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Abstract

Modal Kleene algebras are Kleene algebras enriched by forward and backward box
and diamond operators. We formalise the symmetries of these operators as Galois
connections, complemetarities and dualities. We study their properties in the associ-
ated operator algebras and show that the axioms of relation algebra are theorems at
the operator level. Modal Kleene algebras provide a unifying semantics for various
program calculi and enhances efficient cross-theory reasoning in this class, often in
a very concise pointfree style. This claim is supported by novel algebraic soundness
and completeness proofs for Hoare logic and by connecting this formalism with an
algebraic decision procedure.
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1 Introduction

Hardware and software development usually depends on many different models
and formalisms. This calls for a unifying semantics and for calculi that enhance
safe cross-theory reasoning. During the last decade, variants of Kleene alge-
bra (KA) have emerged as fundamental structures of computer science with
widespread applications. The model class contains languages, relations, formal
power series, matrices, traces and paths. The development of Kleene algebra
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has been decisively influenced by two seminal papers by Kozen, the first one
providing a particularly useful and elegant axiomatization of KA as the alge-
bra of regular events [15], the second one extending KA to Kleene algebra with
tests (KAT) for modeling the usual constructs of sequential programming [16].
But although KAT subsumes propositional Hoare logic (PHL) [17], it is not
rich enough to admit an explicit definition of modalities as they occur in many
popular methods.

KAT has recently been enriched by simple equational axioms for abstract do-
main and codomain operations [9]. This Kleene algebra with domain (KAD) is
more expressive than KAT. It does not only allow relational reasoning about
hardware and software [9], it also subsumes propositional dynamic logic and
supplies it with a natural algebraic semantics [10]. The full potential of the
modal operators that are definable in KAD via preimage and image opera-
tions, however, has not been sufficiently exploited so far. This concerns both
the structure theory of modalities and applications beyond dynamic logic.

The present paper considers KAD as modal Kleene algebras. It studies the
symmetries and dualities of modal operators and develops their algebra. As a
sample application, it provides algebraic partial correctness semantics in the
wlp style and encodings of the rules of Hoare logic. The connection to total
correctness semantics in wp style is set up in the successor paper [22]. The
relation to temporal logics, such as Hennessy-Milner logic, LTL, CTL and CTL∗

will be the subject of another paper(see [7] for preliminary results). Altogether,
we show that modal Kleene algebras close the gap between algebras such as
KAT and various modal and predicate transformer formalisms.

Our Contributions.

• Using the domain and codomain operations of KAD we define forward and
backward box and diamond operators as modal operators à la Jónsson and
Tarski [13]. We show that these operators are related by fundamental sym-
metries in the form of Galois connections and complementarities and by
natural algebraic dualities. The Galois connections and complementarities
serve as theorem generators, yielding a number of modal properties for free.
The dualities serve as theorem transformers, passing properties of one modal
operator automatically to its relatives. We also develop further natural al-
gebraic properties, including complete additivity of domain and codomain
and covariance and contravariance properties of forward and backward op-
erators, most of which transfer to predicate transformer algebras.
• We study the algebra of modal operators in modal Kleene algebras, which

form again certain Kleene algebras and certain lattice-ordered monoids. We
also show that all axioms of relation algebra are theorems of modal Kleene
algebra at the operator level, including the Schröder and Dedekind law. In
particular, meet, complementation, conversion and residuals can be defined
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at the operator level. The abstraction to the operator level thus introduces a
very rich algebraic structure. It supports concise pointfree modal reasoning
and leads to further structural insight. The Galois connections at the test
level lift nicely to the operator level, where they admit, a.o., cancellation and
shunting rules that are beyond the expressiveness of most modal formalisms.
• We apply modal Kleene algebra in the context of partial correctness by

giving purely calculational proofs of soundness and relative completeness
for (propositional) Hoare logic. We provide a faithful encoding of Hoare’s
syntax and model the standard weakest liberal precondition semantics. Our
encoding and soundness proof — all inference rules of PHL are theorems in
KAD — is simpler and more direct than a previous KAT-based one [17]. In
particular, when abstracted to the algebra of modal operators, the Hoare
rules immediately reflect natural algebraic properties. Our novel algebraic
proof of relative completeness is much shorter and more abstract, thus ap-
plicable to more models, than the standard ones.
• We provide a novel algebraic decision procedure for propositional Hoare

logic and, more generally, for the class of valid Hoare formulas. We also
provide a decision procedure for that fragment of modal Kleene algebra
that is most interesting for program analysis.

These technical results support our claim that KAD may serve both as a cal-
culus for cross-theory reasoning with various calculi for imperative programs
and state transition systems and as a unifying semantics for modal, relational
and further algebraic approaches. The economy of concepts in Kleene algebra
imposes a discipline of thought which usually leads to simpler and more per-
spicuous proofs and to a larger class of application models than alternative
approaches, for instance relational algebra [25] or temporal algebra [26], where
some of our issues have also been treated. Finally, our results are of indepen-
dent interest for the foundations of modalities. See [7] for a synopsis of related
results on modal Kleene algebra and for further support for our claims. The
present paper is an extension of [21] presented at AMAST 2004.

2 Kleene Algebra with Domain

A semiring is a structure (S,+, ·, 0, 1) such that (S,+, 0) is a commutative
monoid, (S, ·, 1) is a monoid, multiplication distributes over addition from the
left and right and a0 = 0 = 0a holds for all a ∈ S. A semiring is idempotent
if addition is, that is, a+ a = a holds for all a ∈ S.

Two properties are important here. First, every idempotent semiring admits
a natural ordering defined by a ≤ b iff a + b = b, for all a, b ∈ S. It is, up to
isomorphism, the only ordering with least element 0 for which addition and
multiplication are isotone. The natural ordering turns (S,+) into a semilattice.
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Second, every semiring S induces an opposite semiring Sop in which the order
of multiplication is swapped. For every statement about semirings there is a
dual statement, obtained by opposition, that holds in its opposite.

The structure (K, ∗) is a left-inductive Kleene algebra if K is an idempotent
semiring and ∗ is a unary operation that satisfies the following star unfold
laws and star induction laws. For all a, b, c ∈ K,

1 + aa∗ ≤ a∗, 1 + a∗a ≤ a∗, b+ ac ≤ c⇒ a∗b ≤ c.

It is a right-inductive Kleene algebra if it satisfies the unfold laws and the op-
posite induction laws. It is a Kleene algebra [15] if it is both left-inductive and
right-inductive. The star is also isotone with respect to the natural ordering.
Models of Kleene algebra are relations under union, relational composition
and reflexive transitive closure, sets of regular languages (regular events) over
some finite alphabet under the regular operations or programs under non-
deterministic choice, sequential composition and finite iteration.

As usual, a Boolean algebra is a complemented distributive lattice. By over-
loading, we often write + and · also for the Boolean join and meet operation
and use 0 and 1 for the least and greatest elements of the lattice. The symbols
¬, − and → denote complementation, relative complementation and Boolean
implication. We will consistently use the letters a, b, c . . . for Kleenean ele-
ments and p, q, r, . . . for Boolean elements. We will freely use the standard
laws of Boolean algebra. In particular, relative complementation and Boolean
complementation satisfy the Galois connections (c.f. the following section)

p− q ≤ r ⇔ p ≤ q + r and pq ≤ r ⇔ p ≤ q → r.

A test semiring is a two-sorted structure (S,B), where S is an idempotent
semiring and B a Boolean algebra that is embedded into S such that zero
is sent to zero, one to one, join to addition and meet to multiplication. The
Boolean operations are the restrictions of the semiring operations to B. In
general, B contains only a subset of the elements below 1 in S, since not all
of these need be multiplicatively idempotent. We call elements of B tests and
write test(S) instead of B. A test semiring is a Kleene algebra with tests [16] if
the semiring is also a Kleene algebra. The class of Kleene algebras with tests
is denoted by KAT. All tests p satisfy p∗ = 1.

When a semiring element a describes an action or abstract program and a test
p a proposition or assertion, the product pa describes a restricted program that
executes a when the starting state satisfies assertion p and aborts otherwise.
Dually, ap describes a restriction of a in its possible result states.

We now introduce an abstract domain operator that assigns to a the test that
describes precisely its starting states. A domain semiring [9] is a structure
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(S, δ), where S is a test semiring and the domain operation δ : S → test(S)
satisfies for all a, b ∈ S and p ∈ test(S)

a ≤ δ(a)a, (d1) δ(p a) ≤ p, (d2) δ(a δ(b)) ≤ δ(ab). (d3)

A domain semiring is a Kleene algebra with domain if it is also a Kleene
algebra. In particular, no axioms for the interaction of domain and the star
are required. The class of Kleene algebras with domain is denoted by KAD.

Let us explain these axioms. Axiom (d1) states that restricting an action to
its domain is no restriction at all. Axiom (d2) means that the domain of an
action that is restricted in its starting states respects this restriction. Axiom
(d3), which is called locality axiom, states that the domain of ab is entirely
determined by the restriction of a by δ(b) in its result states; information
about the inner structure or the “far end” of b is not needed.

All three domain axioms hold in the relational model, but (d1) and (d2) suf-
fice for many applications, such as, for instance, proving soundness of propo-
sitional Hoare logic. Our completeness proof, however, depends on (d3). We
will usually explicitly mention where (d3) has to be used. Therefore we speak
of predomain semiring and aKleene algebra with predomain if only (d1) and
(d2), but not necessarily (d3), hold.

3 Some Properties of Domain

It has been shown in [9] that (d1) is equivalent to the implication (⇒) in each
of the properties

δ(a) ≤ p⇔ a ≤ pa, (llp) δ(a) ≤ p⇔ ¬pa ≤ 0, (gla)

while (d2) is equivalent to the converse implication (⇐). These properties
provide elimination laws for (pre)domain, but also characterize it in an in-
tuitive way as least left preserver (llp), i.e., as the least element of the set
{p : a ≤ pa}, and its complement as greatest left annihilator (gla), i.e. as the
greatest element of the set {p : pa ≤ 0}. Since least and greatest elements
are unique in a partial order, domain is uniquely defined when it exists. A
necessary condition for existence of domain is that the set of left preservers
has an infimum and the set of left annihilators has a supremum.

A standard example of a non-complete Boolean algebra is given as follows
(c.f. [3], p.113). Let A be the powerset algebra of some countable set S and
let I be the lattice-theoretic ideal of all finite subsets of S. The associated
congruence identifies sets that differ only at finitely many elements. Then the
epimorphic image A/I is a Boolean algebra that is not complete in the very
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strong sense that no infinite joins exist, since sets in an infinite set cannot be
made equal by adjoining finitely many elements. This algebra can be inter-
preted as a Kleene algebra with tests in which all elements are tests.

Lemma 3.1 Some test semirings do not admit a domain operation.

An interesting class of algebras where domain always exists are the Boolean
quantales, where the carrier set S is a complete Boolean algebra and composi-
tion · is completely additive (see [6] for the proof). This covers, a.o., the case
of relation and trace algebras.

Many natural properties of domain follow from the axioms. First, (d1) can
be strengthened to the identity a = δ(a)a. Second, (d2) is equivalent to the
identity δ(pa) = pδ(a). Third, the order dual of (d3) holds, that is, δ(ab) ≤
δ(aδ(b)) and therefore the identitiy δ(ab) = δ(aδ(b)) in the presence of (d3).
Fourth, domain is strict and additive, that is, δ(a) = 0⇔ a = 0 and δ(a+b) =
δ(a) + δ(b) and, as a consequence of additivity, it is also isotone: a ≤ b ⇒
δ(a) ≤ δ(b). Fifth, domain preserves tests, that is, δ(p) = p. Sixth, there is an
interesting interaction of domain with star. We have δ(a∗) = 1 for all a in the
Kleene algebra. In presence of tests there are laws p + δ(aa∗p) = δ(a∗p) and
p+ δ(a∗ap) = δ(a∗p), which become test-level star unfold laws

p+ δ(aδ(a∗p)) = δ(a∗p) and p+ δ(a∗δ(ap)) = δ(a∗p)

in the presence of (d3). Moreover, there is a test-level star induction law

q + δ(ap) ≤ p⇒ δ(a∗q) ≤ p.

It is equivalent to δ(ap) ≤ p ⇒ δ(a∗p) ≤ p and to the identity δ(a∗p) − p ≤
δ(a(δ(p)− p). See [9] for further information and [14,20] for counterexamples
to right induction.

Additivity of domain can be further strenghtened. We call a function f on a
semi-lattice L completely additive if it preserves all existing suprema, that is,
f(sup(A)) = sup(f(a) : a ∈ A) whenever sup(A : A ⊆ L) exists.

Proposition 3.2 The domain operation is completely additive.

PROOF. Let S be a domain semiring. Let b = sup(a : a ∈ A) exist for some
set A ⊆ S. We must show that δ(b) = sup(δ(a) : a ∈ A). First, by isotonicity
of domain, δ(b) is an upper bound of the set δ(A) = {δ(a) : a ∈ A}, since b is
an upper bound of A.

To show that δ(b) is the least upper bound of δ(A), let p be an arbitrary upper
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bound of δ(A). Then for all a ∈ A,

δ(a) ≤ p⇔ a ≤ pa⇒ a ≤ pb,

by (llp) and the definition of b. Hence pb is an upper bound of A and therefore
b ≤ pb. By (llp) this is equivalent to δ(b) ≤ p. ut

It follows that (pre)domain preserves all suprema when the test algebra is
complete. This has interesting consequences that we exploit in further sections.

A codomain operation ρ can easily be axiomatized as a domain operation on
the opposite semiring. Alternatively, one can use the operation ◦ of conversion,
which can be axiomatized for K ∈ KA as follows. For all a, b, p ∈ K with p ≤ 1,

a◦◦ = a, (a+ b)◦ = a◦ + b◦, (ab)◦ = b◦a◦, (a∗)◦ = (a◦)∗, p◦ ≤ p.

Hence p◦ = p and a ≤ b⇔ a◦ ≤ b◦. Codomain is then defined as ρ(a) = δ(a◦).
Hence the equational axioms for codomain are duals with respect to opposition
of those for domain, so that duals of (llp) and (gla) hold for codomain.

4 Galois Connections and Conjugation

In this section we briefly review two algebraic concepts that will capture funda-
mental symmetries of modal operators: Galois connections and conjugation.
Galois connections have been advocated in computer science by Cousot [5]
and Backhouse [2]. Conjugation has already been investigated by Jónsson and
Tarski [13] in their seminal paper on Boolean algebras with operators. A de-
scription of certain modal algebras in terms of Galois connections has been
given before by von Karger [26]. The two approaches are essentially equivalent,
but of different convenience in different situations. By using these concepts,
many properties of modal operators can be derived in a generic way. This is
in contrast to the logical approach where complex individual axiom systems
must be used for formalizing different modal logics.

Two endofunctions f and g on some Boolean algebra B are called conjugate
if, for all x, y ∈ B,

f(x)y = 0⇔ g(y)x = 0. (1)

Conjugates uniquely determine each other whenever they exist, viz.

g(y) = inf(¬x : f(x)y = 0).

The notion of conjugation generalizes to a test semiring S with mappings f, g
of type S → test(S). We say that that g is a left conjugate of f and f a right
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conjugate of g if, for all a, b ∈ S, af(b) ≤ 0 ⇔ g(a)b ≤ 0. This notion is no
longer symmetric and lacks most of the properties presented below.

Lemma 4.1 For every test semiring, the domain operation is a right conju-
gate of the codomain operation.

PROOF. We calculate

aδ(b) ≤ 0⇔ ρ(a) ≤ ¬δ(b)⇔ δ(b) ≤ ¬ρ(a)⇔ ρ(a)b ≤ 0.

The first step uses the dual of (gla) for codomain. The second step uses order
duality. The third step uses (gla). ut

It has been shown in [9] that (d3) is equivalent to ab ≤ 0 ⇔ aδ(b) ≤ 0. By
Lemma 4.1, locality of domain implies that of codomain and vice versa. More
abstractly, this property is evident from duality with respect to opposition.

A Galois connection is a pair of mappings (f [, f ]) between partial orders
(A,≤A) and (B,≤B) such that f [ : B → A and f ] : A→ B satisfy

f [(b) ≤A a⇔ b ≤B f ](a),

for all a ∈ A and b ∈ B. Here, we restrict our attention to one single ordering
≤. f [ is called the lower adjoint and f ] is called the upper adjoint of the Galois
connection. It follows immediately that

f [(x) = inf(y : x ≤ f ](y)) and f ](y) = sup(x : f [(x) ≤ y).

The following fact about Galois connections and conjugates is well known.

Proposition 4.2 Let f, g be endofunctions on a Boolean algebra B and let h
be defined by h(x) = ¬g(¬x).

(i) Let f and g be lower and upper adjoints of a Galois connection. Then f
and h are conjugate.

(ii) Let f and g be conjugate. Then f and h are lower and upper adjoints of
a Galois connection.

Mappings defined by Galois connections or by conjugation enjoy certain generic
properties. All conjugate functions and all lower adjoints in Galois connections
are, for instance, completely additive. By Proposition 4.2, upper adjoints are
completely multiplicative, that is they preserve all existing infima.

Proposition 4.3 A mapping f on a lattice L has an upper adjoint iff the
following conditions are satisfied.
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(i) f is completely additive,
(ii) sup(x : f(x) ≤ y) exists for all y ∈ L.

By our correspondence between Galois connections and conjugations, the same
conditions guarantee the existence of conjugate functions.

We now present further properties of adjoints of Galois connections and con-
jugate functions that are interesting for our considerations.

First, upper and lower adjoints satisfy the following cancellation properties :

f [ ◦ f ] ≤ 1 and 1 ≤ f ] ◦ f [.

Second, f ] ◦ f [ ◦ f ] = f ] and f [ ◦ f ] ◦ f [ = f [, that is f ] ◦ f [ and f [ ◦ f ] are
dual isomorphisms.

Third, if f is an isotone endofunction, g an endofunction and h[ the lower
adjoint of a Galois connection on some set, then

f ◦ h] ≤ g ⇒ f ≤ g ◦ h[. (2)

Moreover, if f is a mapping and g is antitone, then

g ◦ h[ ≤ f ⇒ g ≤ f ◦ h]. (3)

The following general property of additive functions over a Boolean algebra is
needed for the fourth property.

f(x)− f(y) ≤ f(x− y). (4)

The following lemma is from Jónsson and Tarski [13].

Lemma 4.4 Let f and g be endofunctions on a Boolean algebra B. Then the
following conditions are equivalent.

(i) f and g are conjugate.
(ii) f and g are strict and f(x)y ≤ f(xg(y)) and g(y)x ≤ g(yf(x)) hold for

all x, y ∈ B.

This lemma is interesting because it provides an equational characterisa-
tion of conjugate functions. In a later section we will use the properties of
Lemma 4.4(ii) to obtain a variant of the modular law of relation algebra,
when f and g are interpreted as forward and backward diamond operators,
respectively, over a modal semiring.

The domain and predomain operations are neither lower or upper adjoints
of Galois connections, nor are they conjugates in the strict sense. This may
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be surprising, since many properties of domain and codomain also arise from
Galois connections or conjugation. We will see in the next section that Ga-
lois connections and conjunctions arise for preimage and image operations,
which are special domain and codomain operations for actions restricted to
propositions.

5 Modalities

We now define various modal operators in domain semirings. Their names
are justified, since they induce strict and additive mappings on test algebras,
whence Boolean algebras with operators or dual operators in the sense of
Jónsson and Tarski. They can also be interpreted, respectively, as disjunctive
or conjunctive predicate transformers. This links them with the syntax and
semantics of Hoare logic.

Let S be a test semiring and let a ∈ S. The first definition introduces the
forward diamond operator |a〉 on test(S) in the standard way via abstract
preimage. For p ∈ test(S),

|a〉p = δ(ap).

This operator is the same as 〈a〉 in dynamic logic. It satisfies the following
properties that we will also denote as (llp) and (gla).

|a〉p ≤ q ⇔ ap ≤ qa⇔ ¬qap ≤ 0.

We now define a backward diamond operator by duality with respect to op-
position, i.e., via abstract image as

〈a|p = ρ(pa).

It follows that dual variants of (llp) and (gla) hold for backward diamonds.
In presence of converse we have that |a〉p = 〈a◦|p. The following statement is
immediate from (gla) and opposition.

Lemma 5.1 The forward and backward diamonds are conjugate.

As usual, we define for all a ∈ S and p ∈ test(S) the box operators

|a]p = ¬|a〉¬p and [a|p = ¬〈a|¬p.

We will see later that |a]p corresponds to wlp(a, p); it is also the same as
the monotype factor used in [2]. By Proposition 4.2, boxes and diamonds are
upper and lower adjoints of Galois connections.
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Lemma 5.2 In a domain semiring S, for all a ∈ S and p, q ∈ test(S),

|a〉p ≤ q ⇔ p ≤ [a|q, 〈a|p ≤ q ⇔ p ≤ |a]q. (5)

Duality with respect to complementation is the second one besides duality
with respect to opposition. While the operation of conversion, which oper-
ates on actions, is an isomorphism onto the opposite semiring, negation is an
isomorphism onto the lattice dual test algebra. In this sense, opposition is a
temporal duality, since it inverts the flow of actions. Complementation is a
spacial duality, since it operates on the test space.

Complementarity between forward and backward modalities and the Galois
connection imply many useful properties in a generic way.

Proposition 5.3 The diamonds of a domain semiring are completely addi-
tive; the boxes are completely multiplicative.

It also follows immediately from the Galois connections that boxes and dia-
monds are unique whenever they exist. Moreover, it follows from duality with
respect to opposition and the Galois connection that all modal operators are
in bijective correspondence.

In the following sections, we will appeal to the dualities with respect to opposi-
tion and complementation as theorem transformers. We will prove statements
for one operation and then obtain three others for free. We will appeal to the
Galois connections and to conjugation as theorem generators.

We have seen in this section that the modal operators over a domain semirings
satisfy symmetries and dualities that are far beyond those of domain. This is
the case although domain and codomain can be defined from forward and
backward diamonds by δ(a) = |a〉1 and ρ(a) = 〈a|1. We call a semiring with
a domain and codomain operation that satisfies (d1), (d2) and (d3) as well
as their duals with respect to opposition a modal Kleene algebra in order to
emphasize this particular point of view.

6 Modal Operator Algebras

We now take up the correspondence between properties of operators over
Boolean algebras and relational properties that has been pioneered by Jónsson
and Tarski. Pure Kleene algebra, however, is not expressive enough for many
relational properties, since it lacks the operations of meet, complementation
and converse of actions that are available in relation algebra (cf. [25]). In this
section we show that all the axioms of relation algebra are theorems in modal
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operator semirings. Consequently, the calculus of functions and relations can
be regained at the operator level for the more general class of modal algebras.

We introduce operator algebras by considering general endofunctions on the
test algebra. We lift addition and meet point-wise by setting (f + g)(x) =
f(x) + f(x) and (f u g)(x) = f(x) · g(x). The associated natural order is the
pointwise order on operators:

f ≤ g ⇔ ∀x.f(x) ≤ g(x).

A multiplication is given by (fg)(x) = f(g(x)). We also define 1 = |1〉 = 〈1|
and 0 = |0〉 = 〈0|. (Relative) complementation and Boolean implication can
be lifted in a similar way.

The locality laws yield closure conditions for modal operators. |ab〉 = |a〉|b〉
says that diamonds are closed under composition. While this law is covariant,
we have the contravariant law 〈ab| = 〈b|〈a| for backward diamonds. Closure
under addition follows from |a + b〉 = |a〉 + |b〉, which is immediate from
additivity of domain.

Proposition 6.1 The diamond operators on a domain semiring form an idem-
potent semiring.

PROOF. Consider the mapping φ(x) = |x〉. It follows from the closure con-
ditions |a+ b〉 = |a〉|b〉 and |ab〉 = |a〉|b〉 that φ is a semiring homomorphism.
Since idempotent semirings are equational classes, the class is, by the HSP-
theorem, closed under homomorphic images. Therefore the operators algebra
is also an idempotent semiring. ut

We will later encounter situations when φ is an isomorphism.

We now add further elements to the operator algebra. We will use the well-
known fact from lattice theory that the space of endofunctions on a (distribu-
tive) lattice forms again a (distributive) lattice. Since (distributive) lattices
are equational classes, they are, by the HSP-theorem, closed under subalge-
bras. The following statement takes the meet structure into account. Since
diamonds are not closed under meet and complementation, a larger function
space must be considered.

Let ΩL(S), ΩH(S) and ΩB(S) be the closures of {|s〉 : s ∈ S} under addition
and meet, addition, meet and relative complementation and addition, meet
and complementation.

Proposition 6.2 Let S be a domain semiring.
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(i) ΩL(S) is a distributive lattice.
(ii) ΩH(S) is a Heyting algebra.

(iii) ΩB(S) is a Boolean algebra with greatest element > = 1 + ¬1.

PROOF. (i) ΩL(S) with join and meet defined pointwise is a subalgebra of
the endomorphism algebra on test(S) and thus a distributive lattice.

(ii) Define implication by |a〉 → |b〉 = ¬|a〉 + |b〉. By the same argument as
in (i), ΩH(S) is a lattice. It is easy to show that implication satisfies, for all
diamonds f , g and h, the Galois connection f u g ≤ h ⇔ f ≤ g → h, by
reducing it to the pointwise Galois connection of Boolean complementation.
Thus the algebra is a Heyting algebra.

(iii) Using (i) it remains to verify the properties of > and of complementation.
It is easy to show that > maps all elements of the Boolean algebra to 1. Thus
> is the greatest element of the operator algebra by definition of the ordering
on operators. It remains to show that |a〉+ ¬|a〉 = > and |a〉 u ¬|a〉 = 0. But
(|a〉+¬|a〉)(p) = |a〉p+(|a〉p)′ = 1 = >(p) and (|a〉u¬|a〉)(p) = (|a〉p)(|a〉p)′ =
0 = 0(p). ut

Note, however, that > conflicts with the semiring axioms. >(0) = 1, that is top
is not strict. Therefore, at the operator level, 0 is no longer a right annihilator.

Proposition 6.2 shows that Boolean algebra, converse and semirings are avail-
able at the operator level.

The addition of meets and complements leads, however, to conflicts with dis-
tributivity laws, since endofunctions f , g and h over a Boolean algebra satisfy
a left distributivity law f(g + h) = fg + fg only in case f is additive. Opera-
tor level meet and negation, of course, are not additive but multiplicative. In
function spaces with non-additive elements we can therefore only expect weak
variants of semirings without left distributivity.

A structure (M,+,u, ·, 0, 1) is a right-distributive lattice-ordered monoid (a
rd-monoid) if (M,+,u) is a distributive lattice and (M,+, ·, 0, 1) is a semir-
ing that need not satisfy the left distributivity law. Similar structures have
extensively been studied in [3]. Note that the semiring-retract of a d-monoid
is idempotent.

Proposition 6.3 Let S be a domain semiring and let Ω(S) be the closure of
{|s〉 : s ∈ S} under addition, multiplication and meet. Then (Ω(S),+,u, ·, 0, 1)
is a rd-monoid.
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PROOF. Proposition 6.2(i) shows that Ω(S) is a distributive lattice. Right-
distributivity and left annihilation (Oa = 0) hold for arbitrary endofunctions.
Right annihilation holds for all strict endofunctions, but meets of diamonds
are strict. By closure under subalgebras, Ω(S) is a rd-monoid. ut

Closure of the operator algebra under complementation is even more problem-
atic, since this is neither strict nor isotone. Therefore we now concentrate on
showing that the axioms of relation algebra hold for diamonds.

First, we introduce an operation of conversion, setting |.〉◦ = 〈.| and 〈.|◦ = |.〉.
The required axioms are easily shown. E.g., for contravariance we calculate

|ab〉◦ = 〈ab| = 〈b|〈a| = |b〉◦|a〉◦.

Next, present some further consequences of the lifting.

Lemma 6.4 Let S be a domain semiring. For all a ∈ S and endofunctions
f, g on test(S),

|a〉f ≤ ¬g ⇔ 〈a|g ≤ ¬f, |a〉f ≤ g ⇔ f ≤ [a|g, 〈a|f ≤ g ⇔ f ≤ |a]g.

The operator-level conjugation law is an analogue to the Schröder law from
relation algebra, which is even one of its defining axioms. The operator-level
Galois connections define residuals or factors on modal operators. Here, g|a〉 =
[a|g is the right residual of g by |a〉. It follows from (3) that f |a〉 ≤ g ⇔ f ≤
g[a| if f and g are antitone. In that case, g\|a〉 = g[a| is the left residual of
g by |a〉. The following laws are further simple consequences of the Galois
connection and Boolean algebra. They do not use any specific properties of
modal semirings or modules. We have the cancellation properties

〈a||a] ≤ 1 ≤ |a]〈a|. (6)

Second, for arbitrary endofunctions f, g on B we have the laws

|a〉f − |a〉g ≤ |a〉(f − g), (7)

|a](f → g) ≤ |a]f → |a]g. (8)

This follows from (4) and its dual. These laws are interesting for proving the
following variant of the modular laws of relation algebra, which are operator-
level variants of the general laws from Lemma 4.4(ii).

Lemma 6.5 Let S be a domain semiring. For all a ∈ S and endofunctions
f, g on test(S), the conjunction of the modular laws

|a〉f u g ≤ |a〉(f u 〈a|g) 〈a|f u g ≤ 〈a|(f u |a〉g) (9)
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is equivalent to the Schröder law.

An analogue of the following property is sometimes called co-difunctionality
in relation algebra.

Lemma 6.6 Let K be a modal Kleene algebra. Then for all a ∈ K,

|a〉 ≤ |a〉〈a||a〉. (10)

PROOF. Let f = |a〉. Using the modular law, we calculate

f = f u f = f1 u f ≤ f(1 u f ◦f) = ff ◦f.

ut

The following difference to relation algebra is worth noting. In relation algebra,
>0 = 0, whereas according to our definition,> is not strict. In relation algebra,
>0 = 0 follows immediately from the Schröder law a0 ≤ 0 ⇔ a◦> ≤ > and
the facts that > is the complement of 0 and the greatest element. This is no
contradiction, since in our case the Schröder laws hold only for diamonds (or
dually for boxes), whereas > is not in this class. Consequently, since some
closure properties are obviously violated, the algebra of modal operators over
a domain semiring is not a relation algebra.

Proposition 6.7 The diamonds over a domain semiring satisfy all axioms of
relation algebra.

PROOF. Here, we consider a relation algebra as a l-monoid that is also
a Boolean algebra with an operation of conversion that satisfies the modal
Schröder law. We have verified all these axioms in previous Propositions. ut

It follows that the operator algebra is rich enough for formalizing the notions of
a function and of determinacy and for developing the usual functional calculus
of relation algebra.

We now consider the impact of the Kleenean structure on the operator algebra.

Proposition 6.8 The (forward) diamond operators on a left inductive Kleene
algebra with domain form a left inductive Kleene algebra, setting |a〉∗ = |a∗〉.

This holds since the operator level star unfold laws

1 + |a〉|a∗〉 = |a∗〉, 1 + |a∗〉|a〉 = |a∗〉
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hold and since the operator level star induction law implies that f + |a〉g ≤
g ⇒ |a∗〉f ≤ g holds for arbitrary endofunctions f, g on the Boolean algebra.
Therefore the mapping φ defined above is also a homomorphism with respect
to the star. Note that the class of Kleene algebras as a quasivariety is not
closed under homomorphic images.

There is no similar law for box operators. Instead, by duality, it can be shown
that for each a of some Kleene module, |a∗] is the greatest postfixed point of the
mapping f(x) = pu|a]x. It follows that the operator level laws 1u|a]|a∗] = |a∗],
its dual and g ≤ f u |a]g ⇒ g ≤ |a∗]f hold.

Lemma 6.9 Let (S,B, | 〉) be a Kleene module. Then the test-level induction
law is equivalent to the following identity. For all a ∈ S,

|a〉∗ − 1 ≤ |a〉∗(|a〉 − 1). (11)

(11) corresponds to the induction axiom of propositional dynamic logic. A
proof of the equivalence can be found in [10]. It is again based on the Galois
connection for relative complements. Therefore the quasi-variety of left star
inductive operator Kleene algebra contains the variety of left operator Kleene
algebras that satisfy (11), which is also a very interesting class.

Instead of calculating at the domain level, we can therefore calculate many
modal properties more simply at this higher level of abstraction (see below).

7 Application: Propositional Hoare Logic

We now apply our results to obtain completely calculational algebraic sound-
ness and completeness proofs for propositional Hoare logic. We first present
the syntax and semantics of Hoare logic. To this end we assume a set Π of
propositional variables and a set Γ of atomic commands such as assignments.
The set Φ of propositions is defined by the grammar

Φ ::= Π | Φ ∧ Φ | ¬Φ,

with the abbreviations φ1 ∨ φ2 and φ1 → φ2 for φ1, φ2 ∈ Φ defined as usual.
The set Σ of statements is defined by the grammar

Σ ::= abort | skip | Γ | Σ ; Σ | if Φ then Σ else Σ | while Φ do Σ.

The basic formulas of Hoare logic are partial correctness assertions (PCAs) of
the form {φ} α {ψ}, with φ, ψ ∈ Φ (the pre- and postcondition) and α ∈ Σ.
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To define a semantics with respect to KAD, let K ∈ KAD. We assign to each
propositional variable π ∈ Π a test [[π]] ∈ test(K) and to each atomic command
γ ∈ Γ a Kleenean element [[γ]] ∈ K. Then we inductively define the semantics
[[φ]] of every φ ∈ Φ and [[α]] of every α ∈ Σ as follows.

[[φ ∧ ψ]] = [[φ]][[ψ]],

[[¬φ]] = ¬[[φ]],

[[abort]] = 0,

[[skip]] = 1,

[[α ; β]] = [[α]][[β]],

[[ if φ then α else β]] = [[φ]][[α]] + ¬[[φ]][[β]],

[[ while φ do α]] = ([[φ]][[α]])∗¬[[φ]].

We follow [17] in defining validity of formulas and PCAs. We call a proposition
φ ∈ Φ valid, in signs |= φ, iff [[φ]] = 1. In particular,

|= φ→ ψ ⇔ [[φ]] ≤ [[ψ]] |= {φ} α {ψ} ⇔ [[φ]][[α]]¬[[ψ]] ≤ 0.

Using (gla) and Boolean algebra, we rewrite this definition more intuitively as

|= {φ} α {ψ} ⇔ 〈[[α]]| [[φ]] ≤ [[ψ]].

In the relational model of KAD, the expression 〈[[α]]| [[φ]] denotes the set of
all states that can be reached from states in [[φ]] through [[α]]. Therefore, the
formula 〈[[φ]]| [[α]] ≤ [[ψ]] is indeed a faithful translation of {φ} α {ψ} that,
by the Galois connection between boxes and diamonds, is consistent with the
standard wlp-semantics (see also Section 10 for further details).

To shorten notation, we will henceforth confuse syntax and semantics and use
Kleene algebra notation everywhere. Thus we express validity of a PCA as

|= {p} a {q} ⇔ 〈a|p ≤ q. (12)

The Hoare calculus for partial correctness of deterministic sequential programs
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consists of the following inference rules.

(Abort) {p} abort {q},

(Skip) {p} skip {p},

(Assignment) {p[e/x]} x := e {p},

(Composition)
{p} a {q} {q} b {r}

{p} a ; b {r}
,

(Conditional) {p ∧ q} a {r} {¬p ∧ q} b {r}

{q} if p then a else b {r}
,

(While)
{p ∧ q} a {q}

{q} while p do a {¬p ∧ q}
,

(Weakening)
p1 → p {p} a {q} q → q1

{p1} a {q1}
.

A rule with premises P1, · · · , Pn and conclusion P is sound if validity of all
premises implies validity of the conclusion. Derivations are defined as usual.

Here, (Assignment) is a non-propositional inference rule that deals with the
internal structure of states. We therefore do not encode it directly into our
framework, but instead use the set Γ of atomic commands as a parameter in
our approach. The requirement of sufficient expressiveness on Γ that ensures
completeness of the calculus will be discussed in Section 10. Following [17], we
call this abstract form of Hoare logic propositional Hoare logic (PHL).

8 Soundness of Propositional Hoare Logic

We now prove soundness of PHL with respect to the KAD-semantics. More
precisely, we show that the encoded inference rules of PHL are theorems of
KAD. This subsumption is a popular exercise for many logics and algebras of
programs, among them propositional dynamic logic [12] and KAT [17], which
are both subsumed by KAD. However our result is interesting for two reasons,
a syntactic and a semantic one. First, our encoding of PHL is more simple,
abstract and direct, and Hoare-style reasoning in KAD is more flexible than
in previous approaches in that we may reason both at the test level and the
operator level. However we do not sacrifice algorithmic power. Second, the
properties of our modal operators defined in terms of abstract image and
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preimage operations reflect precisely those of the standard partial correctness
semantics [1,19] and show that KAD provides a natural abstract algebraic
semantics for PHL.

A first pointwise encoding of the soundness conditions for the Hoare rules is
rather straightforward from (12). (Composition), for instance, becomes

〈a|p ≤ q ∧ 〈b|q ≤ r ⇒ 〈ab|p ≤ r.

This is a theorem of KAD, since

〈ab|p ≤ 〈b|〈a|p ≤ 〈b|q ≤ r

by contravariance of multiplication of backward diamonds. As a second exam-
ple, (While) becomes

〈a|(pq) ≤ q ⇒ 〈(pa)∗¬p| q ≤ ¬pq.

This is also a theorem of KAD. Using the test-level induction law, we calculate

〈a|(pq) ≤ q ⇒ 〈(pa)∗| q ≤ q ⇒ ¬p(〈(pa)∗| q) ≤ ¬pq ⇔ 〈(pa)∗¬p| q ≤ ¬pq.

Point-wise encodings and proofs for the remaining PHL-rules are similar. Con-
sequently, soundness of PHL can be proved literally in one line per infer-
ence rule from natural properties of KAD. Compared with standard textbooks
(cf. [1,19]), our proof is about ten times shorter. In addition, the textbook
proofs are only semi-formal, since many logical and set-theoretic assumptions
are left implicit. A complete formalization would produce further overhead.

In KAT, (Composition), for instance, must be encoded quite indirectly as

pa ≤ aq ∧ qb ≤ br ⇒ pab ≤ abr

and the proof of theoremhood is based on rather syntactic commutation prop-
erties (cf. [17]). We can obtain this encoding also in KAD, using (llp).

We now head for another, pointfree, soundness proof of PHL in KAD that is
even more abstract and concise. In particular, the properties expressed by the
Hoare rules now correspond to natural algebraic properties of the algebra of
modal operators.

Proposition 8.1 Let K ∈ KAD. Then the soundness conditions for the in-
ference rules of PHL are equivalent to the following pointfree encodings: for all
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a, b ∈ K and p ∈ test(K) and f, g, h, k : test(K)→ test(K),

(Abort) 〈0| ≤ 〈q|,

(Skip) 〈1| ≤ 〈1|,

(Composition) 〈ab| ≤ 〈b|〈a|,

(Conditional) 〈pa+ ¬pb| ≤ 〈a|〈p|+ 〈b|〈¬p|,

(While) 〈a|〈p|f ≤ f ⇒ 〈¬p|〈(pa)∗|f ≤ 〈¬p|f,

(Weakening) f ≤ g ∧ 〈a|g ≤ h ∧ h ≤ k ⇒ 〈a|f ≤ k.

PROOF. (Abort) and (Skip) are obvious. For the remaining ones we use the
principle of indirect inequality :

p ≤ q ⇔ (∀r . q ≤ r ⇒ p ≤ r).

(Composition) By indirect inequality the claim is equivalent to

∀p, r.〈b|〈a|p ≤ r ⇒ 〈ab|p ≤ r.

But this is follows from the pointwise encoding by setting q = 〈a|p.
Assume now the pointfree encoding and let 〈a|p ≤ q and 〈b|q ≤ r. Then

〈ab|p ≤ (〈b|〈a|)(p) = 〈b|〈a|p ≤ 〈b|q ≤ r.

(Conditional) Assume the pointwise encoding. Then the antecedent is equiv-
alent to 〈a|〈p|q ≤ r ∧ 〈b|(〈¬p|q) ≤ r, hence to (〈a|〈p| + 〈b|〈¬p|)(q) ≤ r. Now
the pointfree encoding follows by multiplicative contravariance and indirect
inequality.
Assume the pointfree encoding and let 〈a|(pq) ≤ r and 〈b|(¬pq) ≤ r. Then

〈(pa+ ¬pb)|q = 〈pa|q + 〈¬pb|q
= 〈a|(〈p|q) + 〈b|(〈¬p|q)
= 〈a|(pq) + 〈b|(¬pq)
≤ r + r

= r.

(While) Assume the pointwise encoding. Then the antecedent is equivalent
to (〈a|〈p|)q ≤ q, while the succedent is equivalent to 〈(pa)∗¬p|q ≤ 〈¬p|q.
Replacing q by f(r) for suitable f and r yields the pointfree encoding.
Assume now the pointfree encoding. Then use the converse translation.
(Weakening) Similar to the (While) case. ut

In this transformation, (While) and (Weakening) are the only rules where,
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at first sight, nothing has been gained by the lifting. However, their correct-
ness proofs can now be performed entirely in the operator algebra instead of
expanding to properties of domain.

Theorem 8.2 The pointfree encodings of the PHL-rules are theorems in KAD.

PROOF. The pointfree variants of (Abort) and (Skip) are trivial. The point-
free variant of (Composition) is nothing but contravariance of multiplication
for backward diamonds. The pointfree variant of (Conditional) is evident from
the closure properties for addition and multiplication. The proof for (While)
is essentially the pointwise one lifted to the operator level. (Weakening) holds
by isotonicity of multiplication in i-semirings. ut

Theorem 8.3 PHL is sound with respect to the KAD semantics.

PROOF. By induction on PHL derivations, using Theorem 8.2. ut

As observed in [17], all Horn clauses built from PCAs in PHL that are valid
with respect to the standard semantics are theorems of KAT; whence a fortiori
of KAD. PHL is too weak to derive all such formulas.

9 Soundness of Some Further Hoare Rules

To further support our claim of simplicity and flexibility, we now give cal-
culational soundness proofs for some admissible rules of PHL in KAD. The
examples are taken from [1].

Lemma 9.1 The following axioms and inference rules are sound with respect
to the semantics of PHL.

(i) If pa = ap then {p} a {p}.

(ii)
{p} a {q} {p} b {r}

{p} a+ b {q ∨ r}
.

(iii)
{p} a {r} {q} a {r}

{p ∨ q} a {r}
.

(iv)
{p1} a {q1} {p2} a {q2}

{p1 ∧ p2} a {q1 ∧ q2}
.
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(v) If pa = ap then
{q} a {r}

{p ∧ q} a {p ∧ r}
.

Note that the condition pa = ap might for instance arise by abstraction from
the fact that the free variables in p are not changed by a.

The proofs are entirely straightforward, each taking at most one line of calcu-
lus. We encourage the reader to show soundness of the rules using the standard
set-theoretic semantics. This is by far more complex. As a conclusion, we can
only support the observation in [17] that in Kleene algebra the specialised syn-
tax and deductive apparatus of Hoare logic are inessential and can be replaced
by simple equational reasoning.

10 Completeness of Propositional Hoare Logic

In this section we provide a novel algebraic completeness proof for the infer-
ence rules of PHL, using modal Kleene algebra as a semantics. Conventional
completeness proofs use the weakest liberal precondition semantics. For a set
S of program states, a relational program P ⊆ S × S and set T ⊆ S of target
states one defines

wlp(P, T ) = {s ∈ S : P (s) ⊆ T},
where P (s) is the image of s under P . Equivalently, wlp(P, T ) is the largest
subset U ⊆ S such that P (U) ⊆ T . In a modal setting the wlp-operator can
then of course be identified with the forward box operator. Confusing again
syntax and semantics, the Galois connections (5) and (12) immediately imply

|= {p} α {q} ⇔ p ≤ |a]q.

On the one hand, this Galois connection connects PHL syntax and semantics
in a very concise way. One the other hand, we get the entire wlp-calculus for
free by dualising our results from Section 6.

For the standard completeness proofs (see e.g. [1]) it is crucial that the un-
derlying assertion language is sufficiently expressive. This implies that for all
statements α ∈ Σ and all postconditions ψ ∈ Φ there is an assertion φ ∈ Φ
that expresses the weakest liberal precondition for ψ under α, i.e.,

[[φ]] = wlp([[α]], [[ψ]]). (13)

Assuming (13) we can continue working semantically in KAD. We extend the
original calculus so that all predicates are denoted by propositional variables.
Completeness of this extension will then imply completeness of the former
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calculus. Moreover, for every atomic command γ ∈ Γ and test q we add an
axiom

{|g]q} g {q}, (14)

where g = [[γ]]. (Assignment) has precisely this form.

Before the completeness proof proper, we give some technical properties of
boxes in connection with conditionals and loops. Logical variants appear in [1].

Proposition 10.1 Let K ∈ KAD. Let a, b, c, w ∈ K and p, q ∈ test(K).

(i) For c = if p then a else b,

p (|c]q) = p (|a]q), (15) ¬p (|c]q) = ¬p (|b]q). (16)

(ii) For w = while p do a,

p (|w]q) = p|a](|w]q), (17) ¬p (|w]q) ≤ q. (18)

PROOF. (i) We only show (15), since (16) is similar. First, by additivity of
addition and the simple property

|pa]q = ¬p+ |a]q, (19)

|c]q=(|pa]q)(|¬pb]q)=(¬p+ |a]q)(p+ |b]q)=p(|a]q) + ¬p(|b]q) + (|a]q)(|b]q).
Hence, by |b]q ≤ 1 and isotonicity,

p(|c]q) = p(|a]q) + p(|a]q)(|b]q) = p(|a]q).

(ii) For (17) we calculate

p(|w]q) = p(|(pa)∗]|¬p]q)
= p(|(pa)∗](p+ q))

= p(p+ q)(|pa]|(pa)∗](p+ q))

= p(¬p+ |a]|(pa)∗](p+ q))

= p(|a]|(pa)∗]|¬p]q)
≤ |a]|w]q.

The first step uses the definition of w and contravariance of box over multipli-
cation, the second one (19), the third one operator level star unfold, the fourth
one the absorption law for lattices and (19), the fifth one Boolean algebra and
(19), the sixth one that p ≤ 1 and the definition of w.

For (18), we calculate, using the first three steps from the proof of (17),

¬p(|w]q) ≤ ¬p(p+ q)(|pa]|(pa)∗](p+ q)) = ¬pq(|pa]|(pa)∗](p+ q)) ≤ q.
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ut

Now we can proceed, as for instance in [1].

Lemma 10.2 Let K ∈ KAD. For all a ∈ K that are denotable by PHL com-
mands and all q ∈ test(K), the PCA {|a]q} a {q} is derivable in PHL.

PROOF. Let ` {p} a {q} denote that {p} a {q} is derivable in PHL. The
proof is by induction on the structure of command a.

(i) a is either skip or abort or denotes an atomic command. Then the claim is
trivial, since PHL contains the respective PCA as an axiom.

(ii) Let a = bc. By the induction hypothesis,

` {|b](|c]q)} b {|c]q}, ` {|c]q} c {q}.

Now (Composition) shows ` {|b](|c]q)} bc {q}, which by the additional as-
sumption of (d3) and the dual of closure of boxes with respect to multiplica-
tion is equivalent to ` {|bc]q} bc {q}. Note that this is the only part of the
proof where (d3) is used.

(iii) Let a = if p then b else c. By the induction hypothesis,

` {|b]q} b {q}, ` {|c]q} c {q}.

Hence, by (Weakening), also

` {p(|b]q)} b {q}, ` {¬p(|c]q)} c {q}.

By (15) and (16) these statements are equivalent to

` {p(|a]q)} b {q}, ` {¬p(|a]q)} c {q},

so that (Conditional) shows the claim.

(iv) Let w = while p do a. Let r = |w]q. By the induction hypothesis,

` {|a]r} a {r},

hence by (Weakening)

` {p|a]r} a {r}.

By (17) this is equivalent to

` {pr} a {r}.

(While) shows that ` {r} w {¬pr} and (18) and (Weakening) yield the re-
quired
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` {|w]q} w {q}.
ut

We are now prepared for the main theorem of this section.

Theorem 10.3 PHL is relatively complete for the partial correctness seman-
tics of deterministic programs in KAD.

PROOF. We must show that |= {p} a {q} implies ` {p} a {q}. This follows
from (10), Lemma 10.2 and (Weakening). ut

11 Decidability

We now present a novel decidability result for PHL that follows from a decid-
ability result for a natural subclass of KAD.

A Hoare formula in KAD is a universal Horn formula with literals of the form
s ≤ p such that p is a Boolean KAT term and s is either a KAT term or a term
|a〉p or 〈a|p where p and a are KAT terms. All encodings of PHL inference rules
in KAD are Hoare formulas in KAD. A Hoare formula in KAT is a universal
Horn formula whose literals are of the form s ≤ 0 and s is a KAT term.

Proposition 11.1 For every Hoare formula φ in KAD that is valid in KAD
there is a Hoare formula in KAT that is equivalent to φ in KAD and that is
valid in KAT. The translation from KAD to KAT is linear.

PROOF. Use (llp) or (gla) to eliminate all modalities from a Hoare formula φ
in KAD. This yields a Hoare formula ψ in KAT that is equivalent to φ in KAD.
Since ψ does not contain any modal subterm, only KAT-axioms are applicable
to ψ. Therefore ψ holds in KAD if and only it holds in KAT. ut

It seems very promising to extend this “demodalisation” result to further
classes of KAD formulas. In particular, a result from [11] yields an equivalence
transformation from Hoare formulas in KAT to equations in KAT so that one
can use a PSPACE automata-theoretic decision procedure.

Lemma 11.2 Hoare formulas in KAD are decidable in PSPACE.

We give a decidability result for another class of KAD expressions, where we
couple actions and tests further. In modal semirings, properties of actions
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can be measured via their effects on states, but these measurements need not
completely determine the behaviour of actions. A modal semiring (S,B, | 〉) is
extensional if |a〉 = |b〉 implies a = b. This is equivalent to the extensionality
law

|a〉 ≤ |b〉 ⇒ a ≤ b.

By isotonicity of diamonds this can be strengthened to the equivalence |a〉 ≤
|b〉 ⇔ a ≤ b.

Lemma 11.3 The relation a � b defined by |a〉 ≤ |b〉 is a pre-congruence on
the Kleene algebra.

PROOF. For addition, we calculate

a � b⇔ |a〉 ≤ |b〉 ⇒ |a〉+ |c〉 ≤ |b〉+ |c〉 ⇔ |a+ c〉 ≤ |b+ c〉 ⇔ a+ c � b+ c.

For left multiplication, we calculate

a � b⇔ |a〉 ≤ |b〉 ⇒ |c〉|a〉 ≤ |c〉|b〉 ⇔ |ca〉 ≤ |cb〉 ⇔ ca � cb.

The proof for right multiplication works by duality. For the star, we calculate

a � b⇔ |a〉 ≤ |b〉 ⇒ |a〉∗ ≤ |b〉∗ ⇔ |a∗〉 ≤ |b∗〉 ⇔ a∗ � b∗.

ut

The associated congruence ≈ is the kernel of the above homomorphism φ from
the Kleene algebra onto the diamond algebra. In case of extensionality, φ is
injective and therefore an isomorphism. Therefore, in the extensional case the
operator semiring or Kleene algebra and the underlying semiring or Kleene
algebra are isomorphic.

We now provide another result of the operator level in the spirit of our previous
structure theorems. Consider the axioms of dynamic algebra, as e.g. given
in [12].

|a+ b〉p = |a〉p+ |b〉p,
|ab〉p = |a〉|b〉p,

|a〉(p+ q) = |a〉p+ |a〉q,
|1〉p = p,

|0〉p = 0,

|a∗〉p = p+ |a〉|a∗〉p,
|a〉∗ − 1 ≤ |a〉∗(|a〉 − 1).
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In addition, there are some suitable axioms for Boolean algebra. Note that the
algebra of actions is only implicitly induced via ≈ by these axioms. Also note
that |a∗〉p = p+ |a∗〉|a〉p follows from the other unfold and induction law.

Theorem 11.4 Every dynamic algebra induces a left inductive Kleene alge-
bra at the operator level. Every extensional dynamic algebra induces a left
inductive Kleene algebra of actions.

PROOF. It suffices to show the second part, the first one being induced by
the congruence ≈. We only give three cases, the other ones being similar.

Left distributivity: a(b+ c) = ab+ ac⇔ |a(b+ c)〉 = |ab+ ac〉. But

|a(b+ c)〉 = |a〉(|b〉+ |c〉) = |a〉|b〉+ |a〉|c〉) = |ab+ ac〉.

Left star unfold: 1 + aa∗ = a∗ ⇔ |1 + aa∗〉 = |a∗〉. This holds by the unfold
law of dynamic algebra.

Left star induction: b+ac ≤ c⇒ a∗b ≤ c⇔ ∀p.|b+ac〉p ≤ |c〉p⇒ ∀p.|a∗b〉p ≤
|c〉p. This follows from the operator level left induction law and Lemma 6.9.

ut

To define test algebras [24] the additional axiom |p〉q = pq is used and tests
are embedded into the algebra of actions. Using our previous result it is easy
to show that extensional left inductive Kleene algebras with domain (and
without codomain) and dynamic algebras define precisely the same classes. In
particular, identities between actions can be transformed to equivalent modal
expressions using extensionality. It follows from well-known results about test
algebra [24] that extensional left inductive Kleene algebras with domain and
propositional dynamic logic satisfy precisely the same identities.

Theorem 11.5 Every identity in an extensional left inductive Kleene algebra
with domain can be decided in EXPTIME.

PROOF. Translate the identity to propositional dynamic logic and use a
PDL decision procedure decision procedure, which is is EXPTIME. ut

12 Conclusion and Outlook

We have investigated Kleene algebra with domain as a modal Kleene algebra.
Modal operators have been defined as abstractions of relational image and
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preimage operations. Their symmetries have been formalised in terms of Galois
connections and dualities. We have also studied the semirings induced by
the modal operators. This additional level of abstraction yields very concise
pointfree specifications and proofs of modal properties.

As an application we have provided algebraic soundness and completeness
proofs for propositional Hoare logic that use modal Kleene algebra both at
the syntactic and at the semantic side. In particular, the pointfree soundness
proof and the completeness proof exhibit the natural algebraic properties that
are implicit in the partial correctness assertions and Hoare rules.

Modal Kleene algebra also subsumes Hoare logic for programs with bounded
nondeterminism. Guarded commands, for instance, can be encoded as

if p1 → a1 dc · · · dc pn → an fi = sup(piai : 1 ≤ i ≤ n),

do p1 → a1 dc · · · dc pn → an od = (sup(piai : 1 ≤ i ≤ n))∗ inf(¬pi : 1 ≤ i ≤ n).

The approach is, however, not limited to partial correctness. Program termina-
tion can be modelled in modal Kleene algebra, too [8]. Based on the concepts
of that paper we present in [22] an algebraic semantics for total correctness
similar to that of [23]. It turns out that the wp predicate transformer coincides
with the wlp operator in a suitable semiring of commands. In particular, our
generic proofs of soundness and completeness carry over to that setting, giving
a non-trivial application of the results in the present paper.

As a further use of modal Kleene algebra we have shown that propositional
dynamic logic can be embedded [10]. Currently we are considering temporal
logics. An algebraic treatment of LTL along the lines of [26] is contained in [7];
a paper on full CTL∗ is forthcoming.

Recently, the modal operators have also been incorporated into Lazy Kleene
Algebra [20], a framework extending the work of Cohen [4] and von Wright [27]
and is designed to deal with both terminating and non-terminating computa-
tions and hence also with reactive systems.

Further applications of modal Kleene algebra are surveyed in [7].

Altogether, these results show the usefulness of modal Kleene algebra both
as a calculus for cross-theoretic reasoning with various calculi for imperative
programs and state transition systems, and as a unifying semantics for modal,
relational and further algebraic approaches. The extension to full first order
logics, based on Tarskian frames [18], is left for future work.
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