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ALGEBRAS OF INTEGRABLE FUNCTIONS. II 
KENNETH O. LELAND 1 

1. Introduction. Morera's theorem in complex function theory raises 
the possibility that this theory can be based on integration rather than 
differentiation. Heffter [1], Macintyre and Wilbur [9] and this author 
[7] have given such a development. In this paper a theory of integra-
ble functions will be developed in a more general context of operator 
valued functions wherein the functions no longer need be analytic. 

Let K denote the complex plane. For a G K, set \(z) = az for all 
z ELK. Then Aa is a bounded linear transformation of K, thought of as a 
real Euclidean space E2 into itself. Set T2 ' = {A^; a G K}. L e t / b e a 
continuous function on an open set S in E2 into the space £2 of bound-
ed linear transformations of E2 into itself, and let F be a path (rectifi-
able arc) in S with endpoints a and ß. Then for any subdivision 
a = Z\ < • • • < zn+i = ß of F, a Riemann sum, the vector R = 
^£=1 fz. (Zi+i — Zi) can be formed. If range / lies in TV, then, for 
z GS, fz=f(z>) — ^4>(z) for some <f>(z) G K, and we may write R = 
S i= i ^Kzi) (zi+i ~~ Zi)- Taking the limit as the norm of the subdivision 
defining R approaches zero, we obtain the vector 6 = J„ f(z) dz 
= îa fz(dz). If range fQ TV, we can interpret 0 as the complex 
number Ja- <f>(z) dz. 

f is said to be integrable if for all closed paths (rectifiable simple 
closed curves) C Q S, we have Jcf(z)dz = fcfz(dz) = 0. If 
r a n g e / C TV, then Jc <K%) dz = 0 for all closed paths C C S , and by 
Morera's theorem <f) is analytic; consequently, / is itself Fréchet dif-
ferentiate, where/ ; ' is a linear transformation of E2 into B2 for z G S. 

The general case studied in this paper is obtained by replacing E2 by 
an arbitrary real Euclidean space E of dimension p, p > 1. Let T be a 
commutative subalgebra of the Banach algebra B of bounded linear 
transformations of E into E and let F be the family of continuous in-
tegrable functions on open subsets of E into T. 

Let E' be a finite-dimensional commutative Banach algebra with 
identity over the reals and for a G E ', set AJj) = at for t G E ''. Set T" 
= {Aa^aŒE1}. 
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L e t / G F,S= domain/simply connected. Let ZoGS and for z G S , 
set g(z) = / ^ f(z) dz. Then g maps S into E, and for z G S, the Fréchet 
derivative gz ' of g at 3 is the operator/(z) = ^ of T. 

It shall be shown in §2, that the family of continuous integrable func-
tions on a simply connected open set S in E into T forms an algebra. 
The method of proof is reminiscent of the proof of the Cauchy-Goursat 
theorem. For the case that E = E2 = K, one may refer to [7]. 

In §3, the relationship between integrability and differentiability is 
discussed. Examples of integrable but nondifferentiable functions are 
given. 

In §4, T is required to be symmetric, that is, for x £ T , the adjoint x* 
of x lies in T. In this case questions concerning the analyticity or 
nonanalyticity of elements of F can be readily answered since in this 
case an element of F can be expressed locally as a direct sum of func-
tions which can be interpreted as analytic functions from K into K or 
as continuous functions from R into K This analysis is based on the 
fact that E can be expressed as the direct sum of irreducible subspaces 
invariant under T. 

In §5, it is shown that provided that T is presumed semisimple, a 
necessary and sufficient condition for analyticity of the elements of F is 
that no element of T have rank one (i.e. range A = A(E) is not one 
dimensional for all A G T). The possibility that the presumption of 
semisimplicity may be dispensed with is examined. 

Employed in §5 is a definition of analyticity in a real variable context 
suitable for the purposes of this paper due to the author [2], [5], [6]. 

In [8] it shall be shown that integrable functions, although not 
necessarily analytic, satisfy some form of the maximum modulus 
theorem. 

The development of this paper is in no way affected if the only paths 
of integration permitted are those formed from straight line segments. 

Let a) denote the positive integers. If Z is a Banach space, 8 > 0, 
x G Z, set Ux(8) = {tŒZ; \\t - x\\ < 8},!/(«) = U0(6) and U = C70(l), 
and set Vx(ô) = {t G Z; ||f - x|| = 8}, V(8) = V0(8), and V = V0(l). If 
/ is a function with domain S and H Ç E, then the restriction / 1 H 
of / to H is the function g with domain H D S such that g(x) = f(x) 
for all x G H fi S. For H a subspace of E and G a. family of functions 
defined on subsets of E, G | H denotes the family {g | H; g G G}. 

A subspace H of E is said to be invariant if A(x) G H for all AŒ T, 
x G t f . 

2. The algebras. The principal result of this section, Theorem 2.1, 
is the proof that the product of two elements of F with common simply 
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connected domains also lies in F. Our basic tool is the "smoothing" 
lemma, Lemma 2.1, which allows us to approximate elements of F by 
"smoothed" elements of F satisfying a Lipschitz type condition, en-
abling us to use arguments reminiscent of the proof of the Cauchy-
Goursat theorem to achieve our conclusion. 

Trivially F is closed under the operations of addition (defined on the 
intersection of the domains of the functions being added), multiplica-
tion by scalars, and translations of the form x —» x — x0, x, x0 G E. It 
may be readily shown that if fa fa ' * • is a sequence of elements of F 
with common domain S which converges uniformly on S to a limit 
function/, then /a l so lies in F. 

LEMMA 2.1. Letf G F and let H be a compact subset of domain f with 
interiors. Then there exists a sequence g1? g2, * • of elements of F with 
common domain S such that: 

(1) The sequence gi, g2, * * * converges uniformly on S tof\ S. 
(2) For i G co, there exists Ni> 0 such that for x, y G S, 

| | & ( y ) - g , ( x ) | | ^ N , | | j , - x | | . 

Our proof is based upon the discussion of "smoothing" operators as 
introduced by the author in [5]. 

PROOF. Let eiy • • -, ep be an orthonormal basis of E and let Q 
be the cube {— { <(x, ei) ^ i ; t_= 1, • • *, p}. For x G £ , s > 0 
such that x + sQ = {x + sy; y G Ç} Ç domain / set 

/(x) = *-* f f(t) dm(t), 
J x+sQ 

where m is Lebesgue measure on E. Let a > 0, 

a < inf{||:x; — y\\; x G H, t/ G E — domain/} 

and set H0 = H + aQ, where a = a/Vp. Then H0 is compact and 
H Ç. H0 C domain / Let 0 < s ̂  a. Then H Ç domain fa 

We now show t h a t / | S is the uniform limit of a sequence of elements 
of F with common domain S and h e n c e / | S lies in F. Let e > 0. Then 
there exits 8 > 0, such that oc, y G H0, ||x — j / | | < ô implies 
||/(y) - /(*) | | = e Let 0 < r < 8lVp and Jx, • v , £n G sÇ>, n G co, such 
that {ti + rÇ); t = 1, • • •, n} is a partition of sÇ>. Then for x 
G H C H0, i = 1, • • -, n, * G x + £ + rÇ> Ç x + sÇ Ç tf + *Ç> Ç Ho, 
we have ]|* - (x + fc)|| ê rVp < 8 and hence ||/(f) - f(x + fc)|| ̂  €. 
Thus for x G H, 
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= S-» 

= s~» 

|| [ i (*fr)"/(x+ft)] -/,(*) || 

| | [ i^+ . )]-[ iL,+ r Ç^^]| | 

^*-p i f n \\f{x+ti)-f{t)\\dm{t) 

n 
g s-p ^ rp€ = S-P(nrp)€ = s-

p(s^)e = € , 
l 

where nrp is clearly the volume of sQ. Thus fs\His the uniform limit 
on H of elements of F of the form g(x) = Xî(r/s)p/(*i + x), and 
thus^ | S lies in F. 

Now forx ÇE H,s < min {a, ô/Vp}? 5 > 0, 

U/W - # * ) | = * " | | J ^ [/(*) "/(*)] <M*)|| ^ S-"(6^) = 6. 

Let 0 < s ^ a. We now verify (2) for fs | S. Now there exists 
Ns > 0 , such that m[(x + sQ) + (y + sÇ)] ^ 2VÄ||j/ - x||, for 
x,y G E, where A 4- ß = (A — ß) U (ß — A) for arbitrary sets 
A, B. Thus for x,y Œ H, 

-fs(*)\\ = S-

^ s~ 

If /(t)dm(t) - f /(t)dm(t) 

||/(0|| dm(t) 
Ux+sQ)+(y+sQ) 

g «-"m[(x + sQ) + (f/ + sÇ)]M 

where M = sup {||/(t)||; t Œ H0}, and N, ' = N.M«-". 
For n G (ü, x E S, set gn(x) = /a/n(*)- Then gl5 g2, • * * is the desired 

sequence of functions. 

THEOREM 2.1. Let S be a simply connected open set in E and f, g 
elements of F with domain S. Then jg £E F. 

PROOF. It suffices to show that $tj{z)g(z) dz = 0 for a triangle A 
such that A and its interior / lie in S. Now there exists an open set 
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D C S , with D compact, such t h a t / Ç D and D C S . Let fÌ9 f2, * • * 
and gx, g2, * * • be the sequences of functions given by Lemma 2.1 
for / and g and H = D. If we show for all n G CD, that Jk/„(2)g„(*) d% 
= 0, then 

/(*)g(z) d * = l i m I fn(z)gn{z) dz = lim 0 = 0. 

Fix n G co. Then from Lemma 2.1, there exist Nn, Mn > 0, such that 
for x, y G interior DD DD J, 

||/»(i0 - /»«Il ^ N»||y - *|| and ||gB(y) - g„(x)|| g Mn||y - *||. 

Let k G co, and divide A into 4k congruent triangles of perimeter 
sl2k, A1? • • -, A4*, where s is the perimeter of A, and let z{ G Ai? 

for % = 1, • • -, 4K Now for i = 1, • • -, 4fc, /„(Zt)g„, /„g„(*i) = 
gn(Zi)fn, &n<{fn(Zi)gn{Zi) are integrable and hence 

J A i / n ( 2 ) g n ( 2 ) d 2 = J [/„(Z) - / „ ( Z , ) ] [ g n ( z ) - gn(Zi)] dz, 

and thus 

| | j A / „ ( z ) g „ ( z ) & | | ^ j à i \\f„(z) - / n < * ) | | • \\gn(z) - gn(Zi)\\ ds 

g | A j NB||z - 2,11 • Mn\\z - Zi|| ds ^ JAi 2V„(«/2fc) • M„(s/2«) ds 

g [NBÄfB*2/4*](s/2fc) = NnMns
3/8*. 

Thus 

I /»(Z)gn(z) d z = È | fn(z)gn(z)dz 
\\ J * II II i = i J a, 

- s ll/ÄI/»(*)g»(«)^l 
g4 f c [N n M//8 f c ] = NnMns*l2k-

Letting fc—» oo 5 we obtain I ^fn(z)gn(z) dz = 0. 
REMARK. In his argument for the complex function case Heffter 

[1] requires that one of the functions/, g be differentiable. Macintyre 
and Wilbur [9] weaken this, requiring only that one of the functions 
satisfy a Lipschitz condition. The need for such additional assump-
tions has been obviated in our argument by the use of the "smoothing" 
lemma, Lemma 2.1. Commutativity comes into play only once, ap-
pearing in the argument that functions of the form f(z)c, where / 
is integrable and c G T, are also of the form cf{z) and hence 
integrable. 
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COROLLARY 2.1. Let f be an element of F with simply connected 
domain S such that g(z) = f(z)~l exists for all z E S , Then g G S. 

PROOF. Let A, / , D,fx, f2, ' ' ' be as given in the proof of Theorem 
2.1. Now f(J) is a compact subset of the open set Z of invertible 
elements of T. Hence there exists 8 > 0, such that x G / ( / ) , ZELT, 

||z — oc|| < 8 implies z £ Z . Since the sequence / i , ^ , ' * * converges 
uniformly on / , there must exist q G co, such that fn(x) G Z for x G / , 
nŒ(oq= { n £ û ) ; n § ( / } . For n G coQ, x G J , set gn(^)_=^i(^)_1-
Now for n G coq, there exists Nn > 0 such that for x,y ŒJ, \\fn(y) ~~ 
fn(x)\\ ^ JVn||y - x||, and hence 

\\gn(y) - g»(*)|| = ||g»(»)g»(x)[/„(x) -fn(y)] \\ 

^(Nn'nK\\y-x\\] = Nn"||y-*||, 

where Nn ' = sup {||g(*)||; t G / } and Nn" = (Nn ')*Nn. 
Let k G co and divide A into 4k congruent triangles of perimeter 

sl2k, A1? • • -, A4*, where s is the perimeter of A, and let z{ G Af 

for i = 1, • • -, 4k. Now for i = 1, • • -, 4k, gn(Zi)fn *s integrable and 
hence 

-gn(Zi) | A [fn(z) - fn(Zi)] \gn(z) ~ gn(Zi)] dz 
J A, 

= - g u f o ) J A -fn(Zi)gn(z) dz = J ^ gn(*) <&• 

Then | |/Aj gn(s) <fe|| ^ Nn'[NnNn"] sWk and | | /A gn(z) <fe|| =g 
NnNn'Nn"s3l2k. Letting fc—» <» and then letting n—» oo? the theorem 
follows. 

Let A be a path in E ' with endpoints a and ß and let / and g be 
continuous functions on A and A X A respectively into E'. Then 
clearly 0=$aAf(z)dz is defined, where AÖ = fJ*A A/(z)(ciz). Let 
P : a = x0 < * * * < xn+i = /3, n G co, be a subdivision of A and set 

n n 

i=0 j=0 

n r n l 

i=0 L j = 0 J 

Then clearly as the norm of P converges to zero, R converges to a 
limit fi = Sa

ß Ja
ß

AxA g(x, y) dx dy. Clearly p = Ja
ß [ fa

ß g(x, y) dx] dy 
= S£UZg(x,y)dy]dx. 

A continuous function fon an open set S Q E' into E ' is said to be 
integrable if Jc/(*) dz = 0 for all paths C C S . 
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THEOREM 2.2. Let S be a simply connected open set in E ' , 0 G S, 
/ a continuous integrable function on S into E', and set P(z) = 
So '/(*) àx for Z Ë S . Then P is an integrable function on S into E'. 

PROOF. Our argument is based on that of [9]. Let z E S and let 
A be a path in S with endpoints 0 and z. Then 

Jo"™*- II [Jo\ f^dt]dx = L [/I M * ] * 
(1) 

'h™ [ftAe'dx]dt=Jlf(t)(t-z)dt, 

where e' is the identity element of E'. Set g(t) = t — z for t G E ' . 
Then trivially g is integrable, and thus A/ and Ag are integrable. 
From Theorem 2.1, Afg = AfAg is integrable and thus fg is integrable 
and thus the last integral of (1) is dependent of the choice of path A 
linking 0 and z, and consequently F is integrable. 

REMARK. The requirement that E be finite dimensional may be 
removed in this section. Suppose S is a simply connected open set 
in E and f g elements of F with domain S, and let C be a closed path 
in S. Then there exists a sequence of closed paths C\, C2, * • *, 
formed from straight line segments which approximate C such that 
Ic,if(z) dz-+ fcf(z) dz as n—» <», etc. Now for n G o>, there 
exists a finite-dimensional subspace En of E containing Cn. Lemma 
2.1 readily generalizes to the case of flEn and glEn, and thus 
Theorem 2.1 can be reworked to yield JCn f(z)g(z) dz = 0. Taking 
the limit as n—» <», we obtain Jc f(z)g(z) dz = 0. Thus Theorem 
2.1 generalizes to the infinite-dimensional case. Corollary 2.1 and 
Theorem 2.2 similarly generalize. 

3. Nonanalytic examples. So far in our discussion no use of the 
notion of differentiation has been made. Indeed it is quite easy to 
construct integrable functions which are not differentiable. For 
z = ( x , y ) G E 2 = K © f i , set P(z) = (x90), and set T= {re + sP; 
r,sŒR}. Since P2 = P, T is a commutative Banach algebra with 
identity. Let h be an arbitrary continuous function with domain R 
into R and set f(z) = h(x)P for z = (x, y) G E2. We show that / is 
integrable. For x G K, set u(x) = Soh(t) dt and for z = (x, y) G E2, 
set (f>(z) = [u(x), 0] . Then for z = (x, y), p = (s, t) lying in E2, we 
have <k ' (p)= [u'(x)s,0] = [h(x)s,0] = h(x)P(p) = fz(p), and thus 
<f>z' = f(z). Then clearly for any path AG E2 with endpoints a and 
ß, SaA f(z) dz = 4>(ß) — <j)(a) and thus for any closed path C, 
Scf(z) dz = 0. 
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Alternately suppose C is a closed path composed of line segments, 
none parallel to {0} X R. Then îcf(z)dz can be expressed as 
fi = (1, 0)5)5 fxi+i h(x) dx, where x0, xu • • *, xn+i = x0, n G o>, are 
the projections of the endpoints of segments of C onto R. Since 
*n + l = *0, M = 0. 

A continuous function f on an open set S Ç E ' is said to be E ' -
differentiable iff is (Fréchet) differentiable, and if for all x G S, there 
exists c £ E ' , such that/*'(f) = c£ for all t E. E. An E'-differentiable 
function is integrable. The standard Cauchy-Goursat argument for 
the complex case [1], [9] involving nesting of triangles readily trans-
fers over to the context of E '. In this more general context, however, 
E'-differentiability does not imply analyticity. Let E ' be the algebra 
generated by e and /x, where p,2 = 0 and ep = pe = p. Let h 
be an arbitrary continuous function with domain R into R, and set 
u(x) = foh(t) dt for x G R. For z = x ß + y / i E £ ' 5 set 4>(z) = 
u(x)p. Then for % = xe + t//x, p = re + sp E. E' ,<j>z'(p) = [u'(x)r] p 
= h(x)rn = [7i(%)^]p, where 7i(ac)/x G £ ' . Thus $ is E'-differentiable 
and hence integrable; however </>" need not exist, since h' need not 
exist. 

If one restricts himself to complex Euclidean spaces Kn, n G w, 
(which may be interpreted as real Euclidean spaces E2n) and complex 
homogeneous operators, then the differentiability of the elements of 
F follows from the fact that the integrals of the elements of F are 
complex (Fréchet) differentiable and hence infinitely differentiable 
and analytic. In §5 we will show how to insure analyticity by impos-
ing much less drastic conditions on E and T working in a real variable 
context. 

4. The symmetric case. If E can be represented as a direct sum of 
invariant subspaces, then for fŒF,f can be expressed as a direct sum 
of integrable functions defined on the subspaces. If T is symmetric, 
then E can be expressed as the direct sum of mutually orthogonal 
one- and two-dimensional invariant subspaces, and for fŒ.F,f can 
be expressed as the direct sum of functions which can be interpreted 
as continuous functions on R into R or as complex analytic functions 
on K into K. 

We note that if, for E, we take E2 = K, then for a complex number 
A, we associate A* with the conjugate A of A. 

LEMMA 4.1. Let f be an integrable junction on U into B, and S 
and W subspaces of E such that for x G U, t G S, f(x)(t) G W. 
Then for x,yE.U such that y — x G S, we have [f(x) — f(y)] (t) 
GWforalltEE. 
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PROOF. For x G U, set g(x) = Sof(z) dz. Let x, y G U such 
that x 7̂  y and y — x G S, and let x = x0 < * * * < xn + 1 = j / ? 

n G co, be a subdivision of the interval [x, y] of E. Then for i = 0, 
• • -, n, Axi = x i+1 - Xj £ S, and hence f(xi)( Axi) G W. Thus the 
Riemann sum So/(*t)( &xu =̂ W. Hence / / / (z ) dz G W and 
g(t/) - g(x) E W. 

Let f G E and r £ R be such that x + rt, y + rtEU. Then 
(j/ + rt) — (x + rt) = y — x E S, and hence g(i/ + rt) — g(x + rt) 
E W. Thus for all t E E, 

f(y)(t)-f(x)(t)= lim [gfo + rtj-gfo)]!--1 

r-»0 

— lim [g(x + rt) — g(x)]r - 1 

= lim {[g(y + rt) - g(x + rt)] + [g(y) - g(x)] j r" 1 

r-»0 

G W. 

THEOREM 4.1. Let HY, • • -, Hn, n G co, foe invariant subspaces of 
E distinct from {0} such that E = Hi 0 • • • © Hn and let fŒ F be 
such that S = (C7 H Hi)© • • • © ((7 Pi Hn) Ç domain / Then £nere 
exist integrable functions f, • • - , ^ swcn that for i = 1, - • -,n, 
1/ H Hj Ç domain/ C H, and range / Ç T \ Hi, and such that for 
x G S, t G E, 

/(*)(*) = tfi(xi)(U), 
i = l 

where x = Xx 4- • • • + xn and £ = tx + * * * + tn and x,, ti G //, 
/ o r i = .1, • • -, n. 

PROOF. For i = 1, • • -, n, set gi(x)(t) = f(x)(ti) for x G S, t G E, 
and set / = g; | Hi. Let C be a closed path in (7. Now for i = 1, 
• • *, n, x G S , t Œ. E, we have ^ G Hi and hence gi(x)(t) = f(x){t{) 
G Hi and Sc gt(*) dz G Hi. Thus {/c gi(z) dz; i = 1, • • -, n} is a 
linearly independent set. Now for x G S, t G E, 

f(x)(t)=f(x)( f u ) É /(*)(*) = Ég«(x)(*), 
N i = l ' i = l i = l 

and hence 0 = fcf(z) dz= Se [ 2<n=i &(*)] dz = 2<n-i /c ©(*) dz. 
Thus for i = 1, • • -, n, Se gi(z) dz—Q and gi is integrable. 

Let i = 1, • • -, n. Then for ail x G S, t G W{ = Hx © • • • © 
Hi^® H i + 1 © • • • © Hn, we have gi(x)(t) = 0 and x - x{ G Wi. 
Hence from Lemma 4.1, for all x G S, gi(x) = gi(xi). Thus for 
xŒS,tŒE, 
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/(*)(') = S gi(x)(t)= £g»(x)(*) 
k=l k=l 

= S gioiti) = tfiiXiXU). 

A subspace H of E is said to be an irreducible invariant subspace 
of E, if H is an invariant subspace of E distinct from {0}, and H 
contains no proper invariant subspace distinct from {0}. 

LEMMA 4.2. Suppose H is an irreducible invariant subspace of E. 
Then To = T \ H is a field with the same dimension as H. Moreover 
a multiplication can be defined on H such that H becomes a field 
isomorphic to To, and such that for A G To there exists a EL H such 
that A(t) = at for all t EH. Furthermore if the dimension of H is two 
and T is symmetric then To and H are isomorphic and isometric to K. 

We observe that it follows from the fundamental theorem of algebra 
that T0 is isomorphic (but not necessarily isometric) to R or K, and 
thus that H has dimension one or two. Suppose H had dimension two. 
Let / be an integrable function on an open set in H into T0. If we 
renorm H and T0 so that H and T0 are isometric to K, then/becomes 
an integrable function from K to K Whence from Morera's theorem 
fis analytic and can be expanded in power series. If H has dimension 
one, then under suitable renorming H and T0 are isometric to R, and 
/ becomes an arbitrary continuous function from R to R. 

PROOF OF LEMMA 4.2. Let A G T0, A ^ O . Then A is one-to-one 
on H. Indeed, for D G T, setting D0 = D | H, we have D[A(H)] = 
D0[A(H)] = A[D0(H)] C A(H), and hence A(H) is an invariant sub-
space of H; and consequently, since H is irreducible, A(H) = H. 

LetxGHHV, and set 0(A) = A(x) for all A G T0. Now range 6 
= {A(x); A G T} is clearly an invariant subspace of H and hence 
range 6 = H. Suppose for A, BE. T0, 6(A) = 0(B). Then A(x) = 
B(x) and (A — B)(x) = 0. Thus A — B is not one-to-one on H, and 
hence A — B = 0, and thus 0 is an isomorphism of To onto H. 

Let A G T0, A ^ 0. Since A(tf ) = H, there exists t/ G H, such that 
A(t/) = x. Now there exists a G T0 such that 6(a) = y. Then a(x) = 
y and 6(Aa) = (Aa)(x) = A[a(x)] = A(y) = x. Since 0(e) = %, 
where e is the identity element of T0, we have Aa= e and a = A - 1 , 
and thus To is a field. 

For M E H , set s£ = 0[ $-l(s) 0~l(t)]. Let A G T0 and set a = 
A(x). Let t G H and set B = fl"1^). Then B(x) = f. Now af = 
0[e-\a)e-\t)} = 0[AB] = (AB)(x)= A[B(x)] = A(t). 
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Now suppose T is symmetric and 77 had dimension two. Then 
T0 is symmetric. Let 7 be the element of T0 such that 72 = —e. Now 
(I*)2 = (72)* = (-ef = -e and thus 7* = ±7. Now 7* = - 7 
since otherwise we would have 0 < ||7x||2 = [Ix, Ix] = [II*x,x] = 
[I2x, x] = - [x, x] = - 1 . Let r,sGR. Then for all yGVHH, 
| | ( r+ S/)(t/)||2 = [(r + *I)(r + d)*y,y] = [(r + sl)(r - rf)y,y] = 
[(r2 + s2)y,y] = (r2 + s2)||t/||2 = r2 + s2 and thus ||re + sl\\ = 
( f2+ 52)i /2 S e t i =Z(x). Then [x,i\ = [x, Ix] = [7*x,x] = 
— [7x, x] = — [x, i] and thus [x, i] = 0. Also [i, i] = [7x, 7x] = 
[77*x, x] = [ —72x, x] = [x, x] = 1. Thus ||rx + si||2 = [rx + si, 
rx + si] = r2[x, x] + 2rs[x, i] + s2[i, i] = r2 + 0 + s2. 

THEOREM 4.2. Suppose T is symmetric and f G F with domain U. 
Then there exists a sequence Z i? • • -, Zn, n G co, in {R, K} and a 
sequence of functions fi, • • -, fn such that: 

(1) For i = 1, • • -, n, if Z, = R, then fi is an arbitrary continuous 
function on (—1,1) into R. 

(2) For i = 1, • • -, n, if Zi = K, fi is a complex analytic function 
onU Q K into K. 

(3) Setting 0(x) = [/i(xi), /2(x2), • • ', /n(x„)] /or x = (xi, • • -, xn) 
G W = Zi © • • • © Zn, there exists an isometry 6 of E onto W and 
an isometry fi of T onto W, such that /JL~1{(f>[ 0(x)] } = / ( x ) for all 
xGU. 

PROOF. We decompose E. Since E is finite dimensional, there 
exists an irreducible invariant subspace E r of E. Let Wi be the ortho-
gonal complement {y G E; (x,y) = 0 for all x G Ex} of E\. Then 
E= EY® Wx. Now for yGWu A G T, we have A* G T, and for 
all x G E i , A*(x)ŒEl and [A(t/), x] = [A*(x),y] = 0 ; and conse-
quently A(y) G Wi. Thus Wx is an invariant subspace of E. We 
next extract an irreducible invariant subspace E2 of E from W\ and 
form the orthogonal complement W2 of E2 in W\. Continuing in this 
manner until we exhaust E, we obtain a sequence E1? • • -, En, n G w , 
of mutually orthogonal irreducible invariant subspaces of E such that 
E = E\ © • • * © En. 

From Theorem 4.1, there exist integrable functions gY, • • -, gn 

such that for i = 1, • • -, n, domain g{ = U C\ Ei and range giQ T \ Ei, 
and such that for x ŒU, t G E, /(x) = ]?r=i gt(xi)(£t), where x, and 
£j are the projections of x and £ respectively into Ej for i = 1, • • -, n. 

Let i= 1, * • *,n. Then from Lemma 4.2, there is an isometry 
di of Ei onto an element Zi of {R, K} and an isometry m of Tf = T | E; 
onto Zi? such that for A G T j , x G Ei? we have [/x*(A)J • [ 0i(x)] = 
0i[A(x)]. For x G (7Ç Zh set jî(x) = fi*{g,[ 0rl(x)] }. Let P be a 
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path in U C Z* with endpoints a and ß and let N : a = x0 < • • • < 
JCn+1 = ß? n G co, be a subdivision of F, and let R be the Riemann 
sum ^ofi(xi)(xi+l - Xi). Then 

R = OcKR) = S (MT1 [/<(*«)] }[ Ori(xi+l - x,)] 
0 

= S {MT1!/^»«"1*))] }(«/<+i "! /<)= È &(î/0(î/i+i - !/<) 
0 0 

is a Riemann sum for the subdivision N : a = y0 < • • • < t/n+1 = 
ß of the path F = ft" W o f £i> w h e r e Jfi = ft_1fe) f° r i = 0 ,1 , • • -, 
n + 1. Now norm N = norm N. Hence taking the limit as norm IV 
converges to zero we obtain 0i~

1[I/ f(x) dx] = f~_g(y) dy. Thus 
fi is an integrable function from Zi into Zi. 

We observe that if 0* and /m* are merely required to be isomorphisms 
rather than isometries then there exists a number C = || 0i~l\\ < o° 
such that norm N = C • (norm N). Hence as norm N-> 0, norm N—> 0, 
and the desired equality of integrals exists. 

For z G W, set c/>(x) = [/i(aci), • • ",/„(*„)] • For x G E, set 6(x) = 
[ ^i(^i), * * *> ^n(^n)] a n d for AG T, writing Ai for A | Ej for i = 1, 
• • -, n, set /x(A) = [MI(AI) , • • -, ^(A^)]. Then /*-i{«fr[ 9(x)] } = 

/(x) for all x G U. 

5. Analyticity. The principal result of this section, Theorem 5.3, is 
that if T is presumed to be semisimple then a necessary and sufficient 
condition for analyticity is that no element of T is of rank one. It is 
conjectured that the requirement of semisimplicity can be dispensed 
with. Indeed regardless of whether or not T is semisimple we have 
from Theorem 5.1 that if T contains an element of rank one, then F 
contains a nondifferentiable element. 

We observe that a necessary and sufficient condition for T to be 
semisimple is that T contain no nilpotent elements, i.e. elements x, 
such that x / 0 , but xk = 0 for some k G co. 

A definition of analyticity suitable for the real variable context of 
this paper has been given by this author [2], [5], [6]. If the 
elements of F satisfy a uniform Lipschitz condition descended from 
Schwarz?s lemma in complex function theory, then the elements of 
F are (Fréchet) differentiable, indeed infinitely (Fréchet) differ-
entiable, and expandable in power series. 

Let Z be a family of continuous functions on open subsets of E into 
a Banach space C. Z is called a TR family if: 

( l ) / + g G Z f o r / , g E Z . 
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(2) f f £ Z f o r / £ Z , r £ R 
(3) F o r / £ Z, S an open set in E, setting g = / 1 S, g G Z. 
(4) For / £ Z , t / £ E , the translate fy of / lies in Z, where /y(x) = 

f(x — y) for x G y + (domain / ) . 
(5) For / £ Z , r > 0, setting g(x) = /(nc) for x G r - ^domain / ) , 

we have g G Z. 
Trivially F is a TR family. 
Z is called a TRL family if Z is a TR family and 
(6) there exists N > 0, such that for / G Z, C7Ç domain f xG 

domain/, we have 

\\f(x)-f(0)\\^Nsu?{\\f(t)\\;tGU}\\x\\. 

We denote the least upper bound of the family of all such numbers 
NbyN(Z). 

If Z is a TRL family, / £ Z , and z0 G domain f then for some 
8 > 0, the series ^of%\z—z0)ln\ converges uniformly on 11^(8) 
to f(z), where f^} is a homogeneous function on E into T of degree 
n, derived from the nth Fréchet derivative off at Zo, for n G o>. 

THEOREM 5.1. A necessary condition for F to be a TRL family of 
analytic functions is that no element of T have a one-dimensional 
range. 

PROOF. Let AG T, such that A(E) is one dimensional, and set 
H = {x G E; A(x) = 0}. Then the dimension of H is p — 1. Let to 
be an element of E such that WQ = A(w) ^ 0. Then E = {rw; r £ K } 
© H. Let h be an arbitrary continuous function with domain R into 
R. For rGR, set w(r) = Jo h(t) dt. For z = rw + x, r Œ R, x G H, 
set f(z) = /i(r)A and set </>(z) = u(r)w0. Then for % = ra; + x, 
p = sw + y,r,s €z R, x,y G H, we have A(p) = A(SK;) + A(y) = 
su>o + 0, and <fe'(p) = [u'(r)s] w0 = [fe(r)]su;o = h(r)A(p) = 
[/(*)] (P) a n d $'(2) = f(z)- Then as in the examples of §3 for any 
path PC E with endpoints a and 0,/<£ f(z) dz = <£(/3) - <f>(a), and 
thus for any closed path C G E, Jcf(z) dz = 0, and / is integrable. 
Clearly since h need not satisfy any Lipschitz conditions, f need not 
satisfy condition (6) of the definition of a TRL family for any N > 0. 

Let G be the family of all functions g on open sets S Ç E into E, 
such that there exists fGF with domain S, such that if x and j / are 
points of the same component of S, then g(y) — g(x) = Jxf(z) dz. 

For fGF, H a subspace of E, set fH(z) = f(z)\H G T\H, and set 
f\'H = fH\H. SetF\'H= {f\'H;fGF}. 

THEOREM 5.2. Let H be a subspace of E, such that F \'H and G \ H 
are TRL families of analytic functions, and such that for AG T, A(x) 



220 K. O. LELAND 

= 0 for all x G H implies A(x) = 0 for all x G E. Then F and G 
are TRL families of analytic functions. 

PROOF. For AGT, set 0(A) = A\H, and set T0 = T | H. If for 

A, BŒT, 6(A) = 6(B), then for x G H, A(x) = B(x) and (A - B)(x) 
= 0, and hence by hypothesis, A — B = 0 and A = B. Thus 0 is an 
isomorphism and there exists Nx > 0 such that for A G T0, || 0 -1(A)|| 

Clearly G is a TR family. We now show that G is a TRL family. 
Let / G F, g £ G, such that U Q domain / = domain g, and g(y) 
— g(x) = Sff(z) dz for x, y G U. Let x0 G t/ and set r0 = 1 — ||x0||. 
Then r0U + x0Ç. U. For i E ( / , set h(x) = g(r0x + x0). Then h E. G. 
Set M = {\\g(t)\\; tGU}, set Go = G\ H, and set M, = N(Go). Then 
f o r x G t / n t f , 

||/i(x) - h(0)\\ ^ No sup {||fc(t)||; t G (7 fi H}||x|| g N0M||x||. 

Now for a G V H H, 0 < r < r0, 

/(x0)(a) = lim [g(x0 + sa) - g^o)]«"1 

= lim [h(sr0-
la)- h(0)]S-\ 

S-.0 

and 

\\[h(sr0-
la) - ^(0)]s-!|| ^ MNoS-^Isro-HI = MNo^" 1 

and thus ||/(x0)(a)|| S MN0r0-\ and hence || 0f(xo)\\ ^ MN0ro_1 

and ||/(x0)|| ^ MNoN^o"1- Then for x G I/(£), 

llg(*) - g(0)|| = || f0 /(*) & || s f0 11/(̂ )11 <fe 

^ J* MN 0 N 1 ( i ) - ids=2MN 0 N 1 | | x | | 

and thus for x £ [ / , 

||g(x) - g(0)|| =i NM||x||, 

where N = max {2N0Nl7 4}. Thus G is a TRL family and hence 
by [2], F is a TRL family. 

LEMMA 5.1. Le£ / be an integrable function on U such that for 
x G U, f(x) = r(x)e, where r is a continuous function on U into R. 
Then fis constant. 

PROOF. Let x,y ŒU, x / y and set S = W = {s(y — x); s G R}. 
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Then for z G U, t G S, f(z)(t) = r(z)t G W, and hence from Lemma 
5.2, [ / (y)- / (*)] (*) G S for all * G E. Thus [r(y) - r(x)]t is a 
multiple of y — x for all t Œ E, and hence r(y) — r(x) = 0 and 
r(y) = r(x). 

THEOREM 5.3. If T is semisimple, then a necessary and sufficient 
condition that F be a TRL family of analytic functions is that no 
element of T have rank one. 

PROOF. Necessity follows from Theorem 5.1. Let J /0
 = {A(E); 

A G T, A / 0} and let <=H be the family of all H G J/0 such that 
(7 G J/o, o" Ç H, implies a = H. Clearly J / is nonempty. Let W 
be the subspace of E generated by the union of the elements of J/. 
To show sufficiency we shall first show that F \'W and G | W are 
TRL families of analytic functions. We then exploit the semisimplicity 
of T to show that the elements of T are determined by their behavior 
on W allowing us to employ Theorem 5.2. 

Let H G Ji and set To = T \ H. Suppose T0 is one dimensional. 
Then all elements of T0 are of the form re0, where r G R, and e0

 = 

e | H. Since H is not one dimensional, from Lemma 5.1, the elements 
of F\'H are locally constant functions and thus trivially F\'H and 
G | H are TRL families. 

Suppose T0 is not one dimensional. Employing Theorem 4.2, we 
shall show that any e l e m e n t / G F\'H can be expressed locally as a 
direct sum of complex analytic functions from K into K, thus yielding 
that F | ' H and G | H are TRL families. 

Let x G H0 = H — {0}. Then x = {P(x); P E.T) is an invariant 
subspace of H. Let a be an irreducible invariant subspace of x. 
For F G r 0 = T | H, set 0(F) = F |a. Suppose for some P E T , 
F0 = F | H, that 0(FO) = 0. Then F(a) = {0} and F is not one-to-one 
on H. Then tf ^ F(H) Ç H, and # = F(A) and P(H) = F[A(E)] 
= (PA)(E) = range PA for some A G I From the minimality of 
H, P(H) = {0}, and F0 = 0 and thus 6 is an isomorphism. Thus 
Ti = r0|o- = T\CT is isomorphic to T0 and hence Tx does not have 
dimension one. From Lemma 4.2, T1? and hence T0 is a field iso-
morphic to K. Let y G a, t/ / 0, z G x. Then there exist F, Ç> G T0 

such that y = P(x) and z = Ç(x). Whence z = (QP-^iy). Then 
ï Ç ( j and x = a and x is irreducible. Clearly T \ x is isomorphic 
toK. L e t / G F | ' H . 

Now {x; x G JF/0} generates //. Hence there exist xi5 • • -, x* G Ho, 
k G w, such that H = x̂  0 • • • © xk. Then following the proof 
of Theorem 4.2, there exists an isomorphism rr of H onto a complex 
Hilbert space H ' of complex dimension k, and an isomorphism fx of 
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T0 onto K, such that g = /ffn--1 is a complex analytic function on 
77-(domain/) into K. 

There exist p, 8 > 0, such that 7r[U(p) H H] Ç U(ò) C n(U Pi H). 
Then 7r[C/(p) fì H] Ç domaing. Let x G U(p) H H, x' = TT(X). Then 
from complex function theory, 

| | / ( * ) - / ( 0 ) | | g | | M - i | | - | | g ( s ' ) - g ( 0 ) | | 

^2| | /Lt-i | |sup{| |g(t) | | ; iGC/(Ô)}8-1 | |X ' | | 

g 2 | | , * - i | | [H | sup {||/(t)||; tGv-i[U(6)] }]S~l[\\r\\ • \\x\\] 

^ NM\\x\l 

where M = sup {||/(*)||; t G U D H} and 

N=max{2 | | j l t -» | | • H | • \\7r\\8-\2lp}. 

For x G £/(p) H H, \\x\\ i^ p, we have 

||/(*) - /(0)| | ^ 2M = [2M/p]p ^ [2M/p] ||x|| ̂  NM\\x\\. 

Thus F H = F I ' H is a TRL family and N(F„) ^ N. 
W can be expressed as the direct sum of a finite subcollection 

{Hi, • • -, Hn} of J/, n £ w . Then for x G W, there exist unique 
elements x1? • • -, xn of W, such that x* G H* for i = 1, • • -, n, and 
x = Xi -f • • • + xn. Moreover there exists p > 1 such that for 
x G W, f = 1, • • *, n, we have ||XJ|| ^ p||*||. For i = 1, • • -, n, set 
N« = N [ F | ' H < ] . L e t / G F | ' W , t / n W Ç domain/ 

For i = 1, • • -, n, set /i = / | ' H,. Then from Theorem 4.1, for 
zGU(p-l)r\W, tew, f(z)(t) = yZ?=lfi(zi)(ti). Whence for 
x G U{p~l) H W, we have x1? • • -, xn G 1/ and 

||/(x)-/(0)||^ t \\fi(xi) - fi(0)\\ 
i = l 

(1) ^ S Nt sup {||/,(s)||; s G (7 H H,}||x,|| 
t = l 

g £ N , M [ P | | X | | ] ^ N M | | X | | , 
i = l 

where N — max {p ̂ "=i N;, 2p} and 

M = s u p { | | / ( s ) | | ; * G l / n W}. 

Trivially (1) holds for xGUDW, \\x\\ ^ p" 1 , and thus F | ' W is a 
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TRL family. By a similar argument we show that G | W is a TRL 
family. 

Let A be an arbitrary element of T such that A(x) = 0 for all 
x G W. If we show that A = 0, then the theorem follows from 
Theorem 5.2. Suppose A / 0 and consider the sequence E D A(E) 
~3 A2(E)~D • • •. Since T is semisimple, there exists fc G co such 
that Afc(E) = A*+1(£) = A[A*(E)] ^ { 0 } and A is one-to-one on 
Ak(E). Now there exists H G J / such that H Ç Afc(£). Whence 
A(#) ^ {0}. Buttf Ç Wand A(tf) Ç A(W) = {0}. 

REMARK. The method of proof of Theorem 5.3 suggests that the re-
quirement 

(1) No element of T has rank one; 
be replaced by 

(2) F\ ' H is a. TRL family for all one-dimensional elements H of J/0-
We observe from [6] that if (2) holds, there exists n £ w , such that 

F | ' H is isomorphic to the family of polynomials and of restrictions of 
polynomials to open subsets of R into R of degree less than n. 

It can be readily shown that the requirement of semisimplicity 
combined with (2) yields the conclusion that (1) must hold and thus 
that F is a TRL family. Indeed suppose there exists A Ei T, such that 
H = A(E) has dimension one. Now if A(H) = {0}, then A2(E) = A(H) 
= {0}, and hence, since Tis presumed semisimple, A = 0. Thus A(H) = 
H. Let w Œ. H, w j^ 0, let h be a continuous nondifferentiable func-
tion on R into R, and for x £ E , set f(x) = h(x')A, where x' G R, 
x'w= A(x). Then as in the proof of Theorem 5.1, fis integrable and 
nondifferentiable, contradicting (2). 

Neither semisimplicity nor condition (2) is sufficient separately to 
give the conclusion that F is a TRL family as the following examples 
show. For E we take R © R. For (x, y) G E, set P\(x, y) — (x, 0) and 
P2(x, y) = (y, 0). For i = 1, 2, set T{ = {re + sPi; r, s G R}, and let 
Fi be the family of integrable functions on open subsets of E into 7V 
Both ?! and F2 have one-dimensional ranges, and hence from Theorem 
5.1, Fi and F2 are not TRL families of analytic functions. We show 
that Ti is semisimple and that F21 ' H is a family of constant functions 
and hence trivially a TRL family, where H = {(x, 0); x G ß} is, as 
we shall show, the only one-dimensional element of {A(E); A G T2}. 

Let r, s G ß, fc G co, fc > 1, and set A= re + sPìm Suppose Ak = 0. 
Then for some e G R, 0 = Ak = (re + sFi)fc = rfce + (re + sk)Pi 
and hence rfc = 0 and re + sk = 0. Then r = s = 0 and A = 0, and 
Ti is semisimple. 

Let A' G T2 and set H ' = A'(E). Suppose H' / H and H ' is one 
dimensional. Then P2(H') 7̂  {0} and H Pi H ' = {0}. Since H' is 
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an invariant subspace of E, P2(ff') QH'. Now P2(H') Q P2(E) = H 
and thus P2(H')C HCl H' = {0}. But then P2(H') = {0}. Thus 
A ' ( E ) = H . 

Let a and ß be continuous functions on U into R such that ae -f 
/3P2 is integrable. Now / = aP2 = (aß + j3P2)P2 is integrable and 
f(z)(H) = {0} for 2 E (7, and hence applying Lemma 4 . 1 , / = aP2 is 
constant on H. Now for %1? %2 G H, 

o(%i)P2(0,1) = a(z2)P2(0,1) and « ( ^ ( l , 0) = a(z2)(l, 0), 

and thus a(%i) = a(z2) and a# | ' H is constant. Trivially ßP2\' H is 
a null operator valued constant function. Thus F21 ' H is a TRL 
family. 

It is conjectured that the requirement that there exist no one-
dimensional range spaces is a necessary and sufficient condition of 
analyticity. If this conjecture fails we propose the condition that 
there exist no one-dimensional invariant subspaces. This stronger 
condition forces E and all invariant subspaces of £ to be of even 
dimension, causing one to suspect that some sort of complexification 
of £ and T is possible. 
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