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Algebras of real analytic functions: Homomorphisms
and bounding sets

by

PETER BISTROM (Abo), JESUS A JARAMILLO (Madrid) -
and MIKAEL LINDSTROM (Abo)

Abstract. This article deals with bounding sets in real Banach spaces E with respect
to the functions in A(E), the algebra of real analytic functions on E, as well as to various
subalgebras of A{F). These bounding sets are shown to be relatively weakly compact and
the question whether they are always relatively compact in the norm topology is reduced
to the study of the action on the set of unit vectors in leo of the corresponding functions
in A(leo). These resulis are achisved by studying the homomorphisms on the function
algebray in question, an idea that is also reversed in order to obtain new results for the
set of homomorphisme on these algebras.

In this paper we are interested in subsets of a real Banach space on which
different classes of functions are bounded. In [3] it is shown that if a subset
B of a real Banach space F has the property that each C*°-function on F is
bounded on B, then B is relatively compact. As the continuous polynomials
P(E) on E are bounded on bounded sets the focus of interest in this article
is on the algehbras between P(E) and A(F), the algebra of real analytic
functions on E. Let A(E) denote such an algebra. Then we say that a set
in E is A-bounding if all functions in A(E) are bounded on it.

A main theme in this paper is the close interplay between the homo-
morphisms on A(E) and the A-bounding sets. Using appropriate properties
of the homomorphisms on the algebra R{E) of rational forms of elements
in P(F), we deduce that the R-bounding sets are always relatively com-
pact in the weak topology of the Banach space E. With this result at hand,
we show that the problem of the A-bounding sets being relatively compact
in arbitrary Banach spaces E is reduced to the study of the behaviour of
the real analytic functions on . acting on the set of unit vectors in le.
Further we show that the R-bounding and the relatively norm compact
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sets coingide in super-reflexive Banach spaces. We also show that for each
infinite-dimensional Banach space E' there are a homomorphism ¢ on P(E)
and a polynomial p € P(FE) such that ¢(p) & p(E), which improves a resuit
of [12]. In the same spirit we obtain an example of an inverse-closed algehra
that fails to be sequentially evaluating.

Another algebra studied in this context is the subalgebra AE(F) of A(E)
consisting of the convergent power series in E. Since the complexification of
AE(E) is the algebra H(E) of holomorphic functions on the complexification
E of E, the characterization of holomorphic hounding sets in {4, due to
Dineen and Josefson gives us information about the homomorphisms on
AE(E). For the algebra RAE(E) of rational forms of functions in AE(E)
we conclude that the set of unit vectors in I, is R.AE-bounding and that
RAE(F) is sequentially evaluating.

1. Preliminaries. In this paper we assume the existence of a mapping
E - A(E) C C(E) from the set of all real Banach spaces to the set of real
function algebras of continuous real functions. We require that the duals
E' are contained in A(E) and also that for any Banach spaces E and F
and continuous affine maps T : ' — F, we have f o T € A(E) whenever
f € A(F). Let Hom A(E) denote the set of all non-zero real homomorphisms
on A(F). We say that A(E) is single-set evaluating if for cach ¢ € Hom A(E)
and every f € A(E) we have ¢(f) € f(E). If A(E) is single-set evaluating,
then for each ¢ € Hom A(E) and finite set {f1,..., fn} in A(E), there is
a point a € K such that ¢(f;) = fi(e) for alli = 1,...,n. It is also clear
that every inverse-closed algebra A(E), i.e. one with 1/f € A(F) whenever
f € A(E) and f(z) # 0 for all z € E, is single-set evaluating. An algebra
A(E) is sequentially evaluating if for each ¢ € Hom A(E) and each sequence
(fn) in A(E) there is a point a € E with ¢(f,) = fu(a) for all n.

We denote by P;(E) the algebra of all continuous polynomials of finite
type on E; that is, the algebra generated by E'. The space of all continuous
n-homogeneous polynomials on F is denoted by P("E), Let P(E) denote
the algebra of all continuous polynomials on F and denote by R(E) the
algebra of all rational functions on E, i.e. functions of the form p/q, where
P,q € P(E) and q(z) # 0 for every = € E. A function f : E — R is gaid
to be real analytic on E if it can be represented in a neighbourhood of
each point in F by a convergent power series. The algebra A{E) of all real
analytic functions on E is a proper vector subspace of the algebra O (E)
of all infinitely differentiable real-valued functions on E in the continuous
Fréchet sense. Note that R(E) C A(E) and that they are inverse-closed
algebras.

Let AE(E) denote the set of all functions f : E — R such that there
exists a sequence (p,) € P("E) with f(z) = Y onenPnalz) for z € E. Then
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AE(E) is an algebra with P(E) ¢ AL(E) ¢ A(E), where the last inclusion
follows from Theorem 5.2 of [4].

We denote by RA(E) the smallest inverse-closed algebra which contains
A(E). Hence every element in RA(E) is of the form f/g, where f, g € A(E)
and g{z} # 0 for all € E. Certainly R(E) = RP(E).

EXAMPLE 1. For each Banach space E the algebra RAE(E) is a proper
subalgebra of A(E). Indeed, if f € AE(R), then f(x) = Y 77, opz™ extends
to an entire function f(2) = 377 @nz™ on C. Now, if f,g € AE(R) and
g(z) # 0 on R we know that § has only countably many zeros in C. Then f/g
extends to a tmeromorphic complex function f/@’ with only countably many
singularities. Consider, for instance, h(z) = log(1 +2z?); then h € A(R). But
every complex extension of A has an uncountable number of singularities in
C and therefore h ¢ RAE(R). By composing with elements in the dual B’
this process extends to every Banach space E.

2. Bounding sets. Let A(E) be an algebra on a Banach space E.
A subset B of E is said to be A-bounding if sup .z |f(z)] < oo for all
feA(E).

Remark. The definition above certainly makes sense also if A(E) is
merely a clagss of functions on E and not necessarily an algebra. However,
an A-bounding set is also bounding with respect to the functions in the
algebra generated by A(FE). Therefore it is convenient to stick to algebras
A(E) in the definition of A-bounding sets in F.

Since we always require the algebra. A(E) to contain the dual E’ and
A(E) is contained in C(£), every relatively compact set is 4-bounding and
every A-bounding set is bounded. Let E 4;z) be the set E endowed with the
weakest topology making all f € A(E) continuous. One of the motivations
for studying A-bounding sets is the fact that if the A-bounding sets in E' are
relatively compact, then F and E 4(&) have the same convergent sequences;
that is, @, — @ in E if and only if f(z,,) — f(z) for all f € A(E).

The following concept, originating from Grothendieck, provides a most
efficient tool for investigating A-bounding sets. We say that twosets BC E
and M ¢ R# have the interchangeable double limit property if for every pair
of sequences (fy,) in M and {z,) in B the double limits lim, lim,, fm(z,)
and lim,, lim,, f,,(z,) are equal, provided that all involved limits exist.

THEOREM 1. Let E be a Banach space. Then every R-bounding subset
of E is relatively o(F, E')-compact.

Proof Let B be an R-bounding subset of F. We first claim that B has
the interchangeable double limit property with the polar B of the unit ball
Bp. The polar B is o(E’, E)-compact by the Alaoglu-Bourbaki theorem.
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Take sequences (z,) in B and (L) in Bg. By Tikhonov's theorem B is
relatively compact in Hom R{E), where Hom R{E) is embedded in R*)
as a closed subspace, Let ¢ € Hom R(E) and | € E' be cluster points of the
sequences {z,) and (I,,) respectively. Choose a sequence {¢,,) € RT such
that the sums -

@)=Y anlin(@) = $a))? and gla) = Y 2 (@) - ()’
m=1 Trs=]

are pointwise convergent and therefore belong to P(E) by the Banach-
Steinhaus theorem. Since R(E) is single-set evaluating, for given N € N,
there exists a € E such that ¢(f) = f(a), #(g) = gla), (1) = la)
and ¢(l;) = L(a) for i = 1,...,N (consider the function (f — ¢(f))* +
(9 — 8@ + (1 — 60 + (b — S + ... + (by — din))? in RE)).
Then

B = Y amlln(@)=¢(m))® and d(g)= 3 “(ln(e)=¢(ln).
m=N+1 e N o],

Therefore 0 < No(g) < ¢(f), and hence ¢(l;,) = La(a) for each m and
¢(1) = I(a). If all limits involved exist, then

lim lim ln(zn) = lim () = lim ln(a) = l{a) = ¢(1}
= hgnl(mn) = lirlgl lil;bnlm(a:n),

and our claim is proved.

By the Eberlein-Grothendieck theorem [11, p. 15] a bounded subset of
a Banach space F is relatively ¢{F, E')-compact if and only if it has the
interchangable double limit property with the polar B of Bg. Therefore B
is relatively weakly compact, and the theorem is proved.

COROLLARY 2, Let E be a Banach space. If E has the Dunford--Pettis
property, then the R-bounding and the relatively o(E, E')-compact subsets
of E coincide.

Proof. Let B C E be weakly compact and assume that F has the
Dunford-Pettis property. Then, by Theorem 7.1 of [6], the restriction of any
continuous polynomial on E to a weakly compact set is weakly continuous.
Therefore infe g lg(x)| > 0 for every ¢ € P(E) such that g{z) # 0 for cach
z € E. Hence, every rational function on F i bounded on B.

Examples of Banach spaces with the Dunford-Pettis property are C(K)
for-any compact K and L'(u). This class is also closed under formation of
preduals, if they exist, and hence the important Banach spaces ¢q(I"), I;(I")
and-lo (") all have this property.
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It follows from Theorem 1 that for Banach spaces E with the Schur prop-
erty, every R-bounding set is relatively compact in E. In our next theorem
we show that this is also true if E is a super-reflexive Banach space.

By Theorem 2.4 of {13}, E = Hom R(E) for E separable. Therefore every
R-bounding set in E is relatively compact in Ep(®). The weak topology
is angelic and any finer regular topology on F is also angelic [11, p. 31].
Hence the regular topology of Ep(g) is angelic. This means that each R-
bounding set in £ is relatively sequentially compact in Ep(g). If we assume,
in addition, that ¥ is a A-space [6] {i.e. weak-polynomial convergence for
sequences implies norm convergence, since a sequence (z,) in E is weak-
polynomial convergent to z if and only if p(z, — ) — p(0) for every p €
P(E)}, then we may state

LEMMA 3. In separable A-spaces all the R-bounding sets are relatively
compact.

Theorem 6.3 of [6] says that the separable space I, is a A-space for
1 <p <o

In [7] a Banach space E is defined to be in the class W, (1 < p < oo)
whenever for each bounded sequence (z,) in E there exist a z € E and a
subsequence (2, ) such that 3.~ |l{zy, — )P < oo for all | € E'. Using a
convenient characterization of super-reflexivity Castillo and Sanchez proved
in [7] that every super-reflexive Banach space is in the class W, for some p
(1 < p < oc). Recall that a Banach space is super-reflexive if and only if its
dual is super-reflexive. The spaces L?(u) are super-reflexive for 1 < p < oo
and any measure p.

THEOREM 4. Assume that E' is in the class Wy for some p (1 < p
< oa) (e.g. that F is super-reflezive). Then every R-bounding set is rela-
tively compact in E.

Proof. Assume that there i3 an R-bounding set in E that is not rela-
tively compact. Then this set is not precompact and therefore there is in F
an R-bounding sequence (2,,) with |z, — 2., > 2¢ for some ¢ > 0 whenever
n # m. By passing to subsequences if necessary, we can assume that (z,)
converges weakly to some z € E, that ||z, — z|| > & for all n, and that
(2, — z) is R-bounding in E. By Bessaga-Pelczyfiski’s selection principle
[10] we can find a basic subsequence (y,,) of the sequence (z, — z). Let F
denote the closed subspace of E spanned by (y,). Every y € F can be rep-
resented as y = 3 or; In(%)¥n, Where the sequence (I,) C F" is biorthogonal
to (4, ). Since the sum y converges and ||y,|| > £ it follows that I, {(y) — 0 for
each y € F. Hence (I,) is a bounded sequence by the Principle of Uniform
Boundedness. Each l,, can be extended to a functional ’l\n &€ F'-with the same
norm, and therefore (I,,) is a bounded sequence in E’. Byuthe assumption
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there exist some p (1 < p < 00), some | € B and a subsequence (l,,,) C B’
such that

o0
Z |l = D(@)F <00 forallwe E.
k=1

Since (fnk —D(z) — 0 for each &€ F and l,(y) — 0 for each y € F, we
see that {(y) = 0 for all y € F. We also obtain a well-defined linear map
T:E—l,z~— ((fme — 1)(z)}g. The operator 7' is continuous according to
the Banach—Steinhaus theorem. Since (T'(y,)) is relatively compact in 1, by
Lemma 3, and

oo /p
1Tt = (Y1~ D)) =1
k=1

we have obtained a contradiction.

Remark. For the slightly smaller class of super-reflexive Banach spaces
E of non-measurable cardinality there is ancther way of obtaining the result
in Theorem 4. Indeed, by Theorem 2.4 of {13], F = Hom R(E) for these
Banach spaces F. Since every super-reflexive space is a A-space by Theorem
1 of [15], the result follows in the same way as in the proof of Lemma 3.

A subset B C E is said to be limited if each o(E’, E)-null sequence (I,,)
converges ta zero uniformly on B. This concept translates to the language of
bounding sets. Indeed, if W*(E) = {3 02 (In)*: I, — 0 in o(E’, E)} then
obviously B € F is limited if and only if B is W*-bhounding. Furthermore,
since W*(E) C AE{E) C A(E) we have the relation

A-bounding = AEL-bounding = limited.

The limited and the relatively compact sets in £ coincide when F is isomor-
phic to a subspace of C(K), where K is a compact, sequentially compact
Hausdorff space [10]. All WCG spaces have this property as well as ov-
ery weak Asplund space. Hence, for large classes of Banach spaces F every
limited set is R-bounding. Note also that Bourgain and Diestel [5] proved
that in Banach spaces with no copy of I limited sets are relatively weakly
compact,

In [23] Schlumprecht has constructed a complex Banach space # which
contains a subset that is limited in F but not bounding with respect to
holomorphic functions on E. A close examination of this example shows
that in the real case we obtain a Banach space E such that

limited # AE-bounding.

The following examples give some information about the difference be-
tween limited and R-bounding sets in certain Banach spaces E.
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The original Tsirelson space 7" is a reflexive space with an unconditional
basis such that every continuous polynomial on 7" is automatically weakly
continuous on weakly compact subsets of 77 (see [1]). Thus we can find an R-
bounding set in T’ that is not limited. Also, since ¢ has the Dunford—Pettis
property, and, since there are non-compact but weakly compact sets in cg,
already cp provides examples of R-bounding subsets that are not limited.
Hence in general

R-hounding # limited.

It is also possible to find a Banach space £ and a limited subset that is
not R-bounding. Indeed, by Phillips’ lemma the closed unit ball B, of eg
viewed in o, is limited. By Corollary 2, the subsets of I, are R-bounding if
and ounly if they are relatively weakly compact. Hence B, Clss is a limited
set that is not R-bounding. Thus also

limited # R-bounding.

Our next theorem shows that the set of unit vectors in I is, in fact, a
sufficient set for testing whether the A-bounding sets in an arbitrary Banach
space are always relatively compact or not.

THEOREM b. Let A(E) be an algebra on a Banach space E that contains
the algebra R(E). Then each A-bounding set is relatively compact in E if
there exists some function in A(lw) that is unbounded on the set of unit
vectors in la.

Proof Suppose, contrary to the statement, that there exists some func-
tion f € A(ly,) with sup,, |f(en)| = co and some A-bounding set B in a
Banach space £ that is not relatively compact. Thus B 18 not precompact
but, by Theorem 1, relatively weakly compact. As in the proof of Theo-
rem 4, we therefore find an A-bounding sequence (x,.) in F that converges
weakly to zero such that ||z, | > ¢ for all n and for some £ > 0. Again, using
the theorem of Bessaga-Pelcayfiski, we obtain a subsequence (y,) of (z,)
which is a basic sequence. Set F = [y, : n € N] and let (I,) C F' be the
bounded biorthogonal sequence associated with (¥, ). BX the Hahn-Banach
theorem there is an extension I, of each o to B with [{l,|| = ||lx]]- Define a
mapping T : B — ly given by T(z) = (In(2))r. It is obvious that T is well
defined, continuous and lingar. Furthermore, T(y,) = e, for each n. Thus
the composed map f o T" € A(E) satisfies

sup |(f o T (ya)| = sup 1f(en}] = oo,

which is a contradiction since (yn) is A-bounding.

Theorem 5 is directly applicable to the algebra C°°(E) of all C'*™°-func-
tions on E in the usual Fréchet sense. Indeed, the function f: {® - R
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which assigns to an arbitrary point = (21, 2s,...) € I*® the value
F(z) = n{z1) + 2u(z1)n(z2) + 3p(z)pu(z)nizs) + ...
A kp()u(ze) - oplegedn(ze) +
where n and p are non-negative ¢*°-functions on R guch that

1 fort=1, _J1 fort=0,
n(t) = 0 ff)rt_g%, plt) = 0 ‘FOHE%,
is locally finite and thus an element in C'*(1°°). By construction, f(e,) =n
for all nn. Therefore we have

COROLLARY 6. In every Banach space all the C™-bounding sets are
relatively compact.

With the use of complexification and the deep results for holomorphically
bounding sets in the complex Banach space {,, due to Dineen and Josefson
we next show that the functions in the algebra RAE ({0} are all bounded on
the set of unit vectors in the real space . In particular, we show that there
is an A£-bounding subset of I, that is not relatively compact. To prove this
statement we need the next lemma that follows from Proposition 8.2 (4°)
of [4].

LeMMa 7. Let E be o Banach space and let E be the complezification
of E. Then every f € AE(E) may be extended to a holomorphic function
f e H(E).

Josefson [18] showed that each function in H(l.) is bounded on each
bounded set contained in Zy. Hence, if f = o P is the extended holo-
morphic function of f = Y 'p, € AE(lw), the restriction f|z, is a holo-
morphic function of bounded type on €y. Thus its Taylor series at the origin

Yoo 0B, converges uniformly on each bounded subset of Z3. When restricted
to the bounded subsets of ¢g, we therefore get the following result.

PROPOSITION 8. Every function f = ¥ .-> pn € A&(ls) converges uni-
formly on each bounded subset of cy. In particular, every bounded sei in co
is an AE-bounding subset of ...

By means of the Phillips lemma, there is, as stated before, a limited set
in I that is not R-bounding. With Proposition 8 at hand, this vesult is
sharpened to the subclass of A£-hounding sets; that is,

A€-bounding # R-bounding,

This is, however, not an improvement, since a closer investigation of the
limited and the A&-bounding sets in I, shows that they coincide. Indeed,
let B C ly be-a limited -set. Since [ is continuously embedded in Ioo, B
is limited in I, . By Theorem 1 of [18] every limited set in I, is bounding

Algebras of real anelytic functions 31

with respect to the holomorphic functions on I~Do. Therefore the statement
follows from Lemma 7.

COROLLARY 9. Every weakly compact set in cg is RAE -bounding in 1°°,

in particular, the unit vectors {e, : n € N} form an RAE-bounding set
in loo

Proof. Let K be a weakly compact subset of ¢g and let £ > 0. Take
f € Af(ls). For some N, we have sup,ey |f(z) — Soh_ o pn(2)] < /3 by
Proposition 8. Put p = Z n=0Pni then p € P(ly). Since loo has the Dunford—
Pettis property it follows from Theorem 7.1 of [6] that p|x is 0(leo, (leo)')-
continuous. Then s0 is f|x. Indeed, since K is 0(loo, (los)')-metrizable, it
suffices to show that f|x is sequentially continuous. Let z;, — z weakly in
K. Then there is a ky € N such that

|f(zw) — Fl=)] < 1f(zs) = plz)] -+ [p(ze) — p(2)| + |p(z) — Flz)| < £

for k > ko. Hence f(z) — f(z), and thus f|x is weakly continuous. Now
the statement follows by the same argument as in the proof of Corollary 2.

Remark. The set B, cannot be R.AE-bounding in l.,, since it is not
even R-bounding.

3. Evaluating properties of homomorphisms. The principal interest
in this section is to investigate the evaluating properties of homomorphisms,
guch as the single-set and sequential evaluating properties as well as their
complete reduction to point evaluations, defined on the algebras Pr(E},
RPe(E), P(E), R(E), AE(F), RAE(E) and A(F) for various classes of
Banach spaces E.

Although the algebra AE(R) is not inverse-closed, it is single-set eval-
nating. In fact, every homomorphism on AE(R) is even a point evalua-
tion. Indeed, let ¢ € Hom AE(R) and take f € AE(R). For the function
p € AE(R), where p(z) = z for all z € R, set o = ¢(p). Expand f in a
Taylor series at o. Then f(z) = f(o) + (z — w)g(z), where g € AE(R}).
Hence ¢(f) = f(a) + 0 ¢(g) = f(e)-

In the next example we consider the algebra A&y, (E) of all functions f =
Y e Pn € AE(E) such that ||p jt/™ — 0 asn — oo. By taking into account
the Josefson - Nissenzweig theorem [10], we observe that AE(E) = ALy (E)
precisely when E is finite-dimensional. The complex analog of AEL(E) is
the algebra of all holomorphic functions of bounded type. Using appropriate
continuity properties of its homomorphisms, we deduce that they are point
evaluations for certain Banach spaces E.

ExAMPLE 2. Let F be a reflexive Banach space such that P¢("E) is dense
in P("E) with respect to the norm topology for every m. It is easily seen
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that

AEL(E {f anEAE les1“1<p |pn(2)| < o0 for k= 1,2,. }
=0 II#

with P(E) C A&(E) C AE(E) and that every function in AE,(E) is
bounded on bounded subsets of E. The space A&, (F) endowed with the
topology generated by the norms (|| - [x)§%y, where [[file = 2207, ol k",
is a Fréchet algebra. Since every homomeorphism on a real Fréchet algebra
is continuous [14], any ¢ € Hom A&, (E) is a point evaluation on Pr(E) by
reflexivity of E and hence also on A&, (E)} by density.

The assumptions on E in Example 2 are satisfied e.g. when F is the
original Tsirelson space T or a finite-dimensional space.

PROPOSITION 10. Let ¢ € HomR(E) and let (p,) be ¢ sequence of
polynomials on o Banach space E with uniformily bounded degrees. Then
there is a point a € E such that ¢(pn) = pn{a) for all n.

Proof. Choose a sequence (o, ) of positive reals such that the sums

- flz) = Z ttn (P () — (/)(Pn))z and  g(z) = Z %(Pn(iﬂ) o qb(pn.))z
ne=l n=l

are pointwise convergent with respect to each series of k-homogeneous terms
for fixed k separately. Then f and g are continuous polynomials on F by the
Banach-Steinhaus theorem. The rest of the proof can now be carried out in
the same way as in the proof of Theorem 1.

THEOREM 11. Let A(E) be a single-set evaluating algebra containing
AE(E). Let ¢ ¢ Hom A(E), let f € A(E) and let (f,) be a sequence in
AE(E). Then there is o point o € E such that ¢(f) = fla), o(fn) =

fr(a) for all n. In particular, the restriction b gy 19 sequentiolly AE,(E)-
continuous.

Proof. Let (p,) be a sequence in {J;, P(*E). Denote by d(p,) the
degree of the polynomial p,,. Take a sequence (k,,) of odd natural numbers
with &y = 1 and kny1 > 2k,d{(p,) for n =1,2,... Then

% (@)] < llpall ™| 47)  for every =  E.
Set
o0
gl@) =" Pl W(Fﬁ”(w) ~ (ph))*,
where (a,) is a sequence of reals with

> || 4 2|¢(pk» ) pall® + #(pF=)  for all n
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Then
o= 1 1
g(z) < o e (| ForiEndn g Fomdlen) 1)
2knd(pn) k d(pn)
<22n(— +HH +1)<oo forall z € E.
n=1

Since g is pointwise convergent, it is by construction a function in A£(E).
By using the same technique as in the proof of Proposition 10, we find that
there is some z € E with ¢(f) = f(z) and ¢{pk~) = pi(z) for all n.
As each k, 15 odd, it follows that ¢(p.) = p,(z) for all n. Since each fp
is a polynomial sum 3 py x, there is a point z € E with ¢(fy) = felz)
and ¢{pn,k) = pnx(z) for all n, hence ¢(fx) = Y ¢(pns). Let a € E with
(f) = fla) and ¢(pn i) = prx(a) for all n and k. Then

= Z $(pn k) = an,k(a) = fr(a) for all k,
n ko3
and the statement is proved.

COROLLARY 12. For every Banach space E the inverse-closed algebra
RAE(E) is sequentially evaluating.

For (E,) a sequence of Banach spaces, consider the Banach spaces
(B, En)i, (1 £p<Loo)and (@, En)e, (16, p. 374].

ProposiTion 13, Let (E,) be a sequence of Banach spaces such that
each E, admits a continuous linear injection into [,(I") for some g < o0
and some set I' of non-measurable cordinelity. If E equals (@, En), or

(D, En)ey, then E = Hom RAE(E). ’

i3

Proof. Since each E, injects into [;(I"), £, = Hom RAE(E,) by The-
orem 2.4 of [13]. In view of the injection into 1,(I") for each =, & E,
there is a continuous polynomial p,, on F, separating x,, from any other
point in E,. Accardmg to Theorem 9 of [19], it follows that []o-, En =
Hom RAE ([0, Bn). Take ¢ € HomRAE(E). Let I denote the natu-
ral injection from E into H,,_l E.,. Since the map v : Hn~1E — R,
where 1(g) = ¢{g o 1), is a homomorphism, there is a umque point ¢ =
(an) in TI5%, By with (g) = gla) for each g € RAE(L Ba). I pr,,
Hnwl F, — E, are the natural projections, the sequence (Pun opr,)} in
RAE(TIZ., En) separates a from any other point in [[77; En. Take f €
RAE(E). By Corollary 12, there is a point © € E such that ¢(f) = f(z) and
&(pa, o pr, o 1) = pu, (pr,{z)) for all n. Hence pa, (pra(z)) = pan(pr n(a))
for each n, whlch gives z = o and the proof is complete: ° _ ‘
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Remark. Examples of Banach spaces admitting a continuous linear
injection into some [4(I") include all super-reflexive spaces [17] as well as
those with weak*-geparable duals.

According to Theorem 7.1 of [6], the restriction of any p € P(E) to a
weakly compact set is weakly continuous if E has the Dunford-Pettis prop-
erty and, consequently, p is sequentially weakly continuous. By Thecrems
4.4.7 and 4.5.9 of [20], p is then weakly uniformly continuous on bounded
sets if B, in addition, does not contain a copy of I;. As a consequence of
Theorem 4.3.7 of [20], we therefore get the following:

LemMa 14. Let E be o Banach space with the Dunford-Pettis property
that does not contain o copy of 1. Then Py(E) is dense in P(E) with respect
to the topology of uniform convergence on bounded sets in F.

THEOREM 15. Let E be a weakly Lindelof Banach space not containing
o copy of Iy with the Dunford—Pettis property. Then

E =HomR(F) = Hom RAE(E).

Proof Let ¢ : RA — R be a homomorphism, where A is either
P(E) or AL(E). Since F is weakly Lindeldf and every continuous finite
type polynomial on £ is weakly continuous, there is, according to Propo-
sition 10 and Theorem 11, a point a & E such that ¢(p) = pla) for
all p € P:(E). Take an arbitrary f € A. By Lemma 14, there is a se-
quence (pn) in Py(E) converging pointwise to f. Again, by Proposition
10 and Theorem 11, there is some & € F such that ¢(f) = f(z) and
$(pn) = pn(x) for all n. Since limy, pp(z) = f(z) and lim, p,(a) = f{a),
obviously ¢(f) = f(a).

Examples of spaces E satisfying the premises in Theorem 15 are eq{I),
C(K) for any scattered Corson compact space K [21] and the Ciesielski -Pol
space Xp of C(K)-type that is not even injectable into ¢q(I") [8]. The space
co(I) is special in the sense that co(I") = Hom A(co(I")) [13].

LemMa 16. Let A(E) be a single-set evaluating algebra. Then every ho-
momorphism on A(E) extends to RA(E).

Proof Let ¢ : A(E) — R be a homomorphism and take g € RA(E).
The function. g is of the form f1/fs, where fi, fs € A(E). Then the map
¥ g = 6(f1)/8(f2) is the obvious extension of ¢ to RA(E). Siuce A(E)
is single-set evaluating, there is a point z € E such that ¢(f;) = fi(x) for
t=1,2, and hence the map 1 is well-defined.

PROPOSITION 17. The algebra AE(lo) is not single-set evaluating.

~ Proof. Suppose that AE(l) is a single-set evaluating algebra. Then
Hom A€(lc) = Hom RAE(le) by Lemma 16, and therefore AE (leo) is se-
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quentially evaluating according to Corollary 12. Since (lo) admits a point
separating sequence, loo = Hom AE(l,,). Hence every AE-bounding subset
of lo is relatively compact in [, AE(loo)» In particular relatively compact in
the o'(lo, (1oo)")-topology. However, by Proposition 8, the unit ball B,, C I
is AE-bounding. The topologies o (g, ;) and 7 (looy (Ioo)") coincide on ¢p, and
consequently, B, is o(ep, I1)-compact, an obvious contradiction.

If B is finite-dimensional, then P¢(E) = P(E), and hence PE) is se-
quentially evaluating. Since E’ contains a point separating sequence, every
homomorphism on P(E) is a point evaluation. If E is infinite-dimensional
the situation is entirely different.

PROPOSITION 18. Let E be an infinite-dimensional Banach space. Then
P(E) is not a single-set evaluating algebra.

Proof Suppose that ¢(p) € p(E) for all p € P(E). As in Proposition
10, it can be shown that ¢|p,(g) is sequentially evaluating for each ¢ €
Hom P(E). Using the interchangeable double limit property technique as in
Theorem 1, one sees that each bounded set is relatively weakly compact.
Hence E has to be reflexive and therefore weakly Lindelf. Since | Pe(E) 18
sequentially evaluating, it therefore follows that ¢| P;(E) i8 a point evaluation
on E for each ¢ € Hom P(E). On the other hand, by [12], piven w & E'*
there exists ¢ € Hom P(F) with w(l} = ¢(I) for every [ € E', which gives a
contradiction since E'* \ E # @,

Prorosirion 18. Let FE be a non-reflevive Banach space. Then neither
Pr(E) nor the inverse-closed algebra RP;(E) are sequentially evaluating.

Proof. By linear algebra, a linear functional ! is a linear combination of
linear functionals Iy, ...,I, if and only if Ker(i) > N, Ker(};), and there-
fore Pr(E) is single-set evaluating. Assume, contrary to the statement, that
Pr(E) is sequentially evaluating. Let Bg be the unit ball in E. Take se-
quences () in By and (I,) in the polar Bg. As in the proof of Theorem
1, Bg is relatively compact in Hom P¢(E). Let ¢ and lg be cluster points of
the sequences (@) and (L) respectively. By assumption, there is a point
e € F with ¢(l,) = ln{a) for m = 0,1,... If all limits involved exist,
then '

lim. li?xin b)) = lim Hly) = lim Im(e) = lp(a) = é{lp)

m
= lim lo(z,) = liﬁn linrmn Im{(Tr).
Thus By has the interchangeable double limit property with Bg. By the

Eberlein-Grothendieck theorem [11, p. 15}, the set B is weakly compact._ As
this is a contradiction, the algebra P¢(E) cannot be sequentially evaluating.
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Then, according to Lemma 16, the algebra RP;(E), although inverse-closed,
is not sequentially evaluating.
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