ALGORITHM 583 LSQR: Sparse Linear Equations and Least Squares Problems

CHRISTOPHER C. PAIGE
McGill University, Canada
and
MICHAEL A. SAUNDERS
Stanford University

Categornes and Subject Descriptors: G.1.3 [Numerical Analysis] Numerical Linear Algebra—linear systems (direct and iteratuve methods), G. 3 [Mathematics of Computing]: Probability and Statis-tics-statıstıcal computing, statıstıcal software, G.m [Mathematics of Computing]: Miscella-neous-FORTRAN program unts

General Terms Algonthms
Additional Key Words and Phrases: Analysis of variance, conjugate-gradient method, least squares, linear equations, regression, sparse matrix

1. INTRODUCTION

LSQR finds a solution x to the following problems:

where A is a matrix with m rows and n columns, b is an m-vector, λ is a scalar, and the given data A, b, λ are real. The matrix A will normally be large and sparse. It is defined by means of a user-written subroutine APROD, whose

[^0]© 1982 ACM 0098-3500/82/0600-0195 $\$ 0075$
ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982, Pages 195-209.

Table I. Comparison of CGLS and LSQR

	Storage	Work per iteration
CGLS, $\lambda=0$	$2 m+2 n$	$2 m+3 n$
CGLS, $\lambda \neq 0$	$2 m+2 n$	$2 m+5 n$
LSQR, any λ	$m+2 n$	$3 m+5 n$

essential function is to compute products of the form $A x$ and $A^{\mathrm{T}} y$ for given vectors x and y.

Problems (1.1) and (1.2) are treated as special cases of (1.3), which we shall write as

$$
\min \|\bar{A} x-\bar{b}\|_{2}, \quad \bar{A}=\left[\begin{array}{c}
A \tag{1.4}\\
\lambda I
\end{array}\right], \quad \bar{b}=\left[\begin{array}{l}
b \\
0
\end{array}\right] .
$$

An earlier successful method for such problems is the conjugate-gradient method for least squares systems given by Hestenes and Stiefel [3]. (This method is described as algorithm CGLS in [6, sect. 7.1].) CGLS and LSQR are iterative methods with similar qualitative properties. Their computational requirements are summarized in Table I. In addition they require a product $A x$ and a product $A^{\mathrm{T}} y$ each iteration.

In order to achieve the storage shown for LSQR, we ask the user to implement the matrix-vector products in the form

$$
\begin{equation*}
y \leftarrow y+A x \quad \text { and } \quad x \leftarrow x+A^{\mathrm{T}} y \tag{1.5}
\end{equation*}
$$

where \leftarrow means that one of the given vectors is overwritten by the expression shown. (A parameter specifies which expression the user's subroutine APROD should compute on any given entry.) We see that LSQR has a storage advantage if the operations (1.5) can be performed with no additional storage beyond that required to represent A. For least squares applications with many observations ($m \gg n$), this could be useful.

The work shown in Table I is the number of floating-point multiplications per iteration, excluding the work involved in the products $A x, A^{\mathrm{T}} y$. Since CGLS is somewhat more efficient, we would not discourage using that method whenever A or \bar{A} is well conditioned. However, LSQR is likely to obtain a more accurate solution in fewer iterations if \bar{A} is moderately or severely ill-conditioned.

Let $\bar{r}_{k}=\bar{b}-\bar{A} x_{k}$ be the residual vector associated with the k th iteration. LSQR provides estimates of $\left\|x_{k}\right\|_{2},\left\|\bar{r}_{k}\right\|_{2},\left\|\bar{A}^{\mathrm{T}} \bar{r}_{k}\right\|_{2}$, the norm of \bar{A}, the condition number of \bar{A}, and standard errors for the components of x. The last two items require a further $2 n$ multiplications per iteration and an additional n-vector of storage.

Subroutine LSQR is written in the PFORT subset of American National Standard FORTRAN. It contains no machine-dependent constants. Auxiliary routines required are APROD, NORMLZ, SCOPY, SNRM2, and SSCAL. The last three correspond to members of the BLAS collection [5].

2. MATHEMATICAL BACKGROUND

Algorithmic details are given in [6], mainly for the case $\lambda=0$. We summarize these here with λ reintroduced, and show that a given value of λ may be dealt with at negligible cost. The vector norm $\|v\|_{2}=\left(v^{T} v\right)^{1 / 2}$ is used throughout.
ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982

LSQR uses an algorithm of Golub and Kahan to reduce A to lower bidiagonal form. The quantities produced from A and b after $k+1$ steps of the bidiagonalization (procedure Bidiag 1 [6]) are

The k th approximation to the solution x is then defined to be $x_{k}=V_{k} y_{k}$, where y_{k} solves the subproblem

$$
\min \left\|\left[\begin{array}{c}
B_{k} \tag{2.2}\\
\lambda I
\end{array}\right] y_{k}-\left[\begin{array}{c}
\beta_{1} e_{1} \\
0
\end{array}\right]\right\|
$$

Letting the associated residual vectors be

$$
\begin{align*}
t_{k+1} & =\beta_{1} e_{1}-B_{k} y_{k} \\
r_{k} & =b-A x_{k} \tag{2.3}\\
\bar{r}_{k} & =\bar{b}-\bar{A} x_{k}
\end{align*}
$$

we find that the relations

$$
\begin{align*}
r_{k} & =U_{k+1} t_{k+1} \tag{2.4}\\
A^{\mathrm{T}} r_{k} & =\lambda^{2} x_{k}+\alpha_{k+1} \tau_{k+1} U_{k+1}
\end{align*}
$$

will hold to machine accuracy, where τ_{k+1} is the last component of t_{k+1}, and we therefore conclude that (r_{k}, x_{k}) will be an acceptable solution of (1.4) if the computed value of either $\left\|t_{k+1}\right\|$ or $\left|\alpha_{k+1} \tau_{k+1}\right|$ is suitably small.

Bjorck [1] has previously observed that subproblem (2.2) is the appropriate generalization of $\min \left\|B_{k} y_{k}-\beta_{1} e_{1}\right\|$, when $\lambda \neq 0$. He also discusses methods for computing y_{k} and x_{k} efficiently for various λ and k.

In LSQR we assume that a single value of λ is given, and to save storage and work, we do not compute y_{k}, r_{k}, or t_{k+1}. The orthogonal factorization

$$
Q_{k}\left[\begin{array}{cc}
B_{k} & \beta_{1} e_{1} \tag{2.5}\\
\lambda I & 0
\end{array}\right]=\left[\begin{array}{cc}
R_{k} & f_{k} \\
0 & \bar{\phi}_{k+1} \\
\mathbf{0} & \boldsymbol{q}_{k}
\end{array}\right]
$$

is computed ($Q_{k}^{\mathrm{T}} Q_{k}=I ; R_{k}$ upper bidiagonal, $k \times k$) and this would give $R_{k} y_{k}=$ f_{k}, but instead we solve $R_{k}^{\mathrm{T}} D_{k}^{\mathrm{T}}=V_{k}^{\mathrm{T}}$ and form $x_{k}=D_{k} f_{k}$.

The factorization (2.5) is formed similarly to the case $\lambda=0$ in [6], except that two rotations are required per step instead of one. For $k=2$, the factorization
proceeds according to

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\alpha_{1} & & \beta_{1} \\
\beta_{2} & \alpha_{2} & \\
\lambda & \beta_{3} & \\
\lambda & \lambda &
\end{array}\right] \rightarrow\left[\begin{array}{lll}
\tilde{\rho}_{1} & & \tilde{\phi}_{1} \\
\beta_{2} & \alpha_{2} & \\
& \beta_{3} & \\
& & \psi_{1}
\end{array}\right] \rightarrow\left[\begin{array}{lll}
\rho_{1} & \theta_{2} & \phi_{1} \\
& \tilde{\rho}_{2} & \tilde{\phi}_{2} \\
& \beta_{3} & \\
& & \psi_{1}
\end{array}\right]} \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Note that the first λ is rotated into the diagonal element α_{1}. This alters the righthand side $\beta_{1} e_{1}$ to produce ψ_{1}, the first component of q_{k}. An alternative is to rotate λ into β_{2} (and similarly for later λ), since this does not affect the right-hand side and it more closely simulates the algorithm that results when LSQR is applied to \bar{A} and \bar{b} directly. However, the rotations then have a greater effect on B_{k}, and in practice the first option has proved to give marginally more accurate results.

The estimates required to implement the stopping criteria are

$$
\begin{aligned}
\left\|\bar{r}_{k}\right\|^{2} & =\left\|r_{k}\right\|^{2}+\lambda^{2}\left\|x_{k}\right\|^{2} \approx \bar{\phi}_{k+1}^{2}+\left\|q_{k}\right\|^{2}, \\
\left\|\bar{A}^{\mathrm{T}} \bar{r}_{k}\right\| & \left\|A^{\mathrm{T}} r_{k}-\lambda^{2} x_{k}\right\| \approx\left|\frac{\alpha_{k+1} \beta_{k+1} \phi_{k}}{\rho_{k}}\right| .
\end{aligned}
$$

This is a simple generalization of the case $\lambda=0$. No additional storage is needed for q_{k}, since only its norm is required. In short, although the presence of λ complicates the algorithm description, it adds essentially nothing to the storage and work per iteration.

3. REGULARIZATION AND RELATED WORK

Introducing λ as in (1.3) is just one way of "regularizing" the solution x, in the sense that it can reduce the size of the computed solution and make its components less sensitive to changes in the data. LSQR is applicable when a value of λ is known a priori. The value is entered via the subroutine parameter DAMP. A second method for regularizing x is available through LSQR's parameter ACOND, which can cause iterations to terminate before $\left\|x_{k}\right\|$ becomes large. A similar approach has recently been described by Wold et al. [9], who give an illuminating interpretation of the bidiagonalization as a partial least squares procedure. Their description will also be useful to those who prefer the notation of multiple regression.

Methods for choosing λ, and other approaches to regularization, are given in [$1,2,4,8]$ and elsewhere. For a philosophical discussion, see [7].

4. CODING APROD

The best way to compute $y+A x$ and $x+A^{\mathrm{T}} y$ depends upon the origin of the matrix A. We shall illustrate a case that commonly arises, in which A is a sparse matrix whose nonzero coefficients are stored by rows in a simple list. Let A have

M rows, N columns, and NZ nonzeros. Conceptually we need three arrays dimensioned as REAL RA(NZ) and INTEGER JA(NZ), NA(M), where
$R A(L)$ is the Lth nonzero of A, counting across row 1 , then across row 2, and so on;
$\mathrm{JA}(\mathrm{L})$ is the column in which the Lth nonzero of A lies;
NA(I) is the number of nonzero coefficients in the Ith row of A.
These quantities may be used in a straightforward way, as shown in Figure 1 (a FORTRAN implementation). We assume that they are made available to APROD through COMMON, and that the actual array dimensions are suitably large.

Blank or labeled COMMON will often be convenient for transmitting data to APROD. (Of course, some of the data could be local to APROD.) For greater generality, the parameter lists for LSQR and APROD include two workspace arrays IW, RW and their lengths LENIW, LENRW. LSQR does not use these parameters directly; it just passes them to APROD.

Figure 2 illustrates their use on the same example (sparse A stored by rows). An auxiliary subroutine APROD1 is needed to make the code readable. A similar scheme should be used to initialize the workspace parameters prior to calling LSQR.

Returning to the example itself, it may often be natural to store A by columns rather than rows, using analogous data structures. However, we note that in sparse least squares applications, A may have many more rows than columns ($\mathrm{M} \gg \mathrm{N}$). In such cases it is vital to store A by rows as shown, if the machine being used has a paged (virtual) memory. Random access is then restricted to arrays of length N rather than M , and page faults will therefore be kept to a minimum.

Note also that the arrays RA, JA, NA are adequate for computing both $A x$ and $A^{\mathrm{T}} y$; we do not need to store A by rows and by columns.

Regardless of the application, it will be apparent when coding APROD for the two values of MODE that the matrix A is effectively being defined twice. Great care must be taken to avoid coding inconsistent expressions $y+A_{1} x$ and $x+$ $A_{2}^{\mathrm{T}} y$, where either A_{1} or A_{2} is different from the desired A. (If $A_{1} \neq A_{2}$, algorithm LSQR will not converge.) Parameters ANORM, ACOND, and CONLIM provide a safeguard for such an event.

5. PRECONDITIONING

It is well known that conjugate-gradient methods can be accelerated if a nonsingular matrix M is available to approximate A in some useful sense. When A is square and nonsingular, the system $A x=b$ is equivalent to both of the following systems:

$$
\begin{array}{lll}
\left(M^{-1} A\right) x=c & \text { where } & M c=b \\
\left(A M^{-1}\right) z=b & \text { where } & M x=z . \tag{5.2}
\end{array}
$$

For least squares systems (undamped), only the analogue of (5.2) is applicable:

$$
\begin{equation*}
\min \|A x-b\|_{2}=\min \left\|\left(A M^{-1}\right) z-b\right\|_{2}, \quad \text { where } \quad M x=z \tag{5.3}
\end{equation*}
$$

Fig. 1. Computation of $y+A x$, $x+A^{\mathrm{T}} y$, where A is a sparse matrix stored compactly by rows. For convenience, the data structure for A is held in COMMON.

ACM Transactions on Mathematical Software, Vol 8; No. 2, June 1982.
END
SUBROUTINE APROD1(MODE, M,N,X,Y,
* LENJA, LENRA,NA,JA, RA)
INTEGER MODE, M, N,LENJA, LENRA
INTEGER NA(M),JA(LENJA)
REAL $\quad \mathrm{X}(\mathrm{N}), \mathrm{Y}(\mathrm{M}), \mathrm{RA}($ LENRA $)$
APROD1 DOES THE WORK FOR APROD.
< the same code as in APROD in Figure $1>$
C
C END OF APRODI
END

```
    INTEGER I,J,L,Ll,L2
    REAL SUM,YI,ZERO
```

c
C

Fig. 2 Same as Figure 1, with the data structure for A held in the workspace parameters.

ITN	$\mathrm{X}(1)$	FUNCTION	COMPatible	COMPATIBLE	BAR)	ABAR)
0	$0.0000000000 \mathrm{E}-01$	6.3410580000 E 00	1.000 E 00	9.135E-02		
1	-6.3564250000E-01	4.0387670000E 00	$6.369 \mathrm{E}-01$	7.244E-01	$7.51 \mathrm{E}-01$	1.00 E
2	-4.7282630000E-01	2.3303970000 E 00	$3.675 \mathrm{E}-01$	$3.349 \mathrm{E}-01$	1.10 E 00	2.42E 00
3	-2.8075080000E-01	1.8962160000E 00	2.990E-01	$2.462 \mathrm{E}-01$	1.30 E 00	3.63 E
4	$2.6825070000 \mathrm{E}-01$	1.5905200000E 00	$2.508 \mathrm{E}-01$	$1.424 \mathrm{E}-01$	1.49 E 00	5.27 E 00
5	1.2649560000 E 00	1.4032960000 E 00	$2.213 \mathrm{E}-01$	$1.160 \mathrm{E}-01$	1.59 E 00	7.09 E
6	2.0648040000 E 00	1.2910880000E 00	$2.036 \mathrm{E}-01$	9.273E-02	1.70 E 00	9.03 E
7	3.0031450000 E 00	.2072930000E 00	$1.904 \mathrm{E}-01$	8.294E-02	1.79 E 00	1.12E
8	3.7526340000 E 00	1.1551220000 E 00	$1.822 \mathrm{E}-01$	$5.138 \mathrm{E}-02$	1.90 E 00	1.34 E
9	$5.4443550000 \mathrm{E}^{0} 0$	1.0780640000 E 00	$1.700 \mathrm{E}-01$	3.155E-02	1.95 E 00	1.72 E
10	8.9918140000E 00	9.8151740000E-01	$1.548 \mathrm{E}-01$	1.283E-02	1.96 E 00	2.44 E
11	8.9998990000 E 00	$9.8120520000 \mathrm{E}-01$	$1.547 \mathrm{E}-01$	$2.017 \mathrm{E}-04$	2.20 E 00	2.75 E 01
12	8.9999290000 E 00	$9.8120540000 \mathrm{E}-01$	$1.547 \mathrm{E}-01$	$4.361 \mathrm{E}-06$	2.38 E 00	2.98 E 01
13	8.9999280000 E 00	$9.8120550000 \mathrm{E}-01$	$1.547 \mathrm{E}-01$	$9.078 \mathrm{E}-07$	2.48 E 00	3.13 E

NO. OF ITERATIONS $=13$ STOPPING CONDITION $=2$
THE LEAST-SQRS SOLN IS GOOD

	RESIDUAL NORM (ABAR*X - BBAR)			RESIDUAL NORM (NORMAL EQNS)			SOLUTION NORM (X)
ESTIMATED BY LSQR		$9.812055 \mathrm{E}-01$			2.206693	E-06	1.688187E 01
COMPUTED FROM X		$9.812157 \mathrm{E}-01$			1.083419	E-05	1.688184 E 01
SOLUTION							
18.99993	2	7.99997	3	6.99998	4	5.99999	$5 \quad 4.99999$
$6 \quad 3.99999$	7	3.00000	8	2.00000	9	0.999994	10-0.204206E-05
STANDARD ERRORS							
12.11589	2	0.888101	3	0.685644	4	0.556184	$5 \quad 0.614104$
$6 \quad 0.409182$	7	0.565480	8	0.519385	9	0.375466	$10 \quad 0.589787$

Fig. 3. Example output from test program and LSQR on a damped least squares problem.

We note only that subroutine LSQR may be applied without change to systems (5.1)-(5.3). The effect of M is localized to the user's own subroutine APROD. For example, when MODE $=1$, APROD for the last two systems should compute $y+\left(A M^{-1}\right) x$ by first solving $M w=x$ and then computing $y+A w$. Clearly it must be possible to solve systems involving M and M^{T} very efficiently.

6. OUTPUT

Subroutine LSQR produces printed output on file NOUT, if the parameter NOUT is positive. This is illustrated in Figure 3, in which the least squares problem solved is $P(20,10,1,1)$ as defined in [6], with a slight generalization to include a damping parameter $\lambda=10^{\mathbf{- 3}}$. (Single precision was used on an IBM $370 / 168$.) The items printed at the k th iteration are as follows.

ITN The iteration number k. Results are always printed for the first 10 and last 10 iterations. Intermediate results are printed if $m \leq 40$ or $n \leq 40$, or if one of the convergence conditions is nearly satisfied. Otherwise, information is printed every 10 th iteration.
The value of the first element of the approximate solution x_{k}.
The value of the function being minimized, namely $\left\|\bar{r}_{k}\right\|=$ $\left(\left\|r_{k}\right\|^{2}+\lambda^{2}\left\|x_{k}\right\|^{2}\right)^{1 / 2}$.
COMPATIBLE A dimensionless quantity which should converge to zero if and only if $A x=b$ is compatible. It is an estimate of $\left\|\bar{r}_{k}\right\| /$ $\|b\|$, which decreases monotonically.
INCOMPATIBLE

NORM(ABAR)
COND (ABAR)
and only if the optimum $\left\|\bar{r}_{h}\right\|$ is nonzero. It is an estimate of $\left\|\bar{A}^{\mathrm{T}} \bar{r}_{k}\right\| /\left(\|\bar{A}\|_{\mathrm{F}}\left\|\bar{r}_{k}\right\|\right)$, which is usually not monotonic.
A monotonically increasing estimate of $\|\bar{A}\|_{\mathrm{F}}$.
A monotonically increasing estimate of $\operatorname{cond}(\bar{A})=$

ACKNOWLEDGMENT

The authors are grateful to Richard Hanson for suggestions that prompted several improvements to the implementation of LSQR.

REFERENCES

1. Bjorck, \AA. A bidıagonahzation algorithm for solving ill-posed systems of linear equations Rep LITH-MAT-R-80-33, Dep. Mathematics, Linkoping Univ., Linkoping, Sweden, 1980.
2 Eldén, L. Algorithms for the regularization of ill-conditioned least squares problems BIT 17 (1977), 134-145.
2. Hestenes, M.R , and Stiefel, E Methods of conjugate gradients for solving linear systems. J Res. N.B.S. 49 (1952), 409-436.
4 Lawson, C.L, and Hanson, R.J Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs, N.J., 1974.
5 Lawson, C.L , Hanson, R J., Kincaid, D.R , and Krogh, F T Basic lmear algebra subprograms for Fortran usage ACM Trans Math Softw 5, 3 (Sept 1979), 308-323 and (Algortthm) 324-325.
3. Paige, C.C., and Saunders, M A LSQR An algorithm for sparse linear equations and sparse least squares ACM Trans Math Softw 8, 1 (March 1982), 43-71
4. Smith, G., and Campbell, F. A critique of some ridge regression methods. J. Am. Stat. Assoc. 75, 369 (March 1980), 74-81
8 Varah, J.M A practical exammation of some numerical methods for linear discrete ill-posed problems SIAM Rev. 21 (1979), 100-111.
5. Wold, S., Wold, H., Dunn, W.J., and Ruhe, A. The collinearity problem in linear and nonlinear regression. The partial least squares (PLS) approach to generalized inverses. Rep. UMINF-83.80, Univ. Umeå, Umeå, Sweden, 1980.

ALGORITHM

[A part of the listing is printed here. The complete listing is available from the ACM Algorithms Distribution Service (see page 227 for order form).]

C	NOTE. LSQR USES AN ITERATIVE METHOD TO APPROXIMATE THE SOLUTION.	46.
C	THE NUMBER OF ITERATIONS REQUIRED TO REACH A CERTAIN ACCURACY	47.
C	DEPENDS STRONGLY ON THE SCALING OF THE PROBLEM. POOR SCALING OF	48.
C	THE ROWS OR COLUMNS OF A SHOULD THEREFORE BE AVOIDED WHERE	49.
C	POSSIBLE.	50.
C		51.
C	FOR EXAMPLE, IN PROBLEM 1 THE SOLUTION IS UNALTERED BY	52.
C	ROW-SCALING. IF A ROW OF A IS VERY SMALL OR LARGE COMPARED TO	53.
C	THE OTHER ROWS OF A, THE CORRESPONDING ROW OF (A B) SHOULD	54.
C	BE SCALED UP OR DOWN.	55.
C		56.
C	IN PROBLEMS 1 AND 2, THE SOLUTION X IS EASILY RECOVERED	57.
C	FOLLOWING COLUM -SCALING. IN THE ABSENCE OF BETTER INFORMATION,	58.
C	THE NONZERO COLUMNS OF A SHOULD BE SCALED SO THAT THEY ALL HAVE	59.
C	THE SAME EUCLIDEAN NORM (E.G. 1.ض).	$6 \emptyset$.
C		61.
C	IN PROBLEM 3, THERE IS NO FREEDOM TO RE-SCALE IF DAMP IS	62.
C	NONZERO. HOWEVER, THE VALUE OF DAMP SHOULD BE ASSIGNED ONLY	63.
C	AFTER ATTENTION HAS BEEN PAID TO THE SCALING OF A.	64.
C		65.
C	THE PARAMETER DAMP IS INTENDED TO HELP REGULARIZE	66.
C	ILL-CONDITIONED SYSTEMS, BY PREVENTING THE TRUE SOLUTION FROM	67.
C	BEING VERY LARGE. ANOTHER AID TO REGULARIZATION IS PROVIDED BY	68.
C	THE PARAMETER ACOND, WHICH MAY BE USED TO TERMINATE ITERATIONS	69.
C	BEFORE THE COMPUTED SOLUTION BECOMES VERY LARGE.	$7 \emptyset$.
C		71.
C		72.
C	NOTATION	73.
C	--------	74.
C		75.
C	THE FOLLOWING QUANTITIES ARE USED IN DISCUSSING THE SUBROUTINE	76.
C	PARAMETERS...	77.
C		78.
C	ABAR = $\quad \mathrm{A}), \quad \mathrm{BBAR}=(\mathrm{B})$	79.
C	(DAMP*) ($)^{\text {) }}$	$8 \emptyset$.
C		81.
C	$\mathrm{R}=\mathrm{B}-\mathrm{A} X, \quad \mathrm{RBAR}=$ BBAR - ABAR*X	82.
C		83.
C		84.
C	= NORM(RBAR)	85.
C		86.
C	RELPR $=$ THE RELATIVE PRECISION OF FLOATING-POINT ARITHMETIC	87.
C	ON THE ILACHINE BEING USED. FOR EXAMPLE, ON THE IBM 37 \emptyset,	88.
C	RELPR IS ABOUT 1. $¢ \mathrm{E}-6$ AND 1. $1.0 \mathrm{D}-16$ IN SINGLE AND DOUBLE	89.
C	PRECISION RESPECTIVELY.	$9 \emptyset$.
C		91.
C	LSQR MINIMIZES THE FUNCTION RNORM WITH RESPECT TO X.	92.
C		93.
C		94.
C	PARAMETERS	95.
C	----------	96.
C		97.
C	M INPUT THE NUMBER OF ROWS IN A.	98.
C		99.
C	N INPUT THE NUMBER OF COLUMNS IN A.	$1 \emptyset 0$.
C		101.
C	APROD EXTERNAL SEE ABOVE.	102.
C		103.
C	DAMP INPUT THE DAMPING PARAMETER FOR PROBLEM 3 ABOVE.	104.
C	(DAMP SHOULD BE $\emptyset . \emptyset$ FOR PROBLEMS 1 AND 2.)	105.

[^1]

[^0]: Received 4 June 1980; revised 23 September 1981, accepted 28 February 1982
 This work was supported by Natural Sciences and Engineering Research Council of Canada Grant A8652, by the New Zealand Department of Scientific and Industrial Research; and by U S. National Science Foundation Grants MCS-7926009 and ECS-8012974, the Department of Energy under Contract AM03-76SF00326, PA No. DE-AT03-76ER72018, the Office of Naval Research under Contract N00014-75-C-0267, and the Army Research Office under Contract DAA29-79-C-0110.
 Authors' addresses: C. C. Paige, School of Computer Science, McGill University, Montreal, Quebec, Canada H3A 2K6; M. A Saunders, Department of Operations Research, Stanford University, Stanford, CA 94305.
 Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

[^1]: ACM Transactions on Mathematical Software, Vol 8, No 2, June 1982.

