.6.3. Proposition. A class of irreducible representations of algebra A(P, 6) is unique
iff P is finite.

Proof. The center of A(P,6) belng trivial, the kernel of each irreducible
representation is also trivial. If P is finite then A(P 6) is a finite-dimensional C*-
algebra and A(P, 8) is of the type I [2], i.e. there is a natural bijection between



162 S. Levendorskii and Y. Soibelman

classes of irreducible representations and primary ideals. If card P = oo then it easy
to construct an example of non-equivalent irreducible representations of A(P, 6)
(see e.g. [13]).

Thus, one can hope to find one-to-one correspondence between symplectic
leaves and irreducible representations iff P is finite. Below the necessary and
sufficient condition is given.

4.6.4. Proposition. Card P < ooiff
Ingb, (4 p)en@Q Vi,pueP, 4.7)

where
eu, w(ia ,u) = (}'a .u)u - (Wla W:u)u .

Proof. Recall that o(1, u) = g% ~*# and that card P < oo iff o(4, u1) is a root of unity
for all 4, p.

4.6.5. If w1, then for almost all u a symplectic leaf X(1,u4)CK,, is equal to K,
provided rank m is even, and is dense in K, provided m is odd. If w=1 then
irreducible representations are one-dimensional and parameterized by points of
maximal torus T.

Further, if w1, then for almost all ¢, u we have P, =0 and the centre of A(P, )
is trivial. Hence, for these w, g, u all irreducible representations of C[K*], ,, have
common kernel.

So, for almost all u, g there are natural bijections “symplectic leaves < kernels
of irreducible representations of C[K"],”, provided m is even, and “closures of
symplectic leaves <> kernels of irreducible representations of C{ K*],, provided mis
odd.

4.6.6. Remark. We have no complete theory that can describe the relation between
representations of C[K*], and symplectic leaves of a Poisson Lie group K*. We
think that this study is of interest.

4.6.7. Consider the C*-closure of €[K], and that of C[K"], with respect to the
norm | f|| = sup {|=(f)||, where = is an irreducible representation. We obtain C*-

T
algebras C(K), and C(K*), of continuous functions on corresponding quantum
groups. To clarify the above consideration we note that

a) (4.7) is necessary and sufficient condition for C(K*) to be C*-algebra of type 1
(see [23]);
b) C(K), is always C*-algebra of type 1.

The spectrum Prim C(K), is an union {J T, of tori T,, of dimension m. The

weW
Jackobson topology in Prim C(K), is consistent with Bruhat order in W:

T, 0T, iff w,=w,.

We do not investigate algebras of continuous functions on compact quantum
groups. In [38] general properties of these algebras were studied and in [31, 33]
realizations of these algebras and their relatives as aigebras of operator-valued
functions on torus were obtained. As far as we know there exist no general
theorems on such realizations as yet.
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4.7. In this subsection, we study an algebra (E[K(O u)],. With the notation of 2.7,
let L, ,, denote the weight space spanned by C%, , ,. Clearly,

C[K(0,u)],= " ;46)_2P2 Lz, w

is a graded algebra. The set of maximal two-sided P-graded *-ideals in C[K(0, )],
is denoted by vp,.

4.7.1. Remark. By definition, €[ K(0,u)], and C[K]}=C[K(0,0)], coincide as sets.
From definition (2.13) of the product in C[K(0, u)], it follows that v, =, under
this identification.

4.7.2. Definition. Let n be irreducible *-representation, and let aeyp, be the
maximal element in the set {fey,| fCKern}. Then we write a=Gr(n).

Set
11:{(’%#)GP2|L(1,,¢)¢“},
F(TC):{(/LM)EPZIL(;_,u)querﬂ} .

4.7.3. Proposition. a) I'(n) is a sublattice in P2
b) I'(n)=1TI,, where o.=Gr(n).

Proof. a) From (2.15) and Proposition 2.8, it follows that if f;, f€ L, ,, then the
element f*o f,=f,0 fi* is central. Let feL; ,, g€L, s satisfy the conditions
n(f)#0, n(g)+0; then foge L4, ,+s and

(f o g)m(g* o f*)=n(f)n(g o g*)nlf)=n(f o f*)nlg - g*)+0.

Hence, (A +7y, u+ )€ ['(n).

b) Since «C Ker n, we have I'(z) C I,. To prove the inclusion I, C I'(r), assume that
there exists (4, u) € L\I'(r), choose f € L; ,,\a such that n(f)=0, and consider the
minimal «, €y, containing both o and f Clearly, o Coc1 CKern, but this
contradicts the maximality of a.

4.74. Proposition. If n:C[K(0,u)],~End H is an irreducible *-representation
then dim n(L; ,,)=1 for all (A, u)e I'(n).

Proof. n(L;, )% {0} by definition of I'(n). Take f - f, € L;, ,, such that n(f;)=0,
7(f,)+0. Since f; o f5¥ and f}¥ o f, are central, we have

n(f)=n(fOr( ) fIn(f3 o £)” ' =dn(f),

where
d=n(f¥e fo)"'nl(f; > fHeC.
4.7.5. Proposition. For (4, u)e I, =I'(n) there exist a, ,en(L, ,) such that for all
(A, (X, p)el;
af,=a_; _,=a;,, (4.8)
al,u : al', w= G'((/l, ﬂ)a (AI: .u’))a/l +Autp (49)

Proof. Choose a, , with the property (4.8) for generators (4, u) of Z-module I, and
define a, , for other (4, p)e I, by formula (4.9).
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4.7.6. Define o, , ,: I, x I,->C by
O B A ) = g P 000
and construct quantum torus A([;, 0, , ).

4.7.7. Choose a,_, for (A, p)en(L, u)) as in Proposition 4.7.5, set for fe L, , and

U, " e A(L,, Oou, q) mo(f)= "(f)a,l " eC, WU, )= a,, A4 wel), nO(L(i. u)) {0}
(4, ,u)¢I;, and extend Ty, x by linearity to the maps

ny: C[K]-C, x:Al,o0,,,)—EndH.

4.7.8. Theorem. 7, and yx are irreducible *-representations.

Proof. From formulae (4.8), (4.9) and definition of the product in C[K(0, u)],, it
follows that n, and y are *-representations. Clearly, n, is irreducible and y is
irreducible since = is.

4.7.9. Theorem. Let iy : C[K]— € be an irreducible «-representation, let x = Gr(n,),
and let x:A(I},0,,,)—End H be an irreducible +-representation. Then the map
n: C[K(0,u)],—~End H, defined by
TC(f) — {no(f)X(Ul, u) ) f € L(l,u) > (19 Il) € I?z 3
0: fEL(l,u): (’Lﬂ)¢raa

and extended to C[K(0,u)], by linearity, is an irreducible *-representation.

Proof. By definition of the products in C[K(0,u)], and A(I}, 0, , ), the map 7 is
+-representation. Its irreducibility is evident.

4.7.10. Definition. Pairs (1, y) and (75, ) are said to be equivalent provided Gr(zn,)
=Gr(rnp) and there exists linear real-valued function ¢ on I, such that

wo(f)=e"*Bng(f), (U, )=e"""y(U, )
for all (A, w)el; and all feL; ,.
The following statement is evident.

4,7.11. Proposition. Pairs (n, x) and (g, x') determine the same representation w iff
they are equivalent.

Thus, irreducible *-representations of €C[K(0,u)], are parametrized by pairs
(7, x) up to the equivalence of pairs. Here 7, is an irreducible =-representation of
C[K] and y is an irreducible »-representation of the quantum torus A(I}, 0, , ;)
where a=Gr(zn,).

5. Quantum Weyl Group

5.1. In this section we’ll give the application of results of Sect. 3 to the definition of
the quantum Weyl group. The proofs given in our article [14] will be omitted.

The connection between the quantum Weyl group, Lusztig’s [16] automor-
phisms, and the formula for the universal R-matrix is described. Similar results
were independently obtained in [8].
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5.2. In Subsect. 3.7, for each simple reflection s;e W its quantum analog
5, C[K]} was defined. From Proposition 3.7.1, it follows that for every we W its
quantum analog w is well-defined. For a reduced expression w=s;,...s;  the
element w=35; ...§;, is GNS-state corresponding to the representation n,, and the
highest vector of this representation.

In this section it is convenient to deal with the algebra €[ K], instead of C[K],
(recall that g =exp(h/2) and that €[K], is an algebra over the ring C[h] of formal
series in h). From considerations of Subsect. 2.7 it follows that we still can use the
results on C[K],.

5.3. In U(g), define the following elements:
_ H; _I{_. H; H;

Eiin+q 73 F1=X1—q2 ’ eiquXi+9 f;:q TXT

and, for t>1 and neNN, set

tt —_1 > =D, s X = ngo (n)! ’

(n),=

where (0),=1.

5.3.1. Proposition [31]. In C[K]}, the following relations hold:
a) SES = —q "F,
b) EiFiEi— ! = —-Equ‘ .

Set s
g;=q"",
- B 1— i"2 2
Ri=exp, (g7 Ye@f)= ¥ Lo Y agpr
n=0  (n),-2!
(1—q7 2" > FBR
R;= T4 T Er@FT | gl
(Z Wyt O]
H;®H; ( a2\
— q; %)
= ¢ (@i, 3) n n
1 nZ‘O (n)q‘—z! l®fl ’

5.3.2. Proposition [9, 14, 28, 31]. Let A, ¢, and S be the comultiplication, the counit
and the antipode in C[K]}. Then

a) A(=R7'(5®S5),  AG)=exp,(1—g; e®f),
b) 8(52) =8(§i) =1 s (1 __q_— 2)n __H?

0 SE)=@)"" F I Erg @ISy

nz0 (n)qi—2!
The next proposition is the substitute for the relation §7=1.

5.3.3. Proposition [14, 28]. (3)>=e "%, where ™" is the quantum analog,
defined in Sect. 4 of [4], for the Casimir element.

Recall that in a Hopf algebra A two adjoint actions are defined: if A(a)
=Y a}®a?, then

ad(x)=Y a/xS(a}), ady(x)=Y aixS(a;).
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534. Proposmon [14].For i=j, the following relations hold:

a) SE;s ! -—C (W) adg“(E),

b) SF 57! =Cyj(h) (ady) ™ ™(F),

where ((a, j)) is the Cartan matrix of ¥, and C} =(h) are as follows:
( 1)“ Jq(3 2¢&i)) (@i, 2;)/2

Cij;(h)= (~aij-1) [ K ’
1/(—1)“” I=I <Z [(e ,)+Wl(%a)]>

m=0

_q'—q + )0 for +
5.3.5. Corollary [14]. Set T(x)=Ady(x)=5,x5 '. Then T, coincide up to nor-
malization with Lusztig’s automorphisms [16].

5.4. Definition. The minimal Hopf subalgebra in €[K]} containing Uyg) and
GNS-states {3;}, is called the quantum Weyl group and is denoted by U,(2).

54. 1 Remark. a) From 5.3.1-5.3.4, it follows that U ( U,(g) is well-defined and that
57'eUye).
b) From 5.3.2a), ¢), it is easy to see the impossibility of construction of a Hopf

algebra containing elements §; only. Here is the distinction between the quantum
case and the classical one: in the latter case A(s;)=s;®s;.

5.5. Let wO be the longest element in the Weyl group. Fix a reduced expression w,,

=5;, ...5;, and deﬁne the quantum analogs of root vectors as follows [14, 16]:
a) E,, E”, F F,;,
b) If oc Si, le %, then E.=T (E,), F,=T,/(F;,), where T, =T,...T,,_..
This is poss1ble as Ay ={0;, 8,0 s iy oo Siy_ Hin )+

Set a(l)=ua;,, oc(2)=Si1<xi2, ... and introduce in A4, the order a(l)<a(2)

<...<a(N).
Let Uiny), Uyno), Uy®), Uyby), Uyb_) denote the unital subalgebras
generated by {E,}; {F.}; {H.}; {E, Hi}; {F,, H,} respectively.

5.5.1. Theorem [14, 16]. The monomials
{ESy EXpHY . Hrb s, ke,
form a linear basis in Uyb ) and the monomials
{Eady - EaoHY - HyrFoly - Fafip b piea.
form a linear basis in U,(g).
5.5.2. Proposition [14]. If a<f then
EE;—q “PEE,= 3 CiEyi... 5.1

a<ypy<..<y;<f

and a similar formula holds for Fs.
Proof. From the P.B.W. Theorem 5.5.1 it follows that for small
EyE,= ;CmE;Tl).‘ N D (5.2)



Algebras of Functions on Compact Quantum Groups 167

Let a=a/) < f=a(K), i.e. £ < K. We show first that in the right side of (5.2) there
are no summands with C,, +0 and mg>0 for S> K. The proof is based on the
following

553.Lemma. Letwe W.If w™a,;>0,then T,, Y(E)e Uy(n,), and if w™ 'a; <0 then
T, (E)e Uyn_), where te Uyb).

The analogous statements hold after substitution of F; for E; and — for +.
The proof is essentially the same as that of the analogous result of [18], the
following formulae being used

T HE)=Cij(Wgqi “(~ad,-1 g)“(E)),
T (F)=Cij(h)q; “(—ad,-1, p) *“(F).

Here i+ j, C(h) are defined in 5.3.4 and ad, -, denotes the adjoint action in the
Hopf algebra U_(g).

5.5.4. Wereturn to proof of Proposition 5.5.2. Assume that in the right side of (5.2)
there is a monomial Ej,,...Eq%, with mp>0, P> K. We can assume P being the
maximal number with this property. Set wp=s;, ...s;, , and apply T,,.! to both
sides of (5.2). Since wp Y(a(P))>0 and wp 1(oz(s))<0 it follows from Lemma 5.5.3,
that on the left in (5.2) we get an element from U,b.). Moreover, all the
summands on the right side in (5.2), except one, belong to U,(b_) as well, and this
last summand is of the form ¢E%, where £ e Uy(b_). By P.B.W. theorem, this
contradicts the assumption mp> 0 (for small h).

Thus in (5.2) mp=0 for P> K and in the same way one can show that mp=0
for P<K, too [one assumes that P is the minimal number with the property
mp>0 and applies T, '  to both sides of (5.2)].

Thus, for some aeC,

E,E,~aE,Eg= Y CyEVE . EYY. (5.3)

a<yp1<..<yp;<PB
We apply T,,,}, to both sides and obtain
T, ... iK—1(Ei1()(Fitqul)_a(Fichi )T;

4

T (E)eUyb-)
{see Lemma 5.5.3 and Proposition 5.3.1). By P.B.W. theorem, from this follows
that a=q~“# as needed for (5.1).

5.6. In this subsection we apply above results to the calculation of universal
R-matrices for quantized universal enveloping algebras U, ,(g) from Sect. 2. Note
that for u#0 the corresponding R-matrix is of the form R, =e"/2Re™?, where R
is the universal R-matrix for U,(g), defined in Sect. 13 of [3]. Recall that the
universal R-matrix is an invertible element of U, (g)® U,(g) which satisfies the
equations

A'(a@)=RA@R™*,
(4®id)(R)=R*3R?**, (id®4)(R)=R'?R*3
and has the form of the special series (for details, see [3, 4]). Here 4’ is the opposite

comultiplication, R'?=R®1, R**=1®R, R!3=(1®0)(R'?), where o(a®b)
=b®a. In Sect. 13 of [3], there is a receipt for construction of the universal
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R-matrix. First, one constructs the Hopf algebra @(Uyb.)), i.e. the so-called
quantum double of Hopf algebra U,(b ). Note that Z(U (b, )= U (b )QU, b, )"
as vector spaces and there is a natural Hopf algebra isomorphism U,b.)°
> U(b.), where U,b,)° is the Hopf algebra U,(b., )" with the opposite comulti-
plication. From this, one can derive that R is the image under projection

1A Ub )@ D(Ub.)-Ug)® Uyg)

of the canonical element R= Y ex®e® where {ex} is a linear basis in Uy(b.), and
K

{ex} is the dual basis in Uy(b,)". Using the results of Subsect. 5.5, we can construct
these bases, and using 5.3.2 and 5.5.2 we can explicitly describe the isomorphism
Ub, )= Uyb.).

Finally, we come to the following

5.6.1. Proposition [8, 14]. The following formula for the universal R-matrix in
U,(g) holds:

g
R= Y exp,(1—q, >)E,QF)q".

aed+
(o, a) h(x, a)
Here q,=q 2 =e * , t,eh®b is the canonical element corresponding to
inner productinb, E, and F,are defined in 5.5, and the product is taken in the order
opposite to that in 5.5.

5.6.2. Remark. a) In [15-18] there are many interesting applications of the quan-
tum Weyl group. All of them are related to automorphisms T; corresponding to
§; (see 5.3.9), but not to the latter. We believe that the existence of the Hopf algebra
U,(g)from 5.4 is of interest per se. Sometimes the Hopf algebra structurein U,( g)
allows to simplify the proofs of the results related to T; (see [ 14, Sect. 4]). In the case
of Proposition 5.6.1, the knowledge of the Hopf algebra structure in U,(g) is
necessary to obtain the result. We believe that the axiomatic description of
quantum groups (i.c. Hopf algebras with invertible antipode) “having Weyl group”
is of interest.

b) Note the following important formula, which follows from 5.6.1. Let {I} be the
orthonormal basis in h and w, =35, ...5;, be the quantum analog of the longest
element in Weyl group. Set

Then [8, 14, 28]
A(Wo)=R™H(Wo®@Wp). (5.4)

Using (5.4), one can show that (wp)? = e ~*“/2, where e ~*“/? is the quantum analog of
Casimir element from [4].

Acknowledgements. We wish to express gratitude to V. Drinfeld for valuable advices. We also
thank L. Faddeev, A.N. Kirillov, N. Reshetikhin, M. Semenov-Tian-Shansky, and L. Vaksman
for useful discussions.



Algebras of Functions on Compact Quantum Groups 169

References

1.

w

10.

11.

12.

13
14.
15.
16.
18' Lusztig, G.: On quantum groups. J. Algebra (to appear)
19.
20.

21.

22.
23.
24.

25.
26.

27.
28.

29.

Belavin, A., Drinfeld, V.: The triangle equations and simple Lie algebras. Preprint of Inst.
Theor. Phys., No. 18 (1982)

. Dixmier, J.: Les C*-algébres ct leurs representations. Paris: Gauthier-Villars éditeur 1969
. Drinfeld, V.: Quantum groups. In: Proc. ICM, Berkeley, 1986, Providence, RI: Am. Math,

Soc., 1988, pp. 798-820

. Drinfeld, V.: On almost cocommutative Hopf algebras. Algebra and Analiz. 1(2), 3049 (1989)
. Faddeev, L.D., Reshetikhin, N.Yu., Takhtajan, L.A.: Quantization of Lie groups and Lie

algebras. In: Algebraic analysis, Vol. 1, 129-139. New York: Academic Press 1988

. Jimbo, M.: Quantum R-matrix for GTS: algebraic approach. Lecture Notes in Physics, Vol.

246. Berlin, Heidelberg, New York: Springer 1986

. Kirillov, A.: The elements of representation theory. Moskow: Nauka 1972
. Kirillov, A.N,, Reshetikhin, N.Yu.: @-analog of Weyl group and R-matrices. Preprint (1990)

(to appear)

. Kirillov, A.N., Reshetikhin, N.Yu.: Quantum group SU(2), g-orthogonal polynomials and

links invariants. Preprint LOMI (1988)

Koelink, H.: On =-representations of the Hopf =-algebra associated with the quantum group
U (n). Preprint Math. Inst. Univ. of Leiden (1989)

Koornwinder, T.H.: Representations of the twisted SU(2) quantum group and some
g-hypergeometric orthogonal polynomials. Proc. Koninklijke Nederlandse Akad. Wetens-
chappen, Series A 92, 97-117 (1989)

Koornwinder, T.H.: Orthogonal polynomials in connection with quantum groups. In:
Orthogonal polynomials: theory and practice. NATO ASI Series C, Vol. 294, pp. 257-292.
London: Kluwer 1989

Levendorskii, S.: Twisted algebras of functions on compact quantum groups and their
representations. Algebra Analiz (to appear)

Levendorski, S., Soibelman, Ya.: Some applications of quantum Weyl group, J. Geom.
Phys. 7 (4), 1-14 (1991)

Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv.
Math. 70, 237-249 (1988)

Lusztig, G.: Quantum groups at roots of 1. Preprint, MIT (1989)

Lusztig, G.: Finite-dimensional Hopf algebras arising from quantum groups. J. Am. Math.
Soc. 3, 257-296 (1990)

Majid, Sh.: Quasitriangular Hopf algebras and Yang-Baxter equations. Interl. J. Mod. Phys.
A 5(1), 1-91 (1990)

Manin, Yu.l.: Quantum groups and non-commutative geometry. Montreal: Centre de Rech.
Math. 1988

Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., Ueno, K.: Harmonic analysis on
quantum groups and g-analog of spherical functions. C.R. Acad. Sci. Paris Sér. 1 Math 307,
559-564 (1988)

Reshetikhin, N., Semenov-Tian-Shansky, M.: Quantum R-matrices and factorization
problems in quantum groups, J. Geom. Phys. (1989)

Rieffel, M.A.: Non-commutative tori — a case study of non-commutative differentiable
manifolds. Preprint 1989

Semenov-Tian-Shansky, M.: Dressing transformations and Poisson Lie group actions. Publ.
RIMS. 21, 1237-1260 (1985)

Serre, J.-P.: Lie algebras and Lie groups. New York, Amsterdam: Benjamin 1965
Soibelman, Ya., Vaksman; L.: Algebra of funetions on the quantized group SU(2), 1. Preprint
1986 (in Russian)

Soibelman, Ya., Vaksman, L.: Algebra of functions on the quantized group SU(2), 2. Preprint
1986 (in Russian)

Soibelman, Ya.: Algebra of functions on the quantum group SU(n) and Schubert cells. Dokl.
AN SSSR 307(1), 41-45 (1989)

Soibelman, Ya.: Algebra of functions on the quantum compact groups and its representa-
tions. Algebra Analiz 2(1), 190-221 (1990)



170 S. Levendorskil and Y. Soibelman

30. Soibelman, Ya.: Gelfand-Naimark-Segal states and Weyl group for quantum group SU(n).
Funct. Anal. i ego pril. 24(3) (1990)

31. Soibelman, Ya., Vaksman, L.: Algebra of functions on quantum group SU(2). Funct. Anal. i
ego pril. 22(3), 114 (1988)

32. Soibelman, Ya., Vaksman, L.: Some questions in quantum group theory. Adv. Sov. Math. (to
appear)

33. Soibelman, Ya., Vaksman, L.: Algebra of functions on quantum group SU(n) and odd-
dimensional spheres. Preprint 1989, to appear in Algebra Analiz 2(5) (1990) (in Russian)

34. Steinberg, R.: Lectures on Chevalley groups. Yale Univ. 1972

35. Weinstein, A.: The local structure of Poisson manifolds. J. Diff. Geom. 18, 523-557 (1983)

36. Weinstein, A., Jiang-Hua Lu: Poisson Lie groups, dressing transformations and Bruhat
decompositions. J. Diff. Geom. 31, 501-526 (1990)

37. Woronowicz, S.: Twisted SU(2) group. Publ. RIMS. 23(1), 117-181 (1987)

38. Woronowicz, S.: Compact matrix pseudogroup. Commun. Math. Phys. 111, 613-665 (1987)

Communicated by N. Yu. Reshetikhin



