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Introduction and main results

The algebraic form of the classical Lamé

equation is:

Q(z)
d2S

dz2
+

1

2
Q′(z)

dS

dz
+ V (z)S = 0, (1)

where Ql(z) is a real polynomial of degree l

with all real and distinct roots, and V (z) is

a polynomial of degree at most l − 2 whose

choice depends on what we are looking for.

It was introduced by Gabriel Lamé in 1830’s

in connection with the separation of variables

in the Laplace equation in Rl. It was stud-

ied in the second half of the 19-th century

several celebrated mathematicians including

M. Bôcher, E. Heine, F. Klein, T. Stieltjes.

In what follows we will concentrate on the

usual polynomial solutions of (1) and its var-

ious modifications.

A generalized Lamé equation is the second

order differential equation given by

Q2(z)
d2S

dz2
+ Q1(z)

dS

dz
+ V (z)S = 0, (2)



where degQ2(z) = l and Q1(z) ≤ l − 1. The

special case l = 3 is widely known as the

Heun equation.

The next fundamental proposition announced

by Heine with not a quite satisfactory proof

is our starting point.

Theorem 1 (Heine). If the coefficients of

Q2(z) and Q1(z) are algebraically indepen-

dent then for any integer n > 0 there exists

exactly
(

n+l−2
n

)

polynomials V (z) of degree

exactly (l−2) such that the equation (2) has

and unique (up to a constant factor) polyno-

mial solution S of degree exactly n.

Later a special case of (2)

l
∏

i=1

(z−αi)
d2S

dz2
+

l
∑

j=1

βj

∏

j 6=i

(z−αi)
dS

dz
+V (z)S = 0,

(3)



with α1 < α2 < . . . < αl real and β1, . . . , βl

positive was considered separately by T. Stielt-

jes.

Theorem 2 (Stieltjes-Van Vleck-Bôcher).Un-

der the assumptions of (3) and for any inte-

ger n > 0

1. there exist exactly
(

n+l−2
n

)

distinct poly-

nomials V of degree (l−2) such that the

equation (3) has a polynomial solution S

of degree exactly n.

2. each root of each V and S is real and sim-

ple, and belongs to the interval (α1, αl).

3. none of the roots of S can coincide with

some of αi’s. Moreover,
(

n+l−2
n

)

polyno-

mials S are in 1-1-correspondence with
(

n+l−2
n

)

possible ways to distribute n points

into the (l − 1) open intervals (α1, α2),

(α2, α3),. . . , (αl−1, αl).



The polynomials V and the corresponding

polynomial solutions S of the equation (2)

are called Van Vleck and Stieltjes (or Heine-

Stieltjes) polynomials resp.

The case when αi’s and/or βj’s are complex

is substantially less studied. One nice result

in this set-up is due to G. Pólya.

Theorem 3 (Pólya). If in the notation of (3)

all αi’s are complex and all βj’s are positive

that all the roots of each V and S belong to

the convex hull ConvQ2
of the set of roots

(α1, . . . , αl) of Q2(z).



Our set-up

Consider an arbitrary linear ordinary differen-

tial operator

d(z) =
k

∑

i=1

Qi(z)
di

dzi
, (4)

with polynomial coefficients. The number

r = maxi=1,...,k(degQi(z) − i) will be called

the Fuchs index of d(z). The operator d(z)

is called a higher Lamé operator if r ≥ 0.

The operator d(z) is called non-degenerate

if degQk(z) = k + r.

Problem. For each positive integer n find all

polynomials V (z) of degree at most r such

that the equation

d(z)S(z) + V (z)S(z) = 0 (5)

has a polynomial solution S(z) of degree n.

V (z) is called a higher Van Vleck polyno-

mial, and the corresponding polynomial S(z)

is called a higher Stieltjes polynomial.



Generalizations of Heine’s theorem,

degeneracies and nonresonance condition

Theorem 4. For any non-degenerate higher

Lamé operator d(z) with algebraically inde-

pendent coefficients of its polynomial coef-

ficients Qi(z), i = 1, . . . , k and for any n ≥ 0

there exist exactly
(

n+r
r

)

distinct Van Vleck

polynomials V (z)’s whose corresponding Stielt-

jes polynomials S(z)’s are unique (up to a

constant factor) and of degree n.

Theorem 5. For any non-degenerate opera-

tor d(z) with a Fuchs index r ≥ 0 and any

positive integer n the total number of Van

Vleck polynomials V (z) (counted with nat-

ural multiplicities) having a Stieltjes polyno-

mial S(z) of degree less than or equal to n

equals
(

n+r+1
r+1

)

.

Remark 1. Note that in Theorem 5 we do not

require that there is a unique (up to constant

factor) Stieltjes polynomial corresponding to

a given Van Vleck polynomial.



Below we formulate a simple sufficient con-

dition which allows us to avoid many of the

above degeneracies and guarantees the ex-

istence of Stieltjes polynomials of a given

degree. Namely, consider an arbitrary non-

degenerate operator d(z) of the form (4) with

the Fuchs index r. Denote by Ak, Ak−1, ..., A1

the coefficients at the highest possible de-

grees k + r, k + r − 1, ..., r + 1 in the polyno-

mials Qk(z), Qk−1(z), ..., Q1(z) resp. (Notice

that any subset of Aj’s can vanish but Ak 6= 0

due to the non-degeneracy of d(z).) In what

follows we will often use the notation

(j)i = j(j − 1)(j − 2)...(j − i + 1),

where j is a non-negative and i is a positive

integer. In case j = i one has (j)i = j! and

in case j < i one gets (j)i = 0. For any

non-negative n we call by the n-th diagonal

coefficient Ln the expression:

Ln = (n)kAk+(n)k−1Ak−1+....+(n)1A1. (6)



Proposition 1. If in the above notation and

for a given positive integer n the n-th non-

resonance condition

Ln 6= Lj, j = 0,1, ..., n − 1 (7)

holds then there exist Van Vleck polynomials

which possess Stieltjes polynomials of degree

exactly n and no other Stieltjes polynomials

of degree smaller than n. In this case the

total number of such Van Vleck polynomials

(counted with natural multiplicities) equals
(

n+r
r

)

.

Explicit formula (6) for Ln immediately shows

that Theorem 5 and Proposition 1 are valid

for any non-degenerate d(z) and all sufficiently

large n.

Corollary 1. For any non-degenerate higher

Lamé operator d(z) and all sufficiently large

n the n-th nonresonance condition holds. In

particular, for any problem (5) there exist

and finitely many (up to a scalar multiple)

Stieltjes polynomials of any sufficiently large

degree.



Generalizations of Stieltjes’s theorem

We continue with a conceptually new gen-

eralization of Theorem 2. It was proved by

P. Bränden.

Definition 1. A differential operator d(z) =
∑k

i=m Qi(z)
di

dzi, 1 ≤ m ≤ k where all Qi(z)’s

are polynomials with real coefficients is called

a strict hyperbolicity preserver if for any

real polynomial P(z) with all real and simple

roots the image d(P(z)) either vanishes iden-

tically or is a polynomial with only real and

simple roots.

Theorem 6. For any strict hyperbolicity pre-

serving non-degenerate Lamé operator d(z)

with the Fuchs index r as above and any in-

teger n ≥ m

1. there exist exactly
(

n+r
n

)

distinct polyno-

mials V (z) of degree exactly r such that



the equation (5) has a polynomial solu-

tion S(z) of degree exactly n.

2. all roots of each such V (z) and S(z) are

real, simple, coprime.

3.
(

n+r
n

)

polynomials S(z) correspond exactly

to
(

n+r
n

)

possible arrangements of r real

roots of polynomials V(z) and n real roots

of the corresponding polynomials S(z).

Using Theorem 5 one immediately sees that

the latter result describes the set of all pos-

sible pairs (V, S) with m ≤ n = degS for any

hyperbolicity preserver d(z).



Generalizations of Polya’s theorem

Theorem 7. For any non-degenerate higher

Lamé operator d(z) and any ǫ > 0 there ex-

ists a positive integer Nǫ such that the ze-

ros of all Van Vleck polynomials V (z) pos-

sessing a Heine-Stieltjes polynomial S(z) of

degree n ≥ Nǫ and well as all zeros of these

Stieltjes polynomials belong to Convǫ
Qk

. Here

ConvQk
is the convex hull of all zeros of the

leading coefficient Qk and Convǫ
Qk

is its ǫ-

neighborhood in the usual Euclidean distance

on C.

The latter theorem is closely related to the

next somewhat simpler localization result hav-

ing independent interest.

Proposition 2.For any non-degenerate higher

Lamé operator d(z) there exist a positive in-

teger N0 and a positive number R0 such that

all zeros of all Van Vleck polynomials V (z)



possessing a Stieltjes polynomial S(z) of de-

gree n ≥ N0 as well as all zeros of these

Stieltjes polynomials lie in the disk |z| ≤ R0.

Consider as an example the operator d(z) =

Q(z) d3

dz3 with Q(z) = (z2 +1)(z − 3I − 2)(z +

2I − 3). For n = 24 we calculate all 25 pairs

(V, S) with degS = 24. (Notice that V in

this case is linear.)
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Zeros of 25 different linear Van Vleck polyno-

mials whose Stieltjes polynomials are of de-

gree 24.
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Zeros of 25 different Stieltjes polynomials of

degree 24 for the above d(z).



Proof of generalized Heine’s theorems

We start with Theorem 4.

Proof. Substituting V (z) = vrz
r+vr−1zr−1+

. . .+v0 and S(z) = snzn+sn−1zn−1+. . .+s0 in

(5) we get the following system of (n+r+1)

equations of a band shape (i.e. only a fixed

and independent of n number of diagonals is



non-vanishing in this system):






























































































































0 = sn(vr + Ln,n+r);

0 = sn(vr−1 + Ln,n+r−1) + sn−1(vr + Ln−1,n+r−1);

0 = sn(vr−2 + Ln,n+r−2) + sn−1(vr−1 + Ln−1,n+r−2
... ... ... ... ...

0 = sn(v0 + Ln,n) + sn−1(v1 + Ln−1,n) + ... + sn−r(

0 = snLn,n−1 + sn−1(v0 + Ln−1,n−1) + ... + sn−r−1(

0 = snLn,n−2 + s1L1,r+1 + s2(vr + L2,r) + ... + sn−r
... ... ... ... ...

0 = snLn,r + sn−1Ln−1,r + sn−2Ln−2,r + ... + s0(vr +

0 = snLn,r−1 + sn−1Ln−1,r−1 + sn−2Ln−2,r−1 + ... +
... ... ... ... ...

0 = snLn,1 + sn−1Ln−1,1 + ... + s1(v0 + L1,1) + s0(v

0 = snLn,0 + sn−1Ln−1,0 + ... + s1L0,1 + s0(v0 + L0

(8)

Here Lp,q is a polynomial which expresses the
coefficient containing sp at the power zq in
∑k

i=1 Qi(z)S
(i). Obviously, it is linear in the

coefficients of Qk(z), ..., Q1(z) and is explicitly
given by the relation

Lp,q =
k

∑

r=1

(p)rAr,q−p+r,



where Ar,q−p+r is the coefficient at zq−p+r in

Qr(z). In the notation used in the definition

(6) we have Lm,m+r = Lm, m = 0, ..., n. We

use the convention that Lp,q vanishes outside

the admissible range of indices and, there-

fore many of the above coefficients Lp,q are

in fact equal to 0. (In the system (8) we

assumed that n ≥ r for simplicity.) Notice

that all equations in (8) depend linearly on

the variables vr, ..., v0 and sn, ..., s0 as well as

on the coefficients of polynomials Qi(z), i =

1, . . . , k. Note additionally, that (8) is lower-

triangular w.r.t the coefficients sn, ..., s0 which

allows us to perform the following important

elimination. Let us enumerate the equations

of (8) from 0 to n + r assigning the num-

ber j to the equation describing the vanish-

ing of the coefficient at the power zn+r−j.

Then if Ln = Ln,n+r 6= 0 one has that the

0-th equation has a solution sn = 1 and vr =

−Ln,n+r 6= 0. The next n equations are trian-

gular w.r.t the coefficients sn, ..., s0, i.e. j-th

equation in this group contains only the vari-

ables sn, sn−1, . . . , sn−j (among all sj’s) along



with other types of variables. Thus under

the assumption that all the diagonal terms

vr + Ln−i,n+r−i = Ln−i − Ln, i = 0,1, ..., n

are nonvanishing we can express all sn−i, i =

0,1, ..., n consecutively as rational functions

of the remaining variables and get the re-

duced system of r rational equations con-

taining only (vr−1, . . . , v0) as unknowns. No-

tice that in view of vr = −Ln,n+r 6= 0 the

non-vanishing of the diagonal entries vr +

Ln−i,n+r−i, i = 0,1, ..., n coincides exactly

with the nonresonance condition (7).

Cleaning the common denominators we get

a reduced system of polynomial equations.

We show now that this polynomial system is

quasi-homogeneous in the variables vj with

the quasi-homogeneous weights w(vj) given

by w(vj) = r − j. Thus using the weighted-

homogeneous version of the Bezout theo-

rem we get that if the system under consid-

eration defines a complete intersection, i.e.

has only isolated solutions then their number



(counted with multiplicities) equals
(

n+r
r

)

in

the corresponding weighted projective space.

To check the quasi-homogenuity note that

the standard action of C∗ on the set of roots

of the polynomial V (z) by simultaneous mul-

tiplication assigns the weight r−j to its coef-

ficient vj. These weights are still valid in the

reduced system with the variables sn, ..., s0

eliminated. Finally, we have to show that

if the coefficients of Qk(z), ..., Q1(z) are al-

gebraically independent then the eliminated

system has exactly
(

n+r
r

)

simple solutions.

Indeed, consider the linear space EQ of all

systems of r quasi-homogeneous equations

in the variables (vr, ..., v0) with the weights

w(vj) = r − j and where the i-th equation is

weighted-homogeneous of degree n + i. We

equip this space with the standard monomial

basis.



On eigenvalues for rectangular matrices

We start with the following natural question.

Problem. Given a (l+1)-tuple of (m1×m2)-

matrices A, B1, ..., Bl where m1 ≤ m2 describe

the set of all values of parameters λ1, ...λl

for which the rank of the linear combination

A+λ1B1+ ...+λlBl is less than m1 i.e. when

the linear system v∗(A+λ1B1+...+λlBl) = 0

has a nontrivial (left) solution v 6= 0 which we

call an eigenvector of A wrt the linear span

of B1, ..., Bl.

Let Mm1,m2 denote the linear space of all

(m1×m2)-matrices with complex entries. Be-

low we will consider l-tuples of (m1 × m2)-

matrices B1, ..., Bl which are linearly indepen-

dent in Mm1,m2 and denote their linear span

by L = L(B1, ..., Bl). Given a matrix pencil

P = A + L where A ∈ Mm1,m2 denote by

EP ⊂ P its eigenvalue locus, i.e. the set of

matrices in P whose rank is less than the



maximal one. Denote by M1 ⊂ Mm1,m2 the

set of all (m1 × m2) matrices with positive

corank, i.e whose rank is less than m1. Its

co-dimension equals m2 − m1 +1 and its de-

gree as an algebraic variety equals
(

m2
m1−1

)

.

Consider the natural left-right action of the

group GLm1×GLm2 on Mm1,m2, where GLm1

(resp. GLm2) acts on (m1 ×m2)-matrices by

the left (resp. right) multiplication. This

action on Mm1,m2 has finitely many orbits,

each orbit being the set of all matrices of a

given (co)rank. Notice that due to the well-

known formula of the product of coranks the

codimension of the set of matrices of rank

≤ r equals (m1 − r)(m2 − r). Obviously, for

any pencil P one has that the eigenvalue lo-

cus coincides with EP = M1 ∩ P. Thus for a

generic pencil P of dimension l the eigenvalue

locus EP is a subvariety of P of codimension

m2−m1+1 if l ≥ m2−m1+1 and it is empty

otherwise. The most interesting situation for

applications occurs when l = m2 − m1 + 1 in

which case EP is generically a finite set. From



now on let us assume that l = m2 − m1 + 1.

Denoting as above by L the linear span of

B1, ..., Bl we say that L is transversal to M1

if the intersection L ∩ M1 is finite and non-

transversal to M1 otherwise. Notice that due

to homogeneity of M1 any (m2 − m1 + 1)-

dimensional linear subspace L transversal to

it intersects M1 only at 0 and that the multi-

plicity of this intersection at 0 equals
(

m2
m1−1

)

.



Proof of generalized Pólya’s theorems

To settle Theorem 7 we will prove a number

of localization results having an independent

interest.

Definition 2.Given a finite (complex-valued)

measure µ supported on C we call by its to-

tal mass the integral
∫

C dµ(ζ). The Cauchy

transform Cµ(z) of µ is standardly defined as

Cµ(z) =
∫

C

dµ(ζ)

z − ζ
. (9)

Obviously, Cµ(z) is analytic outside the sup-

port of µ and has a number of important

properties, e.g. that µ = 1
π
Cµ(z)

∂z̄
understood

in the distributional sense.

Definition 3.Given a (monic) polynomial P(z)

of some degree m we associate with P(z) its

root-counting measure µP (z) = 1
m

∑

j δ(z−zj)

where {z1, ..., zm} stands for the set of all

roots of P(z) with repetitions and δ(z−zj) is

the usual Dirac delta-function supported at

zj.



Directly from the definition of µP(z) one has

that for any given polynomial P(z) of degree

m its Cauchy transform is given by CµP (z) =
P ′(z)

mP (z)
.

Proof. Take a pair (V (z), S(z)) where V (z)

is some Van Vleck polynomial and S(z) is its

corresponding Stieltjes polynomial of degree

n. Let ξ be the root of either V (z) or S(z)

which has the maximal modulus among all

roots of the chosen V (z) and S(z). We want

to show that there exists a radius R > 0 such

that |ξ| ≤ R for any ξ as above and as soon as

n is large enough. Substituting V (z), S(z), ξ

in (5) and using (4) we get the relation:

Qk(ξ)S
(k)(ξ)+Qk−1(ξ)S

(k−1)(ξ)+...+Q1(ξ)S
′(ξ) = 0,

dividing which by its first term we obtain:

1 +
k−1
∑

j=1

Qj(ξ)S
(i)(ξ)

Qk(ξ)S
(k)(ξ)

= 0. (10)

Notice that the rational function bi(z) :=
S(i+1)(z)

(n−i)S(i)(z)
is the Cauchy transform of the



polynomial S(i)(z). Easy arithmetic shows

that

S(i)(z) =
S(k)(z)

(n − k + 1)...(n − i)
∏k−1

j=i bj(z)
.

Notice additionally, that by the usual Gauss-

Lucas theorem all roots of any S(i)(z) lie

within the convex hull of the set of roots of

S(z). In particular, all these roots lie within

the disk of radius |ξ|. Therefore, we get
∣

∣

∣

∣

∣

∣

Qi(ξ)S
(i)(ξ)

Qk(ξ)S
(k)(ξ)

∣

∣

∣

∣

∣

∣

≤
|Qi(ξ)|

|Qk(ξ)|

(n − k)!

(n − i)!
2k−i|ξ|k−i.

(11)

Notice that since Qk(z) is a monic polyno-

mial of degree k + r (recall that r is the

Fuchs index of the operator d(z)) then one

can choose a radius R such that for any z

with |z| > R one has |Qk(z)| ≥
|z|k+r

2 . Now

since for any i = 1, ..., k−1 one has degQi(z) ≤

i + r we can choose a positive constant K

such that |Qi(z)| ≤ K|z|i+r for all i = 1, ..., k−

1 and |z| > R. We want to show that ξ can

not be too large for a sufficiently large n.



Using our previous assumptions and assum-

ing additionally that |ξ| > R we get
∣

∣

∣

∣

∣

∣

Qi(ξ)S
(i)(ξ)

Qk(ξ)S
(k)(ξ)

∣

∣

∣

∣

∣

∣

≤
|Qi(ξ)|

|Qk(ξ)|

(n − k)!

(n − i)!
2k−i|ξ|k−i.

Now we can finally choose N0 large enough

such that for all n ≥ N0, all i = 1, ..., k − 1

and any |ξ| > R one has that
∣

∣

∣

∣

∣

∣

Qi(ξ)S
(i)(ξ)

Qk(ξ)S
(k)(ξ)

∣

∣

∣

∣

∣

∣

≤
K · 2k−i+1

(n − i)...(n − k + 1)
<

1

k − 1
.

But then obviously the relation (10) can not

hold for all n ≥ N0 and any |ξ| > R since
∣

∣

∣

∣

∣

∣

k−1
∑

j=1

Qj(ξ)S
(i)(ξ)

Qk(ξ)S
(k)(ξ)

∣

∣

∣

∣

∣

∣

≤
k−1
∑

j=1

∣

∣

∣

∣

∣

∣

Qj(ξ)S
(i)(ξ)

Qk(ξ)S
(k)(ξ)

∣

∣

∣

∣

∣

∣

<
k−1
∑

i=1

1

k − 1
.
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