Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of
Mathematical Functions in MATLAB Using Source Transformation via
Operator Overloading

Matthew J. Weinstein!
Anil V. Rao?

University of Florida
Gainesville, FL 32611

A toolbox called ADiGator is described for algorithmically differentiating mathematical functions in MAT-
LAB. ADiGator performs source transformation via operator overloading using forward mode algorithmic
differentiation and produces a derivative file that can be evaluated to obtain the derivative of the original
function at a numeric value of the input. A convenient by product of the file generation is the sparsity pattern
of the derivative function. Moreover, as both the input and output to the algorithm are source codes, the
algorithm may be applied recursively to generate derivatives of any order. A key component of the algorithm
is its ability to statically exploit derivative sparsity at the MATLAB operation level in order to improve
run-time performances. The algorithm is applied to four different classes of example problems and is shown
to produce run-time efficient derivative codes. Due to the static nature of the approach, the algorithm is
well suited and intended for use with problems requiring many repeated derivative computations.

Categories and Subject Descriptors: G.1.4 [Numerical Analysis]: Automatic Differentiation
General Terms: Automatic Differentiation, Numerical Methods, MATLAB

Additional Key Words and Phrases: algorithmic differentiation, scientific computation, applied mathemat-
ics, chain rule, forward mode, overloading, source transformation

ACM Reference Format:

Weinstein, M. J. and Rao, A. V. 2015. Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of
Mathematical Functions in MATLAB Using Source Transformation via Operator Overloading. ACM Trans.
Math. Soft. V, N, Article A (January YYYY), 32 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

The authors gratefully acknowledge support for this research from the U.S. Office of Naval Research (ONR)
under Grants N00014-11-1-0068 and N00014-15-1-2048, from the U.S. Defense Advanced Research Projects
Agency under Contract HR0011-12-C-0011, and from the U.S. National Science Foundation under grant
CBET-1404767. Disclaimer: The views, opinions, and findings contained in this article are those of the
authors and should not be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

Distribution A. Approved for Public Release; Distribution Unlimited.

Author’s addresses: M. J. Weinstein and A. V. Rao, Department of Mechanical and Aerospace Engineering,
P.O. Box 116250, University of Florida, Gainesville, FL. 32611-6250; e-mail: {mweinstein,anilvrao}@ufl.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

©YYYY ACM 1539-9087/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 M. J. Weinstein, and A. V. Rao

1. INTRODUCTION

The problem of computing accurate and efficient derivatives is one of great importance
in the field of numerical analysis. The desire for a method that accurately and effi-
ciently computes numerical derivatives automatically has led to the field of research
known as automatic differentiation or as it has been more recently termed, algorithmic
differentiation (AD). AD is defined as the process of determining accurate derivatives
of a function defined by computer programs using the rules of differential calculus
[Griewank 2008]. Assuming a computer program is differentiable, AD exploits the fact
that a user program may be broken into a sequence of elementary operations, where
each elementary operation has a corresponding derivative rule. Thus, given the deriva-
tive rules of each elementary operation, a derivative of the program is obtained by a
systematic application of the chain rule, where any errors in the resulting derivative
are strictly due to round-off.

Algorithmic differentiation may be performed either using the forward or reverse
mode. In either mode, each link in the calculus chain rule is implemented until the
derivative of the output dependent variables with respect to the input independent
variables is obtained. The fundamental difference between the forward and reverse
modes is the order in which the chain rule is applied. In the forward mode, the chain
rule is applied from the input independent variables of differentiation to the final out-
put dependent variables of the program, while in the reverse mode the chain rule is
applied from the final output dependent variables of the program back to the indepen-
dent variables of differentiation. Forward and reverse mode AD methods are classically
implemented using either operator overloading or source transformation. In an oper-
ator overloaded approach, a custom class is constructed and all standard arithmetic
operations and mathematical functions are defined to operate on objects of the class.
Any object of the custom class typically contains properties that include the function
and derivative values of the object at a particular numerical value of the input. Fur-
thermore, when any operation is performed on an object of the class, both function and
derivative calculations are executed from within the overloaded operation. In a source
transformation approach, typically a compiler-type software is required to transform a
user-defined function source code into a derivative source code, where the new program
contains derivative statements interleaved with the function statements of the origi-
nal program. The generated derivative source code may then be evaluated numerically
in order to compute the desired derivatives.

Many applications that require the computation of derivatives are iterative (for ex-
ample, nonlinear optimization, root finding, differential equation integration, estima-
tion, etc.) and thus require the same derivative to be computed at many different
points. In order for AD to be tractable for such applications, the process must be com-
putationally efficient. It is thus often advantageous to perform an a priori analysis
of the problem at compile-time in order to decrease derivative computation run times.
Source transformation tools are therefore quite desirable due to their ability to perform
optimizations at compile-time which then improve derivative computation run times.
Typical optimizations performed by source transformation tools are those of dead code
elimination and common sub-expression elimination.

Another way in which derivative run-time efficiencies may be gained is by the ex-
ploitation of derivative sparsity. When applying AD, one may view the chain rule as a
sequence of matrix multiplications, where many of the matrices are inherently sparse.
This inherent sparsity is typically exploited either at run-time by making use of dy-
namic sparse data structures, or at compile-time by utilizing matrix compression tech-
niques. Using a set of dynamic data structures, each derivative matrix is represented
by its non-zero values together with the locations of the non-zeros. The chain rule

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB A:3

is then carried out at run-time by performing sparse matrix multiplications. Thus, at
each link in the chain rule, sparsity patterns are propagated, and only non-zero deriva-
tive elements are operated upon. For applications requiring many repeated deriva-
tive computations, non-zero derivative values change from one iteration to the next.
Derivative sparsity patterns, however, are constant across all iterations. Thus, a dy-
namic approach to sparsity exploitation must perform redundant sparsity propagation
computations at run-time. The typical alternative to a dynamic approach is to exploit
sparsity by means of matrix compression. The most commonly used matrix compres-
sion technique is the Curtis-Powell-Reid (CPR) approach of Curtis et al. [1974], which
has its roots in finite differencing. The CPR approach is based upon the fact that, given
two inputs, if no output is dependent upon both inputs, then both inputs may be per-
turbed at the same time in order to approximate the output derivative with respect
to each of the two inputs. Thus, if the output derivative sparsity pattern is known, it
may be determined at compile-time which inputs may be perturbed at the same time.
When used with finite-differencing, CPR compression effectively reduces the number
of function evaluations required to build the output derivative matrix. When used with
the forward mode of AD, CPR compression effectively reduces the column dimension
(number of directional derivatives) of the matrices which are propagated and operated
upon when carrying out the chain rule. Similar exploitations may be performed by re-
ducing the row dimension of the matrices which are propagated and operated upon in
the reverse mode. Unlike a dynamic approach, the use of matrix compression does not
require any sparsity analysis to be performed at run-time. Rather, all sparsity analy-
sis may be performed at compile-time in order to reduce derivative computation run
times. Matrix compression techniques, however, are not without their flaws. In order
to use matrix compression, one must first know the output derivative sparsity pattern.
Moreover, only the sparsity of the program as a whole may be exploited, rather than
sparsity at each link in the chain. This can pose an issue when output derivative ma-
trices are incompressible (for instance, output matrices with a full row in the forward
mode, or output matrices with a full column in the reverse mode), in which case one
must partially separate the problem in order to take advantage of sparsity.

In recent years, MATLAB [Mathworks 2014] has become extremely popular as a
platform for numerical computing due largely to its built in high-level matrix opera-
tions and user friendly interface. The interpreted nature of MATLAB and its high-level
language make programming intuitive and debugging easy. The qualities that make
MATLAB appealing from a programming standpoint, however, tend to pose problems
for AD tools. In the MATLAB language, there exist many ambiguous operators (for
example, +, *) which perform different mathematical procedures depending upon the
shapes (for example, scalar, vector, matrix, etc.) of the inputs to the operators. More-
over, user variables are not required to be of any fixed size or shape. Thus, the proper
mathematical procedure of each ambiguous operator must be determined at run-time
by the MATLAB interpreter. This mechanism poses a major problem for both source
transformation and operator overloaded AD tools. Source transformation tools must
determine the proper rules of differentiation for all function operations at compile-
time. Given an ambiguous operation, however, the corresponding differentiation rule
is also ambiguous. In order to cope with this ambiguity, MATLAB source transforma-
tion AD tools must either determine fixed shapes for all variables, or print derivative
procedures which behave differently depending upon the meaning of the correspond-
ing ambiguous function operations. As operator overloading is applied at run-time,
operator ambiguity is a non-issue when employing an operator overloaded AD tool.
The mechanism that the MATLAB interpreter uses to determine the meanings of am-
biguous operators, however, imposes a great deal of run-time overhead on operator
overloaded tools.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 M. J. Weinstein, and A. V. Rao

The first comprehensive AD tool written for MATLAB was the operator overloaded
tool, ADMAT [Coleman and Verma 1998a; 1998b]. The ADMAT implementation may
be used in both the forward and reverse mode to compute gradients, Jacobians and
Hessians. Later, the ADMAT tool was interfaced with the ADMIT tool [Coleman and
Verma 2000], providing support for the computation of sparse Jacobians and Hessians
via compression techniques. The next operator overloading approach was developed
as a part of the INTLAB toolbox [Rump 1999], which utilizes MATLAB’s sparse class
in order to store and compute first and second derivatives, thus dynamically exploit-
ing Jacobian/Hessian sparsity. More recently, the MAD package [Forth 2006] has been
developed. While MAD also employs operator overloading, unlike previously devel-
oped MATLAB AD tools, MAD utilizes the derivvec class to store directional deriva-
tives within instances of the fmad class. By utilizing a special class to store direc-
tional derivatives, the MAD toolbox is able to compute n'*-order derivatives by stack-
ing overloaded objects within one another. MAD may be used with either sparse or
dense derivative storage, with or without matrix compression. In addition to opera-
tor overloaded methods that evaluate derivatives at a numeric value of the input ar-
gument, the hybrid source transformation and operator overloaded package ADiMat
[Bischof et al. 2003] has been developed. ADiMat employs source transformation to
create a derivative source code using either the forward or reverse mode. The deriva-
tive code may then be evaluated in a few different ways. If only a single directional
derivative is desired, then the generated derivative code may be evaluated indepen-
dently on numeric inputs in order to compute the derivative; this is referred to as the
scalar mode. Thus, a Jacobian may be computed by a process known as strip mining,
where each column of the Jacobian matrix is computed separately. In order to com-
pute the entire Jacobian in a single evaluation of the derivative file, it is required to
use either an overloaded derivative class or a collection of ADiMat specific run-time
functions. The most recent MATLAB source transformation AD tool to be developed is
MSAD, which was designed to test the benefits of using source transformation together
with MAD’s efficient data structures. The first implementation of MSAD [Kharche and
Forth 2006] was similar to the overloaded mode of ADiMat in that it utilized source
transformation to generate derivative source code which could then be evaluated using
the derivvec class developed for MAD. The current version of MSAD [Kharche 2011],
however, does not depend upon operator overloading but still maintains the efficiencies
of the derivvec class.

The toolbox ADiGator (Automatic Differentiation by Gators) described in this pa-
per performs source transformation via the non-classical methods of operator overload-
ing and source reading for the forward mode algorithmic differentiation of MATLAB
programs. Motivated by the iterative nature of the applications requiring numerical
derivative computation, a great deal of emphasis is placed upon performing an a priori
analysis of the problem at compile-time in order to minimize derivative computation
run time. Moreover, the algorithm neither relies upon sparse data structures at run-
time nor relies on matrix compression in order to exploit derivative sparsity. Instead,
an overloaded class is used at compile-time to determine sparse derivative structures
for each MATLAB operation. Simultaneously, the sparse derivative structures are ex-
ploited to print run-time efficient derivative procedures to an output source code. The
printed derivative procedures may then be evaluated numerically in order to compute
the desired derivatives. The resulting code is quite similar to that produced by the
vertex elimination methods of Forth et al. [2004; Tadjouddine et al. [2003], yet the
approach is unique. As the result of the source transformation is a stand-alone MAT-
LAB procedure (that is, the resulting derivative code depends only upon the native
MATLAB library at run-time), the algorithm may be applied recursively to generate
nt"-order derivative programs. Hessian symmetry, however, is not exploited. Finally,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB A5

it is noted that the previous research given in Patterson et al. [2013] and Weinstein
and Rao [2015] focused on the methods upon which the ADiGator tool is based, while
this paper focuses on the software implementation of these previous methods and the
utility of the software.

This paper is organized as follows. In Section 2, a row/column/value triplet nota-
tion used to represent derivative matrices is introduced. In Section 3, an overview of
the implementation of the algorithm is given in order to grant the reader a better
understanding of how to efficiently utilize the software as well as to identify various
coding restrictions to which the user must adhere. Key topics such as the used over-
loaded class and the handling of flow control are discussed. In Section 4, a discussion
is given on the use of overloaded objects to represent cell and structure arrays. In Sec-
tion 5, a technique is presented which eliminates redundant derivative computations
being printed when performing high-order derivative transformations. In Section 6,
a discussion is given on the storage of indices upon which the generated derivative
programs are dependent. In Section 7, a special class of vectorized functions is con-
sidered, where the algorithm may be used to transform vectorized function codes into
vectorized derivative codes. In Section 8, the user interface to the ADiGator algorithm
is described. In Section 9, the algorithm is tested against other well known MATLAB
AD tools on a variety of examples. In Section 10, a discussion is given on the efficiency
of the algorithm and finally, in Section 11, conclusions are drawn.

2. SPARSE DERIVATIVE NOTATIONS

The algorithm of this paper utilizes a row/column/value triplet representation of
derivative matrices. In this section, the triplet representation is given for a general ma-
trix function of a vector, F(x) : R"» — R% *"s. The derivative of F(x) is the three dimen-
sional object, OF /0x € R%*7*"=_In order to gain a more tractable two-dimensional
derivative representation, we first let f(x) € R™f be the one-dimensional transforma-
tion of the function F(x) € R/ *"f,

Fi(x) Fy k(%)
f(X): , Fp= s (k:l,...,rf), (1)
F., (x) Fop (%)

where my = q¢sry. The unrolled representation of the three-dimensional derivative
OF /0x is then given by the two-dimensional Jacobian

rofh oh .. Oh 7

oxq Oxo Oy,

Of2 Ofs .. Of2

ox ox ox
8f 1 2 ng
pa— . . . c R’Inf XMNg . (2)
ox : T

af’fflf 8.f”“ﬂf 8f7nf

ox1 dzs " Bxg,

Assuming the first derivative matrix Of /9x contains p/ < mn, possible non-zero el-
ements, the row and column locations of the possible non-zero elements of 0f /0x are

! f
denoted by the index vector pair (if, j%) € Z%* x Z"*, where
i (1) Jx(1)
if = N jf = :

it (pf) i (pl)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. J. Weinstein, and A. V. Rao

correspond to the row and column locations, respectively. In order to ensure uniqueness
of the row/column pairs (if (k), j£(k)) (where if (k) and j£ (k) refer to the k*" elements of
the vectors if. and j£, respectively, k = 1, ..., p/) the following column-major restriction
is placed upon the order of the index vectors:

i (1) +ng (e (1) = 1) <ig(2) +np (5x(2) = 1) <+ <ig(0)) +ne (x(@)) 1), B

Henceforth it shall be assumed that this restriction is always satisfied for row/column
index vector pairs of the form of (if,jf), however it may not be explicitly stated. To

refer to the possible non-zero elements of 9f /0x , the vector df, € RP+ is used such that

Ofrie ok
dy (k) = p— Ly (k=1,....p0),)
Tt m)]
where df (k) refers to the k" element of the vector df. Using this sparse nota-
tion, the Jacobian 0f/0x may be fully defined given the row/column/value triplet

f ! f
(if,jf,d%) € Z8 x Z8 x R"* together with the dimensions m; and n,. Moreover, the
three-dimensional derivative matrix JF(x)/0x is uniquely defined given the triplet
(if, i, df) together with the dimensions gy, 7, and n,.

3. OVERVIEW OF THE ADIGATOR ALGORITHM

Without loss of generality, consider a function f(v(x)), where f : R™* — R™/ and
Ov/0x is defined by the triplet (iY,j¥,jd) € Zf’f X Z’f‘ x RP*. Assume now that f(-)
has been coded as a MATLAB function, F, where the function F takes v € R™v as its
input and returns f € R™/ as its output. Given the MATLAB function F, together with
the index vector pair (iy,jY) and the dimensions m, and n,, the ADiGator algorithm
determines the index vector pair (if, j£) and the dimension m ;. Moreover, a MATLAB
derivative function, F/, is generated such that F’ takes v and dy as its inputs, and
returns f and df as its outputs. In order to do so, the algorithm uses a process which
we have termed source transformation via operator overloading. For a more detailed
description of the method, the reader is referred to [Weinstein and Rao 2015] and
[Patterson et al. 2013]. An overview of this process is now given in order to both grant
the user a better understanding of how to efficiently utilize the ADiGator tool as well
as to identify various assumptions and limitations of the algorithm.

At its core, the ADiGator algorithm utilizes operator overloading to propagate
derivative non-zero locations while simultaneously printing the procedures required
to compute the corresponding non-zero derivatives. In order to deal with cases where
the function F contains flow control (loops, conditional statements, etc.), however, a
higher-level approach is required. To elaborate, one cannot simply evaluate a function
F on overloaded objects and gather information pertaining to any flow control present
in F. In order to allow for flow control, user-defined programs are first transformed into
intermediate function programs, where the intermediate source code is an augmented
version of the original source code which contains calls to ADiGator transformation
routines [Weinstein and Rao 2015]. The forward mode of AD is then affected by per-
forming three overloaded passes on the intermediate program. On the first overloaded
pass, a record of all operations, variables, and flow control statements is built. On the
second overloaded pass, derivative sparsity patterns are propagated, and overloaded
unions are performed where code branches join.? On the third and final overloaded
pass, derivative sparsity patterns are again propagated forward, while the procedures

3This second overloaded pass is only required if there exists flow control in the user-defined program.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB A7

required to compute the output non-zero derivatives are printed to the derivative pro-
gram. During this third overloaded pass, a great deal of effort is taken to make the
printed procedures as efficient as possible by utilizing the known derivative sparsity
patterns at each link in the chain rule.

3.1. User Source to Intermediate Source Transformations

The first step in the ADiGator algorithm is to transform the user-defined source code
into an intermediate source code. This process is applied to the user provided main
function, as well as any user-defined external functions (or sub-functions) which it
calls. For each function contained within the user-defined program, a corresponding
intermediate function, adigatortempfunc#, is created such that # is a unique integer
identifying the function. The initial transformation process is carried out by reading
the user-defined function line-by-line and searching for keywords. The algorithm looks
for the following code behaviors and routines:

e Variable assignments. All variable assignments are determined by searching for the
‘=’ character. Each variable assignment (as well as the calculations on the right-hand-
side of the equal sign) are copied exactly from the user function to the intermediate
function. Moreover, each variable assignment copied to the intermediate program is
followed by a call to the ADiGator variable analyzer routine.

e Flow control. The algorithm only allows for if/elseif/else, for, and while state-
ments. These statements (and corresponding end statements) are found by searching
for their respective keywords and replaced with various transformations which allow
the ADiGator algorithm to control the flow of the intermediate functions. Addition-
ally, within for and while loops, break and continue statements are identified.

e External function calls. Prior to the user source to intermediate source transforma-
tion, it is determined of which functions the user-defined program is composed. Calls
to these functions are searched for within the user-defined source code and replaced
with calls to the corresponding adigatortempfunc function. User sub-functions are
treated in the same manner.

e Global variables. Global variables are allowed to be used with the ADiGator algo-
rithm only as a means of passing auxiliary data and are identified by the global
statement.

e Comments. Any lines beginning with the %’ character are identified as comments and
copied as inputs to the adigatorVarAnalyzer routine in the intermediate function.
These comments will then be copied over to the generated derivative file.

e Error statements. Error statements are identified and replaced by calls to the
adigatorError routine in the intermediate function. The error statements are then
copied verbatim to the generated derivative file.

If the user-defined source code contains any statements that are not listed above (with
the exception of operations defined in the overloaded library), then the transformation
will produce an error stating that the algorithm cannot process the statement.

3.2. Overloaded Operations

Once the user-defined program has been transformed to the intermediate program, the
forward mode of AD is affected by performing multiple overloaded passes on the inter-
mediate program. In the presence of flow control, three overloaded passes (parsing,
overmapping, and printing) are required, otherwise only two (parsing and printing)
are required. In each overloaded pass, all overloaded objects are tracked by assigning
each object a unique integer id value. In the parsing evaluation, information similar
to conventional data flow graphs and control flow graphs is obtained by propagat-
ing overloaded objects with unique id fields. In the overmapping evaluation, forward

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. J. Weinstein, and A. V. Rao

mode AD is used to propagate derivative sparsity patterns, and overloaded unions
are performed in areas where flow control branches join. In the printing evaluation,
each basic block of function code is evaluated on its set of overmapped input objects.
In this final overloaded pass, the overloaded operations perform two tasks: propagat-
ing derivative sparsity patterns and printing the procedures required to compute the
non-zero derivatives at each link in the forward chain rule. In this section we briefly
introduce the overloaded cada class, the manner in which it is used to exploit sparsity
at compile-time, a specific type of known numeric objects, and the manner in which the
overloaded class handles logical references/assignments.

3.2.1. The Overloaded cada Class. The overloaded class is introduced by first consider-
ing a variable Y (x) € R%*"v where Y (x) is assigned to the identifier Y’ in the user’s
code. It is then assumed that there exist some elements of Y (x) which are identically
zero for any x € R"=. These elements are identified by the strictly increasing index

vector ¥ € ZF f, where
Y@ (k)] =0, VxeR"™ (k': 1,...,ﬁf), (5)

and y(x) is the unrolled column-major vector representation of Y (x). It is then as-
sumed that the possible non-zero elements of the unrolled Jacobian, dy/0x € R™v*"=
(m, = qyry), are defined by the row/column/value triplet (i¥,j¥,d¥) € Z’f” X Z’f x RP".
The corresponding overloaded object, denoted), would then have the following func-
tion and derivative properties:

Function | Derivative
name: Y.f name: Y.dx
size: (qy,7y) | nzlocs: (i, j%)
zerolocs: 4

Assuming that the object) is instantiated during the printing pass, the procedures
will have been printed to the derivative file such that, upon evaluation of the derivative
file, Y.f and Y.dx will be assigned the values of Y and d¥, respectively. It is important
to stress that the values of (¢,,7,), i¥, and (i¥, j¥) are all assumed to be fixed at the
time of derivative file generation. Moreover, by adhering to the assumption that these
values are fixed, it is the case that all overloaded operations must result in objects with
fixed sizes and fixed derivative sparsity patterns (with the single exception to this rule
given in Section 3.2.4). It is also noted that all user objects are assumed to be scalars,
vectors, or matrices. Thus, while MATLAB allows for one to use n-dimensional arrays,
the ADiGator algorithm may only be used with two dimensional arrays.

3.2.2. Exploiting Sparsity at the Operation Level. Holding to the assumption that all input
sizes and sparsity patterns are fixed, any files that are generated by the algorithm are
only valid for a single input size and derivative sparsity pattern. Fixing this informa-
tion allows the algorithm to accurately propagate derivative sparsity patterns during
the generation of derivative files. Moreover, rather than relying on compression tech-
niques to exploit sparsity of the program as a whole, sparsity is exploited at every link
in the forward chain rule. Typically this is achieved by only applying the chain rule to
vectors of non-zero derivatives (for example, d¥). To illustrate this point, we consider
the simple function line:

W = sin(Y);.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB A9

The chain rule for the corresponding operation W(x) = sin(Y (x)) is then given by

cos(y1) 0O --- 0
0 cos(y2) -~ 0
A L O -4 ®)
ox : : . : ox
0 0 - cos(Ym,)

where w € R™v is the unrolled column-major vector representation of W. Given
(iY,j%) € 2 x 787, Eq. (6) may sparsely be carried out by the procedure

dy (k) = cos(ypyny))dx(k), k=1,...,p. (7)

Moreover, the index vector pair which identifies the possible non-zero locations of
0w /0x is identical to that of dy/0x. During the printing evaluation, the overloaded
sin routine would have access to (i¥,j¥) and print the procedures of Eq. (7) to the
derivative file as the MATLAB procedure

W.dx = cos(Y(Index1)).*Y.dx;,

where the variable Index1 would be assigned the value of the index vector i¥ and
written to memory at the time the derivative procedure is printed. Thus, sparsity is
exploited at compile-time, such that the chain rule is carried out at run-time by only
operating on vectors of non-zero derivatives. Similar derivative procedures are printed
for all array operations (for instance sqrt, log, +, . *).

The case where the chain rule is not simply applied to vectors of non-zero deriva-
tives at run-time is that of matrix operations (for example, summation, matrix mul-
tiplication, etc.). In general, the inner derivative matrices of such operations contain
rows with more than one non-zero value. Thus, the chain rule may not, in general, be
carried out by performing element-wise array multiplications on vectors. Derivative
sparsity, however, may still be exploited for such operations. For instance, consider the
matrix operation Z(x) = AY (x), A € R%-*%_ with associated chain rule

oz _ , 0Y

oo Mony (k=1,...,nz). (8)
Suppose now that
Then
C=AB=[AfL - AL][22 .. 2] cRuxrene, (10)

where the matrices B and C have the same column-major linear indices as dy/9x and
0z/0x%, respectively. Now consider that, given the index vector pair (i¥, j¥), the sparsity
pattern of B(x) is known. Moreover, if there exist any columns of B which are known
to be zero, then the matrix multiplication of Eq. (10) performs redundant computations
on columns whose entries are all zero. We now allow the strictly increasing index vector

kY Ziz, s¥ < ryng, to denote the columns of B which are not zero, and let
D = [Bpyay -+ Bpyyy | € RW* (11)

be the collection of possibly non-zero columns of B. All of the elements of dZ must then
be contained within the matrix

E = AD = [Cpyq -+ Cpgapy | € REXE (12)

Thus, given a function line

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. J. Weinstein, and A. V. Rao
Z = AxY;,
the non-zero derivatives of 9z/9x would be computed via the MATLAB procedure

D = zeros(qy,syx);
D(Index2) = Y.dx;
E = AxD;

Z.dx = E(Index3);,

where A, D, E, Y.dx, Z.dx, qy, and syx correspond to A, D, E, d¥, d%, g,, and s¥, respec-
tively. Moreover, the variable Index2 would be assigned the index vector which maps
dY into the proper elements of D and Index3 would be assigned the index vector which
maps dZ into the proper elements of E. As with the previous example, the values of
Index2 and Index3 would be written to memory at the time the derivative procedure is
printed.

3.2.3. Known Numeric Objects. A common error that occurs when using operator over-
loading in MATLAB is given as

‘Conversion to double from someclass not possible.’.

This typically occurs when attempting to perform a subscript-index assignment such
as y(i) = x, where x is overloaded and y is of the double class. In order to avoid this
error and to properly track all variables in the intermediate program, the ADiGator al-
gorithm ensures that all active variables in the intermediate program are overloaded.
Moreover, immediately after a numeric variable (double, logical etc.) is created, it
is transformed into a “known numeric object”, whose only relevant properties are its
stored numeric value, string name and id. The numeric value is then assumed to be
fixed. As a direct consequence, all operations performed in the intermediate program
are forced to be overloaded. At times, this consequence may be adverse as redundant
auxiliary computations may be printed to the derivative file. Moreover, in the worst
case, one of the operations in question may not have an overloaded routine written,
and thus produce an error.

3.2.4. Logical References and Assignments. As stated in Section 3.2.1, the algorithm only
allows for operations which result in variables of a fixed size (given a fixed dimensional
input). It is often the case, however, that one wishes to perform operations on only
certain elements of a vector, where the element locations are determined by the values
of the entries of the vector. For instance, one may wish to build the vector y € R"= such
that

x? <0, .
Yi = { z; otherwise, '~ Loeome. (13)

While one could use a conditional statement embedded within a loop to build y, it
is often more efficient to use logical array indexing to determine the locations of the
negative elements of x. Moreover, due to the fact that the value of x is not fixed at the
time of the ADiGator call, the operation which references only the negative elements
of x results in a variable of unknown dimension. In order to allow for such instances,
the algorithm allows for unknown logical array references under the condition that,
if a logical index reference is performed, the result of the logical reference must be
assigned to a variable via a logical index assignment. Moreover, the same logical index
variable must be used for both the reference and assignment. Thus, a valid way of

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:11

building y, as defined by Eq. (13), is given as:

negindex = x < 0;
xneg = x(negindex) ;
Xnegsq = xneg."2;

y =%

y(negindex) = xnegsq;.

Here it is noted that the algorithm avoids the conflict of the unknown dimension (as a
result of the logical reference) by not performing the logical reference until the time of
the logical assignment. The code produced by applying the algorithm to the above code
fragment is given as:

negindex.f = x.f < 0;

xneg.dx = x.dx;

xneg.f = x.f;

xnegsq.dx = 2*xneg.f.*xneg.dx

xnegsq.f = xneg.f."2;

y.dx = x.dx;

y.f = x.£f;

y.dx(negindex.f) = xnegsq.dx(negindex.f);
y.f(negindex.f) = xnegsq.f (negindex.f);,

where it is seen that the logical reference is effectively performed on the variable
xnegsq, rather than x. This method of handling logical array references and assign-
ments allows for all variables of the derivative program to be of a fixed dimension,
yet can result in some unnecessary computation (which, for this example, includes the
power operations on the non-negative elements).

3.3. Handling of Flow Control

The ADiGator algorithm handles flow control by performing overloaded unions where
code fragments join. Namely, the unions are performed on the exit of conditional
if/elseif/else statements, on the entrance of for loop statements, and on both the
entrance and exit of user-defined external functions and while loops. The union of all
possible objects that may be assigned to a variable is then referred to as an overmapped
object. Overmapped objects have the following key properties:

e Known numeric overmapped objects. An overmapped object may only be a known
numeric object if all possible variables result in the same numeric value.

e Function size. The row/column size of the overmapped object is considered to be the
maximum row/column size of all possible row/column sizes.

e Function sparsity. The function is only considered to have a known zero element if
every possible function is known to have the same zero element.

e Derivative sparsity. The derivative is only considered to have a known zero element
if every possible derivative has the same known zero element.

An in-depth analysis of the methods used to transform flow control is given in We-
instein and Rao [2015]. In this section, an overview is given in order to discuss the
various implications of the methods.

3.3.1. for Loop Statements. The ADiGator algorithm is able to transform for loops
from a function program to a derivative program under the stipulation that the loop
is executed for a known number of iterations (that is, the loop index expression has
a fixed second dimension). The loops are, however, allowed to contain break and
continue statements. In order to transform such a loop, the loop is effectively unrolled

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. J. Weinstein, and A. V. Rao

for the purpose of analysis in the overmapping evaluation phase. During this unrolling
process, all possible iterations of the loop are evaluated, and unions are performed at
the entrance to the loop to build a set of overmapped loop inputs. In the presence
of break/continue statements, unions are also performed on all possible termination
points of the loop. Additionally, data pertaining to any organizational operations (for
example, subsref, subsasgn, horzcat, etc.) contained within the loop is collected for
each independent loop iteration. The derivative loop is then printed by evaluating a
single loop iteration on the set of overmapped loop inputs. The two primary implica-
tions of this process are given as follows:

(1) The time required to transform a function for loop to a derivative for loop is pro-
portional to the number of possible loop iterations.

(2) The transformation of a function loop containing variables whose size and/or deriva-
tive sparsity patterns vary results in redundant operations being performed in the
derivative loop.

Moreover, given a function loop containing variables whose dimensions are iteration
dependent, it is often advisable to unroll the loop, assuming the loop does not contain
break/continue statements.

3.3.2. if/elseif/else Statements. A conditional statement containing M branches ef-
fectively adds M possible branches to a program. Thus, if a program contains two
successive conditional statements, each containing M possible branches, the program
has M? possible branches. Rather than analyzing all possible branches of a program,
the ADiGator algorithm instead analyzes each possible branch of a conditional state-
ment, and then creates a set of overmapped outputs. The remainder of the program is
then analyzed on the given overmapped outputs. The implications of this process are
given as follows:

(1) If a known numeric object is an output of a conditional fragment whose numeric
value is dependent upon which branch is taken, then that object may not be later
used as

e an array subscript index given to subsref, subsasgn, or sparse
e the argument of an array instantiation operation (for example, zeros, ones, etc.)

(2) If the output variable of a conditional fragment changes dimension and/or deriva-
tive sparsity pattern depending upon which branch is taken, redundant “zero” calcu-
lations will be performed in the derivative program following the conditional state-
ment.

It is advisable when using conditional statements to ensure that the sizes of the out-
puts do not vary depending upon which branch is taken.

3.3.3. while Statements. It is the case that any while loop with an iteration limit may
be written in MATLAB as a for loop containing an if and break statement. It is of-
ten the case, however, that an iteration limit is not easily determined. Moreover, when
transforming a for loop, the ADiGator algorithm will analyze all loop iterations. This
may result in costly redundant analysis during the overmapping evaluations, particu-
larly when performing fixed-point iterations. Thus, while loops are allowed to be used
only for fixed-point iterations of the form of

y® (x) = Liy* Y (x)), (14)

where L : R™ — R™v represents the operations contained within allowable while
loops and y(*) € R™v denotes the collection of inputs to the k'" iteration of the loop. In
order to transform the while loop, the ADiGator algorithm seeks to find a static loop

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:13

iteration, k, such that Y*) = Y =1 Allowing () to be the overloaded input to the
loop on the first iteration, a static loop iteration is found by iteratively computing

k—1
yE =L yD) (15)
=0

k-1 k }
until an iteration k is found such that (J Y = U Y@ or a maximum iteration limit
i=0 i=

0
is reached. Assuming a static iteration k is found, the loop will be transformed in the

k .
printing evaluation by evaluating L on the overmapped input, |J Y(*). The implica-
i=0
tions of this process are as follows:

(1) If the user code performs iteration-dependent organizational operations within a
while loop (for example, y (count) where count is an iteration count variable), then
an error will be produced during the overmapping evaluation phase. Such opera-
tions do not adhere to the fixed-point constraint of Eq. (14) and are found by evalu-
ating the i*" loop iteration on the union of all previous inputs.

(2) The algorithm will attempt to find a static point until a maximum number of loop
iterations is reached, where the user may define the maximum number of loop it-
erations as an ADiGator option. Any hard-coded loop iteration limits in the user-
defined function will be transferred to the derivative program, but not used when
attempting to find a static iteration.

3.3.4. Called Functions. Consider now the transformation of an external user-defined
function G that is called numerous times from the main user-defined function F. For
this discussion, F and G are used to denote the corresponding intermediate functions,
and F’ and G’ are used to denote the corresponding transformed derivative functions.
In order to transform G to G/, the ADiGator algorithm performs overloaded unions on
the entrance and exit of G during the overmapping evaluation phase. At each call to G
from F in the overmapping evaluation phase, the overloaded outputs are determined
in one of two ways. In the event that the overloaded inputs are identical to those of
a previous call, the stored outputs of the previous call are returned. Otherwise, the
intermediate function G is evaluated on the current overloaded inputs. All flow con-
trol and overloaded operations contained within G are treated in the same manner as
they would be if performed within F, with the exception of organizational operations.
In order to allow for call-dependent organizational operations, all organizational oper-
ations performed within G are treated in a manner similar to those performed within
for loops. In the printing evaluation, each time G is called from within F, the stored
inputs and outputs are used in order to print a call to the function G’ and the proper
overloaded outputs are returned. The function G is then evaluated on its overmapped
inputs in order to create the function source code of G’. The implications of this process
are as follows:

(1) All functions called within a user program must have a definitive input and output
structure. Thus, nested functions may not be used, external functions must have the
same number of input/output variables across all calls, and global variables may not
be used to pass information between the functions of the user-defined program.

(2) If the input variables to an external function change size and/or derivative sparsity
patterns, then the transformed called function will perform redundant computa-
tions at run-time. Moreover, the efficiency of both the transformation process and
the evaluation of the generated derivative sub-function are dependent upon the
variance of the input sizes and sparsity patterns.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. J. Weinstein, and A. V. Rao

(3) Functions may not call themselves from within their own methods (that is, recur-
sion is not permitted).

4. OVERLOADED CELL AND STRUCTURE ARRAYS

In Section 3 it was assumed that all user variables in the originating program are of
class double. In the intermediate program, all such objects are effectively replaced by
objects of the cada class [Patterson et al. 2013], where each cada object is tracked by
a unique id value. It is sometimes the case, however, that a user code is made to con-
tain cell and/or structure arrays, where the elements of the arrays contain objects of
the double class. In the intermediate program, it is then desirable to track the outer-
most cell and/or structure arrays, rather than each of the objects of which the array
is composed. To this end, all cell and structure arrays are replaced with objects of the
cadastruct class during the overloaded analysis. Each cadastruct object is then as-
signed a unique id value, assuming it does not correspond to a scalar structure. In the
event that a scalar structure is built, then each of the fields of the scalar structure is
treated as a unique variable. The cadastruct objects are themselves made to contain
objects of the cada class, however, the embedded cada objects are not tracked (assuming
the object does not correspond to a scalar structure). The handling of cell and structure
arrays in this manner allows the algorithm to perform overloaded unions of cell and
structure arrays and to print loop iteration-dependent cell/structure array references
and assignments.

5. HIGHER-ORDER DERIVATIVES

An advantage of the ADiGator algorithm is that, by producing stand-alone derivative
source code, the algorithm may be applied recursively to generate n'*-order derivative
files. If the algorithm was blindly applied in a recursive manner, however, the resulting
nt'-order code would contain redundant 1°* through (n — 1)*" derivative computations.
To illustrate, consider the application of the algorithm to a function which simply com-
putesy = sin(x), and then again on the resulting derivative code. The transformation
would performed as follows:

_ y.dx.dx = -sin(x)
st T Lyt = coso
y - sin(x) y.dx = cos(x)
y y.f = sin(x)

Thus, at the second derivative level, the first derivative would be computed twice,
once as a function variable and once as a derivative variable. In a classical source
transformation approach, such redundant computations would be eliminated in a code
optimization phase. The ADiGator algorithm, however, does not have a code optimiza-
tion phase, but rather performs optimizations at the operation level. What is available,
however, is the capability of the algorithm to recognize when it is performing source
transformation on code which was previously generated by the algorithm itself. More-
over, the algorithm can recognize the naming scheme used in the previously generated
file in order to eliminate any redundant 1°¢ through (n — 1)** derivative computations
in the n'" derivative file.

6. STORAGE OF INDICES USED IN GENERATED CODE

As may be witnessed in Section 3.2, the derivative procedures printed by overloaded
operations can be highly dependent upon reference and assignment index vectors be-
ing printed to variables in the derivative file. Moreover, at the time of which the pro-
cedures that are dependent upon these index vectors are printed to the file, the values

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:15

of the index vectors are both known and fixed. Thus, rather than printing procedures
which build the index vectors (for example, i = [1 2 3...]), the index vectors are
written to variable names in a MATLAB binary file. The variables are then brought
into global MATLAB memory to be accessed at run-time. By handling index vectors in
this manner, they must only be loaded into memory a single time and may then be used
to compute the derivative multiple times, thus statically tying sparsity exploitation to
the derivative procedure.

7. VECTORIZATION OF THE CADA CLASS

In this section, the differentiation of a special class of vectorized functions is consid-
ered, where we define a vectorized function as any function of the form of F : R*=*N —
R™s*N which performs the vector valued function f : R"» — R/ on each column of its
input. That is,

F(X) = [f(X1) f(X2) -+ £f(Xn)] € R™Y, (16)
where X, e R" k=1,... N,
X=[X; Xy -+ Xy]eRwXVN, (17)

It is stressed that the vectorized functions of this section are not limited to a single
operation, but rather may be coded as a sequence of operations. Similar to array op-
erations, vectorized functions have a sparse block diagonal Jacobian structure due to
the fact that

=0, Vitk l=1,... =1,...,n,. 18
an7k) 7’#)) 7mf7 J 9 s Mg ()
Allowing
X1 £(X1)
X, N £(Xs) N
Xt=| . | er=N F(X)=) e R™N, (19)
XN f(Xw)
the two-dimensional Jacobian OFt/9X is given by the block diagonal matrix
OF
o= 8(}: o0
oF* 0 2% ... 0
_ RmfNXn,;N 20
oxXt : oo, < ’ (20)
OF
0 0 axx
where
r 8F1,,', QFM 8F1,,; T
0X1,i X2, 0Xn
6F27ri aFZ.i L. 8F2,i
an 6X1,i 6X2,z‘ 6Xnm,i
= RManm .:1...N. 21
R T o
3me,i ame,i o Bme,i
| 9X1i 90X, OXng,i |

Such functions commonly occur when utilizing collocation methods [Ascher et al. 1995]
to obtain numerical solutions of ordinary differential equations, partial differential
equations, or integral equations. In such cases, it is the goal to obtain the values of

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. J. Weinstein, and A. V. Rao

X € R >N which solve the equation
¢(F(X),X) = 0 € R™, (22)

where F(X) is of the form of Eq. (16). Now, one could apply AD directly to Eq. (22),
however, it is often the case that it is more efficient to instead apply AD separately
to the function F(X), where the specific structure of Eq. (20) may be exploited. The
results may then be used to compute the derivatives of Eq. (22).

Due to the block diagonal structure of Eq. (20), it is the case that the vectorized
problem has an inherently compressible Jacobian with a maximum column dimension
of n,. This compression may be performed via the pre-defined Curtis-Powell-Reid seed
matrix

L.,
L.,
S _ . c]RnINXn387 (23)

I,
where I, is the n, x n, identity matrix. The ADiGator algorithm in the vectorized
mode does not, however, rely upon matrix compression, but rather utilizes the fact that

the structure of the Jacobian of Eq. (20) is determined by the structure of the Jacobian
of Eq. (21). To exhibit this point, the row/column pairs of the derivative of f with respect

A
to its input are now denoted by (if, j%) € Z* xZ"*. The N derivative matrices, OF;/0X;,

f f f
may then be represented by the row/column/value triplets (if, jf, dy’) € Z x 257 xR™
together with the dimensions m; and n,. All possible non-zero derivatives of OF/0X
are then given by

D§ = [df af - dfy | e RN, (24)
Furthermore, 0F/0X may be fully defined given the vectorized row/column/value

f f f
triplets (if,jf, D%) € Z7" x 2% x R” :*N together with the dimensions n,, ny, and
N. Thus, in order to print derivative procedures of a vectorized function as defined
in Eq. (16), it is only required to propagate row/column index vector pairs (if,jf) ¢

f f
Z}_’; X Ziz corresponding to the non-vectorized problem, and to print procedures that

. . IxN
compute vectorized non-zero derivatives, D% € R"**".

In order to identify vectorized cada objects, all vectorized cada instances are made to
have a value of Inf located in the size field corresponding to the vectorized dimension.
Then, at each vectorized cada operation, sparsity patterns of the non-vectorized prob-
lem are propagated (that is, (i, j£)) and procedures are printed to the derivative file to
compute the vectorized function and vectorized derivative values (that is, F and D¥%).
It is then the case that any operations performed on a vectorized cada object must be
of the form given in Eq. (16).

Here is is noted that, given a fixed value of N, the non-vectorized mode may easily
be used to print the procedures required to compute the non-zero derivatives of F(X).
Typically the derivative files generated by the vectorized and non-vectorized modes
will perform the exact same floating point operations at run-time. One may then ques-
tion the advantages of utilizing the vectorized mode, particularly when more work is
required of the user in order to separate vectorized functions. The advantages of the
vectorized mode are given as follows:

(1) Derivative files are vectorized. Typically functions of the form of Eq. (16) are coded
such that the value of N may be any positive integer. By utilizing the vectorized

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:17

mode, it is the case that the derivative files are generated such that N may be any
positive integer. In contrast, any files generated using the non-vectorized mode are
only valid for fixed input sizes. Allowing the dimension N to change is particularly
helpful when using collocation methods together with a process known as mesh
refinement [Betts 2009] because in such instances the problem of Eq. (22) must
often be re-solved for different values of N.

(2) Compile time is reduced. By taking advantage of the fact that the sparsity of the
vectorized problem (that is, F(X)) is determined entirely by the sparsity of the non-
vectorized problem (that is, f(x)), it is the case that sparsity propagation costs are
greatly reduced when using the vectorized mode over the non-vectorized mode.

(38) Run-time overhead is reduced. In order to exploit sparsity, the algorithm prints
derivative procedures which perform many subscript index references and assign-
ments at run-time. Unfortunately, these reference and assignment operations incur
run-time penalties proportional to the length of the reference/assignment index vec-
tors [Menon and Pingali 1999]. Moreover, the lengths of the used reference and as-
signment indices are proportional to the number of non-zero derivatives at each link
in the chain rule. When printing derivative procedures in the vectorized mode, how-
ever, the ‘:’ character is used as a reference to all elements in the vectorized dimen-
sion. Thus, the lengths of the required index vectors are proportional to the number
of non-zero derivatives of the non-vectorized problem (that is, 9f/0x), rather than
the vectorized problem (that is, OF/0X). Indexing reference/assignment run-time
overheads are therefore reduced by an order of N when using the vectorized mode
rather than the non-vectorized.

8. USER INTERFACE TO ADIGATOR

The computation of derivatives using the ADiGator package is carried out in a multi-
step process. First, the user must code their function as a MATLAB program which
conforms to the restrictions discussed in Section 3. The user must then fix informa-
tion pertaining to the inputs of the program (that is, input variable sizes and deriva-
tive sparsity patterns). The ADiGator algorithm is then called to transform the user-
defined function program into a derivative program, where the derivative program is
only valid for the fixed input information. The ADiGator tool is then no longer used
and the generated derivative program may be evaluated on objects of the double class
to compute the desired derivatives.

In order to begin the transformation process, the ADiGator algorithm must create
overloaded objects of the form discussed in Section 3.2.1. Thus, the user must provide
certain information for each input to their program. Assuming temporarily that all
user inputs to the original function program are of the double class, then all user
inputs must fall into one of three categories:

e Derivative inputs. Derivative inputs are any inputs which are a function of the vari-
able of differentiation. Derivative inputs must have a fixed size and fixed derivative
sparsity pattern.

e Known numeric inputs. Known numeric inputs are any inputs whose values are fixed
and known. These inputs will be transformed into the known numeric objects dis-
cussed in Section 3.2.3.

e Unknown auxiliary inputs. Unknown auxiliary inputs are any inputs which are not a
function of the variable of differentiation nor are they of a fixed value. It is required,
however, that unknown auxiliary inputs have a fixed size.

For each of the user-defined input variables, the user must identify to which category
the input belongs and create an ADiGator input variable. Under the condition that a
user-defined program takes a structure or cell as an input, the corresponding ADiGator

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. J. Weinstein, and A. V. Rao

input variable is made to be a structure or cell where each cell/structure element corre-
sponding to an object of the double class must be identified as one of the three different
input types. The ADiGator input variables are thus made to contain all fixed input in-
formation and are passed to the ADiGator transformation algorithm. The ADiGator
transformation algorithm is then carried out using the adigator command which re-
quires the created ADiGator input variables, the name of the main function file of the
user-defined program, and the name of which the generated derivative file is to be ti-
tled. The generated derivative program then takes as its inputs the function values
of derivative inputs, known numeric inputs, and unknown auxiliary inputs, together
with the values of the non-zero derivatives of the derivative inputs. Moreover, the
generated derivative program returns, for each output variable, the function values,
possible non-zero derivative values, and locations of the possible non-zero derivatives.
The user interface thus allows a great deal of flexibility for the user-defined function
program input/output scheme. Moreover, the user is granted the ability to use any
desired input seed matrices.

9. EXAMPLES

In this section, the ADiGator tool is tested by solving four different classes of prob-
lems. In Section 9.1, the developed algorithm is used to integrate an ordinary dif-
ferential equation with a large sparse Jacobian. In Section 9.2, a set of three fixed
dimension non-linear system of equations problems are investigated, and in Section
9.3, a large sparse unconstrained minimization problem is presented. Lastly, in Sec-
tion 9.4 the vectorized mode of ADiGator is showcased by solving the large scale non-
linear programming problem that arises from the discretization of an optimal control
problem. For each of the tested problems, comparisons are drawn against methods of
finite-differencing, the well-known MATLAB AD tools ADiMat version 0.6.0, INTLAB
version 6, and MAD version 1.4, and, when available, hand-coded derivative files. All
computations were performed on an Apple Mac Pro with Mac OS-X 10.9.2 (Mavericks)
and a 2 x 2.4 GHz Quad-Core Intel Xeon processor with 24 GB 1066 MHz DDR3 RAM
using MATLAB version R2014a.

9.1. Stiff Ordinary Differential Equation

In this section the well-known Burgers’ equation is solved using a moving mesh tech-
nique as presented in Huang et al. [1994]. The form of Burgers’ equation used for this
example is given by

Pu 0 [u?
l=a— — — | — 1,t =10"* 2
O‘agﬂ 8y(2)’ 0<y<1l,t>0, 0 (25)
with boundary conditions and initial conditions
u(0,t) = wu(1,t) =0, t>0,

u(z,0) = sin(2my) + 1 sin(my), 0 < 1. (26)
The partial differential equation (PDE) of Eq. (25) is then transformed into an ordinary
differential equation (ODE) via a central difference discretization together with the
moving mesh PDE, MMPDEG6 (with 7 = 1073), and spatial smoothing is performed
with parameters v = 2 and p = 2. The result of the discretization is then a stiff ODE
of the form

M(t, x)x = £(t, x), (27

where M : R x R — R"=*"= jg a mass-matrix function and f : R x R"* — R"= is the
ODE function. This problem is given as an example problem for the MATLAB ODE

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:19

suite and is solved with the stiff ODE solver, ode15s [Shampine and Reichelt 1997],
which allows the user to supply the Jacobian 0f /0x.

Prior to actually solving the ODE, a study is performed on the efficiency of differen-
tiation of the function f(¢,x) for varying values of n,, where the code for the function
f(t,x) has been taken verbatim from the MATLAB example file burgersode. The Ja-
cobian 0f /0x is inherently sparse and compressible, where a Curtis-Powell-Reid seed
matrix S € Z* *18 may be found for all n, > 18. Thus, the Jacobian of /0x becomes in-
creasingly more sparse as the dimension of n, is increased. A test was first performed
by applying the AD tools ADiGator, ADiMat, INTLAB, and MAD to the function code
for f(t,x) taken verbatim from the MATLAB file burgersode. It was found, however,
that all tested AD tools perform quite poorly, particularly when compared to the the-
oretical efficiency of a sparse finite-difference. The reason for the poor performance is
due to the fact that the code used to compute f contains four different explicit loops,
each of which runs for %> — 2 iterations and performs scalar operations. When deal-
ing with the explicit loops, all tested AD tools incur a great deal of run-time overhead
penalties. In order to quantify these run-time overheads, the function file which com-
putes f was modified such that all loops (and scalar operations within the loops) were
replaced by the proper corresponding array operations and vector reference/assign-
ment index operations.* A test was then performed by applying AD to the resulting
modified file. The results obtained by applying AD to both the original and modified
files are given in Fig. 1. Results were obtained using ADiGator in the default mode,
ADiMat in the scalar compressed forward mode, INTLAB’s gradient class, and MAD
in the compressed forward mode. Within this figure it is seen that all tested AD tools
greatly benefit from the removal of the loop statements. Moreover, it is seen that the
ADiGator tool performs relatively well compared to that of a theoretical finite differ-
ence. To further investigate the handling of explicit loops, absolute function CPU times
and ADiGator file generation times are given in Table I. Within this table, it is seen
that the reason the original Burgers’ ODE function file is written with loops is that
it is slightly more efficient than when the loops are removed. It is, however, also seen
that when using the ADiGator tool to generate derivative files, the cost of the trans-
formation of the original code containing loops increases immensely as the value of
n, increases. This increase in cost is due to the fact that the ADiGator tool effectively
unrolls loops for the purpose of analysis, and thus must perform a number of over-
loaded operations proportional to the value of n,. When applying the ADiGator tool to
the file containing no explicit loops, however, the number of required overloaded oper-
ations stays constant for all values of n,. From this analysis, it is clear that explicit
loops should largely be avoided whenever using any of the tested AD tools. Moreover,
it is clear that the efficiency of applying AD to a MATLAB function is not necessarily
proportional to the efficiency of the original function.

The efficiency of the ADiGator tool is now investigated by solving the ODE and com-
paring solution times obtained by supplying the Jacobian via the ADiGator tool versus
supplying the Jacobian sparsity pattern and allowing ode15s to use the numjac finite-
difference tool to compute the required derivatives. It is important to note that the
numjac finite-difference tool was specifically designed for use with the MATLAB ODE
suite, where a key component of the algorithm is to choose perturbation step-sizes at
one point based off of data collected from previous time steps [Shampine and Reichelt
1997]. Moreover, it is known that the algorithm of ode15s is not extremely reliant upon

4This process of replacing loops with array operations is often referred to as “vectorization”. In this paper
the term “vectorized” has already been used to refer to a specific class of functions in Section 7. Thus, in
order to avoid any confusion, use of the term “vectorization” is avoided when referring to functions whose
loops have been replaced.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 M. J. Weinstein, and A. V. Rao

16 T T T T T v
U
15 [o |v/ 4
14 1
9
13 [~ V 1
—
c ¢
=0 o 4
S 1 0
=11t 4
g o
S0l .
o
= 9t 4
'(osc] = = Forward Difference
- 8<> o ADiGator -
O ADiMat
7F INTLAB .
VYV MAD
6 4
5 4
P e 1 ----=- _I ---- - e 1 ---=-- I_ -----
5 6 7 8 9 10 11
log, (V)
(a) With Explicit Loops
9 T T T T T
9 9 L2 o o
8
i v
v
—
e
E 7
54 I
%
=3
% = = Forward Difference
~ o ADiGator
g O ADiMat
5 INTLAB 1
YV MAD
----------------------- oS- -~ -
4 o o 7
¢ 0 0
3 1 1 1 1 1
5 6 7 8 9 10 11

logy(N)

(b) Without Explicit Loops
Fig. 1: Burgers’ ODE Jacobian to function CPU ratios. (a) Ratios obtained by differen-

tiating the original implementation of f containing explicit loops. (b) Ratios obtained
by differentiating the modified implementation of f containing no explicit loops.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:21

Table I: Burgers’ ODE function CPU and ADiGator generation CPU times.

Ng: 32 64 128 256 512 1024 2048
Function File Computation Time (ms)
with loops: 0.2046 0.2120 0.2255 0.2449 0.2895 0.3890 0.5615
without loops: 0.2122 0.2190 0.2337 0.2524 0.2973 0.3967 0.5736
ADiGator Derivative File Generation Time (s)
with loops: 2.410 4.205 7.846 15.173 30.130 62.754 137.557
without loops: 0.682 0.647 0.658 0.666 0.670 0.724 0.834

precise Jacobian computations, and thus the numjac algorithm is not required to com-
pute extremely accurate Jacobian approximations [Shampine and Reichelt 1997]. For
these reasons, it is expected that when using numjac in conjunction with odel5s, Ja-
cobian to function CPU ratios should be near the theoretical values shown in Fig. 1.
In order to present the best case scenarios, tests were performed by supplying ode15s
with the more efficient function file containing loop statements. When the ADiGator
tool was used, Jacobians were supplied by the files generated by differentiating the
function whose loops had been removed. In both cases, the ODE solver was supplied
with the mass matrix, the mass matrix derivative sparsity pattern, and the Jacobian
sparsity pattern. Moreover, absolute and relative tolerances were set equal to 10~° and
10~*, respectively, and the ODE was integrated on the interval ¢t = [0, 2|. Test results
may be seen in Table II, where it is seen that the ODE may be solved more efficiently
when using numjac for all test cases except n, = 2048. It is also seen that the number of
Jacobian evaluations required when using either finite-differences or AD are roughly
equivalent. Thus, the ode15s algorithm, in this case, is largely unaffected by supplying
a more accurate Jacobian.

Table II: Burgers’ ODE solution times.

Nyt 32 64 128 256 512 1024 2048
ODE Solve Time (s)
ADiGator: 1.471 1.392 2.112 4.061 10.472 36.386 139.813
numjac: 1.383 1.284 1.958 3.838 9.705 32.847 140.129
Number of Jacobian Evaluations
ADiGator: 98 92 126 197 305 495 774
numjac: 92 92 128 194 306 497 743

9.2. Fixed Dimension Nonlinear Systems of Equations

In this section, analysis is performed on a set of fixed dimension nonlinear system
of equations problems taken from the MINPACK-2 problem set [Averick et al. 1991].
While originally coded in Fortran, the implementations used for the tests of this section
were obtained from Lenton [2005]. The specific problems chosen for analysis are those
of the “combustion of propane fuel” (CPF), “human heart dipole” (HHD), and “coating
thickness standardization” (CTS). The CPF and HDD problems represent systems of
nonlinear equations f : R” — R" (n = 8 and n = 11, respectively) where it is desired
to find x* such that f(x*) = 0. The CTS problem represents a system of nonlinear
equations f : R!3* — R?°2 where it is desired to find x* which minimizes f(x) in the
least-squared sense. The standard methods used to solve such problems are based
upon Newton iterations and thus require iterative Jacobian computations.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. J. Weinstein, and A. V. Rao

Prior to solving the nonlinear problems, a test is first performed to gauge the effi-
ciency of the Jacobian computation compared to the other well-known MATLAB AD
tools. The implementation of Lenton [2005] provides hand-coded Jacobian files which
also provide a convenient base-line for computation efficiency. For each of the prob-
lems the ADiGator tool was tested against the ADiMat tool in the scalar compressed
forward mode, the INTLAB tool’s gradient class, the MAD tool in the compressed for-
ward mode, and the hand-coded Jacobian as provided by Lenton [2005]. Moreover, it is
noted that the Jacobians of the CPF and HHD functions are incompressible while the
Jacobian of the CTS function is compressible with a column dimension of six. Thus, for
the CPF and HHD tests, the ADiMat and MAD tools are essentially used in the full
modes. The resulting Jacobian to function CPU ratios are given in Table III together
with the theoretical ratio for a sparse finite difference (sfd). From Table III it is seen
that the ADiGator algorithm performs relatively better on the sparser CPF and HHD
functions (whose Jacobians contain 43.8% and 2.61% non-zero entries, respectively)
than on the denser HHD problem (whose Jacobian contains 81.25% non-zero entries).
Moreover, it is seen that, on the incompressible CPF problem, the ADiGator algorithm
performs more efficiently than a theoretical sparse finite difference. Furthermore, in
the case of the compressible CTS problem, the ADiGator tool performs more efficiently
than the hand-coded Jacobian file.

Table III: Jacobian to function CPU ratios for CPF, HHD, and CTS problems.

Problem: CPF HHD CTS

Jacobian to Function CPU Ratios, CPU(0f /0x)/CPU(f)

ADiGator: 8.0 21.3 7.3
ADiMat: 197.0 226.3 56.3
INTLAB: 298.5 436.5 85.9

MAD: 474.8 582.6 189.8
hand: 1.3 1.2 11.3
sfd: 12.0 9.0 7.0

Next, the three test problems were solved using the MATLAB optimization tool-
box functions fsolve (for the CPF and HHD nonlinear root-finding problems) and
lsqgnonlin (for the CTS nonlinear least squares problem). The problems were tested
by supplying the MATLAB solvers with the Jacobian files generated by the ADiGa-
tor algorithm and by simply supplying the Jacobian sparsity patterns and allowing
the optimization toolbox to perform sparse finite-differences. Default tolerances of the
optimization toolbox were used. The results of the test are shown in Table IV, which
shows the solution times, number of required Jacobian evaluations, and ADiGator file
generation times. From this table, it is seen that the CPF and HHD problems solve
slightly faster when supplied with the Jacobian via the ADiGator generated files, while
the CTS problem solves slightly faster when used with the MATLAB sparse finite-
differencing routine. It is also noted that the time required to generate the ADiGator
derivative files is actually greater than the time required to solve the problems. For
this class of problems, however, the dimensions of the inputs are fixed, and thus the
ADiGator generated derivative files must only be generated a single time. Additionally,
solutions obtained when supplying Jacobians were more accurate than those obtained
using sparse finite-differences, for each of the tested problems. The differences in solu-
tions for the CPF, HHD, and CTS problems were on the order of 10~7, 104, and 10~ '3,
respectively.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:23

Table IV: Solution times for fixed dimension nonlinear systems.

Problem: CPF HHD CTS
Solution Time (s)
ADiGator: 0.192 0.100 0.094
sfd: 0.212 0.111 0.091
Number of Iterations
ADiGator: 96 38 5
sfd: 91 38 5
ADiGator File Generation Time (s)
0.429 0.422 0.291

9.3. Large Scale Unconstrained Minimization

In this section the 2-D Ginzburg-Landau (GL2) minimization problem is tested from
the MINPACK-2 test suite [Averick et al. 1991]. The problem is to minimize the Gibbs
free energy in the discretized Ginzburg-Landau superconductivity equations. The ob-
jective, f, is given by

Ny Ny

f= ZZ |Uu| +5 ivw| + ¢i(v, alt 3(2)) (28)

=1 j=1

where v € C"*™ and (a"), a(?)) € R"=*" x R"%*" are discrete approximations to
the order parameter V : R? — C and vector potential A : R? — R? at the equally
spaced grid points ((i — 1)hy, (j — 1hy), 1 <i<n,+1,1<j <mn,+1. Periodicity

conditions are used to express the problem in terms of the variables v; ;, a 5 j»and a

for1 <i<n,+1,1<j<n,+ 1. Moreover, both the real and imaginary components
of v are treated as variables. Thus, the problem has 4n,n, variables. For the study
conducted in this section, it was allowed that n = 4n,n,, n, = n,, and the standard
problem parameters of x = 5 and n, = 8 were used. The code used for the tests of this
section was obtained from Lenton [2005], which also contains a hand-coded gradient
file.5 For the remainder of this section, the objective function will be denoted by f,
where f : R" — R and the gradient function will be denoted g, where g : R — R".

In order to test the efficiency of the ADiGator tool at both the first and second deriva-
tive levels, both the objective and gradient functions, f and g, were differentiated.
Thus, three different tests were performed by computing (1) the first derivative of
the objective, 0f/0x; (2) the first derivative of the gradient, dg/0x; and (3) the sec-
ond derivative of the objective, 9 f /0x?, where dg/0x = 0% f/0x>. The aforementioned
derivatives were computed using the ADiGator, ADiMat, INTLAB, and MAD tools and
results are given in Table V. Additionally, Table V provides the theoretical derivative-
to-function CPU ratios that would be required if a finite difference was to be used
along with the derivative-to-function ratio of the hand-coded gradient file. The results
presented in Table V were obtained as follows. For the gradient computation, 0f/0x,
the tested AD tools were applied to the objective function where ADiMat was used
in the reverse scalar mode, and INTLAB and MAD were used in the sparse forward
modes. Additionally, the hand-coded gradient g was evaluated in order to compute the
hand-coded ratios, and the ratio given for a finite-difference is equal to n + 1. For the
Jacobian computation, dg/0x, the tested AD tools were applied to the gradient func-

5The files obtained from Lenton [2005] unpacked the decision vector by projecting into a three dimensional
array. The code was slightly modified to project only to a two-dimensional array in order to allow for use
with the ADiGator tool.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 M. J. Weinstein, and A. V. Rao

tion where ADiMat was used in the forward compressed scalar mode, INTLAB was
used in the sparse forward mode, and MAD was used in the forward compressed mode.
The ratios given for a sparse finite difference are given as (¢ + 1) times those of the
hand-coded gradient ratios, where c is the number of Hessian colors provided in the
table. For the Hessian computation, 9% f/0x?, the tested AD tools were applied again to
the objective function where ADiMat was used in the compressed forward over scalar
reverse mode (with operator overloading for the forward computation, tirev option of
admHessian), INTLAB was used in the sparse second-order forward mode, and MAD
was used in the compressed forward mode over sparse forward mode. The ratios given
for a finite-difference are equal to (n + 1)(c + 1); the number of function evaluations
required to approximate the Hessian via a central difference. As witnessed from Table
V, the ADiGator tool performs quite well at run-time compared to the other methods.
While the hand-coded gradient may be evaluated faster than the ADiGator generated
gradient file, the ADiGator generated file is, at worst, only five times slower, and is
generated automatically.

Table V: Derivative to function CPU ratios for 2-D Ginzburg-Landau problem. Shown
are the function gradient to function CPU ratios, CPU(0f/0x)/CPU(f), gradient Ja-
cobian to function CPU ratios, CPU(dg/0x)/CPU(f), and function Hessian to function
CPU ratios, CPU(9? f /0x*)/CPU(f), for increasing values of n, where n = 4n,n, and

Ng = Ny.

n: 16 64 256 1024 4096 16384
Ratios CPU(9f/ 8x)/CPU(I3
ADiGator: 6.3 7.0 9.6 10.9 12.0
ADiMat: 86 9 84.6 80.9 68.7 52.9 21.3
INTLAB: 67.9 67.1 65.4 60.1 57.7 41.0
MAD: 123.6 121.2 118.3 112.9 142.3 240.9
fd: 17.0 65.0 257.0 1025.0 4097.0 16385.0
hand: 3.8 4.2 4.2 3.8 3.8 2.5
Ratios CPU(0g/ 3X)/CPU(D
ADiGator: 3.0 38.0 39.1 39.3 49.6 50.4
ADiMat: 632.5 853.1 935.6 902.1 731.4 420.4
INTLAB: 518.7 530.4 514.7 460.0 414.1 249.1
MAD: 896.2 876.9 838.9 724.3 579.8 267.8
sfd: 64.9 87.3 100.5 99.8 95.6 66.2
Ratios CPU(O*f/ Bxg)/CPU(D)
ADiGator: 9.7 10.7 13.1 20.5 45.4 62.9
ADiMat: 944.5 926.5 889.2 819.9 727.4 393.0
INTLAB: 102.4 102.3 138.4 2102.4 47260.0 -
MAD: 531.1 527.5 584.3 1947.6 19713.8 -
fd: 289.0 1365.0 6168.0 26650.0 102425.0 426010.0
Hessian Information
colors: 16 20 23 25 24 25
9% non-zero: 62.50 19.53 4.88 1.22 0.31 0.08

As seen in Table V, the files generated by ADiGator are quite efficient at run-time.
Unlike the problems of Section 9.2, however, the optimization problem of this section
is not of a fixed-dimension. Moreover, the derivative files generated by ADiGator are
only valid for a fixed dimension. Thus, one cannot disregard file generation times. In
order to investigate the efficiency of the ADiGator transformation routine, absolute

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:25

derivative file generation times together with absolute objective file evaluation times
are given in Table VI. This table shows that the cost of generation of the objective
gradient file, f/0x, and gradient Jacobian file, dg/0x, are relatively small, while the
cost of generating the objective Hessian file becomes quite expensive at n = 16384.%
Simply revealing the file generation times, however, does not fully put into perspective
the trade-off between file generation time costs and run-time efficiency gains. In order
to do so, a “cost of derivative computation” metric is formed, based off of the number
of Hessian evaluations required to solve the GL2 minimization problem. To this end,
the GL2 problem was solved using the MATLAB unconstrained minimization solver,
fmincon, in the full-Newton mode, and the number of required Hessian computations
was recorded. Using the data of Tables V and VI, the metric was computed as the total
time to perform the k required Hessian computations, using all of the tested AD tools.
The results from this computation are given in Table VII, where two costs are given for
using the ADiGator tool, one of which takes into account the time required to generate
the derivative files. Due to the relatively low number of required Hessian evaluations,
it is seen that the ADiGator tool is not always the best option when one factors in the
file generation time. That being said, for this test example, files which compute the
objective gradient and Hessian sparsity pattern are readily available. At some point
in time, however, someone had to devote a great deal of time and effort towards coding
these files. Moreover, when using the ADiGator tool, one obtains the Hessian sparsity
pattern and an objective gradient file as a direct result of the Hessian file generation.

Table VI: ADiGator file generation times and objective function evaluation times for 2-
D Ginzburg-Landau problem. Shown is the time required for ADiGator to perform the
transformations: objective function f to an objective gradient function 0f/0x, gradient
flénctiOI‘QI g to Hessian function dg/0x, and gradient function 0f/0x to Hessian function
0° f JOx*.

n: 16 64 256 1024 4096 16384
ADiGator File Generation Time (s)
af /ox: 0.51 0.51 0.52 0.53 0.58 0.90
0g/ox: 2.44 2.51 2.51 2.57 2.89 4.33
0% f)ox2: 2.12 2.13 2.23 2.33 4.85 37.75
Objective Function Evaluation Time (ms)
I 0.2795 0.2821 0.2968 0.3364 0.4722 1.2611

9.4. Large Scale Nonlinear Programming

Consider the following nonlinear program (NLP) that arises from the discretization
of a scaled version of the optimal control problem described in Darby et al. [2011]
using a multiple-interval formulation of the Legendre-Gauss-Radau (LGR) orthogonal
collocation method as described in Garg et al. [2010]. This problem was studied in
Weinstein and Rao [2015] and is revisited in this paper as a means of investigating
the use of the vectorized mode of the ADiGator algorithm. The problem is to determine
the values of the vectorized variable X € R**V,

X=[Y U], YeR>*N UecRXY (29)

6This expense is due to the fact that the overloaded sum operation performs the affine transformations of
Eq. (9), which become quite expensive as n is increased.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 M. J. Weinstein, and A. V. Rao

Table VII: Cost of differentiation for 2-D Ginzburg-Landau problem. A “cost of differen-
tiation” metric is given as the time required to perform k£ Hessian evaluations, where
k is the number of Hessian evaluations required to solve the GL2 optimization prob-
lem using fmincon with a trust-region algorithm and function tolerance of /€, ,achine.
Results are presented for three cases of computing the Hessian: sparse-finite differ-
ences over AD, AD over the hand-coded gradient, and AD over AD. Times listed for
ADiGator* are the times required to compute ¥ Hessians plus the time required to
generate the derivative files, as given in Table VI.

n: 16 64 256 1024 4096 16384
Hes Eval: 9 11 26 21 24 26
colors: 16 20 23 25 24 25
Cost of Differentiation: SFD over AD (s)
ADiGator: 0.27 0.41 1.29 1.76 3.08 10.23
ADiGator*: 0.78 0.92 1.81 2.29 3.66 11.13
ADiMat: 3.71 5.51 14.99 12.63 15.00 18.19
INTLAB: 2.90 4.37 12.11 11.04 16.36 34.94
MAD: 5.29 7.90 21.90 20.73 40.33 205.34
hand: 0.16 0.27 0.78 0.70 1.08 2.17
Cost of Differentiation: AD over Hand-Coded (s)
ADiGator: 0.08 0.12 0.30 0.28 0.56 1.65
ADiGator*: 2.52 2.63 2.81 2.85 3.45 5.98
ADiMat: 1.59 2.65 7.22 6.37 8.29 13.79
INTLAB: 1.30 1.65 3.97 3.25 4.69 8.17
MAD: 2.25 2.72 6.47 5.12 6.57 8.78
Cost of Differentiation: AD over AD (s)
ADiGator: 0.02 0.03 0.10 0.14 0.51 2.06
ADiGator*: 2.65 2.68 2.85 3.01 5.94 40.71
ADiMat: 2.38 2.87 6.86 5.79 8.24 12.88
INTLAB: 0.26 0.32 1.07 14.85 535.61 -
MAD: 1.34 1.64 4.51 13.76 223.42 -

*Includes the cost of ADiGator file generation.

the support points s € R?, and the parameter 3, which minimize the cost function

J=p (30)
subject to the nonlinear algebraic constraints
C(X,s,8) =[Ys|D" - §F(X) =0ec RN (31)

and simple bounds
Xmin S X S Xma)u Smin S S S Smax; Bmin S ﬁ S ﬂmax' (32)

The matrix DV *(N+1) of Eq. (31) is the LGR differentiation matrix [Garg et al. 2010],
and the function F(X) : RN — R3*N of Eq. (31) is the vectorized function

F(X) =[f(Xy) £(X3) -+ £(Xn)], (33)
where X, € R* refers to the i*"* column of X and f : R* — R3 is defined as
f1(x) = zosinxs,
fo(x) = L (C(T(x1),21,22)) — O(T(x1), p(1), 1, 22)) — casins, (34)

f3(x) = & (24 —cosas).

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:27

Moreover, the functions 7'(h) and p(h) are modified from the smooth functions of Darby
et al. [2011] to the following piecewise continuous functions taken from NOAA [1976]:

_ph)
p(h) = c3 W)’ (35)
where
(C4—C5h,C6 {%:L):rg) , h <11,
(T'(h),p(h)) = (36)

(cg, crpecr—12M) | otherwise.

Unlike the implementation considered in Weinstein and Rao [2015], Eq. (36) is imple-
mented as a sequence of logical reference and assignment operations.

In the first portion of the analysis of this problem, the NLP of Eqs. (30)—(32) is solved
for increasing values of N. The number of LGR points in each interval is fixed to four
and the number of mesh intervals, K, is varied. The number of LGR points is thus
N = 4K. The NLP is first solved on an initial mesh with K = 4 intervals. The num-
ber of mesh intervals is then doubled sequentially, where the result of the solution of
the previous NLP is used to generate an initial guess to the next NLP. Mesh intervals
are equally spaced for all values of K = 4,8,16,32,64,128,256,512,1048 and the NLP
is solved with the NLP solver IPOPT [Biegler and Zavala 2008; Waechter and Biegler
2006] in both the quasi-Newton (first-derivative) and full-Newton (second-derivative)
modes. Moreover, derivatives of the NLP were computed via ADiGator using two dif-
ferent approaches. In the first, non-vectorized, approach, the ADiGator tool is applied
directly to the function which computes C(X,s, 3) of Eq. (31) to compute the constraint
Jacobian and the Lagrangian Hessian. In the second, vectorized, approach, the ADi-
Gator tool is applied in the vectorized mode to the function which computes F(X). The
ADiGator computed derivatives of F(X) are then used to construct the NLP constraint
Jacobian and Lagrangian Hessian (using discretization separability as described in
Betts [2009]). Results of the tests are shown in Table VIII. In the presented table, so-
lution times are broken into two different categories, initialization time and NLP solve
time. When using the non-vectorized approach, the initialization time is the time re-
quired to generate derivative files prior to solving each NLP. When using the vectorized
approach, derivative files must only be generated a single time (shown as mesh # 0).
The initialization time required of the vectorized approach at each subsequent mesh
iteration is the time required to compute the derivative of the linear portion of C (that
is, [X s] D) plus the time required to determine sparsity patterns of the constraint
Jacobian and Lagrangian Hessian, given sparsity patterns of of /0x and 9*f/0x>. Tt
is seen in Table VIII for both quasi-Newton and full-Newton solutions that the use
of the vectorized mode reduces both initialization times and NLP run times. The rea-
son for the reduction in initialization times is fairly straightforward: when using the
vectorized mode, derivative files are valid for any value of N and thus must only be
generated a single time. The reason for the reduction in run-times is two-fold. First, by
separating the nonlinear portion of C from the linear portion of C, the first derivatives
of the linear portion must only be computed a single time for each mesh, rather than at
run-time. Next, as discussed in Section 7, run-time indexing overheads are effectively
reduced by an order of N when using the vectorized mode over the non-vectorized. This
reduction of run-time indexing overheads is greatly emphasized in the results from the
full-Newton mode, where many more indexing operations are required at the second
derivative level than at the first.

In the next part of the analysis of this example the vectorized function F(X) was
differentiated for increasing values of N using a variety of well-known MATLAB AD

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 M. J. Weinstein, and A. V. Rao

Table VIII: NLP Solution Times for Minimum Time to Climb using IPOPT and ADi-
Gator. The NLP is solved for increasing values of K using IPOPT in both the quasi-
Newton and full-Newton modes. For both modes, the ADiGator tool is used in two
different ways. In the non-vectorized case (labeled non-vect), ADiGator is applied di-
rectly to the functions of the NLP. In the vectorized case (labeled vect), ADiGator is
applied in the vectorized mode to the function F(X).

mesh #: 0 1 2 3 4 5 6 7 8 9 Total
K: 4 8 16 32 64 128 256 512 1024
o #jaceval - 63 63 93 92 92 71 62 145 52 733
8 Initialization Time (s)
% non-vect: - 118 1.17 118 1.18 1.19 123 1.35 1.62 2.27 12.4
Z vect: 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.0
'g NLP Solve Time (s)
S non-vect: - 059 061 096 1.12 145 1.65 237 941 17.00 25.2
< vect: - 056 051 082 095 121 135 195 7.82 5.80 21.0
jac eval: - 41 14 17 17 18 18 20 20 23 188
o # hes eval: - 40 13 16 16 17 17 19 19 22 179
S Initialization Time (s)
% non-vect: - 537 538 543 547 564 6.06 7.40 11.09 24.04 75.9
4 vect: 4.59 0.00 0.00 0.00 0.00 0.01 0.03 0.13 0.46 1.78 7.0
= NLP Solve Time (s)
B non-vect: - 0.86 0.40 048 052 066 0.89 148 250 573 13.5
vect: - 085 0.23 030 032 041 0.54 0.90 1.51 3.33 8.4

tools. At the first-derivative level, the ADiGator tool was used in the vectorized and
non-vectorized modes, ADiMat was used in the compressed scalar forward mode, INT-
LAB was used in the sparse forward mode, and MAD was used in the compressed
forward mode. At the second-derivative level, the ADiGator tool was again used in the
vectorized and non-vectorized modes, ADiMat was used in the compressed forward
over scalar reverse mode (with operator overloading for the forward computation),
INTLAB was used in the sparse second-order forward mode, and MAD was used in
the compressed forward over compressed forward mode. Results are shown in Fig. 2.
At the second-derivaitve level, the ADiMat tool was used to compute d?°A"F'/0X?2,
where A € R3"N and F' € R3V is the one-dimensional transformation of F. All other
tools were used entirely in the forward mode, and thus were simply used to compute
9?F/0X2. The computation time CPU(9?A"F!/0X?) was then computed as the time
required to compute 92F/9X? plus the time required to pre-multiply 9>F!/0X2 by AT.
As seen in Fig. 2, the ratios for all tested tools tend to decrease as the value of N is
increased. This increase in efficiency is due to a reduction in the relevance of run-time
overheads (this is very apparent for the operator overloaded INTLAB and MAD tools
at the first derivative) together with the fact that the derivatives become sparser as
N is increased. When comparing the results obtained from using ADiGator in the vec-
torized mode versus the non-vectorized mode, it is seen that the ratios diverge as the
dimension of the problem is increased. These differences in computation times are due
strictly to run-time overheads associated with reference and assignment indexing.

10. DISCUSSION

The presented algorithm has been designed to perform a great deal of analysis at
compile-time in order to generate the most efficient derivative files possible. The re-
sults of Section 9 show these ADiGator generated derivative files to be quite efficient
at run-time when compared to other well-known MATLAB AD tools. The presented re-
sults also show, however, that compile times can become quite large as problem dimen-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:29

7 T T T T T T T
| | | | | 0 ADiGator (vect)
: : : : : O ADiGator (non-vect)
QO ADiMat
Y v V | | INTLAB
//_\\6L ******** r———-Y-—-——=———--7-|_V MAD M

= I I T I | |
5 I I I V I I I

I I I I I I I
% I I I I V I I
P | | | | | |
X 5T T T e e I [[
) | | | | | ! |
= | | | | | pr 4 |
S I I I I I I I

| | | | | | !
a 77777 [R I [R D e
O 4 | \va

I
I

10 11 12

10 T T T T T T
o O | | | 0 ADiGator (vect)
‘ ‘ O ‘ ‘ O ADiGator (non-vect)

—_ 7777:77774‘7777:77779777717 O ADiMat 1
= 9 | | | | INTLAB
E V [[[C) V_MAD
&) | I I I I
—~ 1 N ___1___Q@Q___Jd____
e 8 I I I v I I I
> I I I I | I |
g I I I I v I (0] (0]
- ! | I I I I I
._L" N~ W] N A I VA
< I I : A I I I
B | | | T) | |
= | | | | | I \"4
E 6~~~ [e T T T T T T T /T T T [
O I I I I I I I
N I I I I I I I
3 I I I I I I I
S s~~~ [t Sl A [S |- =

| | |

| | | |

| | | |
4 5 6 7 8 9 10 11 12
(b) log, (CPU(82>\TFT /8X2)) /CPU(f)) vs. logy (N)

Fig. 2: Jacobian and Hessian to Function CPU Ratios for Minimum Time to Climb
Vectorized Function.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 M. J. Weinstein, and A. V. Rao

sions increase. This is particularly the case when dealing with functions containing
explicit loops (for example, Burgers’ ODE) or those which perform matrix operations
(for example, the GL2 minimization problem). Even so, the ADiGator algorithm is well
suited for applications requiring many repeated derivative computations, where the
cost of file generation becomes less significant as the number of required derivative
computations is increased.

Next, the fact that the method has been implemented in the MATLAB language is
both an advantage and a hindrance. Due to MATLAB’s high level array and matrix op-
erations, the corresponding overloaded operations are granted a great deal of informa-
tion at compile-time. The overloaded operations can thus print derivative procedures
that are optimal for the sequence of elementary operations which the high-level oper-
ation performs, rather than printing derivative procedures that are optimal for each of
the individual elementary operations. In order to exploit derivative sparsity, however,
the overloaded operations print derivative procedures which typically only operate on
vectors of non-zero derivatives. Moreover, the derivative procedures rely heavily on
index array reference and assignment operations (for example, a(ind), where ind is
a vector of integers). Due to the interpreted nature of the MATLAB language, such
reference and assignment operations are penalized at run-time by MATLAB’s array
bounds checking mechanism, where the penalty is proportional to the length of the
index vector (for example, ind) [Menon and Pingali 1999]. Moreover, the length of the
used index vectors are proportional to the number of non-zero derivatives at each link
in the chain rule. Thus, as problem sizes increase, so do the derivative run-time penal-
ties associated with the array bounds checking mechanism. The increase in run-time
overheads is manifested in the the results of Fig. 1 and Table V of Sections 9.1 and
9.3, respectively. For both problems, the Jacobians become relatively more sparse as
the problem dimensions are increased. One would thus expect the Jacobian to function
CPU ratios to decrease as problem dimensions increase. The witnessed behavior of the
ADiGator tool is, however, the opposite and is attributed to the relative increase in
run-time overhead due to indexing operations. When studying the vectorized problem
of Section 9.4, the indexing run-time overheads may actually be quantified as the dif-
ference in run times between the vectorized and non-vectorized generated files. From
the results of Fig. 2, it is seen that, at small values of N, the differences in run times
are negligible. At N = 4096, however, the non-vectorized ADiGator generated first and
second derivative files spent at least 32% and 42%, respectively, of the computation
time performing array bounds checks from indexing operations.

11. CONCLUSIONS

A toolbox called ADiGator has been described for algorithmically differentiating math-
ematical functions in MATLAB. ADiGator statically exploits sparsity at each link in
the chain rule in order to produce run-time efficient derivative files, and does not re-
quire any a priori knowledge of derivative sparsity, but instead determines derivative
sparsity as a direct result of the transformation process. The algorithm is described in
detail and is applied to four examples of varying complexity. It is found that the deriva-
tive files produced by ADiGator are quite efficient at run-time when compared to other
well-known AD tools. The generated derivative files are, however, valid only for fixed
dimensional inputs and thus the cost of file generation cannot be overlooked. Finally, it
is noted that the ADiGator tool is well suited for applications requiring many repeated
derivative computations.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Algorithm: ADiGator, a Toolbox for the Algorithmic Differentiation of Mathematical Functions in MATLAB ~ A:31

REFERENCES

ASCHER, U., MATTHELJ, R., AND RUSSELL, R. 1995. Numerical Solution of Boundary Value Problems for
Ordinary Differential Equations. Society for Industrial and Applied Mathematics, Philadelphia, Penn-
sylvania.

AVERICK, B. M., CARTER, R. G., AND MORAL, J. J. 1991. The minpack-2 test problem collection.

BETTS, J. T. 2009. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,
2 ed. SIAM Press, Philadelphia.

BIEGLER, L. T. AND ZAVALA, V. M. 2008. Large-scale nonlinear programming using IPOPT: An integrating
framework for enterprise-wide optimization. Computers and Chemical Engineering 33, 3 (March), 575—
582.

BIScHOF, C., LANG, B., AND VEHRESCHILD, A. 2003. Automatic differentiation for MATLAB programs.
Proceedings in Applied Mathematics and Mechanics 2, 1 Joh Wiley, 50-53.

COLEMAN, T. F. AND VERMA, A. 1998a. ADMAT: An Automatic Differentiation Toolbox for MATLAB. Tech-
nical Report. Computer Science Department, Cornell University.

COLEMAN, T. F. AND VERMA, A. 1998b. The efficient computation of sparse jacobian matrices using auto-
matic differentiation. SIAM Journal on Scientific Computing 19, 4, 1210-1233.

COLEMAN, T. F. AND VERMA, A. 2000. ADMIT-1: Automatic differentiation and MATLAB interface toolbox.
ACM Transactions on Mathematical Software 26, 1, 150-175.

CURTIS, A. R., POWELL, M. J. D., AND REID, J. K. 1974. On the estimation of sparse jacobian matrices.
IMA Journal of Applied Mathematics 13, 1, 117-119.

DARBY, C. L., HAGER, W. W., AND RAO, A. V. 2011. Direct trajectory optimization using a variable low-
order adaptive pseudospectral method. Journal of Spacecraft and Rockets 48, 3 (May—June), 433—-445.

FORTH, S. A. 2006. An efficient overloaded implementation of forward mode automatic differentiation in
MATLAB. ACM Transactions on Mathematical Software 32, 2 (April-June), 195-222.

FORTH, S. A., TADJOUDDINE, M., PRYCE, J. D., AND REID, J. K. 2004. Jacobian code generated by source
transformation and vertex elimination can be as efficient as hand—coding. ACM Transactions on Math-
ematical Software 30, 4 (October—December), 266—299.

GARG, D., PATTERSON, M. A., HAGER, W. W., RAO, A. V., BENSON, D. A., AND HUNTINGTON, G. T. 2010. A
unified framework for the numerical solution of optimal control problems using pseudospectral methods.
Automatica 46, 11 (November), 1843—1851.

GRIEWANK, A. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
Frontiers in Appl. Mathematics. SIAM Press, Philadelphia, Pennsylvania.

HUANG, W., REN, Y., AND RUSSELL, R. D. 1994. Moving mesh methods based on moving mesh partial
differential equations. J. Comput. Phys 113, 279-290.

KHARCHE, R. V. 2011. Matlab automatic differentiation using source transformation. Ph.D. thesis, Depart-
ment of Informatics, Systems Engineering, Applied Mathematics, and Scientific Computing, Cranfield
University.

KHARCHE, R. V. AND FORTH, S. A. 2006. Source transformation for MATLAB automatic differentiation. In
Computational Science — ICCS, Lecture Notes in Computer Science, V. N. Alexandrov, G. D. van Albada,
P. M. A. Sloot, and J. Dongarra, Eds. Vol. 3994. Springer, Heidelberg, Germany, 558-565.

LENTON, K. 2005. An efficient, validated implementation of the MINPACK-2 test problem collection in
MATLAB. M.S. thesis, Cranfield University (Shrivenham Campus), Applied Mathematics & Opera-
tional Research Group, Engineering Systems Department, RMCS Shrivenham, Swindon SN6 8LA, UK.

MATHWORKS. 2014. MATLAB Version R2014b. The MathWorks Inc., Natick, Massachusetts.

MENON, V. AND PINGALI, K. 1999. A case for source-level transformations in matlab. SIGPLAN Not. 35, 1
(Dec.), 53-65.

NOAA. 1976. U. S. standard atmosphere, 1976. National Oceanic and Amospheric Administration, Wash-
ington, D.C.

PATTERSON, M. A., WEINSTEIN, M. J., AND RAO, A. V. 2013. An efficient overloaded method for computing
derivatives of mathematical functions in matlab. ACM Transactions on Mathematical Software, 39, 3
(July), 17:1-17:36.

Rump, S. M. 1999. Intlab — interval laboratory. In Developments in Reliable Computing, T. Csendes, Ed.
Kluwer Academic Publishers, Dordrecht, Germany, 77-104.

SHAMPINE, L. F. AND REICHELT, M. W. 1997. The matlab ode suite. SIAM journal on scientific comput-
ing 18, 1, 1-22.

TADJOUDDINE, M., FORTH, S. A., AND PRYCE, J. D. 2003. Hierarchical automatic differentiation by vertex
elimination and source transformation. In Computational Science and Its Applications — ICCSA 2003,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 M. J. Weinstein, and A. V. Rao

Proceedings of the International Conference on Computational Science and its Applications, Montreal,
Canada, May 18-21, 2003. Part II, V. Kumar, M. L. Gavrilova, C. J. K. Tan, and P. UEcuyer, Eds. Lecture
Notes in Computer Science, vol. 2668. Springer, Berlin Heidelberg, 115-124.

WAECHTER, A. AND BIEGLER, L. T. 2006. On the implementation of a primal-dual interior-point filter line
search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 1 (March),
575-582.

WEINSTEIN, M. J. AND RAO, A. V. 2015. A source transformation via operator overloading method for the
automatic differentiation of mathematical functions in MATLAB. ACM Transactions on Mathematical
Software 42, 1, 2:1-2:46.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

