
Aplikace matematiky

Antanas Žilinskas
Algorithm. 44. MIMUN. Optimization of one-dimensional multimodal functions in
the presence of noise

Aplikace matematiky, Vol. 25 (1980), No. 3, 234–240

Persistent URL: http://dml.cz/dmlcz/103855

Terms of use:
© Institute of Mathematics AS CR, 1980

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/103855
http://dml.cz

SVAZEK 25 (1980) APL! KACE MATEM ATI KY ČÍSLO 3

ALGORITMUS

44. MIMUN

OPTIMIZATION OF ONE-DIMENSIONAL MULTIMODAL FUNCTIONS
IN THE PRESENCE OF NOISE

ANTANAS ŽILINSKAS

Institute of mathematics and cybernetics, Academy of sciences of the Lithuanian SSR,
Lenino pr. 3, 232600, Vilnius, USSR

The problems of minimization in the presence of noise occur in various fields of
science and engineering. But, as far as it is known to the author, among the currently
available issues there is not a single publication of a computer program for solving
such problems. A rather efficient and quick-operating algorithm for one-dimensional
multimodal minimization in the presence of noise is proposed in [1]. This algorithm
is based on the usage of a Wiener process for a statistical model of an objective
function [2]. The results of investigation of a former version of this algorithm are
given in [3], [4]. The algorithm for one-dimensional multimodal minimization
without noise based on similar assumptions [5] is more efficient than other algorithms
of analogous destination as shown in [6]. Only a brief description of this algorithm
is given here to explain the meaning of formal parameters while its full description
is given in [1].

Let a function f(x), a ^ x g b, be minimized where only the values z(xt) =
— f(xt) + £i m a y t>e observed where £t are independent Gaussian random numbers
(noise), whose mean is equal to zero and the dispersion is of, i being the number
of observation. Before the minimization the variance analysis of the results ztj is

m carried out, where z{j = z(x(i)), x(i) = a + (b — a) (i — l)/(m2 — 1), / = 1,
j = 1, ..., m3, i.e. at each point x(i) the objective function z(-) is observed m3 times.
If the hypothesis of equality of f(x(i)) is accepted (the significance level being equal
to 0-05) then the algorithm terminates indicating that the noise level is too high. If
the variance of / (•) is significant then the dispersion of noise and the parameter of
a Wiener process, chosen as a statistical model of an objective function, are estimated
[1]. After that the minimization begins. To simplify the algorithm the lattice xl =
= a + (b — a)(i — l)/(m4 — 1), i = 1, . . . , m4, is substituted for the interval of

234

minimization [a, b\. The additional error caused by discretization of [a, b] may
obviously be reduced to a desirable value choosing sufficiently large m4; the value
m4 = 101 is large enough for many practical problems. The coordinate of the current
observation is defined by the condition of maximum of the expected improvement
[V 3]. The algorithm terminates if the number of objective function evaluations
reaches the maximally allowable amount or if the P-probabiiity of evaluating the
global minimum with given accuracy zx exceeds 0-9; this probability is calculated
according to the chosen statistical model of objective function [1]. Note that in the
case when otJE1 ^ 10 and ot is of the same order as variance o f / (•) , more than a
thousand observations of an objective function are necessary for P to reach 0-9. On
the other hand, if the noise level is not so high, a practically acceptable solution is
usually obtained after 200 — 500 observations [1].

Using this algorithm the following remarks must be taken into account:

1. The variable kmax is the machine dependent constant which is initialised as 19.
If the maximal real number of the user's computer is 10fc where k < 19 then the value
of the variable kmax must be set equal to k.

2. The formal parameter ifault is the failure indicator. The normal termination
of the algorithm is indicated by ifault — 0. If ifault = 1 then the cause of termination
of the algorithm is a too high level of noise, ifault = 2 means that the number of
observations reaches the maximally allowable value. The scale of values of an objec
tive function must be chosen so that | / (x) | does not exceed 10x where K = kmaxjl;
the violation of this condition is indicated as ifault = 3. The termination with
ifault = 4 means that the variance of the objective function is insignificant as shown
by the results before the minimization investigation; the scale of the values of an
objective function must be changed or the different number of points m2 must be
taken (for example, 2m2 + 1).

3. The algorithm calls the auxiliary real procedure ndtr, which is the ALGOL
version of SUBROUTINE NDTR [7] and which calculates the value of the Gaussian
distribution function.

Algorithm mimun:

procedure mimun(be, en, sn\, am, m,f, el, e, nf, xm, ym, ifault,
anm, b, c, y);

. start of interval of optimization,

. end of interval of optimization,
. . if(Snl > 0) then sn\ is variance of noise,

if(snl rg 0) then variance of noise to be
evaluated by algorithm,

input . . . if am = 1 then minimization,
if am = — 1 then maximization,

235

comment: be . . . input
en . . . input
snì . . . input

/ . .. input .
e\ . . . input .

e . . output

nf . . . output
xm . . . output
ym . . . output

m . . . input . . . m[1] . . . maximal alowed number of
observations of objective function f,
m[2] . . . number of observation points for
parameters estimation, it is recommended = 6,
m[3] . . . number of observations at each
point for parameters estimation,
it is recommended = 5,
m[4] . . . number of points of lattice.
it is recommended = 101,
objective function,
if (el = 0) then e\ is required accuracy of ym,
if(el < 0) then required accuracy is equal
to sqrt(variance of noisejabs(e\)),
. estimation of mean-root-square error of ym,
. number of observations off
. estimation of optimum point,
. estimation of optimum,

ifault .. . output . . . failure indicator
anm, b, c, y . . . workspace, dimension of these arrays _ m [4];

value be, en, sn\, am, e\; integer nf, ifault;
real be, en, sn\, am, e\, e, xm, ym; integer array m;
array anm, b, c, y; real procedure f;
begin integer n, kmax, k, k\, n\, n2,j, k3, k4, km, km2;
real dt, cv, eps2, an, pp, amax, ym\, p\, p2, p3, p4, p5, p6, cv2, ym2, sn2,
aw, av\, av2, am\, v\, v2, c\, c2, pr, pr\, ppab, va, d, d\,
a\\, a\2, a2\, a22, eb, sf, eps\, eps3;
real procedure av(k, co);
comment: auxiliary procedure for mimun: calculates
conditional mean and variance of Wiener process;
integer k; real co;

begin integer i; real a, p;
a := y[k]; p := b[k]; co := 1.0; i := k;
for i : = i — 1 while co x eps2 < p A i > 0 do
if <3nm[i] > 0.0 then begin a := a + p x y[f}; co := co + p; p := p x b[i]

end;
p := c[k] ; i := k;
for i : = i + 1 while co x eps2 < p A i _ n do
if anm[/] > 0.0 then begin a := a + p x y_i]', co := co + p; p := p x c[i]

end;
av := a\co;
end av;

real procedure fi(x, nr);

236

value x, nr; integer nr; real x;
comment: auxiliary procedure for mimun;
begin integer k; real a;

a := 0.0; for k := 1 step 1 until nr do a := a 4. f(x);
fi := a\(nr x cv)
end^j;

procedure updata;
comment: auxiliary procedure for mimun:
updates array of parameters c, b;
begin integer k, kl, kp, kp\; real bl, bs, cs;
kp := 1; kpl := n; bs := cs := b[l] := c [n] := 1.0;
for k : = 2 step 1 until n do

begin if anm\k\ > 0.0 then
begin bl := dt\((dt\anm\kp\ + (k — kp) x an x bs) x anm[k]);

bs := bs x bl + 1.0; b[k] := bl; kp := k
end;
kl : = n + 1 - k; if anm[k l] > 0.0 then
begin bl := dt\((dt\anm\kpl\ + (kpl — kl) x an x cs) x anm[k l]) ;

cs := cs x bl + 1.0; c[k l] := bl; kpl := kl J
end

end
end updata;
real procedure ndtr(x); value x; real x;
comment: Gaussian distribution function, algol version of subroutine ndtr:
system/360 scientific subroutine package;
begin real t, d, p, ax; ax := abs(x); t := 1.0/(1.0 + 0.2316419 x ax);
d := 0.3989423 x exp(-x x x/2.0); p := 1.0 - d x t x ((((1.330274 x t -
1.821256) x t + 1.781478) x t - 0.3565638) x t + 0.3193815);
if x > 0 then ndtr : = p else ndfr : = 1.0 — p
end Any other procedure of analogous destination may be used instead of ndtr;
kmax := 19; pp := 2.0; cps2 := 0.001; ifault := 0;
n := m[4]; n\ := m[2]; n2 := m[3]; cv := 1.0; amax := 10 | (kmax 4 - 2 — 1) ;
eb := (en — be)\(n — 1); p2 := p5 := p6 := 0.0; ym\ := amax; an := \\(n — 1);
for k := 1 step 1 until n do begin y\k\ := 0.0; anm[k] := — 1.0/amax end;
for k : = 1 step 1 until nl do

begin p3 := 0.0; for kl := 1 step 1 until n2 do
begin p4 : = fi(be + cb x (((n - 1) x (k - 1)) -- (nl - 1)), 1);
if abs(p4) < amax then begin p3 := p3 + p4; p2 := p2 + p4 x p4 end

else begin ifault := 3; go tofn end
end;

y\k\ := p3\n2; if ym\ > p3 then ym\ := p3;
p5 := p5 + p3; p6 := p6 + p3 x p3

237

end;
nf := n\ x n2; p5 := p5 x p5\nf; p6 := p6/n2; sf := abs(p6 — p5)j(n\ — 1);
if sn\ > 0.0 then sn2 := snl else sn2 := abs(p2 — p6)j(n\ x (n2 — l));
sf : = abs(p6 - p5)j(n\ - 1);
if sf < sn2 x 2.5 then begin ifault := 1; go to fin end;
comment: estimation of parameters;
p\ := y[l]; cv2 := 0.0;
for fc : = 2 step 1 until n 1 do

begin p2 := y[fc]; cv2 := cv2 + (p2 - pi) | 2; pi := p2
end;

cv := sqrt(cv2); if cv < \.0jamax then begin ifault = : 4; go to fin end;
a1* := sn2jcv2;
for fc : = 1 step 1 until n 1 do

begin fcl := ((n - 1) x (fc - 1)) -̂ (nl - 1) + 1;
y[^l] '•— yM/ct)' awm[fcl] : = n2
end;

if cl > 0.0 then cps3 := eljcv else cps3 := sqrt(dtjabs(e\));
eps\ := cps3/pp;
comment: begin of optimization;
yml := yml/(cv x n2); vl := 0.0; updata;
lopt: ppab := 1.0; if vl ^ cpsl then ppab := 0.0; jm2 := av2 := av(l, c2);
km := fcm2 := 1; pr := 0.0;
comment main loop, computing of point of current observations;
for fc : = 1 step 1 until n do

begin if fc < n A anm[/c] > 0.0 then
begin cl := c2; avl := av2; fc3 := fc;
for j := k + 1 step 1 until n do if anm_j~\ > 0.0 then

begin av2 := av(j, c2); if av2 < ym2 then
begin yml := av2; fcm2 := j
end;

fc4 := j ; a l l := 1.0/cl; a l2 := a l l x b[fc3]; a21 := a l l x c[fc3];
a22 := 1.0/c2; goto l\
end

end;
11: d:= (k - fc3)/(fc4 - fc3); d\ := (1 - d); aw := avl x d\ + av2 x d;
va := sqrt(d x d\ x (fc4 - fc3)/(n - 1) + (^1 x (d\ x a l l + d x a2\)\
anm[fc3] + d x (d\ x a\2 + d x a22)/anm[fc4]) x dt);
if fc = fcm2 then v2 := va;
ami := ym\ — aw; p\ := —0.2 x ami ;
comment: computing of probability of finding
global optimum with required accuracy ppab;
if vl < eps\ A va ^ 1.5 x vl A ppab = 0.9 then

238

ppab := ppab x (l — ndtr((am\ — eps3)\va));
comment computing of mean improvement;
va := va x 7.0; if va > p\ then

begin prl := ami x 0.65 x <?xp(-0.443 x (0.75 - am\jva) j 2) +
va x 0.3989 x exp(— (am\ x am\)j(2.0 x va x va));
if prl > pr A va > eps\ then begin km := k; pr := prl end
end

end main loop;
if ppab §; 0.9 then go to 12; d := anm\kni\;
j := 0.1 x d + 1.0; dl := d + j ; p4 : = fi(be + eb x (km - \),j);
if abs(p4) > amfljc then begin ifault := 3; go to fin end;
y[km] := (y[km] x d + am x j x p4)jd\; anm\km] := d l ;
nf := nf + j ; yml := ym2; v\ := v2; updata;
if wf < m[l] then go to lopt; ifault := 2;
12: ym := yml x cv\am; xm := be + (km2 — 1) x eb; e := v2 x pp x cv;
fin:
end;
Example: The test function:
real procedure f(x); value x; real x;
comment: test function for mimun, integer
parameter kun must be declared in driver program
and initialised there as kun = 127;
begin real a, b; integer i;
comment: generation of pseudo-random number a;
kun := kun x 3125; kun := kun - entier(kun\61 \0%%64) x 67108864;
a := kutt/33554432 - 1.0; b := 0.0;
for i : = 1 step 1 until 5 do
b := b — i x sin((i + 1) x x + i);
/ : = a + b
end
was minimized with the input parameters: be = —10.0, en = 10.0, am = 1.0,
sn\ = - 1 . 0 , e\ = - 5 . 0 , m [l] = 5000, m[2] = 6, m[3] = 5, m[4] = 101. The
following results were obtained (computer BESM-6):
xm = 5.800000000, ym = -12.07391983, nf = 86, e = 0.2136057320, ifault = 0.

The FORTRAN codes of this algorithm are available from the author.

References

[1] A. Žilinskas: Two algorithmѕ for onе-dimеnѕional multimodal minimization. Math. Opеrat.
Stat., ѕеr. Optimization (in print).

[2] A. Žilinskas: On ѕtatiѕtiсal modеlѕ for multimodal optimization. Math. Opегat. Stat., ѕег.
Statiѕtiсѕ, 9 (1978), No. 2, 255—266.

239

[3] A.)KuAUHci<ac: OAHornaroBbm oaiiecoBKHH ajrropHTM MHHHMH3auHH OAHOMepHbix 4)VHKIIHH
B npHcyTCTBHH noMex. B c6. TeopHH onrHMaJibHtrx perneHHH, Bbin 1, BHJIBHKDC, 1975, 9—22.

[4] J. Mockus: On Bayesian methods of seeking the extremum and their applications. In Informa
tion Processing 77 (ed. by B. Gilchrist), North Holland, 1977, 195—200.

[5] A. Zilinskas: Optimization of one-dimensional multimodal functions, statistical algorithm
AS133. Applied Statistics, 27 (1978), No. 3, 367-375.

[6] A. Zilinskas: On one-dimensional multimodal minimization. In Trans, of Eight Prague Conf.
on Inform. Theory, Stat. Dec. Funct., Random Processes, vol. B, 1978, 393—402.

[7] System/360 Scientific Subroutine package (360-CM-03X), Version III, New York, 1960—1970.

240

