
Vol.:(0123456789)1 3

Production Engineering (2022) 16:285–293 
https://doi.org/10.1007/s11740-022-01121-2

PRODUCTION PROCESS

Algorithm‑based design of mechanical joining processes

Mathias Jäckel1 · Tobias Falk1 · Welf‑Guntram Drossel1,2

Received: 14 October 2021 / Accepted: 10 February 2022 / Published online: 5 March 2022 
© The Author(s) 2022

Abstract
In this paper, the development of algorithm-based process models for the mechanical joining process self-pierce riveting 
with semi-tubular rivet (SPR-ST) is described. Therefore, an extensive experimental and numerical database regarding the 
SPR-ST process and strength of steel and aluminum joints with tensile strengths of the sheets between 200 and 1000 MPa 
was generated for the building of the models. This process data could then be used for the training and evaluation of differ-
ent prediction algorithms. Furthermore, the simulation data is applied to predict the entire contour (mesh) of non-simulated 
joints. This includes the visualization of output values such as strains, stresses and damage for each element and node of the 
mesh. That approach enables to obtain more information about the joint than just discrete values such as interlock or strength.

Keywords Self-pierce riveting · Numerical simulation · Machine learning

1 Introduction

Currently, the design of mechanical joining processes like 
self-pierce riveting with semi-tubular rivet (SPR-ST) for pro-
duction involves time-consuming, experimental test series in 
which process parameters such as the rivet or die geometry 
are varied iteratively and based on experience until a suitable 
joint contour and strength is achieved. To simplify the use of 
mechanical joining technologies, these development cycles 
and thereby the effort for implementation into production 
must be reduced. Therefore, the goal of the research pre-
sented here is to enable an immediate prediction of the joint 
characteristics such as interlock formation and quasi-static 
strength or even the whole joint contour, based on the input 
parameters such as properties of the parts to be joined and 
process parameters.

This joining method can be divided in three steps as 
shown in Fig. 1. The first step is characterized by position-
ing the rivet and the sheets between the punch, blank holder 
and die (a). When the punch presses the rivet in the punch-
sided sheet, the rivet pierces a slug out of the material, which 

remains inside the cavity (b). The contour of the die forces 
the rivet to expand and an interlock is created (c). SPR-ST 
joints are evaluated by certain geometrical criteria (Fig. 1d). 
These criteria correlate with the strength properties of the 
joint and must fulfill specific values in order that the joint 
can be considered as proper [1].

In the past, the prediction of joining results was mainly 
focused on the numerical simulation of the SPR process. 
Numerous research works were carried out on the finite 
element method (FEM) process simulation for SPR-ST of 
mixed structures made of sheet metal materials. Contents 
of this work were e.g. the general improvement of func-
tionality and prognosis accuracy of the process models [2], 
the numerical development of new rivet geometries [3], 
the determination of suitable process parameters [4] or the 
development of new process variants [5].

The progress due to the mentioned and other research 
work, the further development of simulation software sys-
tems and the constant advances in computer technology have 
contributed to the fact that the FEM simulation of SPR-ST of 
classical multi material joints made of sheet metal materials 
can be automated and carried out with high accuracy and 
with computing times of significantly less than one hour [6].

This opens up the possibility to perform a larger number of 
FEM calculations based on statistical design of experiments 
to be used as data to build regression models and analyze the 
SPR-ST process from a mathematical point of view [7], to use 
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these models for atomization [8] or to reduce the number of 
necessary tools in production [9].

In terms of databased modelling in mechanical joining e.g. 
LAMBIASE in [10] used the data from 27 clinching process 
simulations to train an artificial neural network. In the investi-
gations described, the prediction of the neural network could 
already be used for an optimization of process parameters. In 
[11], micrographs in combination with the joining force are 
used to train a convolutional neural network (CNN). The join-
ing force was varied experimentally for two material-thickness 
combinations and three micrographs were created for each 
joining force. With the help of these image and process data, 
the neural network could be trained in order to subsequently 
predict a data-based forecast of the joining contour as a func-
tion of the joining force. For both material combinations, a 
very good prediction quality could be achieved in the tested 
area. In [12] neural network was trained and tested to classify 
which sheet thickness combinations for aluminum-steel com-
binations can be joined more or less successfully. Thereby also 
the influence of process parameters was taken into account.

The research described here aims to develop data-based 
predictive models for the SPR-ST process. Therefore, the 
necessary acquisition of the process data as well as the 
development of the prediction algorithms will be discussed 
in the following.

2  Experimental and numerical process data 
mining

Following, the SPR-ST process of steel and aluminum sheets 
is investigated. Thereby, the materials and thicknesses listed 
in Table 1 are considered.

For the experimental sampling, based on the materials 
of Table 1, 71 combinations were identified on the basis 
of a partial factorial experimental design according to the 
optimized latin hypercube sampling method [10]. Thereby 
the process parameters for each material combination was 
chosen by experience and the joint contour was obtained by 
means of micrograph preparations and measurement of the 
characteristic values (Fig. 1) [13]. In addition to the joint 
contour the quasi-static strength of the 71 material combi-
nations was determined with respect to their load-bearing 
capacity in shear and top tension (Fig. 2) (three tests per 
material combination).

Due to the industrial relevance and comparability, the 
specimen forms are based on the simple shear and top ten-
sile geometries according to [14]. In the test evaluation, the 
focus is on the maximum force Fmax achieved in each load 
direction test.

For the generation of the numerical data, FEM (finite 
element method) simulation models for the joining process 
as well as the strength simulation (Fig. 3) were built and 
validated for each of the 71 experimentally joined material 
combinations for the SPR-ST process as well as the follow-
ing quasi-static shear and top tensile tests. The boundary 
conditions for the simulation models for joining process can 
be found in [13]. The flow curves for the process simulation 

Fig. 1  Self-pierce riveting: a–c Process steps, d Characteristic values 
e Process parameters [1]

Table 1  Considered specimen with mechanical properties

Material Rm/Rp0,2 in MPa Thickness in mm

EN AW-6016 T4 ≈ 240/129 0.8 1.15 1.5 2.0
EN AW-5182 ≈ 287/144 1.15 1.25 1.5 2.0
CR210IF 363/241 0.8
DX53D ≈ 287/144 1.0 1.25 1.5 1.75
HCT600XD ≈ 627/390 1.25 1.5 1.75 2.0
HCT780XD 1035/622 1.25
HCT980XG 1022/865 1.0

Fig. 2  Example of force–displacement curve and geometries used for 
the quasi-static strength tests [11]
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were conducted via stack compression test for each consid-
ered material [15].

For the numerical simulations of the SPR-ST process 
with the following strength calculation, the software Simu-
fact Forming is used due to the short computation times 
as well as good automation capability. When building the 
models, the focus is on computational efficiency, low manual 
effort during the build-up and the best possible accuracy. 
Therefore, objects for the following top and shear tensile 

simulation are already taken into account when setting up 
the 2D joining simulation (Fig. 3).

This means that the joining result of the 2D joining 
simulation can be integrated into the model structure of the 
strength test with relatively little effort, and the load cal-
culation can be performed immediately. Due to the exten-
sive number of materials considered and the simplicity of 
calibration, specimen failure was modeled in the simulation 
using the Cockroft & Latham macro-mechanical damage cri-
terion [16] by calibrating the damage value with the experi-
ments. Overall, the simulation models for joining process 
and strength simulation were built and calculated for all 
71 material combinations investigated in the experimental 
studies.

In the here described investigations the main objective of 
the numerical data acquisition is to generate as comprehen-
sive and representative a set of data describing the joint for-
mation and the quasi-static strength behavior of SPR joints 
of the sheet materials under consideration. In order to limit 
the effort in numerical model building and calculation times, 
sacrifices in terms of accuracy have to be tolerated.

Table 2 shows the average absolute and magnitude devia-
tions (∆) between the experiments and simulations for the 
best (lowest deviation to the experiments) 50 of 71 originally 
build up simulation models. The geometric parameters of 
the joint contour (Fig. 1) and the maximum forces in the top 
tensile test FmaxTT and in the shear tensile test FmaxST (Fig. 2) 
are evaluated.

On average, the deviation of the joint contour is approx. 
18.8% and for the quasi-static joint strength approx. 18.6%. 
Due to the acceptable agreement between experiment and 
simulation, these 50 simulation models were used for the 
numerical variation calculations. Therefore material prop-
erties conditions like material flow curve, sheet thickness, 
die and rivet geometry were varied [13]. In total, based on a 
statistical experimental design, 19 variations per simulation 
model were built and calculated for the strength calculations, 
resulting in a total of 1.000 simulation models for the SPR-
ST process with the following strength calculation. However, 
after a technological review of the simulation results, a large 
number of calculation results could not be taken into account 
for the development of the data-based models due to e.g. 
missing interlock formation, material penetration or rivet 
compression. Therefore, numerical joining results of 2.376 
different material combinations from previous investigations 

Fig. 3  Structure of the models for the strength simulation of the SPR-
ST process

Table 2  Deviation between 
experiments and numerical 
results for joining process and 
strength simulation for 50 
SPR-ST joints

Joint contour Joint strength

u1,2 uh1,2 tr df FmaxTT Fmax ST

∆ in % − 8.9 − 13.5 3.2 0.3 1.3 21.4
|∆| in % 25.5 24.0 21.9 2.2 13.1 23.9
X̅ |∆| in % 18.8 18.6
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[13] for the geometric criteria of the joint contour and 771 
material combinations with strength testing are available for 
the analysis of the prediction models.

3  Joint characteristics and strength 
prediction

Different algorithms (Table 3) are tested for the prognosis 
of the geometrical joint characteristics (2.376 datasets) and 
the strength prognosis (771 datasets).

Therefore, the data set is randomly split in a training set 
(80% of all data) to train the models and a test set (remain-
ing 20%). With these test data, a comparison of original 
( yi ) and predicted ( ̂yi ) values can be executed, and, with the 
coefficient of determination R2 (1), all models can be com-
pared and rated ( y mean value). Thereby the range of R2 is 
0 ≤ R2 ≤ 1 (1 is best possible evaluation). [13]

The closer original and predicted values are, the higher of 
R2 and the better the quality of prediction model.

For the training of the algorithms for the prognosis of the 
geometrical characteristic values, the material properties, 
process parameters serve as input data (Table 4). In the case 
of strength prediction, the geometric characteristic values 
are also considered as input variables.

When analyzing which algorithms are best suited for the 
different data sets and structures, R2 is determined sepa-
rately for each output parameter and the mean value for the 
joint contour and strength is calculated  (Table 5). Thereby 
the implementation of the algorithms is based on the open 
source python library scikit-learn [17]. 

For both the joint contour and the strength, the Gradient 
Boosted Decision Tree (GBDT) algorithm performs the best 
prognosis quality with R2 of approx. 0.9. Thereby differ-
ent hyper parameters like learning rate, number of boosting 

(1)R2
= 1 −

∑
�

yi − ŷi
�2

∑
�

yi − y
�2

stages and maximum depth and number of nodes in the tree 
were implemented and tested [17]. With boosting methods, 
such as GBDT, base estimators are sequentially built and 
one tries to reduce the bias of the combined estimator. The 
motivation is to combine several weak models to produce a 
powerful ensemble. GBDT is a generalization of boosting 
to arbitrary differentiable loss functions [18]. In Fig. 4 the 
prognosis quality of Linear Regression, Gradients Boost-
ing Decision Tree and Multilayer Perceptron are compared, 
trained with varying amount of data (experimental and 
numerical strength results).

It can be noted that the simpler linear regression model 
achieves better prediction qualities with the smaller number 
of data sets from the experiments. However, the forecast 
quality with R2 = 0.61 is insufficient. With the availability of 
a larger number of data sets, the more complex regression 

Table 3  Considered algorithms and the respective number of hyper 
parameter variations [13]

Algorithm Hyper param-
eter variations

Linear regression (LR) 1
Huber regression (HR) 36
Support vector regression (SVR) 40
k-nearest-neighbor (kNN) 40
Gradient boosted decision tree (GBDT) 9
Multilayer perceptron—artificial neural network 

(MLP)
27

Table 4  Input and output data for the training of the algorithms

Category Characteristic value

Material properties Ultimate tensile strength
Sheet thickness
Type of material (steel, aluminum)

Process parameters Die contour (dd, hd, dt, ht, R)
Rivet type and length (C/P-rivet, ln)
Rivet head position (ph)

Geometrical joint characteristics Interlock u1,2

Interlock height uh1,2

Min. thickness die-sided part tr
Rivet foot diameter df

Joint strength Max. top tensile force FmaxTT

Max. shear tensile force FmaxST

Fig. 4  Comparison of the coefficient of prognosis R2 for different 
regression algorithms trained with varying amount of data
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models such as GBDT and MLP show a significant increase 
in prediction accuracy.

4  Prediction and visualization of entire joint 
contours and output parameters

In the previous section, the numerically generated data sets 
have been used to predict only discrete values such as geo-
metrical characteristics or strength properties. The next step 
goes beyond this and allows the prediction of the complete 
joint contour. In addition to the pure geometric predictions, 
it is also possible to predict and visualize damage, stresses 
or strains, just as commercial simulation software provides. 
The advantage of the prognosis shown here is the extremely 
short calculation time (< 1 s) and the intuitive use without 
the need of a proven expertise. Therefore, the database with 
the 2.376 simulations of the SPR-ST process [13] is used as 
foundation. 

Since all simulation meshes have a different structure and 
also the number of nodes and elements are inconsistent, a 
standardization of the individual joining partners as well 
as the rivet must be implemented first for comparability to 
achieve a uniform design of the resulting meshes. Using the 
example of the rivet, Fig. 5 shows how this standardization is 
carried out: The outer contour of the initial mesh is divided 

into equidistant distances and into upper and lower contours. 
The connections between two nodes belonging to each other 
are again divided into equal distances and thus the inner, 
standardized nodes are created.

As already mentioned, it should also be possible to pre-
dict output variables such as maximum principal stress. 
Therefore, a mapping of the node information from original 
to standardized mesh structure is necessary (Fig. 6). Since 
each new node (gray) is located in a triangle of original 
nodes (black), the value of the output parameter at this point 
can be determined by ratios of the sides, thus a classical 
linear interpolation. Since the individual nodes are close 
together and the values of the output parameters of neigh-
bored nodes do not change abruptly, possible errors during 
the mapping are marginal and negligible.

Figure 7 compares the calculation results between the 
original and mapped mesh using the example of the max. 
principal stress. A very good correlation can be achieved.

The standardization of the simulation mesh includes 
4.928 nodes. Since a total of 2.376 simulations are inte-
grated, data reduction is indispensable for fast prediction 
and visualization. Therefore, linear principal component 
analysis [19, 20] is used. With regard to a balanced ratio of 
computation time and accuracy, 30 principal components are 
determined for further consideration. Considering that the 
complexity with this small number of principal components 

Table 5  Comparison of the 
coefficient of determination R2 
of the considered algorithms for 
joint characteristics and joint 
strength

Algorithm Joint contour
(2.376 data sets)

Joint strength
(445 data sets)

u1,2 uh1,2 tr df X̅ Fmax

TT

Fmax ST X̅

LR 0.72 0.81 0.57 0.80 0.73 0.37 0.65 0.51
HR 0.73 0.82 0.57 0.81 0.73 0.49 0.68 0.59
SVR 0.62 0.65 0.53 0.48 0.57 0.30 0.52 0.41
k-NN 0.36 0.41 0.40 0.37 0.39 0.32 0.56 0.44
GBDT 0.91 0.90 0.86 0.94 0.90 0.85 0.88 0.87
MLP 0.55 0.80 0.53 0.62 0.63 0.66 0.84 0.75

Fig. 5  Original simulation mesh 
of a rivet (left); standardized 
mesh of the same rivet (right)
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compared to the total number of simulations is close to 1.3%, 
the results obtained with this approach are sufficiently good 
(Fig. 8).

With this reduced number and complexity, an individual 
prediction model is created for each principal component. 
Different polynomial approximation approaches (Table 6) 
[21] are examined with respect to a best possible prediction 
and compared by means of the explained coefficient of deter-
mination (1). The approximation coefficients determined in 
this way are saved and passed on for the prediction. For 
the visualization of the results in their original form, the 
data-reduced values have to be transformed back. The coef-
ficient of determination for the prediction of the node points 
respectively the connection contour lies with 89% in a high 
confidence range. For the calculation of the output quanti-
ties to be visualized, it lies in the range between 60 and 80% 
depending on the considered parameter.

Remarkably, despite the significant data reduction, SPR-
ST joints are clearly recognizable in the nodes and geom-
etries calculated in this way (Fig. 9). Furthermore, changes 
in the input parameters are also predicted accordingly and 
reflected in the results.

Table 7 shows the changes in the input parameters, and 
their effects on the predicted results are represented in 
Fig. 9. Comparing the two designs, the reduced blank sheet 
thicknesses t1 and t2 are evident, as are the reductions in die 

diameter dd and depth hd, and thorn diameter dt and height 
ht. In addition, it can be seen that the general rivet shape R 
(value 1 corresponding to C-rivet, value 2 corresponding to 
P-rivet), rivet length lr and rivet head position ph are taken 
into account and transferred by the prediction.

Analogous to the presented prediction results of horizon-
tal x and vertical z coordinates of each node, the output 
information of damage, stresses and strains are also calcu-
lated in this way for each node.

In order to effectively use, the described method for the 
prediction of SPR-ST joint formation, standardization, data 
reduction and prediction modeling have been incorporated 
into a software demonstrator (Fig. 10). This allows the val-
ues of the sheet properties, die and rivet geometry to be set 
in a simple way by sliders, and the predicted joint formation 
including the chosen results (e.g. damage) is visualized in 
real time.

Fig. 6  Mapping output values 
from original mesh to standard-
ized nodes

Fig. 7  Visualization of maximum principal stress: original mesh 
(left); mapping to standardized mesh (right)

Fig. 8  Standardized mesh (left); with 30 principal components calcu-
lated mesh (right)

Table 6  Integrated polynomial approximation approaches

Approximation approach Mathematical expression

Linear basis r
0
+

∑n

i=1
ri ∙ xi

Linear basis with mixed terms r
0
+

∑n

i=1
ri ∙ xi +

∑n

i,j=1,j>i
rij ∙ xi ∙ xj

Quadratic basis r
0
+

∑n

i=1
ri ∙ x

2

i

Linear and quadratic basis r
0
+

∑n

i=1
ri ∙ xi +

∑n

j=1
rj ∙ x

2

j

Linear and quadratic basis with 
mixed terms

r
0
+

∑n

i=1
ri ∙ xi +

∑n

i,j=1,i≥j
rij ∙ xi ∙ xj
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Based on the displayed SPR-ST joint, the characteristic 
parameters (Fig. 1d) such as interlock and min. material 
thickness of the die-sided sheet are automatically calcu-
lated and shown. In addition, it is possible to display the 
predicted values of the currently selected output parameter 
(here: damage—Cockroft & Latham [16]) for different nodes 
by mouse click. When selecting a different output parameter 
(e.g. maximum deformation or maximum principal stress), 
these nodes remain selected and the values of the newly 
selected parameter are displayed.

5  Summary and outlook

The research results described here demonstrate the poten-
tial of algorithm-based prediction of joining results. The 
availability of comprehensive and high-quality material 
and process data is essential for the development of reli-
able models. In the case of SPR-ST, numerical simulation 
can be used for the necessary data acquisition due to its 

good numerical accuracy, relatively short computing times 
and good automation capabilities. In this survey, the GBDT 
algorithm provides the best prediction results for geometric 
parameters and joint strength with the generated process 
data. The developed method for the prediction of joining 
point contours including output values has high potential 
in sampling support. The presented software demonstrator 
allows simple and intuitive parameter input and generates 
numerically appearing joining points in real time.

With regard to the industrial implementation of the 
approaches developed, it was shown that generally avail-
able material data such as tensile strength and sheet thick-
nesses, as well as the known process parameters, enable 
good predictions to be made for both the joint contour and 
joint strength. The next step is to test the developed models 
in practice and to develop an application-related graphical 
interface for the use of the prediction models. Based on these 
field tests, the ideal application areas can be identified and 
any deviations related to different material classes can be 
determined.

Fig. 9  Predicted SPR-ST 
geometries

Table 7  Values of input 
parameter

Design t1 t2 dd hd dt ht R lr ph

1 1.85 1.6 11 2 4 1 2 5 − 0.22
2 1.2 1.2 9 1.4 0 0 1 4 0
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