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SVAZEK 25 (1980) APL! KACE MATEM ATI KY ČÍSLO 3 

ALGORITMUS 

44. MIMUN 

OPTIMIZATION OF ONE-DIMENSIONAL MULTIMODAL FUNCTIONS 
IN THE PRESENCE OF NOISE 

ANTANAS ŽILINSKAS 

Institute of mathematics and cybernetics, Academy of sciences of the Lithuanian SSR, 
Lenino pr. 3, 232600, Vilnius, USSR 

The problems of minimization in the presence of noise occur in various fields of 
science and engineering. But, as far as it is known to the author, among the currently 
available issues there is not a single publication of a computer program for solving 
such problems. A rather efficient and quick-operating algorithm for one-dimensional 
multimodal minimization in the presence of noise is proposed in [1]. This algorithm 
is based on the usage of a Wiener process for a statistical model of an objective 
function [2]. The results of investigation of a former version of this algorithm are 
given in [3], [4]. The algorithm for one-dimensional multimodal minimization 
without noise based on similar assumptions [5] is more efficient than other algorithms 
of analogous destination as shown in [6]. Only a brief description of this algorithm 
is given here to explain the meaning of formal parameters while its full description 
is given in [1]. 

Let a function f(x), a ^ x g b, be minimized where only the values z(xt) = 
— f(xt) + £i m a y t>e observed where £t are independent Gaussian random numbers 
(noise), whose mean is equal to zero and the dispersion is of, i being the number 
of observation. Before the minimization the variance analysis of the results ztj is 

m carried out, where z{j = z(x(i)), x(i) = a + (b — a) (i — l)/(m2 — 1), / = 1, 
j = 1, ..., m3, i.e. at each point x(i) the objective function z(-) is observed m3 times. 
If the hypothesis of equality of f(x(i)) is accepted (the significance level being equal 
to 0-05) then the algorithm terminates indicating that the noise level is too high. If 
the variance of / ( • ) is significant then the dispersion of noise and the parameter of 
a Wiener process, chosen as a statistical model of an objective function, are estimated 
[1]. After that the minimization begins. To simplify the algorithm the lattice xl = 
= a + (b — a)(i — l)/(m4 — 1), i = 1, . . . , m4, is substituted for the interval of 
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minimization [a, b\. The additional error caused by discretization of [a, b] may 
obviously be reduced to a desirable value choosing sufficiently large m4; the value 
m4 = 101 is large enough for many practical problems. The coordinate of the current 
observation is defined by the condition of maximum of the expected improvement 
[V 3]. The algorithm terminates if the number of objective function evaluations 
reaches the maximally allowable amount or if the P-probabiiity of evaluating the 
global minimum with given accuracy zx exceeds 0-9; this probability is calculated 
according to the chosen statistical model of objective function [1]. Note that in the 
case when otJE1 ^ 10 and ot is of the same order as variance o f / ( • ) , more than a 
thousand observations of an objective function are necessary for P to reach 0-9. On 
the other hand, if the noise level is not so high, a practically acceptable solution is 
usually obtained after 200 — 500 observations [1]. 

Using this algorithm the following remarks must be taken into account: 

1. The variable kmax is the machine dependent constant which is initialised as 19. 
If the maximal real number of the user's computer is 10fc where k < 19 then the value 
of the variable kmax must be set equal to k. 

2. The formal parameter ifault is the failure indicator. The normal termination 
of the algorithm is indicated by ifault — 0. If ifault = 1 then the cause of termination 
of the algorithm is a too high level of noise, ifault = 2 means that the number of 
observations reaches the maximally allowable value. The scale of values of an objec
tive function must be chosen so that | / (x) | does not exceed 10x where K = kmaxjl; 
the violation of this condition is indicated as ifault = 3. The termination with 
ifault = 4 means that the variance of the objective function is insignificant as shown 
by the results before the minimization investigation; the scale of the values of an 
objective function must be changed or the different number of points m2 must be 
taken (for example, 2m2 + 1). 

3. The algorithm calls the auxiliary real procedure ndtr, which is the ALGOL 
version of SUBROUTINE NDTR [7] and which calculates the value of the Gaussian 
distribution function. 

Algorithm mimun: 

procedure mimun(be, en, sn\, am, m,f, el, e, nf, xm, ym, ifault, 
anm, b, c, y); 

. start of interval of optimization, 

. end of interval of optimization, 
. . if(Snl > 0) then sn\ is variance of noise, 

if(snl rg 0) then variance of noise to be 
evaluated by algorithm, 

input . . . if am = 1 then minimization, 
if am = — 1 then maximization, 
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comment: be . . . input 
en . . . input 
snì . . . input 



/ . .. input . 
e\ . . . input . 

e . . output 

nf . . . output 
xm . . . output 
ym . . . output 

m . . . input . . . m[1] . . . maximal alowed number of 
observations of objective function f, 
m[2] . . . number of observation points for 
parameters estimation, it is recommended = 6, 
m[3] . . . number of observations at each 
point for parameters estimation, 
it is recommended = 5, 
m[4] . . . number of points of lattice. 
it is recommended = 101, 
objective function, 
if (el = 0) then e\ is required accuracy of ym, 
if(el < 0) then required accuracy is equal 
to sqrt(variance of noisejabs(e\)), 
. estimation of mean-root-square error of ym, 
. number of observations off 
. estimation of optimum point, 
. estimation of optimum, 

ifault .. . output . . . failure indicator 
anm, b, c, y . . . workspace, dimension of these arrays _ m [4]; 

value be, en, sn\, am, e\; integer nf, ifault; 
real be, en, sn\, am, e\, e, xm, ym; integer array m; 
array anm, b, c, y; real procedure f; 
begin integer n, kmax, k, k\, n\, n2,j, k3, k4, km, km2; 
real dt, cv, eps2, an, pp, amax, ym\, p\, p2, p3, p4, p5, p6, cv2, ym2, sn2, 
aw, av\, av2, am\, v\, v2, c\, c2, pr, pr\, ppab, va, d, d\, 
a\\, a\2, a2\, a22, eb, sf, eps\, eps3; 
real procedure av(k, co); 
comment: auxiliary procedure for mimun: calculates 
conditional mean and variance of Wiener process; 
integer k; real co; 

begin integer i; real a, p; 
a := y[k]; p := b[k]; co := 1.0; i := k; 
for i : = i — 1 while co x eps2 < p A i > 0 do 
if <3nm[i] > 0.0 then begin a := a + p x y[f}; co := co + p; p := p x b[i] 

end; 
p := c[k] ; i := k; 
for i : = i + 1 while co x eps2 < p A i _ n do 
if anm[/] > 0.0 then begin a := a + p x y\_i]', co := co + p; p := p x c[i] 

end; 
av := a\co; 
end av; 

real procedure fi(x, nr); 
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value x, nr; integer nr; real x; 
comment: auxiliary procedure for mimun; 
begin integer k; real a; 

a := 0.0; for k := 1 step 1 until nr do a := a 4. f(x); 
fi := a\(nr x cv) 
end^j; 

procedure updata; 
comment: auxiliary procedure for mimun: 
updates array of parameters c, b; 
begin integer k, kl, kp, kp\; real bl, bs, cs; 
kp := 1; kpl := n; bs := cs := b[l] := c [ n ] := 1.0; 
for k : = 2 step 1 until n do 

begin if anm\k\ > 0.0 then 
begin bl := dt\((dt\anm\kp\ + (k — kp) x an x bs) x anm[k]); 

bs := bs x bl + 1.0; b[k] := bl; kp := k 
end; 
kl : = n + 1 - k; if anm[k l ] > 0.0 then 
begin bl := dt\((dt\anm\kpl\ + (kpl — kl) x an x cs) x anm[k l ] ) ; 

cs := cs x bl + 1.0; c[k l ] := bl; kpl := kl J 
end 

end 
end updata; 
real procedure ndtr(x); value x; real x; 
comment: Gaussian distribution function, algol version of subroutine ndtr: 
system/360 scientific subroutine package; 
begin real t, d, p, ax; ax := abs(x); t := 1.0/(1.0 + 0.2316419 x ax); 
d := 0.3989423 x exp(-x x x/2.0); p := 1.0 - d x t x ((((1.330274 x t -
1.821256) x t + 1.781478) x t - 0.3565638) x t + 0.3193815); 
if x > 0 then ndtr : = p else ndfr : = 1.0 — p 
end Any other procedure of analogous destination may be used instead of ndtr; 
kmax := 19; pp := 2.0; cps2 := 0.001; ifault := 0; 
n := m[4]; n\ := m[2]; n2 := m[3]; cv := 1.0; amax := 10 | (kmax 4 - 2 — 1 ) ; 
eb := (en — be)\(n — 1); p2 := p5 := p6 := 0.0; ym\ := amax; an := \\(n — 1); 
for k := 1 step 1 until n do begin y\k\ := 0.0; anm[k] := — 1.0/amax end; 
for k : = 1 step 1 until nl do 

begin p3 := 0.0; for kl := 1 step 1 until n2 do 
begin p4 : = fi(be + cb x (((n - 1) x (k - 1)) -- (nl - 1)), 1); 
if abs(p4) < amax then begin p3 := p3 + p4; p2 := p2 + p4 x p4 end 

else begin ifault := 3; go tofn end 
end; 

y\k\ := p3\n2; if ym\ > p3 then ym\ := p3; 
p5 := p5 + p3; p6 := p6 + p3 x p3 
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end; 
nf := n\ x n2; p5 := p5 x p5\nf; p6 := p6/n2; sf := abs(p6 — p5)j(n\ — 1); 
if sn\ > 0.0 then sn2 := snl else sn2 := abs(p2 — p6)j(n\ x (n2 — l)); 
sf : = abs(p6 - p5)j(n\ - 1); 
if sf < sn2 x 2.5 then begin ifault := 1; go to fin end; 
comment: estimation of parameters; 
p\ := y[l]; cv2 := 0.0; 
for fc : = 2 step 1 until n 1 do 

begin p2 := y[fc]; cv2 := cv2 + (p2 - pi) | 2; pi := p2 
end; 

cv := sqrt(cv2); if cv < \.0jamax then begin ifault = : 4; go to fin end; 
a1* := sn2jcv2; 
for fc : = 1 step 1 until n 1 do 

begin fcl := ((n - 1) x (fc - 1)) -̂  (nl - 1) + 1; 
y[^l] '•— yM/ct)' awm[fcl] : = n2 
end; 

if cl > 0.0 then cps3 := eljcv else cps3 := sqrt(dtjabs(e\)); 
eps\ := cps3/pp; 
comment: begin of optimization; 
yml := yml/(cv x n2); vl := 0.0; updata; 
lopt: ppab := 1.0; if vl ^ cpsl then ppab := 0.0; jm2 := av2 := av(l, c2); 
km := fcm2 := 1; pr := 0.0; 
comment main loop, computing of point of current observations; 
for fc : = 1 step 1 until n do 

begin if fc < n A anm[/c] > 0.0 then 
begin cl := c2; avl := av2; fc3 := fc; 
for j := k + 1 step 1 until n do if anm\_j~\ > 0.0 then 

begin av2 := av(j, c2); if av2 < ym2 then 
begin yml := av2; fcm2 := j 
end; 

fc4 := j ; a l l := 1.0/cl; a l2 := a l l x b[fc3]; a21 := a l l x c[fc3]; 
a22 := 1.0/c2; goto l\ 
end 

end; 
11: d:= (k - fc3)/(fc4 - fc3); d\ := (1 - d); aw := avl x d\ + av2 x d; 
va := sqrt(d x d\ x (fc4 - fc3)/(n - 1) + (^1 x (d\ x a l l + d x a2\)\ 
anm[fc3] + d x (d\ x a\2 + d x a22)/anm[fc4]) x dt); 
if fc = fcm2 then v2 := va; 
ami := ym\ — aw; p\ := —0.2 x ami ; 
comment: computing of probability of finding 
global optimum with required accuracy ppab; 
if vl < eps\ A va ^ 1.5 x vl A ppab = 0.9 then 
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ppab := ppab x (l — ndtr((am\ — eps3)\va)); 
comment computing of mean improvement; 
va := va x 7.0; if va > p\ then 

begin prl := ami x 0.65 x <?xp(-0.443 x (0.75 - am\jva) j 2) + 
va x 0.3989 x exp( — (am\ x am\)j(2.0 x va x va)); 
if prl > pr A va > eps\ then begin km := k; pr := prl end 
end 

end main loop; 
if ppab §; 0.9 then go to 12; d := anm\kni\; 
j := 0.1 x d + 1.0; dl := d + j ; p4 : = fi(be + eb x (km - \),j); 
if abs(p4) > amfljc then begin ifault := 3; go to fin end; 
y[km] := (y[km] x d + am x j x p4)jd\; anm\km] := d l ; 
nf := nf + j ; yml := ym2; v\ := v2; updata; 
if wf < m[ l ] then go to lopt; ifault := 2; 
12: ym := yml x cv\am; xm := be + (km2 — 1) x eb; e := v2 x pp x cv; 
fin: 
end; 
Example: The test function: 
real procedure f(x); value x; real x; 
comment: test function for mimun, integer 
parameter kun must be declared in driver program 
and initialised there as kun = 127; 
begin real a, b; integer i; 
comment: generation of pseudo-random number a; 
kun := kun x 3125; kun := kun - entier(kun\61 \0%%64) x 67108864; 
a := kutt/33554432 - 1.0; b := 0.0; 
for i : = 1 step 1 until 5 do 
b := b — i x sin((i + 1) x x + i); 
/ : = a + b 
end 
was minimized with the input parameters: be = —10.0, en = 10.0, am = 1.0, 
sn\ = - 1 . 0 , e\ = - 5 . 0 , m [ l ] = 5000, m[2] = 6, m[3] = 5, m[4] = 101. The 
following results were obtained (computer BESM-6): 
xm = 5.800000000, ym = -12.07391983, nf = 86, e = 0.2136057320, ifault = 0. 

The FORTRAN codes of this algorithm are available from the author. 
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