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Alginate oligosaccharides (AOS), natural polymers from brown seaweeds 

(such as Laminaria japonica, Undaria pinnatifida, and Sargassum fusiforme), 

have been reported to possess many beneficial advantages for health. In the 

current study, after 9 weeks of dietary supplementation, AOS 10 mg/kg group 

(AOS 10) group increased boar sperm motility from 87.8% to 93.5%, p < 0.05. 

Moreover, AOS10 increased the relative abundances of Bifidobacterium, 

Coprococcus, Butyricicoccus (1.3–2.3-fold; p < 0.05) to increase the beneficial 

blood and sperm metabolites (1.2–1.6-fold; p < 0.05), and important sperm 

proteins such as gelsolin, Zn-alpha2 glycoprotein, Cation Channel Sperm-

Associated Protein, outer dense fiber of sperm tails, etc. (1.5–2.2-fold; 

p < 0.05). AOS had a long-term beneficial advantage on boar semen quality by 

the increase in semen volume (175 vs. 160 ml/ejaculation, p < 0.05). AOS may 

be used as dietary additives for improving semen quality.
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Introduction

Alginate oligosaccharides (AOS), natural biodegradable polymers derived from the 
degradation of alginate (brown seaweed), are made up of α-L-guluronate (G) and 
β-D-mannuronate (M) linked by 1, 4-glycoside bonds (Hu et al., 2019). AOS have many 
biological advantages with the great characteristics: non-immunogenicity, non-toxicity, and 
biodegradability (Ueno et al., 2012; Moriya et al., 2013; Ruvinov and Cohen, 2016; Pritchard 
et al., 2017; Han et al., 2019; Hu et al., 2019). AOS can act as anti-inflammation (Moriya 
et  al., 2013), anti-apoptosis (Tusi et  al., 2011), anti-proliferation (Tajima et  al., 1999), 
antioxidant activities (Tusi et al., 2011; Ueno et al., 2012; Guo et al., 2016), and even anti-
cancer reagent (Yang et  al., 2017). Recently, dietary AOS improved intestinal cell 
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development and intestinal morphology and barrier function, and 
stimulating weaned pig growth (Wan et al., 2017, 2018a,b; Zhao 
et al., 2020a). Thus, AOS have been approved as a safe biopolymer 
by the U.S. Food and Drug Administration (reference no. 
21CFR184.1724) to be applied in pharmaceutical, cosmeceutical, 
and nutraceutical fields (Park et al., 2016; Hu et al., 2019).

Reproductive biotechnologies, especially artificial 
insemination (AI), play a vital role in the genetic improvement of 
pigs and other farm animals (Singh et al., 2021). Moreover, AI not 
only makes significant contributions to the development of swine 
production worldwide, it also raises the importance of the 
reproductive efficiency of boars in pig herds (Tsakmakidis et al., 
2010). Semen quality is used as a proxy measure of boar fertility 
owing to the close correlation between sperm quality with boar 
fertility, and it creates a desired effect on piglet production in 
terms of the reproductive performance of sows (Dong et al., 2016). 
In summary, good semen quality is fundamental for successful AI 
(Tsakmakidis et al., 2010; Singh et al., 2021).

The production and quality of semen not only depend on 
intrinsic factors such as breed (Wolf, 2009) and age (Huang et al., 
2010), but also on environmental extrinsic factors, for example, 
temperature, photoperiod, and nutrition (Ciereszko et al., 2000; 
Yeste et al., 2010; Dong et al., 2016). Boar age and semen quality 
are factors that are considered in boar culling (Tsakmakidis et al., 
2012). Reports show that a maximum semen volume and sperm 
concentration can be obtained from boars of ≤3.5 years of age 
(Smital, 2009; Tsakmakidis et al., 2012). Hormonal and cellular 
changes take place in males with aging, which alters sperm quality 
and fertilization capacity (Araujo and Wittert, 2011). Aging also 
induces a decrease in testosterone levels, which is involved with 
intrinsic and extrinsic factors associated with Leydig cells (Midzak 
et al., 2009; Araujo and Wittert, 2011; Tsakmakidis et al., 2012).

Nutrition influences boar libido, sperm output, semen quality, 
and fertility (sow pregnancy rate and litter sizes; Dong et al., 2016; 
Liu et al., 2017a). It is known that protein levels in the diet affect 
boar semen quality; both low protein or excessive protein can 
decrease sperm quality (Louis et  al., 1994; Dong et  al., 2016). 
Individual amino acids have potential impacts on semen quality 
(Ren et al., 2015) as follows: dietary lysine (1.03%) improves boar 
semen quality compared to 0.86% (Dong et  al., 2016); 
supplementation of threonine benefits ram and boar sperm 
quality (Wilson et al., 2004); tryptophan significantly improves 
ram sperm motility (Pichardo et  al., 2011; Dong et  al., 2016). 
Furthermore, polyunsaturated fatty acids (PUFAs) have been 
shown to benefit sperm motility and fertility in human and animal 
studies (Murphy et  al., 2017; Liu et  al., 2017a). The major 
commercial source of omega-3 fatty acids [specifically 
docosahexaenoic acid (DHA)] are fish oils, and the most abundant 
source for linolenic acid is flaxseed (~53%). Chestnut 
polysaccharides have been discovered to improve the 
spermatogenesis and semen quality recently (Yu et al., 2020; Sun 
et  al., 2022). With the great advantages, the purpose of this 
investigation was to explore AOS benefit boar semen quality and 
the underlying mechanisms.

Materials and methods

Materials and reagents

AOS (>98%) was from Qingdao BZ Oligo Biotech Co. Eosin, 
insulin, EGF, cysteine, pyruvate, kanamycin, paraformaldehyde, 
and Triton X-100 were from Sigma-Aldrich. BSA, goat serum, and 
TCM-199 medium were from Life Technologies Ltd. 
Polyvinylidene fluoride (PVDF) membrane was from Merck. 
E.Z.N.A.® Stool DNA Kit was from Omega Bio-tek Inc. The 
antibodies were purchased from different companies listed in 
Supplementary Table S1.

Boars and experimental design

All animal procedures were approved by the Animal Care and 
Use Committee of the Institute of Animal Sciences of Chinese 
Academy of Agricultural Sciences (IAS2021-67). Twenty boars 
(~24 months of age; male) were used in this investigation at the 
artificial insemination center of Yangxiang Joint Stock Company 
(Guangxi, China; Guo et al., 2020). Boar feeding conditions have 
been previously reported (Supplementary Table S2; Wu et al., 2019a). 
Our preliminary study has found that 10 mg/kg was good 
concentration for improving boar semen quality. There were two 
treatments: (1) Control group (CON), 10 boars fed with a basal diet, 
and (2) AOS 10 mg/kg group (AOS 10), 10 boars fed with a basal diet 
plus 10 mg/kg body weight of AOS. Semen samples were collected 
after 9-week feeding (Figure 1A) by gloved-hand techniques. After 
collection, four semen parameters were assessed: semen volume, 
sperm concentration, sperm motility, and abnormal sperm rate, 
according to the reported methods (Wu et al., 2019b; Guo et al., 
2020). Blood samples were harvested by venipuncture from the 
hindlimb vein of boars during ejaculations. Each blood sample was 
then centrifuged at 3000× g for 10 min at 4°C to obtain a plasma 
sample and subsequently stored at −80°C until analysis. Each boar’s 
rectum was massaged to stimulate defecation, and then, fresh feces 
were collected and stored at −80°C for subsequent microbiota 
analysis (Guo et al., 2020). The long-term effects of AOS on boar 
semen quality were determined. After AOS supplementation, all the 
boars were fed with basal diet (without AOS supplementation) for 
another 8 weeks. The semen was collected every 5 days and the 
semen quality was analyzed (Figure 1A).

Evaluation of spermatozoa motility using 
a computer-assisted sperm analysis 
system

Spermatozoa motility and concentration were determined by 
the computer-assisted sperm assay (CASA) method according to 
World Health Organization guidelines (WHO, 2010; Zhao et al., 
2016; Zhang et al., 2018, 2019). Boar spermatozoa were incubated 
at 37.5°C for 30 min then samples were placed in a pre-warmed 
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counting chamber (MICROPTIC S.L., Barcelona, Spain). The 
Microptic Sperm class analyzer (CASA system) was used in this 
investigation. It was equipped with a 20-fold objective, a camera 
adaptor (Eclipse E200, Nikon, Japan), and a camera (acA780-75gc, 
Basler, Germany); it was operated by an SCA sperm class analyzer 
(MICROPTIC S.L.).

Morphological observations of 
spermatozoa

Boar sperm was stained with Eosin Y (1%; Zhao et al., 2016; 
Zhang et al., 2018, 2019). Spermatozoa abnormalities were then 
viewed using a bright-field microscopy (AH3-RFCA, Olympus, 
Tokyo, Japan) and were classified into head or tail morphological 
abnormalities: two heads, two tails, blunt hooks, and short tails. 
The examinations were repeated three times, and 500 spermatozoa 
per animal were scored.

In vitro fertilization

The procedure for the preparation of porcine oocytes has been 
reported previously (Redel et al., 2019; Zhou et al., 2020). Porcine 

ovaries were obtained from a slaughterhouse. Follicular fluid from 
3 to 6 mm antral follicles was aspirated with an 18-gauge syringe. 
Cumulus oocyte complexes (COCs) with uniform cytoplasm and 
several layers of cumulus cells were selected and rinsed three times 
in washing medium [TCM-199 medium supplemented with 10% 
porcine follicular fluid (pFF), 5 μg/ml insulin, 10 ng/ml EGF, 
0.6 mM cysteine, 0.2 mM pyruvate, and 25 μg/ml kanamycin]. 
Approximately 70 COCs per well were cultured under mineral oil 
in 4-well plates containing TCM-199 medium supplemented with 
10% porcine follicular fluid (pFF), 5 μg/ml insulin, 10 ng/ml EGF, 
0.6 mM cysteine, 0.2 mM pyruvate, 25 μg/ml kanamycin, and 5 IU/
ml of each of eCG and hCG. The oocytes were matured for 44 h at 
38.5°C, 5% CO2 in a humidified incubator.

The in vitro fertilization (IVF) medium Tyrode’s albumin 
lactate pyruvate (TALP) 29 was previously equilibrated for ~3 h at 
38.5°C, with 5% CO2 in air and a humidified incubator until it 
reached a final pH of 7.4. In vitro mature (IVM) oocytes were 
mechanically denuded with an automatic pipette, washed in TALP 
medium, and transferred in groups of 50 oocytes to a 4-well plate 
(Nunc, Roskilde, Denmark) containing 500 μl TALP medium per 
well. Sperm suspensions were added to the IVF wells at a final 
concentration of 25 ◊ 103 cells/ml. After a 6-h coculture, the 
putative zygotes were fixed with 0.5% glutaraldehyde in 
phosphate-buffered saline (PBS), stained with 1% (w/v) Hoechst 

A

B C D E

FIGURE 1

The impacts of AOS on boar sperm quality. (A) Study scheme. (B) Spermatozoa motility determined by CASA. Y-axis = % of total cells, 
X-axis = treatment group (mg/kg body weight). n = 10. (C) Semen volume. Y-axis = volume (ml), X-axis = treatment concentration (mg/kg body 
weight). n = 10. (D) Sperm concentration. Y-axis = sperm concentration (10^8/ml), X-axis = treatment group (mg/kg body weight). n = 10. (E) In vitro 
fertilization rate. Y-axis = % of total oocytes, X-axis = treatment group (mg/kg body weight). n = 10.
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33342 in PBS, and examined under an epifluorescence microscope. 
The parameters analyzed were the percentage of oocytes 
penetrated by one or more spermatozoa (Pen, %; Zapata-Carmona 
et al., 2020).

Boar fecal microbiota analysis

DNA extraction
Total genomic DNA of boar feces was isolated using an 

E.Z.N.A.® Stool DNA Kit (Omega Bio-tek Inc., United States) 
following the manufacturer’s instructions. DNA quantity and 
quality were analyzed using NanoDrop 2000 (Thermo Scientific, 
United States) and 1% agarose gel (Zhang et al., 2020).

Library preparation and sequencing
The V3–V4 region of the 16S rRNA gene was amplified 

using the primers 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) 
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) with 
Barcode. The PCR reactions (total 30 μl) included 15 μl 
Phusion® High-Fidelity PCR Master Mix (New England 
Biolabs), 0.2 mM primers, and 10 ng DNA. The thermal cycle 
was carried out with an initial denaturation at 98°C, followed 
by 30 cycles of 98°C for 10 s, 50°C for 30 s, 72°C for 30 s, and a 
final extension at 72°C for 5 min. PCR products were purified 
using an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, 
United States). The sequencing libraries were constructed with 
NEB Next® UltraTM DNA Library Prep Kit for Illumina (NEB, 
United States) following the manufacturer’s instructions, and 
index codes were added. Then, the library was sequenced on the 
Illumina MiSeq 2,500 platform (Illumina, United States) and 
300 bp paired-end reads were generated at the Novo gene. The 
paired-end reads were merged using FLASH (V1.2.71; Magoč 
and Salzberg, 2011). The quality of the tags was controlled in 
QIIME (V1.7.02); meanwhile, all chimeras were removed 
(Zhang et al., 2020). The “Core Set” of the Greengenes database3 
(DeSantis et al., 2006) was used for classification, and sequences 
with >97% similarity were assigned to the same operational 
taxonomic units (OTUs).

Analysis of sequencing data
OTU abundance information was normalized using a 

standard of sequence number corresponding to the sample with 
the least sequences. The alpha diversity indices were calculated 
with QIIME (Version 1.7.0; Caporaso et al., 2010). Partial least 
squares discrimination analysis (PLS-DA) was performed using R 
software (v2.15.3).

Plasma and sperm metabolites 
determination

Plasma and sperm metabolites were determined by LC–MS/
MS (Zhang et al., 2020). Boar plasma and sperm were collected 

and maintained at −80°C. The protein was removed from the 
samples before LC–MS/MS analysis with ACQUITY UPLC and 
AB Sciex Triple TOF 5600 (LC/MS) as reported previously (Zhang 
et al., 2020).

The conditions for HPLC were: ACQUITY UPLC BEH 
C18 column (100 mm × 2.1 mm, 1.7 μm), solvent A [aqueous 
solution with 0.1% (v/v) formic acid], and solvent B 
[acetonitrile with 0.1% (v/v) formic acid] with a gradient 
program: 0–2 min, 5%–20% B; 2–4 min, 20%–25% B; 4–9 min, 
25%–60% B; 9–17 min, 60%–100% B; 17–19 min, 100% B; 
19–19.1 min, 100%–5% B; and 19.1–20.1 min, 5% B. The flow 
rate was set at 0.4 ml/min and 5 μl was injected. ESI was used 
in the mass spectrometry program. Progenesis QI v.2.3 
(Nonlinear Dynamics, Newcastle, United Kingdom) was used 
to normalize the peaks. Human Metabolome Database 
(HMDB), LIPID MAPS (v. 2.3), and METLIN software were 
used to qualify the data. Furthermore, the data were analyzed 
with SIMCA software (v. 14.0, Umetrics, Umeå, Sweden) and 
the KEGG database1 was used for pathway enrichment  
analysis.

Detection of protein levels and location 
in spermatozoa using 
immunofluorescence staining

The methods for IHF of boar sperm have been reported in 
our previous articles. Boar spermatozoa were fixed in 4% 
paraformaldehyde for 1 h, then the cells were spread onto 
poly-L-lysine coated microscope slides and air-dried. After 
three washings with PBS (5 min each), spermatozoa were 
incubated with 2% (vol/vol) Triton X-100  in PBS for 1 h at 
RT. Then, after three washes with PBS, the cells were blocked 
with 1% (wt/vol) BSA and 1% goat serum in PBS for 30 min at 
RT, followed by incubation with primary antibodies (1:100; 
Supplementary Table S2) diluted in blocking solution 
overnight at 4°C. The following morning, after three washes 
with PBS Tween 20 (0.5%) the slides were incubated with 
Alexa Fluor 546 goat anti-rabbit IgG (1,200) for 30 min in 
darkness at RT. The negative control samples were incubated 
with a secondary antibody and without a primary antibody. 
Slides were washed with PBS Tween-20 three times and then 
incubated with DAPI (4.6-diamidino-2-phenylindole 
hydrochloride, 100 ng/ml) as a nuclear stain for 5 min. After a 
brief wash with ddH2O, the slides were covered with an anti-
fading mounting medium (Vector, Burlingame, United States). 
Fluorescence images were obtained with a Leica Laser 
Scanning Confocal Microscope (LEICA TCS SP5 II, Germany; 
Zhao et al., 2016; Zhang et al., 2020).

1 http://www.genome.jp/KEGG/pathway.html
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Determination of protein levels by 
western blotting

The procedure for Western blotting analysis of boar sperm 
proteins is reported in our previous publications (Zhao et  al., 
2016; Zhang et al., 2020). Briefly, sperm cells were lysed in RIPA 
buffer containing the protease inhibitor cocktail from Sangon 
Biotech, Ltd. (Shanghai, China). Protein concentration was 
determined using a BCA kit (Beyotime Institute of Biotechnology, 
Shanghai, China). Actin was used as a loading control. The 
primary antibodies (Abs) are listed in Supplementary Table S2. 
Secondary donkey anti-goat Ab (Cat no.: A0181) was purchased 
from Beyotime Institute of Biotechnology (Shanghai, P.R. China), 
and goat anti-rabbit (Cat no.: A24531) Abs were bought from 
Novex® by Life Technologies (United States). Fifty micrograms of 
total protein per sample were loaded onto 10% SDS polyacrylamide 
electrophoresis gels. The gels were transferred to a polyvinylidene 
fluoride (PVDF) membrane at 300 mA for 2.5 h at 4°C. Then, the 
membranes were blocked with 5% BSA for 1 h at RT, followed by 
three washes with 0.1% Tween-20 in TBS (TBST). The membranes 
were incubated with primary Abs diluted at 1:500 in TBST with 
1% BSA overnight at 4°C. After three washes with TBST, the blots 
were incubated with the HRP-labeled secondary goat anti-rabbit 
or donkey anti-goat Abs, respectively, for 1 h at RT. After three 
washes, the blots were imaged.

Statistical analysis

All data were expressed as mean ± standard deviation (SD). 
Data were determined by SPSS statistical software (IBM Co., NY) 
with one-way analysis of variance (ANOVA), followed by LSD 
multiple comparison test. Graphs were created using GraphPad 
Prism 5.20 (GraphPad Software Inc., La Jolla, CA, United States). 
All groups were compared with each other for every parameter. 
p < 0.05 was considered to be significant.

Data availability

The microbiota raw sequencing data generated in this study 
has been uploaded to the NCBI SRA database with the accession 
number GSE178723.

Results

Impact of AOS on boar semen quality 
and in vitro fertility potential

After 9 weeks of feeding (Figure  1A), the AOS10 group 
showed significantly increased sperm motility from 87.8% to 
93.5% (Figure 1B; p < 0.05). The semen volume per boar per day 
(204 ml/ejaculation vs. 176 ml/ejaculation; p = 0.612) and the 

concentration (5.6 × 10^8/ml vs. 5.0 × 10^8/ml; p = 0.137) of 
sperm also showed an increasing trend in AOS10 over CON while 
the difference was not significant (Figures 1C,D). Moreover, the in 
vitro fertilization rate was also higher in AOS10 (58.6%) than in 
CON (52.1%; Figure 1E) while it was not significant.

Effects of AOS on boar sperm quality and 
sperm metabolism

To understand the mechanisms underlying the AOS 
improvement of semen quality, we explored the protein levels of 
important genes for sperm quality. AOS10 increased the protein 
levels of gelsolin (1.61-fold), p-AKT (phosphorylated protein 
kinase B; 1.48-fold), protein kinase A (PKA; 1.95-fold), and 
Zn-alpha2 glycoprotein (ZAG; 2.05-fold) according to IHF 
detection (Figures 2A,B; *p < 0.05). The data for these protein 
levels were confirmed by western blotting analysis. Moreover, the 
levels of the other four sperm proteins such as cation channel 
sperm-associated protein (CatSper; 2.12-fold), outer dense fiber 
of sperm tails 2 (ODF2; 1.42-fold), p-ERK1 (phosphorylated 
extracellular signal-regulated kinase; 1.51-fold 1), and 
Phosphoinositide-3-Kinase (PI3K; 1.47-fold) were also elevated in 
AOS10 over CON (Figures 2C,D; *p < 0.05).

There were 1,031 metabolites detected in the boar sperm 
samples (Supplementary Figure S1; Supplementary Table S3). The 
OPLS-DA analysis showed that the AOS10 and CON groups were 
well separated (Supplementary Figure S1A). Twenty-eight 
metabolites were significantly different in AOS10 compared to 
CON (Figure  3A; Supplementary Tables S4, S5). Nine of the 
significantly increased metabolites including β-leucine, 
D-glutamic acid, γ-glutamylthreonine, L-lysine, L-norleucine, 
L-proline, methionine sulfoxide, O-acetylserine, and tyrosyl-
glutamate are shown in Figure 3B (1.2–1.6folds; p < 0.05). Some of 
the significantly decreased metabolites (such as 
2-hydroxylfelbamate, 14,15-diHETrE, heptadecanoic acid, and 
methyl hexadecenoic acid) are shown in Figure 3C (5%–10%; 
p < 0.05). These 28 metabolites were well correlated with sperm 
motility, sperm concentration, and sperm volume (Figure 3D), 
with the increased metabolites in AOS10 being positively 
correlated with these sperm parameters, while the decreased 
metabolites in AOS10 were negatively correlated. At the same 
time, the metabolites were well correlated with each other 
(Supplementary Figure S1D).

Impact of AOS on boar blood 
metabolism

There were 1,087 metabolites detected in boar plasma 
samples (Supplementary Figure S2; Supplementary Table S6). 
The OPLS-DA analysis showed that the AOS10 and CON 
groups were well separated (Supplementary Figure S2A). 
Eighteen metabolites were significantly different in AOS10 
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compared with CON (Figure 4A; Supplementary Tables S7, S8). 
Functional enrichment of these metabolites showed that they 
were involved in amino acid metabolism and retinol 
metabolism (Figure 4B). Some of the significantly changed 
metabolites are shown in Figure 4C. 11-cis-retinol, betaine, 
5-hydroxy-indoleacetaldehyde, N1-methyl-2-pyridone-5-
carboxamide, and quinolinic acid were increased from 
1.5–2.4-fold (p < 0.05), while iminoaspartic acid was decreased 
(45%, p < 0.05). At the same time, these metabolites were well 
correlated with each other (Supplementary Figure S2C). 
Moreover, the significantly changed blood metabolites and the 

significantly changed sperm metabolites were well correlated 
(Figure 4D; Supplementary Table S9).

Effects of AOS on boar gut microbiota

AOS10 affected the gut microbiota composition (Figure 5; 
Supplementary Figure S3). At the phylum level, compared to 
CON, AOS10 increased the relative abundances of Bacteroidetes 
(1.21fold; p > 0.05), decreased the levels of Firmicutes (Figure 5B; 
p > 0.05), and increased the ratio of Bacteroidetes/Firmicutes 

A

C D

B

FIGURE 2

The influence of AOS on the protein expression in boar sperm. (A) Sperm protein levels of important genes for semen quality as detected 
by immunofluorescence staining. N  > 6. (B) Quantitative data for immunofluorescence staining. Y-axis = fold change to CON, 
X-axis = treatment group (mg/kg body weight). *p  < 0.05. (C) Sperm protein levels of important genes for semen quality as detected by 
Western blotting. N  > 3. (D) Quantitative data for western blotting analysis. Y-axis = fold change to CON, X-axis = treatment group (mg/kg 
body weight). *p  < 0.05.
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(Supplementary Figure S3E) in boar fecal samples. Moreover, at 
the class level, the microbiota and sperm motility were well 
correlated and Bacteroidetes was positively correlated with sperm 
motility; meanwhile, Firmicutes was negatively correlated with 
sperm motility (Figure 5C). At the genus level, AOS10 increased 
the relative abundances of several beneficial bacteria: 
Bifidobacterium (1.51-fold), Coprococcus (2.33-fold), and 
Butyricicoccus (1.33-fold). (Figure  5D; p > 0.05). Moreover, 
Coprococcus was positively correlated with sperm motility 
(Figure 5E), while Intestinimonas and Lactobacillus were positively 
correlated with both sperm motility and concentration 
(Figure 5E).

Furthermore, sperm metabolites and fecal microbiota were 
well correlated (Figure 6A; Supplementary Table S10). Sperm 
metabolites increased in the AOS10 group were positively 
correlated with the beneficial microbiota Bifidobacterium, 
Coprococcus, and Butyricicoccus (Figure 6A). Similarly, blood 
metabolites and fecal microbiota were well correlated 
(Figure  6B; Supplementary Table S11), and the blood 
metabolites increased in AOS10 were positively correlated with 

the beneficial microbiota Bifidobacterium, Coprococcus, and 
Lactobacillus (Figure 6B).

Impact of AOS10 on semen quality for a 
long time

AOS had a long-term beneficial improvement on boar semen 
quality by the increase in the semen volume (175 vs. 160 ml/ 
ejaculation, p < 0.05) and sperm motility, while the decrease in the 
percentage of abnormal sperm after another 2 months on basal 
diet (without AOS addition; Figures  7A–C). The sperm 
concentration was in an increased trend in AOS10 group 
compared to CON (Figure 7D; p = 0.185).

Discussion

AOS have been used in many different perspectives as anti-
inflammation (Moriya et  al., 2013), anti-apoptosis 

A B
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D

FIGURE 3

The impacts of AOS on boar sperm metabolome. (A) Heatmap of changed sperm metabolites. The sperm metabolites were determined by LC–
MS/MS. (B) List of AOS increased sperm metabolites. Y-axis = relative amount, X-axis = treatment group (mg/kg body weight). (C) List of AOS 
decreased sperm metabolites. Y-axis = relative amount, X-axis = treatment group (mg/kg body weight). (D) Correlation of sperm metabolites and 
sperm concentration, volume, and motility.
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(Tusi et al., 2011), anti-proliferation (Tajima et al., 1999), and even 
anti-cancer chemicals (Wan et al., 2017) because of the highly 
desired natural properties (non-immuno-genicity, 
biodegradability, and non-toxicity). AOS decrease the production 
of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines, 
and block the expression of toll-like receptor 4 and nuclear factor 
(NF)-κB to prevent neuroinflammation or neurodegenerative 
diseases (such as Alzheimer’s disease; Zhou et al., 2015). Wan and 
coauthors reported that AOS improved antioxidant levels and 
increased piglet growth rates (Wan et al., 2017, 2018a,b). AOS 
benefited intestinal epithelial cell growth and differentiation to 
improve livestock growth rates (Zhao et al., 2020a). Moreover, 

AOS improved busulfan disrupted spermatogenesis in mice (Zhao 
et al., 2020b). In the current investigation, we found that AOS 
10 mg/kg could benefit boar sperm motility. The difference 
between AOS10 and CON was small, which may be because the 
boars used in this investigation were at an optimal age for sperm 
production; therefore, the room for improvement in these 
parameters was limited. However, altogether, the data suggested 
that AOS has the potential to improve boar semen quality and 
fertility. Moreover, AOS increased the levels of important proteins 
in boar sperm such as gelsolin, ODF2, PKA, AKT, etc. All these 
proteins play important roles in sperm function or fertility (Lee, 
2012; Liu et al., 2012; Finkelstein et al., 2013; Zhao et al., 2016; 
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FIGURE 4

The effects of AOS on boar blood metabolome. (A) Heatmap of changed blood metabolites. The blood metabolites were determined by LC–MS/
MS. (B) KEGG enriched pathways of changed blood metabolites. (C) List of AOS changed blood metabolites. Y-axis = relative abundance, 
X-axis = treatment group (mg/kg body weight). (D) Correlation of blood metabolites and sperm metabolites.
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Sun et al., 2017). The data here indicated that AOS10 improved 
boar sperm quality. The data indicated that AOS could be used as 
a dietary additive for boars to improve their semen quality.

Gut microbiota play many physiological roles not limited 
to metabolic-related disorders such as obesity and diabetes 
(Bouter et  al., 2017; Liu et  al., 2017b), but also including 

A
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FIGURE 5

The influence of AOS on boar gut microbiota. (A) Differences of bacterial abundance at the genus level. Y-axis = relative abundance, 
X-axis = treatment group (mg/kg body weight). (B) Differences of bacterial abundance at the class level. (C) Correlation of bacterial abundance at 
the class level with sperm motility and concentration. (D) Representative differences of bacterial abundance at the genus level. Y-axis = relative 
abundance, X-axis = treatment group (mg/kg body weight). (E) Correlation of bacterial abundance at the genus level with sperm motility and 
concentration.
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nervous system and reproductive system-related diseases or 
conditions (Dai et al., 2015). Previously, we found that AOS 
benefited gut microbiota by the increase in the “beneficial” 
bacteria while the decrease in “harmful” bacteria in murine 
small intestines to rescue cell development (Zhang et  al., 
2020). Gut microbiota metabolize nutrients in the intestine 
and regulate intestinal metabolites to influence the blood 
metabolome (Tajima et al., 1999; Tusi et al., 2011). In turn, 
while traveling through body organs, blood metabolites can 
influence their development or induce disorders (Dai et al., 
2015). It is known that metabolic regulation is essential for 
spermatogenesis (Cheng et al., 2010; Rato et al., 2010, 2012), 
and cholesterol and lipid homeostasis play a vital role in male 
fecundity (Cross, 1998; Ergün et  al., 2007; Maqdasy et  al., 
2013; Lu et  al., 2016; Kim et  al., 2017). Sertoli cells act as 
nurse cells, providing the nutrients and energy for the process 
of spermatogenesis. Many other components such as 
hormones and endogenous or exogenous factors have a 
synergistic role in the homeostasis of metabolism in the testis 

and the progression of spermatogenesis (Rato et al., 2012). It 
has been shown that abnormal lipid metabolism in the 
reproductive system or blood contributes to human male 
infertility (Ergün et al., 2007; Lu et al., 2016; Kim et al., 2017). 
AOS could improve busulfan-damaged homeostasis of lipid 
metabolism in murine blood (Zhang et  al., 2020). In the 
current investigation, the relative abundances of beneficial 
bacteria, such as Lactobacillus, were increased (1.35-fold), 
and the ratio of Bacteroidetes/Firmicutes was elevated by 
AOS. At the same time, AOS benefited boar sperm and blood 
metabolites by increasing levels of proline, lysine, retinol, 
betaine, etc. All the data indicated that AOS can boost boar 
semen quality through improving the gut microbiota, blood, 
and testicular metabolites.

The very interesting finding in the current study was that 
AOS benefited gut microbiota can continuingly improve boar 
semen quality after AOS treatment followed by 8 weeks of basal 
diet (without AOS supplementation). Because AOS cannot 
be directly absorbed into blood to reach the organs to affect 
their functions (Liu et al., 2019), the beneficial effects of AOS 
on sperm metabolites and semen quality may be due to the 
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FIGURE 6

(A) Correlation of sperm metabolites with fecal microbiota. 
(B) Correlation of blood metabolites with fecal microbiota.
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FIGURE 7

Long-term effects of AOS on boar semen quality. After AOS 
supplementation, boars were fed with basal diet for 8 weeks. 
Semen quality was determined every 5 days for 2 months (no 
AOS supplementation). (A) Semen volume. Y-axis = volume 
(ml), X-axis = treatment group (mg/kg body weight). 
(B) Abnormal sperm. Y-axis = % of total cells, X-axis = treatment 
group (mg/kg body weight). (C) Sperm motility. Y-axis = % of 
total cells, X-axis = treatment group (mg/kg body weight). 
(D) Sperm concentration. Y-axis = sperm concentration (10^8/
ml), X-axis = treatment group (mg/kg body weight). n  = 10, 
*p  < 0.05.
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benefited gut microbiota. Otherwise, the effects cannot last for 
so long time. The data in the current investigation and our 
previous reports confirm that AOS benefit gut microbiota in 
mice and boars, and the benefited gut microbiota to increase 
semen quality.

Conclusion

In summary, the beneficial impact of AOS on boar semen 
quality possibly through the positive changes in the gut microbiota 
and plasma/sperm metabolism was revealed. These improvements 
will large litter sizes and increase the economical supply of porcine 
meat for global consumption.
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SUPPLEMENTARY FIGURE S1

Sperm metabolite data. (A) PCA of sperm metabolites. (B) Quality control 
of sperm metabolite data. (C) Enriched pathways of changed sperm 
metabolites. (D) Correlation of sperm metabolite with each other.

SUPPLEMENTARY FIGURE S2

Blood metabolite data. (A) PCA of blood metabolites. (B) Quality control 
of blood metabolite data. 
(C) Correlation of blood metabolite with each other.

SUPPLEMENTARY FIGURE S3

Fecal microbiota data. (A) Quality control of fecal microbiota data. 
(B) The alpha index of the fecal microbiota. (C) PCA of blood metabolites. 
(D) LDA distribution and Cladogram. Linear discriminate analysis effect 
size (LEfSe) was performed to determine the difference in abundance; 
the threshold of LDA score was 4.0. (E) The ratio of Bacteroidetes/
Firmicutes.
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