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1. INTRODUCTION 

LSQR finds a solution x to the following problems: 

Unsymmetr ic  equations: solve A x  = b (1.1) 

Linear  least squares: minimize [[ A x  - b [[ 2 (1.2) 

where A is a matr ix  with m rows and n columns, b is an m-vector,  ~ is a scalar, 
and the  given data  A, b, ), are real. The  matr ix  A will normally be large and 
sparse. It  is deemed by means  of a user-writ ten subrout ine APROD,  whose 
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Table I. Comparison of CGLS and LSQR 

Storage Work per iteration 

CGLS, h = 0 2m 4- 2n 2m + 3n 
CGLS, )~ ~ 0 2m 4- 2n 2m + 5n 
LSQR, any )~ m 4- 2n 3m 4- 5n 

essential function is to compute  products  of the form A x  and AWy for given 
vectors  x and y. 

Problems (1.1) and (1.2) are t rea ted  as special cases of (1.3), which we shall 
write as 

An earlier successful me thod  for such problems is the conjugate-gradient  me thod  
for least squares systems given by  Hestenes  and Stiefel [3]. (This me thod  is 
described as algori thm CGLS in [6, sect. 7.1].) CGLS and LSQR are i terative 
methods  with similar quali tat ive properties.  The i r  computat ional  requirements  
are summarized in Table  I. In addit ion they  require a product  A x  and a product  
ATy each iteration. 

In order  to achieve the storage shown for LSQR, we ask the user to implement  
the matr ix-vector  products  in the form 

y ,,-- y + A x  and x (-- x + ATy, (1.5) 

where <--- means  tha t  one of the given vectors is overwri t ten by the expression 
shown. (A paramete r  specifies which expression the user 's  subroutine APROD 
should compute  on any given entry.) We see tha t  LSQR has a storage advantage 
if the  operat ions (1.5) can be performed with no additional storage beyond tha t  
required to represent  A. For  least squares applications with many  observations 
(m >> n), this could be useful. 

T h e  work shown in Table  I is the number  of floating-point multiplications per 
i teration, excluding the work involved in the  products  Ax,  AWy. Since CGLS is 
somewhat  more  efficient, we would not  discourage using tha t  me thod  whenever  
A or A is well conditioned. However,  LSQR is likely to obtain a more  accurate 
solution in fewer i terations i f .4  is modera te ly  or severely ill-conditioned. 

Le t  ~k = b - / i x k  be the residual vector  associated with the k th  iteration. LSQR 
provides est imates  of ][ xk IJ 2, II ~k ]] 2, [] -4T~k H 2, the norm of.4,  the condition number  
of .4, and s tandard  errors for the components  of x. The  last two i tems require a 
fur ther  2n multiplications per i terat ion and an additional n-vector  of storage. 

Subrout ine  LSQR is wri t ten in the  P F O R T  subset of American Nat ional  
S tandard  FORTRAN.  I t  contains no machine-dependent  constants. Auxiliary 
routines required are APROD, NORMLZ,  SCOPY, SNRM2, and SSCAL. The  
last three  correspond to members  of the BLAS collection [5]. 

2. MATHEMATICAL BACKGROUND 

Algorithmic details are given in [6], mainly for the case ~ = 0. We summarize 
these here  with ~ reintroduced,  and show tha t  a given value of :k m a y  be dealt  
with at  negligible cost. The  vector  norm I] v ]] 2 = (vTv) 1/2 is used throughout .  
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LSQR uses an algorithm of Golub and Kahan  to reduce A to lower bidiagonal 
form. The  quantities produced from A and b after k + 1 steps of the bidiagonal- 
ization (procedure Bidiag 1 [6]) are 

Uk+l  ~ [UI~ U2~ - - .  ~ Uk+l]~ 

Vk+l  = [Vl ,  V2, • • . ,  Vk+l], 
B k  ~-- 

(XI 
~2 O~2 

fi3 " 

~k+l  

(2.1) 

The  k t h  approximation to the solution x is then defined to be xk  = V~yk ,  where 
yk solves the subproblem 

(2.2) 

Lett ing the associated residual vectors be 

tk+l = fi le1 - B k y k  

rk = b - A x k  (2.3) 

we find tha t  the relations 

rk = Uk+ltk+l (2.4) 

AWrk = h2Xk + Olk+lgk+lVk+l 

will hold to machine accuracy, where rk+~ is the last component  of tk+~, and we 
therefore conclude tha t  (rk, xD will be an acceptable solution of (1.4) if the 
computed value of either II th+l II or I ak+lVk+l I is suitably small. 

Bjorck [1] has previously observed tha t  subproblem (2.2) is the appropriate 
generalization of minll B k y k  -- fl~el II, when X ~ 0. He also discusses methods  for 
computing yk and xk efficiently for various ~ and k. 

In LSQR we assume tha t  a single value of )~ is given, and to save storage and 
work, we do not  compute yk, rk, or tk+~. The orthogonal factorization 

qk J 
(2.5) 

is computed ( Q T Q k  = I ;  R k  upper bidiagonal, k x k) and this would give R k y k  = 
DTDT V[ and form xk  D k f k .  fk, but  instead we solve ~h k = = 

The factorization (2.5) is formed similarly to the case )t = 0 in [6], except tha t  
two rotat ions are required per step instead of one. For k --- 2, the factorization 
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proceeds according to 

2 0/2 

X 

I pl 8= 61] 

-'* f13 

~2 O/2 j~2 ~2 

p~ e2 
p2 

pl 

62 

Note that  the first ~ is rotated into the diagonal element a~. This alters the right- 
hand side fl~e~ to produce ~1, the first component  of qk. An alternative is to rotate 

into f12 (and similarly for later h), since this does not affect the right-hand side 
and it more closely simulates the algorithm that  results when LSQR is applied to 

and 5 directly. However, the rotations then have a greater effect on Bk, and in 
practice the first option has proved to give marginally more accurate results. 

The  estimates required to implement the stopping criteria are 

II kU = = Ilrkll 2 + X=llxkll = = + Ilqkll =, 

']'4T~*]l ffi l]ATr~-- X2X*l' = ] ak÷~Bk+~k ] " o k  

This is a simple generalization of the case h ffi 0. No additional storage is needed 
for qk, since only its norm is required. In short, although the presence of h 
complicates the algorithm description, it adds essentially nothing to the storage 
and work per iteration. 

3. REGULARIZATION AND RELATED WORK 

Introducing h as in (1.3) is just one way of "regularizing" the solution x, in the 
sense that  it can reduce the size of the computed solution and make its compo- 
nents less sensitive to changes in the data. LSQR is applicable when a value of 

is known a priori. The  value is entered via the subroutine parameter DAMP. A 
second method for regularizing x is available through LSQR's parameter ACOND, 
which can cause iterations to terminate before I[ xk [I becomes large. A similar 
approach has recently been described by Wold et al. [9], who give an illuminating 
interpretation of the bidiagonalization as a partial least squares procedure. Their  
description will also be useful to those who prefer the notation of multiple 
regression. 

Methods for choosing X, and other approaches to regularization, are given in 
[1, 2, 4, 8] and elsewhere. For a philosophical discussion, see [7]. 

4. CODING APROD 

The best way to compute y + Ax and x + ATy depends upon the origin of the 
matrix A. We shall illustrate a case that  commonly arises, in which A is a sparse 
matrix whose nonzero coefficients are stored by rows in a simple list. Let A have 
ACM Transactions on Mathematmal Software, Voi. 8, No. 2, June 1982 
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M rows, N columns, and NZ nonzeros. Conceptually we need three arrays 
dimensioned as REAL RA(NZ) and INTEGER JA(NZ), NA(M),.where 

RA(L) is the Lth nonzero of A, counting across row 1, then across row 2, and 
so on; 

JA(L) is the column in which the Lth nonzero of A lies; 
NA(I) is the number of nonzero coefficients in the Ith row of A. 

These quantities may be used in a straightforward way, as shown in Figure 1 (a 
FORTRAN implementation). We assume that they are made available to 
APROD through COMMON, and that  the actual array dimensions are suitably 
large. 

Blank or labeled COMMON will often be convenient for transmitting data to 
APROD. (Of course, some of the data could be local to APROD.) For greater 
generality, the parameter lists for LSQR and APROD include two workspace 
arrays IW, RW and their lengths LENIW, LENRW. LSQR does not use these 
parameters directly; it just passes them to APROD. 

Figure 2 illustrates their use on the same example (sparse A stored by rows). 
An auxiliary subroutine APROD1 is needed to make the code readable. A similar 
scheme should be used to initialize the workspace parameters prior to calling 
LSQR. 

Returning to the example itself, it may often be natural to store A by c o l u m n s  
rather than rows, using analogous data structures. However, we note that  in 
sparse least squares applications, A may have many more rows than columns 
(M >> N). In such cases it is vital to store A by rows as shown, if the machine 
being used has a paged (virtual) memory. Random access is then restricted to 
arrays of length N rather than M, and page faults will therefore be kept to a 
minimum. 

Note also that  the arrays RA, JA, NA are adequate for computing both A x  and 
AWy; we do not need to store A by rows a n d  by columns. 

Regardless of the application, it will be apparent when coding APROD for the 
two values of MODE that the matrix A is effectively being defined twice.  Great 
care must be taken to avoid coding inconsistent expressions y + A l x  and x + 
A T y ,  where either A1 or A2 is different from the desired A. (If A1 ~ As, algorithm 
LSQR will not converge.) Parameters ANORM, ACOND, and CONLIM provide 
a safeguard for such an event. 

5. P R E C O N D I T I O N I N G  

It is well known that  conjugate-gradient methods can be accelerated if a nonsin- 
gular matrix M is available to approximate A in some useful sense. When A is 
square and nonsingular, the system A x  -- b is equivalent to both of the following 
systems: 

( M - 1 A ) x  = c where M c  = b; (5.1) 

( A M - I ) z  -- b where M x  = z. (5.2) 

For least squares systems (undamped), only the analogue of (5.2) is applicable: 

minllAx - b]12 = minll(AM-1)z - bH2, where M x  = z.  (5.3) 
ACM Transac~mns on Mathematical  Software, Vol. 8, No 2, June 1982 
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Fig. 1. Computation ofy  + Ax, 
x + Ary, where A is a sparse 
matrix stored compactly by 
rows. For convenience, the 
data structure for A is held in 
COMMON. 

SUBROUTINE APROD( MODE,M,N,X,Y, 
* LENIW,LENRW,IW,RW ) 

INTEGER MODE,M,N,LENIW,LENRW 
INTEGER IW(LENIW) 
REAL X(N) ,Y(M), RW(LENRW) 

APROD PERFORMS THE FOLLOWING FUNCTIONS: 

IF MODE = I, SET Y = Y + A*X 
IF MODE = 2, SET X " X + A(TRANSPOSE)*Y 

WHERE A IS A MATRIX STORED BY ROWS IN 
THE ARRAYS RA, JA, NA. IN THIS EXAMPLE, 
RA, JA, NA ARE STORED IN COMMON. 

REAL RA 
INTEGER JA, NA 
COMMON RA(9000), JA(9000), NA(I000) 

INTEGER I,J,L,LI,L2 
REAL SUM, YI, ZERO 

ZERO - 0.0 
L2 - 0 
IF (MODE .NE.I) GO TO 400 

MODE - 1 -- SET Y = Y + A*X. 

DO 200 I - I, M 
SUM - ZERO 
L1 " L2 + 1 
L2 " L2 + NA(I) 
DO 100 L " LI, L2 

J .. JA(L) 
SUM - SUM + RA(L)*X(J) 

I00 CONTINUE 
Y(1) = Y(1) + SUM 

200 CONTINUE 
RETURN 

MODE = 2 -- SET X = X + A(TRANSPOSE)*Y. 

400 DO 600 I " I, M 
YI = Y(1) 
L1 " L2 + 1 
L2 " L2 + NA(I) 
DO 500 L " LI, L2 

J " JA(L) 
X(J) " X(J) + RA(L)*YI 

500 CONTINUE 
600 CONTINUE 

RETURN 

END OF APROD 
END 

ACM Transactions on Mathematical Software, Vol 8, ~ No. 2, June 1982. 



SUBROUTINE APROD( MODE,H,N,X,Y, 
* LENIW,LENRW,IW,RW ) 

INTEGER MODE,M,N,LENIW,LENRW 
INTEGER IW(LENIW) 
REAL X(N),Y(M),RW(LENRW) 

APROD PERFORMS THE FOLLOWING FUNCTIONS: 

IF MODE = I, SET Y ffi Y + A*X 
IF MODE - 2, SET X ffi X + A(TRANSPOSE)*Y 

WHERE A IS A MATRIX STORED BY ROWS IN 
THE ARRAYS RA, JA, NA. IN THIS EXAMPLE, 
APROD IS AN INTERFACE BETWEEN LSQR AND 
ANOTHER USER ROUTINE THAT DOES THE WORK. 
THE WORKSPACE ARRAY RW CONTAINS RA. 
THE FIRST M COMPONENTS OF IW CONTAIN NA, 
AND THE REMAINDER OF IW CONTAINS JA. 
THE DIMENSIONS OF RW AND IW ARE ASSUMED 
TO BE SUFFICIENTLY LARGE. 

INTEGER LENJA,LENRA,LOCJA 

LOCJA ffi M + I 
LENJA ffi LENIW - LOCJA + 1 
LENRA ffi LENRW 
CALL APRODI(MODE,M,N,X,Y) 

* LENJA,LENRA,IW,IW(LOCJA),RW ) 
RETURN 

END OF APROD 
END 

Algorithms . 201 

Fig. 2 S a m e  as Figure 1, with 
the data structure for A held 
in the workspace parameters. 

SUBROUTINE APRODI( MODE,M,N,X,Y, 
* LENJA,LENRA,NA,JA,RA ) 

INTEGER 
INTEGER 
REAL 

MODE,M,N,LENJA,LENRA 
NA(M),JA(LENJA) 
X(N),Y(M),RA(LENRA) 

APRODI DOES THE WORK FOR APROD. 

INTEGER I,J,L,LI,L2 
REAL SUM,YI,ZERO 

< the same code as in APROD in Figure 1 > 

END OF APRODI 
END 

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982 
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We note  only t ha t  subroutine L S Q R  may  be appl ied without  change to sys tems  
(5.1)-(5.3). T h e  effect of  M is localized to the user ' s  own subrout ine  APROD.  For  
example,  when  M O D E  -- 1, A P R O D  for the  last  two sys tems  should compute  
y + ( A M - t ) x  by  first solving M w  = x and then  comput ing  y + Aw.  Clearly it mus t  
be possible to solve sys tems  involving M and M T very  efficiently. 

6. O U T P U T  

Subrout ine  L S Q R  produces  pr in ted  ou tpu t  on file N O U T ,  if the  p a r a m e t e r  
N O U T  is positive. Th is  is i l lustrated in Figure 3, in which the  least  squares  
p rob lem solved is P(20, 10, 1, 1) as defined in [6], with a slight generalization to 
include a damping  p a r a m e t e r  )~ = 10 -2. (Single precision was used on an I B M  
370/168.) T h e  i tems printed~at the  k th  i terat ion are as follows. 

I T N  T h e  i terat ion n u m b e r  k. Resul ts  are a lways pr inted for the  
first 10 and  last  10 iterations. In t e rmed ia te  resul ts  are 
pr in ted  if m _< 40 or n ___ 40, or  if one of the  convergence 
condit ions is near ly  satisfied. Otherwise,  informat ion  is 
pr in ted  every  10th i teration. 

X(1) T h e  value of the first e l ement  of  the  approx imate  solution 
Xk. 

F U N C T I O N  T h e  value of the  function being minimized,  namely  [] Fk [I -- 

(11 rk II 2 + x 2 II x ,  112) '/2 
C O M P A T I B L E  A dimensionless  quant i ty  which should converge to zero i f  

and  only i f A x  = b is compat ible .  I t  is an  es t imate  of  II ~k II/ 
II b II, which decreases  monotonical ly.  

I N C O M P A T I B L E  A dimensionless  quan t i ty  which should converge to zero i f  
a n d  only i f  the o p t i m u m  II ~k II is nonzero. I t  is an  es t imate  
of  II i i  T ~ II/(11 t i  II w II Fk II ), which is usual ly not  monotonic .  

N O R M ( A B A R )  A monotonica l ly  increasing es t imate  of  II Li II ~. 
C O N D ( A B A R )  A monotonica l ly  increasing es t imate  of cond(z~) = 

II A II r II/i+ II r ,  the condit ion n u m b e r  of  z{. 
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ALGORITHM 

[A p a r t  o f  t h e  l i s t ing  is p r i n t e d  he re .  T h e  c o m p l e t e  l i s t ing  is a v a i l a b l e  f r o m  t h e  
A C M  A l g o r i t h m s  D i s t r i b u t i o n  S e r v i c e  (see p a g e  227 for  o r d e r  form) . ]  

SUBROUTINE LSQR( M,N,APROD, DAMP, 
i LENIW,LENRW, IW,RW, 
2 U,V,W,X,SE, 
3 ATOL,BTOL,CONLIM, ITNLIM,NOUT, 
4 ISTOP,ANORM,ACOND,RNOI~M,ARNORM, XNOEM ) 

EXTERNAL 
INTEGER 
INTEGER 
REAL 

i 

APROD 
M,N,LENIW, LENRW, ITNLIM,NOUT,ISTOP 
IW(LENIW) 
RW(LENRW),U(M),V(N),W(N),X(N),SE(N), 
ATOL,BTOL, CONLIM, DAMP,ANORM,ACOND, RNORM,ARNORM, XNORM 

io 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

i¢. 
ii. 
12. 

LSQR FINDS A SOLUTION X TO THE FOLLOWING PROBLEMS... 

i. UNSYMMETRIC EQUATIONS -- SOLVE A*X = B 

2. LINEAR LEAST SQUARES -- SOLVE A*X = B 
IN THE LEAST-SQUARES SENSE 

3. DAMPED LEAST SQUARES -- SOLVE ( A )*X ffi ( B ) 
( DAMP*I ) ( ~b ) 

IN THE LEAST-SQUARES SENSE 

WHERE A IS A MATRIX WITH M ROWS AND N COLUMNS, B IS AN 
M-VECTOR, AND DAMP IS A SCALAR (ALL QUANTITIES REAL). 
THE MATRIX A IS INTENDED TO BE LARGE AND SPARSE. IT IS ACCESSED 
BY MEANS OF SUBROUTINE CALLS OF THE FORM 

CALL APROD( MODE,M,N,X,Y,LENIW,LENRW, IW,RW ) 

WHICH MUST PERFORM THE FOLLOWING FUNCTIONS... 

IF MODE ffi i, COMPUTE Y = Y + A*X. 
IF MODE ffi 2, COMPUTE X = X + A(TRANSPOSE)*Y. 

THE VECTORS X AND Y ARE INPUT PARAMETERS IN BOTH CASES. 
IF MODE = i, Y SHOULD BE ALTERED WITHOUT CHANGING X. 
IF MODE = 2, X SHOULD BE ALTERED WITHOUT CHANGING Y. 
THE PARAMETERS LENIW, LENRW, IW, RW MAY BE USED FOR WORKSPACE 
AS DESCRIBED BELOW. 

THE RHS VECTOR B IS INPUT VIA U, AND SUBSEQUENTLY OVERWRITTEN. 
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13. 
14. 
15. 
16. 
17. 
18. 
19. 
2~. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
3#. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
4¢. 
41. 
42. 
43. 
44. 
45. 

1982 
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NOTE. LSQR USES AN ITERATIVE METHOD TO APPROXIMATE THE SOLUTION. 
THE NUMBER OF ITERATIONS REQUIRED TO REACH A CERTAIN ACCURACY 
DEPENDS STRONGLY ON THE SCALING OF THE PROBLEM. POOR SCALING OF 
THE ROWS OR COLUMNS OF A SHOULD THEREFORE BE AVOIDED WHERE 
POSSIBLE. 

FOR EXAMPLE, IN PROBLEM i THE SOLUTION IS UNALTERED BY 
ROW-SCALING. IF A ROW OF A IS VERY SMALL OR LARGE COMPARED TO 
THE OTHER ROWS OF A, THE CORRESPONDING ROW OF ( A B ) SHOULD 
BE SCALED UP OR DOWN. 

IN PROBLEMS i AND 2, THE SOLUTION X IS EASILY RECOVERED 
FOLLOWING COLUMN-SCALING. IN THE ABSENCE OF BETTER INFORMATION, 
THE NONZERO COLUMNS OF A SHOULD BE SCALED SO THAT THEY ALL HAVE 

THE SAME EUCLIDEAN NORM (E.G. i.@). 

IN PROBLEM 3, THERE IS NO FREEDOM TO RE-SCALE IF DAMP IS 
NONZERO. HOWEVER, THE VALUE OF DAMP SHOULD BE ASSIGNED ONLY 
AFTER ATTENTION HAS BEEN PAID TO THE SCALING OF A. 

THE PARAMETER DAMP IS INTENDED TO HELP REGULARIZE 
ILL-CONDITIONED SYSTEMS, BY PREVENTING THE TRUE SOLUTION FROM 
BEING VERY LARGE. ANOTHER AID TO REGULARIZATION IS PROVIDED BY 
THE PARAMETER ACOND, WHICH MAY BE USED TO TERMINATE ITERATIONS 
BEFORE THE COMPUTED SOLUTION BECOMES VERY LARGE. 

NOTATION 

THE FOLLOWING QUANTITIES ARE USED IN DISCUSSING THE SUBROUTINE 
PARAMETERS... 

~ A R  = ( A ) ,  BBAR - ( B )  
( D ~ * I )  ( ~ )  

R = B - A'X, REAR - BBAR - ABAR*X 

RNOEM - SQRT( NORM(R)**2 + DAMP**2 * NORM(X)**2 ) 

= NORM( RBAR ) 

RELPR = THE RELATIVE PRECISION OF FLOATING-POINT ARITHMETIC 
ON THE MACHINE BEING USED. FOR EXAMPLE, ON THE IBM 370, 
RELPR IS ABOUT i. @E-6 AND 1.~D-16 IN SINGLE AND DOUBLE 
PRECISION RESPECTIVELY. 

LSQR MINIMIZES THE FUNCTION RNOEM WITH RESPECT TO X. 

PARAMETERS 

M INPUT THE NIIMBER OF ROWS IN A. 

N INPUT THE NIJM~ER OF COLUMNS IN A. 

APROD EXTERNAL SEE ABOVE. 

DAMP INPUT THE DAMPING PARAMETER FOR PROBLEM 3 ABOVE. 
(DAMP SHOULD BE ~.~ FOR PROBLEMS i AND 2.) 
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LENIW 
LENRW 
IW 
RW 

U(M) 

V(N) 
W(N) 

X(N) 

SE(N) 

ATOL 

BTOL 

CONLIM 
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IF THE SYSTEM A*X = B IS INCOMPATIBLE, VALUES 1@6. 
OF DAMP IN THE RANGE @ TO SQRT(RELPR)*NORM(A) 1@7. 
WILL PROBABLY HAVE A NEGLIGIBLE EFFECT. 1@8. 
LARGER VALUES OF DAMP WILL TEND TO DECREASE 1@9. 
THE NORM OF X AND TO REDUCE THE ~ER OF Ii@. 
ITERATIONS REQUIRED BY LSQR. IIi. 

112. 
THE WORK PER ITERATION AND THE STORAGE NEEDED 113. 
BY LSQR ARE THE SAME FOR ALL VALUES Ol ~ DAMP. 114. 

115. 
INPUT THE LENGTH OF THE WORKSPACE ARRAY !W. 116. 
INPUT THE LENGTH OF THE WORKSPACE ARRAY RW. 117. 
WORKSPACE AN INTEGER ARRAY OF LENGTH LENIW. 118. 
WORKSPACE A REAL ARRAY OF LENGTH LENRW. 119. 

12@. 
NOTE. LSQR DOES NOT EXPLICITLY USE THE PREVIOUS FOUR 121. 
PARAMETERS, BUT PASSES THEM TO SUBROUTINE APROD FOR 122. 
POSSIBLE USE AS WORKSPACE. IF APROD DOES NOT NEED 123. 
IW OR RW, THE VALUES LENIW = i OR LENRW ,, i SHOULD 124. 
BE USED, AND THE ACTUAL PARAMETERS CORRESPONDING TO 125. 
IW OR RW MAY BE ANY CONVENIENT ARRAY OF SUITABLE TYPE. 126. 

127. 
THE RHS VECTOR B. BEWARE THAT U IS 128. 
OVER-WRITTEN BY LSQR. 129. 

13@. 
131. 
132. 
133. 

RETURNS THE COMPUTED SOLUTION X. 134. 
135. 

RETURNS STANDARD ERROR ESTIMATES FOR THE 136. 
COMPONENTS OF X. FOR EACH I, SE(1) IS SET 137. 
TO THE VALUE ENORM * SQRT(SIGMA(I,I) / T ), 138. 
WHERE SIGMA(I,I) IS AN ESTIMATE OF THE I-TH 139. 
DIAGONAL OF THE INVERSE OF ABAR(TRANSPOSE)*ABAR 14@. 
AND T " i IF M .LE. N, 141. 

T ffi M - N IF M .GT. N AND DAMP ffi @, 142. 
T ,, M IF DAMP .NE. @. 143. 

144. 
AN ESTIMATE OF THE RELATIVE ERROR IN THE DATA 145. 
DEFINING THE MATRIX A. FOR EXAMPLE, 146.  
IF A IS ACCURATE TO ABOUT 6 DIGITS, SET 147. 
ATOL " I.@E-6 . 148. 

149. 
AN ESTIMATE OF THE RELATIVE ERROR IN THE DATA 15@. 
DEFINING THE RHS VECTOR B. FOR EXAMPLE, 151. 
IF B IS ACCURATE TO ABOUT 6 DIGITS, SET 152. 
BTOL ffi I.@E-6 • 153. 

154. 
AN UPPER LIMIT ON COND('ABAR), THE APPARENT 155. 
CONDITION NUMBER OF THE MATRIX ABAR. 156. 
ITERATIONS WILL BE TERMINATED IF A COMPUTED 157. 
ESTIMATE OF COND(ABAR) EXCEEDS CONLIM. 158. 
THIS IS INTENDED TO PREVENT CERTAIN SMALL OR 159. 
ZERO SINGUI2d~ VALUES OF A OR ABAR FROM 16@. 
COMING INTO EFFECT AND CAUSING UNWANTED GROWTH 161. 
IN THE COMPUTED SOLUTION. 162. 

163. 
CONLIM AND DAMP MAY BE USED SEPARATELY OR 164. 
TOGETHER TO REGULARIZE ILL-CONDITIONED SYSTEMS. 165. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C ITNLIM INPUT 
C 
C 
C 
C 
C NOUT INPUT 
C 
C 
C ISTOP OUTPUT 
C 
C 0 
C 
C 
C 1 
C 
C 
C 
C 2 
C 
C 
C 
C 
C 3 
C 
C 
C 
C 
C 4 
C 
C 
C 
C 5 
C 
C 
C 
C 
C 6 
C 
C 
C 
C 
C 7 
C 
C ANORM OUTPUT 
C 
C 
C 
C 
C 

166. 
NORMALLY, CONLIM SHOULD BE IN THE RANGE 167. 
1 ~  TO 1/REAR. 168. 
SUGGESTED VALb~ -- 169. 
CONLIM = 1/(100*RELPR) FOR COMPATIBLE SYSTEMS, 170. 
CONLIM - I/(10*SQRT(RELPR)) FOR LEAST SQUARES. 171. 

172, 
NOTE. IF THE USER IS NOT CONCERNED ABOUT THE PARAMETERS 173. 
ATOL, BTOL AND CONLIM, ANY OR ALL OF THEM MAY BE SET 174. 
TO ZERO. THE EFFECT WILL BE THE SAME AS THE VALUES 175. 
RELPR, RELPR AND I/KELPR RESPECTIVELY. 176. 

177. 
AN UPPER LIMIT ON THE NUMBER OF ITERATIONS. 178. 
SUGGESTED VALUE -- 179. 
ITNLIM " N/2 FOR WELL CONDITIONED SYSTEMS, 180. 
ITNLIM - 4*N OTHERWISE. 181. 

182. 
FILE NUMBER FOR PRINTER. IF POSITIVE, 183. 
A SUMMARY WILL BE PRINTED ON FILE NOUT. 184. 

185. 
AN INTEGER GIVING THE REASON FOR TERMINATION... 186. 

187. 
X " 0 IS THE EXACT SOLUTION. 188. 
NO ITERATIONS WERE PERFORMED. 189. 

THE EQUATIONS A*X - B ARE PROBABLY 
COMPATIBLE. NORM(A*X - B) IS SUFFICIENTLY 
SMALL, GIVEN THE VALUES OF ATOL AND BTOL. 

THE SYSTEM A*X = B IS PROBABLY NOT 
COMPATIBLE. A LEAST-SQUARES SOLUTION HAS 
BEEN OBTAINED WHICH IS SUFFICIENTLY ACCURATE, 
GIVEN THE VALUE OF ATOL. 

AN ESTIMATE OF COND(ABAR) HAS EXCEEDED 
CONLIM. THE SYSTEM A*X - B APPEARS TO BE 
ILL-CONDITIONED. OTHERWISE, THERE COULD BE AN 
AN ERROR IN SUBROUTINE APROD. 

THE EQUATIONS A*X - B ARE PROBABLY 
COMPATIBLE. NORM(A*X - B) IS AS SMALL AS 
SEEMS REASONABLE ON THIS MACHINE. 

THE SYSTEM A*X - B IS PROBABLY NOT 
COMPATIBLE. A LEAST-SQUARES SOLUTION HAS 
BEEN OBTAINED WHICH IS AS ACCURATE AS SEEMS 
REASONABLE ON THIS MACHINE. 

COND(ABAR) SEEMS TO BE SO LARGE THAT THERE IS 
NOT MUCH POINT IN DOING FURTHER ITERATIONS, 
GIVEN THE PRECISION OF THIS MACHINE. 
THERE COULD BE AN ERROR IN SUBROUTINE APROD. 

THE ITERATION LIMIT ITNLLM WAS REACHED. 

AN ESTIMATE OF THE FROBENIUS NORM OF ABAE. 
THIS IS THE SQUARE-ROOT OF THE SUM OF SQUARES 
OF THE ELEMENTS OF ABAR. 
IF DAMP IS SMALL AND IF THE COLUMNS OF A 
RAVE ALL BEEN SCALED TO HAVE LENGTH 1.0, 
ANORM SHOULD INCREASE TO ROUGHLY SQRT(N). 

190. 
191. 
192. 
193 • 
194. 
195. 
196. 
197. 
198 • 
199. 
200. 
2~1. 
202. 
203. 
204. 
205. 
206. 
207. 
208. 
209. 
21~. 
211. 
212. 
213. 
214. 
215. 
216. 
217. 
218. 
219. 
220. 
221. 
222. 
223. 
224. 
225. 
226. 
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C 
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C 
C 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 

ACOND OUTPUT 

RNORM OUTPUT 

ARNORM OUTPUT 

XNORM OUTPUT 

Algor i thms • 

A RADICALLY DIFFERENT VALUE FOR ANORM MAY 
INDICATE AN ERROR IN SUBROUTINE APROD (THERE 
MAY BE AN INCONSISTENCY BETWEEN MODES 1 AND 2). 

AN ESTIMATE OF COND(ABAR), THE CONDITION 
NUMBER OF ABAR. A VERY HIGH VALUE OF ACOND 
MAY AGAIN INDICATE AN ERROR IN APROD. 

AN ESTIMATE OF THE FINAL VALUE OF NORM(KBAR), 
THE FUNCTION BEING MINIMIZED (SEE NOTATION 
ABOVE). THIS WILL BE SMALL IF A*X " B HAft 
A SOLUTION. 

AN ESTIMATE OF THE FINAL VALUE OF 
NORM( ABAR(TRANSPOSE)*RBAR ) , THE NORM OF 
THE RESIDUAL FOR THE USUAL NORMAL EQUATIONS. 
THIS SHOULD BE SMALL IN ALL CASES. (ARNORM 
WILL OFTEN BE SMALLER THAN THE TRUE VALUE 
COMPUTED FROM THE OUTPUT VECTOR X. ) 

AN ESTIMATE OF THE NORM OF THE FINAL 
SOLUTION VECTOR X. 

SUBROUTINES AND FUNCTIONS USED 

USER APROD 
LSQR NORMLZ 
BLAS SCOFY,SNRM2,SSCAL (SEE LAWSON ET AL. BELOW) 

(SNRM2 IS USED ONLY IN NORMLZ) 
FORTRAN ABS,MOD, SQRT 

PRECISION 

THE NUMBER OF ITERATIONS REQUIRED BY LSQR WILL USUALLY DECREASE 
IF THE COMPUTATION IS PERFORMED IN HIGHER PRECISION. TO CONVERT 
LSQR AND NORMLZ BETWEEN SINGLE- AND DOUBLE-PRECISION, CHANGE 
THE WORDS 

SCOPY, SNRM2, SSCAL 
ABS, REAL, SQRT 

TO THE APPROPRIATE BLAS AND FORTRAN EQUIVALENTS. 
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