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ALGEBRAS OF ITERATED PATH INTEGRALS
AND FUNDAMENTAL GROUPSC1)

BY
KUO-TSAI CHEN

Abstract. A method of iterated integration along paths is used to extend deRham
cohomology theory to a homotopy theory on the fundamental group level. For
every connected C°° manifold 3JI with a base point p, we construct an algebra
■7r1 = 7T1(2Si,p) consisting of iterated integrals, whose value along each loop at p
depends only on the homotopy class of the loop. Thus ir1 can be taken as a com-
mutative algebra of functions on the fundamental group ^(SBi), whose multiplication
induces a comultiplication w1 -*■ u-1 ® ir1, which makes w1 a Hopf algebra. The
algebra w1 relates the fundamental group to analysis of the manifold, and we obtain
some analytical conditions which are sufficient to make the fundamental group
nonabelian or nonsolvable. We also show that w1 depends essentially only on the
differentiable homotopy type of the manifold.

The second half of the paper is devoted to the study of structures of algebras of
iterated path integrals. We prove that such algebras can be constructed algebraically
from the following data: (a) the commutative algebra A of C functions on 93);
(b) the A-modale M of C" 1-forms on SD!; (c) the usual differentiation d: A -> M;
and (d) the evaluation map at the base point p, s : A -*■ K, K being the real (or com-
plex) number field.

A  path  a: [0, 1] -*■ 3W  will  be  understood  to  be  piecewise  smooth.   For
w, wx, w2,---eM, let Ja w be the usual integral, and define, for r> 1,

[   HV ■ -Wr = J    Í J f Wl • ■ ■ HV-iWot(f), <*(*)) dt,
where a1 denotes the restriction a|[0, /].

Such iterated path integrals can be taken as functions on a space of paths. The
integral J wx ■ ■ ■ w„ taken to be a A'-valued function on the set of paths (resp. loops)
from the base point p, will be written as Jp wx ■ ■ ■ wr (resp. §p wx ■ ■ ■ wr). The totality
of such path integrals jp wx • • • wr (resp. §„ wx ■ ■ ■ wr), r ^ 1, together with the constant
function 1 generate an algebra P (resp. Q). Actually Q is a Hopf algebra with a
comultiplication Cq- Q^ Q <8> Q reflecting the multiplication of loops.

Those elements of Q, whose value on each loop depends only on its homotopy
class, form a Hopf subalgebra n1 of Q. Evidently n1 consists of Ä'-valued functions
on the fundamental group 7^(9)7).
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After presenting preliminary material in §§1-2, we construct the Hopf algebra
tt1 and investigate its structure. A good number of elements of tt1 can be obtained
by using modified Massey products of closed 1-forms. The following results will
be given in §3 :

(i) Let HÇSJl) be the deRham cohomology of m, and let ¿>r = dimK H'(W). If
bx> 1 and ¿>2=0, then ttx{W) is not solvable.

(ii) If there exist two closed 1-forms w and w' on 9JI with the exterior product
w A w' = 0 and if their cohomology classes are linearly independent in T/HSDc), then
77i(9K) is not solvable.

(iii) As a consequence of (ii), if 9JI is a compact connected Kahler manifold and
if ¿-1'°>o2-°+1, where Z>r-S = dim Hr-$Ç>iïl), then Trx(W.) is not solvable.

(iv) Let PV1 denote the subspace of n1 consisting of those elements which are
linear combinations of path integrals that are iterated no more than r times. Then
there is an exact sequence

0 —► (FV1)2 n FV -^> FV1 —► H^m) ak wçm) -^U H2(m)

where A is the cup product.
(v) As a consequence, if (FV1)2 does not contain FV1, then ttxÇ$R) is not

abelian.
In §4, we determine the algebraic structure of the algebras P and Q. As a matter

of fact, the algebra P=P(A) and the Hopf algebra Q = Q(A) can be defined for an
arbitrary commutative algebra A equipped with a derivation and an augmentation.

In §5, we relate this work to previous works of algebraic nature [7]-[10] by briefly
mentioning functorial characterizations of P and Q and the construction of a Hopf
algebra ^(A).

As far as the author knows, iterated path integration on manifolds has been
systematically investigated by only a few. H. H. Johnson has considered iterated
path integrals in connection with prolongations [12]. A. N. Parsin's work [16] is a
study of iterated path integrals on Riemann surfaces. In the author's earlier works
[l]-[5], iterated path integrals are studied mostly from a group and Lie theoretical
point of view.

All functions and forms on the manifold 2JÎ will be understood to be C°°.
All vector spaces and algebras will be over the ground field K. The word "mor-

phism" will be used instead of "homomorphism". Every algebra is assumed to
possess 1, and every morphism of algebras preserves 1.

1. Paths and integrals.
1.1. We shall not distinguish two paths which differ only by a reparametrization.

The product aß is defined to be the path a followed by ß, and the inverse y = a-1 of
a is given by y(r) = a(l — t).

Denote by G the semigroup of loops at the base point p.
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1971] ALGEBRAS OF ITERATED PATH INTEGRALS 361

1.2. Two paths are said to be elementarily equivalent if one can be written in the
form aßß~1y and the other in the form ay. (Either ce or y is allowed to be the empty
path.) If ax,..., ar is a finite sequence of paths such that a¡ and a¡ + x are elementarily
equivalent, i= 1,..., r— 1, then we say that ax and ar are equivalent. Denote by «
the equivalence class of a. Define äß=aß. Then

Denote by G the group of equivalence classes of loops at p.
1.3. By a piecewise regular path, we mean a path with nonvanishing tangent

vectors. A reduced path is defined to be a piecewise regular path that is not of the
type aßß'1y. We shall include the empty path as a reduced path, and any piecewise
regular path of the type yy'1 will be taken to be equivalent to the empty path.

1.4. The value of an iterated path integral ja wx • • ■ wr does not depend on the
parametrization of a and, as a matter of fact, depends only on the equivalence class
ä. (See [4, (2.1)-(2.3)].) The following lemma was proved in [4]:

If a is a nonempty reduced (piecewise regular) path, then there exist 1-forms
wx,...,wT such that

1wx • • ■ wr 7e 0.

As a consequence, it was also proved that every piecewise regular path is equiv-
alent to one and only one reduced path.

The next theorem provides an answer to the question how well iterated path
integrals separate paths.

Theorem. Two piecewise regular paths a and ß are equivalent if and only if
Jff wx- • -wr=je wx- ■ -wrfor any l-forms wx,..., wr, r^ 1.

Proof. It remains to show the sufficiency part of the theorem. We may assume
that Ja wx■ ■ ■ wr#0 for some wx,..., wr. Otherwise both a and ß are equivalent to
the empty reduced path, and the theorem holds. Given a function/on 9JÎ, we obtain
from (1.5.2)

f (fwx)w2■ ■ ■ wT = f(a(0)) f wx■ ■ ■ wT+ f dfi
Ja Ja Ja

W, ■ ■ • Wr,

An analogous formula also holds for ß. It follows that f(a(0)) =f(ß(0)), which
means a(0)=|3(0).

The path ß~xa is now piecewise regular. Using (1.6.1) and (1.6.2), verify that
every iterated path integral vanishes along ß~xa, which implies that ß~la is equiv-
alent to the empty path. Hence a and ß are equivalent.

1.5. Let a be a path initiating from p. Iterated path integrals possess the following
formal properties :

(1.5.1) WV--HV        Wr+l---Wr + , - 2        W°l- ■ -Wolr + s)
Ja Ja a   Ja
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362 K.-T. CHEN [May

summing   over   all   (r, j)-shuffles,   i.e.   permutations   o   of  r+s  letters   with
a'H < • •   <a~lr and a~1(r+l)< • • • <a~\r + s).

If/is a function, then

(1.5.2)
wx---w,(fw)w, + x---w, + s=f(p)\   wx---w,ww, + x---w,+s

Ja Ja

The formula (1.5.2) follows from the fact that/(«(r))=/(/>) + ja< dfi The formula
(1.5.1) was observed by Ree [17]. Its verification can be illustrated by the following
particular cases:

[ wxj w2 = j   Ujt wx\w2(a(t), *(0) + (J, wa)wiWO, «('))] dt

(wxw2 + w2wx);
Ja

I    Wl J    W2W3 = J        M ( WX j ( W2jW3(a(t), à(t))+ ( J ( W2R>3jH>i(o:(/), (*(/)) I í/í

= (w1W2H'3 + H'2W1H'3-|-Vf2H'3H'1);
Ja

WiWa        W3Wé = • • • = (WitV2Vf3H'4 + W1W3W2W4 + W1W3W4W2-f-H'3H'iW2W',1
Ja Ja Ja

+ W3WX WtW2 + W3WiWxW2).

1.6. The next two formulas relate iterated path integrals to the multiplication
and the inverse of paths.

(1.6.1) wx---wr=      wx- ■ -w,+ ■ ■ ■ + \   Wx---Wi\   wi + x- ■ -w,+ \   wx---w,.
Jail Ja Ja Jß Jß

(1.6.2) Í     wx---w, = (-iy Í w
Ja Ja

■Wx.

A verification of (1.6.1) was given in [3]. For (1.6.2), set y = a x and at=a\ [1 — t, 1 ].
Then yt=(at)~1. It suffices to show that by induction on r

(- \y(d/dt) f  wx- ■ ■ w, = (d/dt) f  w,- • • wi.
Jy Ja¡

In fact, the left-hand side is equal to

-(-l)r (J, wi- • -w,^wMl-t), á(l-O)

=  (J    W,-i---W1)lVT(o(l -i),ö(l-r)),
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while the right-hand side is equal to

(d/dt) '  • • •       ' wr(a(sr), á(sr))■ ■ ■ wx(a(sx), à(sx)) dsr---dsx
Ji-t Ji-t     Ji-t

= (j   wr.x- ■ -w^wMl-t), á(l-t)).

2. The filtration of algebras of path integrals.
2.1. Denote by T(M) = T°(M) + T1(M)+ ■■■ the tensor algebra of M over K,

where Tr(M) is the r-fold tensor product of M which is the vector space of C™
1-forms. For simplicity, we shall write

wx ■ ■ ■ wr = wx ® • • • (g) wr e T'(M),      r £ 1.

Set wx• • ■ wr= 1 when r = 0.
If the tensor multiplication of T(M) is replaced by the shuffle multiplication °

which is given by

wx---wr°wr + x---wr+s = ^w, ■w,<7(r + s)

summing over all (r, j)-shuffles a, we obtain from T(M) a commutative algebra
Sh (M), which will be called the shuffle algebra of M.

2.2. There is a surjective linear map

Í : Sh (M)Jp
given by 1 i-> 1 and, for r^ 1,

Ji
Wx • • • WT I-»-      wx ■ • ■ wr.

Jp

It follows from (1.5.1) that the linear map ¡p is a morphism of algebras.
Denote by eA : A -*■ K the evaluation map at p so that eAf=f(p). The formula

(1.5.2) implies that the kernel of J"p contains the ideal /generated by all elements of
the type

( tfl" •W,(fw)wr + 1- ■ -Wr + s-(eAf)wx- ■ -WrWWr + 1- ■ -Wr + S

-(wx- ■ ■ wr o df)wwr + x- ■ -wr + s

for räO, i^O. (Such elements not only generate the ideal / but also span / as a
vector space. See [7].)

Define P to be the quotient algebra Sh (M)/I. Then there is a canonical sur-
jection P->P.

2.3. Similarly there is a surjective morphism of algebras

j:Sh(M)^Q.
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Since §p df= 0, the kernel of §p will not only contain the ideal / but also
dA<^T1(M)^Sh (M). Denote by (dA) the ideal generated by dA in Sh (M). Let
Q be the quotient algebra Sh (M)/(I+(dA)). Then Q can be also taken as a quotient
algebra of P, and there is a canonical morphism of algebras Q -> Q.

The construction of P and Q is described in detail in [7], where they are respec-
tively denoted by Sh (d, p) and She (d, p).

We shall keep on using o to denote the respective multiplications in P and Q.
2.4. The shuffle algebra Sh (M) has an ascending filtration by Fr Sh (M)

= T°(M)+ ■ ■ ■ +Tr(M), r^O. Denote by F'P (resp. F'P, FrQ, F'Q) the image of
Fr Sh (M) under the canonical morphism. Thus the algebras P, P, Q and Q are
filtered. Observe that FrP or F'Q consists of linear combinations of path integrals
which are iterated not more than r times.

2.5. Given a path a, the path integral \a u is now defined for every element u of
Sh (M) with ¡a 1 = 1. Write <u, a) = ¡a u.

Let e = cSh(M) : Sh (M) -> K be the morphism of algebras given by wx • ■ ■ wr h> 0,
r^ 1, i.e. eu=(u, e} where e is the constant path at p.

Definition. A path a is said to be at least of order r if <w, a} = eu,
Vu e Fr_1 Sh (M), rè 1- Every path is at least of order 1. If a path is at least of
order 2, then it is a loop.

Denote by FrG the set of loops at p which are at least of order r. Let FrG be the
set of equivalence classes <x, Va g FrG.

Observe that a path a is at least of order r if and only if <«, a>=0,
Vtie/^'-1Sh(M)nKere.

Lemma. Let a e FrG, and let ß be a path from p at least of order s. If
u e F'**-1 Sh (M) n Ker e, then

<W, «/?> = <!!, «> + <",£>•

Proof. If u = wx- ■ -w¡, l<r + s, it follows from (1.6.1) that <w, aß} = <m, a>
+ <«,£>.   Q.E.D.

Corollary, //iie FrG and ue F2r~1Sh (M) n Ker e, then

(2.5.1) (w,«-1) = -<«,«>.

It follows from the above lemma that FrG (resp. FrG) is a subgroup (resp. sub-
semigroup) of G (resp. G).

2.6. For a,ßeG, define [a, ß^aßa^ß-1.

Lemma. //aE PrG and ß e FSG, then [a, ß] e Fr+SG and

<wv ••wr+s, [a,ß]>

= <WX- --Wr, a><Wr + 1- • -Wr + S,ßy-(WX- ■ •WS,^><WS + 1- • -Wr + S, a}.
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Proof. Set l=r+s. Observe first that
(a) 2oSiSrOi---W¡, ot><H>, + 1---W„ o£-1> = 0;
(b) <Wi- • -Wi, a><wi + 1- • -wlt /S_1>=0 when i^r;
(c) <mv • -Wi, ß}(.wi+x- • -Wi, a_1>=0 when i^s.
Using the above formulas as well as 2.5, we have

<W1---W„[a,^]> =    2   <Wx---Wi,aß}<iWi + x---W„a-1ß-1y
ogiSi

= (wx---Wi, a> + <MV • -W„ a><W,+1- •   Wh ß} + <.Wx- ■ -Whß)
+ ■•• +«Wi- • -Wi, a> + <Wi- • -Wi, ß))

X«Wi + 1---W„ a"1> + <Wi + i---W„^-1»

+ • • • +<Wi- • -W„ a-^-KWi- --W,, cc-1}<.W, + x---W„ ß'1}

+<wx---wl,ß-1y
= <Wi• • • W„ a><Wr +1 • • • w„ 0> -Oi • • • Ws, £>Os +1• • • W„ a>.

If /< r+s, the same computation as above will lead to (wx ■ ■ ■ w,, [a, ß]}=0.

Proposition. F,G is a normal subgroup of G, and

[F,G, FSG] <= F,+SG.

Proof. It remains to show that, if a s F,G and ß s G, then ßaß'1 s F,G. In fact,
for u s Fr_1 Sh (M) n Ker e, we have

<U, ßaß-^ = {u, [ß, a]a> = <«, [ß, «]> + <", a> = 0.

Remark. The group G has now a descending filtration by normal subgroups

G = FjG => F2G =>■••.
3. Hopf algebra it1.
3.1. Definition. An element Jp m e P is said to be independent of paths, if, for

every path a from p, Ja u depends only on the homotopy class of the path. The
totality of such elements forms a subalgebra Y of P. Similarly define elements
§pus Q that are independent of loops, and denote by tt1=tt1(M, p) the subalgebra
of Q consisting of all such elements.

There is a canonical morphism of algebras r —> tt1 given by Jp u m>- |p u and
containing all fp £^in the kernel.

If if is a closed 1-form, obviously J"p w is independent of paths. The next procedure
gives us further elements of Y.

Let Wx,..., w„ r^2, be closed 1-forms. By an extended defining system for
a Massey product of wx,...,w„ we mean a family of 1-forms wX2, w23,...,
w,-x,; wX23, w23i,..., mv-2 r-i,;... ; wX2..., such that

wx A w2+dwX2 = 0,    ...,   wr_i A w, + dw,-x, = 0;
(3.1.1)        wx A w23 + wX2 a w3+dwx23 = 0,    ...;    ...;

Wi A w2_, + wX2 A w3_,-{-\-wx_,-x A w,+dwx_, = 0.

(See [13], [14].)
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We define the following elements of Sh (M): ux = wx, ux2 = uxwx + wx2,..., ut.„r
= ti1...r-iWr + U1...r.2Wr_x r+ ■ ■ ■ +»!...,.

Note that jp ux_r=J*p wx ■ ■ ■ wr mod F"-1/»

Theorem. Jp ux ,.,, is independent of paths.

Proof. We use induction on r. The case of r= 1 is clear. For 1 ̂ s<r, the integral
jp us is independent of paths and lifts to a function /s on the universal covering
manifold W with/s(/5)=0. Moreover

dfs =fs-lWs+fs-2Ws_Xs+ ■ ■ ■ +#!...,.

It remains to show that the 1-form

W = fr-lWr+fr-2Wr-ir+ ■ ■ ■ +Wx...r

is closed on 90Î. In fact

dw = o/r_! A wr+dfr_2 A wr_Xr+ ■ ■ ■ +dfx A w2_r

+fr-2dwr_XT+ ■■■+fx dw2..,r+dwx,.,r

= dfr.x  A   Wr+ ■ ■ ■ +dfx   A  Vp2...r-/r-2M'r-i   A   Wr

-(#i...r-l   A  Wr-\-\-Wx   A  W2...r)

= (^/r-l-/r-2Wr-l-#l...r-l)  A   Wr

+ ---+(dfi-w1) A W2...r

= 0. Q.E.D.

Corollary. If wx,..., wr are closed l-forms such that wx A w2 = w2 A w3 = ■ • ■
= wr_! A wr = 0, then jp wx ■ ■ ■ wr is independent of paths.

Proof. Set wx2 = w23= ■ ■ ■ =w1...r=0.

Corollary. Assume that //2(55l)=0. If wx,..., wr are closed l-forms, whose
cohomology classes are such that wx A w2 = iv2 A w3 = ■ ■ ■ = wr _ x A wr = 0, then there
exists Jp m e P such that j"p u is independent of paths and

Jp        Jp
wx ■ ■ ■ wT   mod Fr iP.

Proof. We only need to solve the equations (3.1.1) stepwise for wX2.vvr_lr;
... ; wx.„r. Since wx A w2,..., wr_xA wr are closed 2-forms, they are also exact.
Thus wX2,..., wr_lr can be found. Observe that

d(wx A »V23-r-W12 A W3) = Wx A W2 A W3 — Wx A W2 A W3 = 0.

Thus w123 exists, and so on.
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3.2. Theorem. The fundamental group 7^(901) is not solvable if one of the following
two conditions holds:

(a) //2(SDc)=0 and bx=dim* H^M) > 1.
(b) There exist two closed l-forms w and w' on 9K such that w A w' = 0 and w and

w' are linearly independent in //1(9K).

Proof. In the case (a), choose two closed l-forms w and w' such that w and w'
are linearly independent in //^(SDl). In both cases, we may assume that there exist
a,ßeG such that

O, a> = <W', ß} = l, <>, ß) = <y, a> = 0.

Write [ßai] = [ß, «],..., ¡ßct^llßtf-1], «],.... Set

n = L8«1],     y2 = to* ti8«2]].
y3 = [y2, [\ß°?l [ßa*]]],

Y* = Wz, im5], \ßcfi]], [[ßa^], [¿8a«]]]], ....

Our aim is to show that none of these yx, y2,... is null homotopic so that the group
nx(^H) is not solvable.

Write wr = w ■ ■ ■ w (r times) and, for m < n,

vmn = w'wmw'wm + 1- •■w'wn.

Using 2.6, we verify by induction on r that

<wV, W\> = 1.
Let v=wx- ■ -wr+x such that each wt is either w or w'. If w' occur more than once,
then

<V, [ßa'Y> = 0.

Use the above comments and 2.6 to verify that

<Vi2,y2> = <W'W, [ßal])<w'w2, [ßa2]} =  1,

<*>i«, YÙ = <vX2, y2}(v3i, [[ßa3], [ßa*]]} = 1,

According to the corollaries in 3.1, there exists Jp umn e P which is independent
of paths such that

"mn =   \    V,Jp Jp mn
p

modF'-ip

where l=^(m+n + 2)(n-m +1) is the "length" of vmn, e.g. jp uX2=jp vX2 mod F*P,
Sp uh—Sp vn m°d F13P. Hence

<"l2, Y2> = <*>12, YÙ =  1,

<wi4»ya> = 1.      •••»

and y2, y3,... are not null homotopic.
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We may conclude from this theorem that the fundamental group of any closed
Riemann surface of genus > 1 is not solvable and that the group of any link having
two or more components in R3 is not solvable.

If SDc is a compact connected Kählerian manifold, let bp'q = dim 7/p,,(9Jc), which
is the dimension of the space of holomorphic (p+q)-forms of type (p, q). Then the
condition (b) of the theorem will be satisfied when ft1,0 is large compared with b2,0.
The inequality in the next assertion may not be the best possible but serves as an
illustration.

Corollary. IfSR is a compact connected Kählerian manifold and ifb1,0>b2,°+\,
then ttx(W) is not solvable.

Proof. Let wx,...,wm be linearly independent holomorphic 1-forms, where
m=b1,0. Then the holomorphic 2-forms wx A w2, wx A w3,..., wx A wm must be
linearly dependent, and wxAw=0 for some nonzero holomorphic 1-form.

3.3. The next assertion can be proved in the same manner as Theorem 3.1, in the
case of r=2.

Proposition. 7/"w¡, w[,i=\,...,r, are closed l-forms and ifw is a \-form of the
dijferentiable manifold 901 such that 2 wi A w't + dw = 0, then Jp 2 ww'+fp w is
independent of paths.

Starting from the next section, we are going to investigate the structure of ir1.
Note that tt1 is an algebra of A^-valued functions on ttx(W). It is clear that
diiritf 7T1 g the order of 7^(991) and that n1 is a subspace of the dual space of the
group algebra Kttx(W).

In order to see that the algebra tt1 arises from some kind of dualization of the
fundamental group, we must introduce in tt1 a Hopf algebra structure and view
Ktt^WI) as a Hopf algebra. Then there will be a natural pairing of the two Hopf
algebras, and the comultiplication of tt1 dualizes the multiplication of nx(W).

It should be pointed out that there is no loss in replacing a group by its group
algebra taken as a Hopf algebra. The group may be retrieved from the group
algebra through its Hopf algebra structure.

3.4. Recall that a Hopf algebra H is an algebra equipped with an augmentation
(i.e. counit) eH:H^-K and a comultiplication t,H:H^-H(Z)H satisfying the
following conditions :

(a) £,H is a morphism of algebras.
(b) £„ is coassociative, i.e. (t,H <g> \H)t,H=(\H ® Ih)Ih-
(c) lH is counitary, i.e. (eH <g) lH)lH = (lH <g) eH%H=\H.

The multiplication of H will be denoted by p.H : H ® H -> H, and the canonical
morphism of algebras r¡H : K —> H is known as the unit of H. An antipode of a Hopf
algebra H is a linear maojH: //—>- H such that

Mh(1h ®Jh)Íh = Vh^h = PhUh ® ItfXfi-
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If the multiplication (resp. comultiplication) of a Hopf algebra is commutative,
then the Hopf algebra is said to be commutative (resp. cocommutative). For a
commutative or cocommutative Hopf algebra, the antipode is unique if it exists.

The group algebra KG is a cocommutative Hopf algebra, whose comultiplication
is given by ä \-> ä (g) ä, Va e G. The antipode of KG is given by â \-> ó-1.

If M' is a vector space, then the tensor algebra T(M') is a cocommutative Hopf
algebra, whose comultiplication is the diagonal map T(M')-^-T(M') ®T(M')
given by x m> x <g 1 + 1 <g> x, Vjc e M'. The antipode of T(M') is given by

xx- ■ -xrH)-(— l)rxr- • -xx,       Vxx,...,xreM',       r ^ 1.

A pairing of two Hopf algebras H and //' is a bilinear map HxH' -> K which
sends (h, h') to an element <A, /i'> in K such that VA, hx, h2 e H, h', h'x, h2 e //'
and ceK,

(3.4.1) (hxh2,h'} = (hx®h2,iH,h'},
(3.4.2) <h,h'xh'2y = aHh,h'x®h'2\
(3.4.3) <7?Hc,/i'>=c£if-/i',
(3.4.4) Qi,i)H.c}=ceHh.
Since Hopf algebras considered in this paper will be equipped with antipodes,

we further demand that

(3.4.5) <jHh,h'} = <h,j„,h'>.

3.5. A pairing Hx H' -> ÄTissaid tobe left nondegenerate if <A, A'>=0, VA' g H',
implies h=0. In this case, the induced pairing H (g) HxH' (g //' ^- A' is also left
nondegenerate. We mention the next assertion.

Lemma. Let H' be a Hopf algebra, and H, an algebra equipped with linear maps
eH: //-► K, iH: H-► H ® H and jH: //->- H. If there exists a left nondegenerate
pairing HxH' -y K such that (3.4.1)—(3.4.5) hold, then H is a Hopf algebra, andjH
is an antipode of H.

Motivated by (1.5.3), we equip the shuffle algebra Sh (M) with the linear maps
W> : Sh (M) -> Sh (M) ® Sh (M) and 7Sh(M) : Sh (M) -> Sh (M) respectively
given by

Wx ■ • ■ WT M>-   J   Wx- ■ -Wi <g> wi + x-■-wT
OSiSr

and wx■ ■ ■ wT t-> ( — l)Twr■ ■ -wx, Vwx,..., wr e M.
Choose a basis of M and construct a vector space M' and a left nondegenerate

pairing MxM' -> K such that M' has a basis dual to that of M. The induced
pairing

Sh (M)xT(M')^K

is given by <vc1- ••w„xi-- -^s>=0 when r^s and

(WX ■ ■ ■ W„ XX ■ ■ ■ XTy = <>!, Xx} ■ ■ • <W„ Xr)
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and is left nondegenerate. Verify that (3.4.1)-(3.4.5) hold. Therefore Sh (M) is a
Hopf algebra having an antipode.

3.6. There is a pairing Sh (M) x KG -> K given by (wx ■ ■ • w„ cë> = ja wx ■ ■ • w,.
The formulas (3.4.1), (3.4.2) and (3.4.5) follow respectively from (1.5.1), (1.6.1) and
(1.6.2), while (3.4.3) and (3.4.4) hold trivially for this pairing. Therefore this is a
pairing of Hopf algebras.

There is a left nondegenerate pairing

(3.6.1) QxKG^K

given by <|p u, «> = <!/, a>, Vm s Sh (M). Thus the induced pairing

(3.6.2) Q®QxKG®KG->K

is also left nondegenerate.
Define the augmentation eQ : Q -> K by

iM-
BQ <b   U = eSh(M)W»

which is equal to §p u evaluated along the constant loop e.
Define £ö:ß-^ß®ßby

£ß<{) wx-- -w, =   2   ¿ wx---w¡iS) ¿ wi+x---w,.
JP OSiSr Jp Jp

Then, Vä, |5 s ¿7,

<^£ß dj u, â ® /^) = <^d$ «, «/5^-

The left nondegeneracy of the pairing (3.6.2) makes £q a well-defined linear map.
A similar argument makes a well-defined linear map out ofy'^: Q -+ Q given by

é wx- ■ -w, h>(— l)r i> w,---wx.

Now verify that (3.4.1)-(3.4.5) hold for the pairing (3.6.1). Hence we reach the
next conclusion.

Proposition. With the augmentation eQ, the comultiplication to. and the antipode
JQ, Q is a Hopf algebra.

Remark. The filtration F of g is consistent with the multiplication and the
comultiplication of Q, and Q is therefore a filtered Hopf algebra.

3.7. Lemma. Let p: H' -*■ H'x be a morphism of Hopf algebras. If HxH' -*■ K
is a left nondegenerate pairing of Hopf algebras, then Hx = (Ker p)x is a Hopf sub-
algebra of H.
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Proof. Write 7V=Ker p. Observe that Hx (g> Hx is precisely (N <g> H' + H' <g> TV)1
with respect to the left nondegenerate pairing H ® Hx H' (g> H' —*■ K. We use
(3.4.1) and (3.4.2) and the left nondegeneracy of the involved pairings to show that
Hx is closed under the multiplication and the comultiplication of H.   Q.E.D.

3.8. Denote by G0 the subsemigroup of G of null homotopic loops at p. Denote
by G0 the normal subgroup of G consisting of all à, a e G0. Then G/G0 is the
fundamental group ir1(W)=iT1('¡¡Jt,p). For a s G, the corresponding element of
7T1(93l) will be denoted by &.

Definition. Denote by tt1=tt1(^ÍI,p) the subalgebra of Q consisting of all §P u
such that the value of §„ u along each loop a at p depends only on & s ^(SDt).

Observe that tt1 is the subalgebra of Q consisting of elements that vanish on G0.
It is clear that yew1 cw1.

Theorem, tt1 is a Hopf subalgebra of Q with antipode.

Proof. Let N denote the kernel of the morphism of Hopf algebras p : KG -* J?ir1(9K).
Then /Vis spanned by elements of the type ä-ß such that the loops a and ß are homo-
topic. We have tt1 = N± with respect to the pairing (3.6.1). It follows from Lemma
3.7 that tt1 is a Hopf algebra.   Q.E.D.

3.9. We are going to treat the question of change of base point. Let y be a path
from the base point p to a new base point q. Define a morphism of Hopf algebras

y*:QW,p)-*QW,q)
by the formula <y* §p u, /?> = <<j>p u, yßy'1} for any loop ß at q. The fact that
y* §p u belongs to QÇHjï, q) follows from the next formula, which is a consequence
of (1.6.1).

Wl...Wr=     2 WV--W,       wt + 1---wA       H>y + i---Wr.
Jrßr OiliitrJr Je Jy

Since (y "*)* = y* ~1, y* is an isomorphism. It can be verified that y* preserves the
antipode and sends ^(SJc, p) bijectively onto w1(9K, q). Let

y**:TT1(m,p)x TT\m,q)

he the restriction of y*.
3.10. We may take both Q and tt1 as covariant functors from the category of

pointed C" manifolds to that of commutative Hopf algebras. The next assertion
can be verified in a routine fashion.

Proposition. If fa: 9JT -*■ 90Í, i=0, 1, are two homotopic C°° maps, then

TT\fa)   =   TT\fa)y**

where y is a path from fap' to fap', p' being the base point ofW.

This assertion implies that, if 9JÎ is compact, then tt1, up to an isomorphism,
depends only on the homotopy type of 3JÎ. It will be interesting to know whether
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771 can be actually constructed from ttx(9R) as a group without reference to the
manifold. In other words, is 7T1 indeed a contravariant functor from the category
of groups to the category of commutative Hopf algebras ?

3.11. The Hopf algebra tt1 is filtered by

Ftr1 = F'Q n 7t\       r = 0,1,....

Clearly F°ir1 = K, and F1™1 consists of all c+§pw, where ce K and w is a closed
1-form. Therefore there is an exact sequence

0 -> FV -► PV1 -> ^(SR) -* 0.

Proposition. An element of F2Q belongs to tt1 if and only if the element can be
written in the form

<p fèwtw'i + w+c)

such that w¡ and w¡ are closed l-forms, and

2 wt A w'i+dw = 0.

Proof. The sufficiency is implied by Proposition 3.3. The vector space of l-forms
can be written as a direct sum M0 © Mx, where M0 is the subspace of exact l-forms.
If w e M0, then

and

<f ww' = (f (df)w' = <f fw'-f(p) <£ w" eF'Q
Jp Jp Jp Jp

<£ w'w= -I (df)w'eFiQ.

It follows that every element of iV  can be written in  the form §p u, u
= 2 Wiw'i + w+c, such that h>¡, w[ e Mx. The coproduct

£o<pw = (j>w<gl + 2<r1 wi ® <P w'i+1 <g (j) «
Jp        Jp Jp Jp Jp

belongs to 7T1 (g tt1 so that

2 <P   Wi  ® (P   Wj' G 7T1  (g TT1.Jp Jp
This means that the element 2 wt (g vv(' can be written in the form such that wt and
w\ are closed.

Let 501 be the universal covering space of 50c with a base point /> which projects
to p. Then Jp Wj lifts to a function/¡ on 5DÍ, and w, w,, w¡ lift respectively to l-forms
w, w,, wi on SW. Since |p m g tt1, the 1-form 2./^! + ^ must De closed so that

a'(2iîwj'-l-H') = 2 Wj A vPi-f-i/vP = 0.

Hence 2 Wi A w('+a'H'=0.
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3.12. If w is a closed 1-form, denote by w its cohomology class in HX(M).
Denote by //1(9)î) a^ 7/1(9K) the alternating product over K. We may regard
H\W) AK P/1(3K) as a vector space of K-valued functions on the Cartesian product
GxG such that, if a, ß e G and 2 wt AK w't e H\W) ak H^Vfl), then

(2 *< Ak W¡)(a, ß) = 2 Oí, a}<w[, ß>-(w't, a><W(, /3>.

Let w=2 WiW'i + w + c where wt, w\ are closed. Define

v: FV1 -> H\m) AK H^Ti)

by §p u -*■ 2 wt AK w¡. Then, Va, ß e G, we have

(3.12.1) (2^Aífiv;)(a,/3)= f     ».

Consequently v is well defined.

Theorem. There is an exact sequence

0 —► (F1*1 o F1*1) n FV1 -!=-> FM -ü-> ^(SR) AK ̂ (SR) -^-* Jf2(3R)

wAere À & //ie cw/i product.

Proof. The exactness at H1^) AK H1^) is an immediate consequence of 3.11.
It remains to show the exactness at FV. It is clear that (FV1 o F1™1) n F2irl is
contained in Ker v. We are going to show the inclusion in the other direction.

Let <j>p u e Ker v such that w = 2 Wiwl + w+c. We may assume that c=0. Accord-
ing to 3.11, wt and w\ can be taken to closed l-forms, and wt, w\ e Mx. The fact that
2 w¡ AK w[=0 implies that 2 WiW'¡ is a linear combination of elements of the type
w"w' + w'w". Therefore <|>p 2 w¡w'í is a linear combination of elements of the type
§p w' ° §p w", where w' and w" are closed l-forms. On the other hand, since
2 Wi A w[=0, w is also a closed 1-form. Hence §pue FV1 o F1™1.

An immediate consequence of this theorem and (3.12.1) is that, if ttx(M) is
abelian, then A is injective. As pointed out by W. S. Massey, this result is valid for
CW complexes with a finitely generated fundamental group and an arbitrary
coefficient field for cohomology. (See a footnote, [11].)

The exactness of the sequence at F2-nx implies the following assertion, which
relates analysis of the manifold with the fundamental group:

Corollary. If F2™1 is not contained in FV1 o F1*-1, then ttx(W) is not abelian.

4. Identification theorems.
4.1. Recall the algebras P and Q as defined in 2.2 and 2.3. If « g Sh (M), denote

by u' and u" respectively the images of u under the canonical surjections
Sh (M) -+ P and Sh (M) -> Q.
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The Main Lemma. If ueTr(M),r>\, is such that <u, a> = 0, VaeFrG, then
vi 6 F'-^P o F,~ÍP and u" e Fr~xQ ° FT~1Q.

The proof of this lemma will be given in 4.2. We now prepare for this purpose.
Let <*!, a2,.. .e G. Define, for r> 1,

K, • • -, «r]  =  [[«1, • • -, «r-lL <*r]-

For wx, w2,...sM, define [w1] = h'i and, for r>\,

[wx---w,] = [wx- ■ -w^Jw,-^- ■ -w,]wx,

which extends to a linear map Tr(M) -> Tr(M).
Define the pairing

Tr(M) xKG ®-®KG(r times) -> K

by «viv • • W„ ax <g>- ■ ■ <gi ar» = (wx, «i>- • -<Wr, a,}.
If ««, «j (g) • • • ® ar»=0, Vaj,..., a, s G, then

ae   2   Ti-\M)M0Tr-\M)
ISiSr

where Af0 is the subspace of exact 1-forms of M.

Lemma. ForusTr(M),

<U, [ax, ..., ar]> = <<[w], ax ® • • • <g) o=r».

Proof. Use induction on r^ 1. For r> 1 and m = wv • • w„ it follows from 2.6 that

<U, [ax, . ..,«,]> = <VVi- •   W,-!, [«!, . . ..«tr-llXWr, «r>
-<H'i, ar><W2- • -Wr, [«j, . . ., «r-l]>

= «[Wi • • • Wr], ax (g) • • • <g> ar».

Corollary, //ne Fr(Af) ami //<«, [«i,..., «r]>=0, Vax,..., a, s G, then

[u]e   2   Ti-1(M)M0Tr-i(M).
OgiSr

4.2. Lemma. If usT'-1(M)M0Tr-i(M), 0<i^r, r^2, then u' eFf-^P and
u"eFr~xQ.

Proof. Set Ui = wx- ■ -Wi^x(df)Wi- ■ -w,-x with eAf=f(p)=0. Verify by induction
on / that u'i s F*'1?, 1 ̂ /Sr, as follows:

"i = (fiwx)w2 • • • wr_ i   mod /,
»i = wr • -(/w,)- • -liV-i — ux— ■ ■ ■ — !/,_!    mod/. Q.E.D.

Lemma (R. Ree). rwx- ■ -w, = [wx- ■ ■ w,\ + [wx■ ■ ■w,_x]ow,+ ■ • • + [wx]°w2■ ■ -w,.

A proof of the above lemma can be found in [17, p. 212].
Proof of the Main Lemma. According to Ree's lemma,

usr-^u]   modF'-1Sh(M)oFr-1Sh(M).
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Since [ax,..., ar] e FrG, it follows from 4.1 that

[u]e   2   Ti-1(M)M0T'~i(M),
lSlSr

which implies [u]' e F''1? <= F''1? o F''1?. Hence the lemma is proved.
4.3. Let Vr be a subspace of T'(M), and write

V = Vx+--- + Vr+---cz Sh(M).

We demand that the following conditions are satisfied :
(a) The canonical morphism Sh (M) -> P restricted to V is injective.
(b) If V'r is the image of Vr in P, then

F^P = V'X@M'0@ F°P,

F'P = V'r ® (F'-^P o F'-1?) n F'P,       r > 1,

where M'0 denotes the image of M0 <= Sh (M) in P.
If S(V) denotes the symmetric algebra of V, then the inclusion F<=Sh (M) gives

rise to a morphism of algebras S(V)^- Sh (M). Let v and v" be the respective
composite morphism of algebras

S(V)^Sh(M)^P,       S(V)^Sh(M)~>Q.

Let the morphism of algebras v': S(V) (g A -+ P be given by

u®f^(m)(eAf+j df}.

We shall regard F as a subspace of S( V) (g A through the canonical embedding.
4.4. We make the following observation: Let xx,..., x¡ be AT-valued functions

on a set <&, and let xC&) denote the image of a map <S ->■ A' given by
í i-> (xj(í), ..., Xi(s)). If x(©) contains an additive subgroup of K' whose elements
span the vector space K', then the functions xx,..., xt are algebraically independent
over the field K.

Lemma. If xx, ..., x¡ are linearly independent elements of V„ rSï 1, then, as func-
tions on FrG, vxx,..., vx¡ are algebraically independent over K.

Proof. It follows from 2.5 that, for any a, ß e FrG, we have

vx(aß) = vx(a) + vx(ß)

and vx(a~1)= -vx(a). It remains to show that vx(FrG) contains a basis of A^1. The
case of r= 1 is clear. For r> 1, we suppose the contrary. Then there exists u e V„
m#0, such that <», a>=0, Va g FrG. According to the Main Lemma,

u'e(F'-1PoF'-1P)r\ V'T.

Consequently w'=0, which implies w=0.   Q.E.D.
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4.5. Denote by x'- A —>■ P the linear map given by/i-> (eAf+df)'. Verify that x is
a morphism of algebras.

Theorem. The canonical morphism of algebras P -> P and ß -> Q are isomor-
phisms.

Proof. Let   v: S(V) 0 A ->P   be   the   morphism   of   algebras   given   by
v 0f\-^- v' ° xf, Vu e V,fe A. Observe that v has a factorization

5(K) <g>yf-JUp—>P.

We shall establish the isomorphisms

S(V) 0A xPa P

by showing that P' is surjective and that v' is injective.
For the surjectiveness of v , one needs only to show that the image D, of the

composite map
-/

5(^-1- ■■■ + ¥,) 0 A —> S(V) 0A^P

contains FrP. The case of r= 1 is clear. For r > 1, D, is a subalgebra of P and con-
tains both F'-^ and V, and therefore F7>.

In order to establish the injectiveness of v, it suffices to show by induction on
r ^ 0 that the composition

v',: S(VX+- ■■ + V,)0A —► S(V) ®A^ÚP

is injective, where S(Vx-\-\-V,) = Kin the case of r=0. We first observe that v'0
is precisely the composition

A-^P—>P

given by/i-> eAf+jp df and is therefore injective.
For r > 0, there is a canonical isomorphism

S(VX+ ■■■ + V,)0Ax S(Vr) 0 (S(VX+- ■ ■ + Vr-à 0 A)

so that any u e S(VX+ ■ ■ • + V,) 0 A can be written as a polynomial w=2m umxm
where x=(xx,..., x) are linearly independent elements of V„ xm=xmi- ■ -xf, and
each coefficient um belongs to S(Vx-\-\-V,_x) 0 A.

According to 2.5, for any a e F,G and any path ß from p,

<X,aß) = <x,a> + <X,i3>.

On the other hand, each um is a linear combination of elements of the type h(y) 0f,
where fe A and h(y) is a polynomial in y-(yx,..., yk) such that yx,...,yk are
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linearly independent elements of Vx+ ■ —h Vr-X. Observe that, according to 2.5,
<j, aß} = (y, j8> and that the value of the function v'r(h(y) (g/) at aß is

K<y, ß»(>Af+ J #)
which coincides with its value on ß. It follows that the value of the function
v'r-ium at aß is identical with its value at ß, which is here written as <wm,/}>. Let
gB(x) denote the polynomial 2m (Mm, ß}xm. If v'ru = 0, then v'ru evaluated at aß is

ge«x, «ß>) = gß((x, a} + (x, J8» = 0,

Va g FrG. Since v'xx,..., v'x¡, as functions on FrG, are algebraically independent
over K, we have

ge(x + <x, j8» = 0

and therefore gA(x)=0. This means that the functions v'r_xum are identically zero.
Since, by the induction hypothesis, v'r_x is injective, we have wm = 0 and hence n = 0.

The above proof is also valid for the isomorphisms S(V)x Qx Q if we replace
A by K, P by g and paths by loops.   Q.E.D.

Corollary. S(V) <g ̂ x;P ano1 S(V)x Q.

5. Functorial characterizations. Hereafter, K will denote an arbitrary ground
field. We shall use A to denote a A"-algebra equipped with a derivation, which con-
sists of a AT-algebra \A\,a \A\-module Q.A and a derivation o^: |^4| —»■ O.A.

Denote by r¡A: K-> \A\ the canonical morphism of AT-algebras. We say that A
is augmented if there is given an augmentation eA: \A\ -> K.

Unless otherwise specified, the word "algebra" will mean "/¿-algebra equipped
with a derivation". A morphism of algebras <f>: A -»■ A' consists of a morphism of
/¿-algebras |^|: \A\ -*■ \A'\ and a Ä'-module morphism £!</>: D.A -*■ ÙA' satisfying
the conditions il<j>dA = dA]</>\ and Q.<f>(ax) = (\<p\a)D.</>x, Va g \A\, x g U.A.

5.1. Definition. An algebra B is exact if the sequence

0—>K^^\B\^ilB—*0
is exact.

If B is augmented, then the augmentation eB splits the exact sequence, and there
is a A'-module morphism

iB:QB-> \B\

which splits the exact sequence in the same manner as eB. We shall call iB the
integration of the augmented exact algebra B.

An example of an augmented exact algebra B is the algebra of real valued C00
functions on the real line equipped with the usual differentiation to the module
O.B of C°° l-forms on the real line. The augmentation eB is the evaluation map at a
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point x0. The integration iB: ClB-> \B\ is given by w h> j   w and is therefore in
conformity with its usual meaning.

5.2. The construction of the algebras P and ß as described in 2.2 and 2.3 can be
carried out for an arbitrary augmented algebra A. Moreover P=P(A) will be
equipped with a derivation and an augmentation. We describe briefly how this is
done:

Write M= D.A and regard Sh (M) 0 M as a Sh (M)-module such that u(v 0 w)
= u o v 0 w, Vw, v s Sh (M) and w s M. The linear map Sh (M) -*■ Sh (M) 0 M
given by 1 h-> 0 and vw h-> r (g w is then a derivation.

Define the ideal /of the shuffle A^-algebra Sh (M) as in 2.2. The image of/under
this derivation is a submodule /* of Sh (M) 0 M. Define the augmented algebra
P(A) such that \P(A)\ = Sh(M)/I and QP(A) = Sh(M) 0 M/I*. The derivation
and the augmentation of P(A) are respectively induced by those of Sh (M).

Denote by |p| : Sh (M) -»■ \P(A)\ and QP: Sh (M) 0 M^QP(A) the canonical
morphisms. Define the morphism of augmented algebras xa- A -+P(A) such that
|x¿|a = \p\(eAa+dAa) and i2^H' = Dp(l 0 w), Va e \A\ and Vw e ÍL4.

Theorem. //"/J is an augmented exact algebra and if </>: A -► B is a morphism of
augmented algebras, then <f> has a unique factorization

A*±+P(A)—>B.

We give a brief outline of a proof of the above theorem as given in [7].
Let iB: £18-> \B\ be the integration of B. If w'x, w2, • ■ -s Ü.B, write j w'x = iBw'x

and, for r>l,

\w'x---w', = iMj w'x---w',.Aw'TY

Define <f>:P(A)-+ B such that, if u=wx■ • ■ w, s Sh (M), then

|¿| |H« = J(ßM)---(flM).

Observe that, since dP(A) is surjective, 0.$ is determined by |<£|. Verify that <£ is the
unique morphism of augmented algebras such that <f>=fx-

5.3. Define Q(A) to be the augmented quotient A'-algebra of \P(A)\ over the
ideal generated by elements of the type IxaW—Vpu^aO, Vae\A\. It turns out that
Q(A) can be also taken as a quotient Hopf algebra of the Hopf K-a\gebra Sh (M).
The canonical morphism of augmented A^-algebras \P(A)\ -> Q(A) is universal
with respect to morphisms of augmented ^-algebras \P(A)\ ->- C, for which the
composition \A\ M^. \P(A)\ ->■ C is r¡ceA.

5.4. In [9], we construct for the Hopf A^-algebra Q(A) a derivation 8, which has
been motivated by calculus of variation. The kernel of the derivation 8 is a Hopf
subalgebra ^(A) of Q(A).
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In the case of A being the algebra of C°° functions on the manifold 3R, we make
the identification Q=Q(A). Then it can be shown that ir\A)^wi-(W,p). There is a
reasonably good possibility that irí(A) = irí(SSJl, p).

The work in [10] can be interpreted as a study of the algebraic aspect of the
algebra of iterated path integrals which are independent of paths.
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