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Abstract

Micro-CT is an important tool in biomedical research and preclinical applications that can provide
visual inspection of and quantitative information about imaged small animals and biological
samples such as vasculature specimens. Currently, micro-CT imaging uses projection data
acquired at a large number (300 – 1000) of views, which can limit system throughput and
potentially degrade image quality due to radiation-induced deformation or damage to the small
animal or specimen. In this work, we have investigated low-dose micro-CT and its application to
specimen imaging from substantially reduced projection data by using a recently developed
algorithm, referred to as the adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS)
algorithm, which reconstructs an image through minimizing the image total-variation and
enforcing data constraints. To validate and evaluate the performance of the ASD-POCS algorithm,
we carried out quantitative evaluation studies in a number of tasks of practical interest in imaging
of specimens of real animal organs. The results show that the ASD-POCS algorithm can yield
images with quality comparable to that obtained with existing algorithms, while using one-sixth to
one quarter of the 361-view data currently used in typical micro-CT specimen imaging.

I. Introduction

Micro-computed tomography (micro-CT) is an important tool for biomedical research and
preclinical applications [1–4]. Small animals and biological samples such as animal
vasculature specimens can be vividly visualized and quantitatively analyzed by use of
micro-CT images for deriving physiologic and pathologic information [3, 5–8]. Currently,
high quality micro-CT images can be reconstructed from data collected at a large number
(300 to 1000) of views, which can prolong scanning time and limit system throughput. More
importantly, the generally high cumulative radiation dose from a large number of projections
may result in specimen damage/deformation and degraded image quality.

One can reduce imaging time and radiation dose by decreasing X-ray exposure time at each
projection view. However, one of the reasons for a relatively long exposure at each view is
that the restrictive flux output and detection efficiency of micro-focus X-ray sources and
detector elements in a micro-CT system impose a statistical limit on the signal-to-noise ratio
(SNR) in projection data [9]. Therefore, the reduction of exposure time at each view would
further lower the projection SNR and consequently the image quality [10]. On the other
hand, an alternative approach is to lower scanning time and radiation dose in micro-CT
applications by reducing the number of projections. This approach is appealing because it
invokes minimal hardware changes, but it also poses a challenging image-reconstruction
task. Analytic algorithms, which are generally based upon a continuous imaging model [11,
12], can reconstruct images of practical utility from projections that are densely sampled
[13–17]. When data containing a reduced number of projections sparsely sampled over an
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angular range are considered, analytic algorithms can yield reconstructions with severe
aliasing artifacts such as sharp streaks [10, 18, 19].

In this work, we investigated and applied an optimization-based approach to reconstructing
images from a reduced number of projections in micro-CT imaging experiments. Unlike the
analytic approach based upon a continuous imaging model, the optimization-based approach
adopts a discrete imaging model described by a linear equation system in which the number
of equations is determined by that of projection measurements. Image reconstruction is thus
tantamount to solving the linear equation system. When the projections are acquired at a
small number of views, the system can become severely under-determined. Moreover, data
measured in real experiments are contaminated by various physical factors such as noise and
scatter, and they can thus contain components that are inconsistent with respect to the
discrete imaging model (or, equivalently, the linear equation system). Inspired by a recent
work on inverse Fourier transform from sparse data [20], we have developed an adaptive-
steepest-descent-projection-onto-convex-sets (ASD-POCS) algorithm based on an
optimization strategy that minimizes the total variation (TV) of the estimated image subject
to data condition and other constraints [21, 22]. The focus of the work thus centers on the
application, validation, and evaluation of the ASD-POCS algorithm in image reconstruction
from a significantly reduced number of projections acquired in real micro-CT studies of
animal organ specimens.

The paper is organized as follows. We describe in Sec. II the micro-CT system used for data
acquisition in our imaging experiments of porcine heart and kidney specimens. In Sec. III,
we introduce the ASD-POCS algorithm that reconstructs images by solving a constrained
minimization problem from under-sampled data containing inconsistencies, whereas in Sec.
IV, we design a set of analysis schemes and metrics to evaluate different aspects of image-
reconstruction quality. We then present detailed case-study results of porcine heart and
kidney specimens in Secs. V and VI, respectively. Finally, we discuss the implication of our
results in Sec. VII.

II. Micro-CT System and Data Acquisition

We used a custom-made micro-CT scanner to collect cone-beam data in our specimen-
imaging studies [1]. The main components of this scanner, along with configurable scanning
settings, include a spectroscopic X-ray source for producing X-rays at energies selected by
the combination of target-filter materials, a stack of computer-controlled precision stages for
specimen positioning, and a fluorescing thin crystal plate, which is imaged through a lens
onto a charge-coupled device (CCD) detector array with 16-bit gray-scale resolution. The
specimen is placed close to the crystal and is rotated in several hundred equiangular steps
around 2π between successive X-ray exposures and the accompanying CCD recording. In
our real-data experimental studies, two sets of scanning configurations specified in Table I
were used for collecting data from porcine heart and kidney specimens. The configurations
differ in X-ray energy, geometric arrangement, and detector size.

For raw data acquired at each view, we performed dark-current correction, flood-field
normalization, and logarithm transformation to obtain projection data that were ready for
image reconstruction. In our experiments, we collected data sets, which are referred to as the
full data, on currently used, sufficiently dense angular grids so that the conventional analytic
algorithms such as the FDK algorithm [13] can be applied to yielding accurate image
reconstruction. From a full data set, we extracted a subset of data to simulate data collected
at a reduced number of projection views. Without loss of generality, the projection views in
a selected subset of data were evenly distributed over 2π in our studies.
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III. Image Reconstruction from Under-Sampled Data

A. Imaging model and optimization formulation

In realistic CT imaging, data and images are represented by discrete arrays, and the cone-
beam X-ray projections thus are modeled, in the absence of data inconsistencies, by a
discrete linear system:

(1)

where vectors g = {gi|i = 1, 2, …,M} and f = {fj|j = 1, 2, …,N} denote the discrete data and
image of sizes M and N, respectively; and ℋ is the M by N system matrix representing, e.g.,
the discrete integration along projection lines. It is difficult, if not impossible, directly to
invert Eq. (1) because the system dimension is huge in cone-beam CT imaging, and because
it is under-determined, i.e., M < N, for image reconstruction from a reduced number of
projections under study. As discussed in detail previously [21, 22], the CT-image-
reconstruction problem can be formulated as a constrained optimization problem below:

(2)

where ||f||TV, referred to as the image TV, denotes the ℓ1 norm of the discrete gradient
magnitude of the image and is given in Eq. (9) of Ref. [22], and

(3)

indicates the Euclidean distance between data measured and data estimated from the
reconstructed image. The distance D can reach zero in the absence of data inconsistency. In
realistic scenarios, however, measurements contain inconsistent components, and a tolerance
parameter ε is introduced to relax the requirement on data distance [22].

B. ASD-POCS algorithm

Algorithms [23] exist that have been shown to converge theoretically for solving the
constrained optimization in Eq. (2). However, the huge size of the linear system in typical
CT imaging applications prevents the algorithms from being feasible in practice. An
algorithm, referred to as the ASD-POCS algorithm, has recently been developed for tackling
the optimization problem in Eq. (2) in CT imaging [21, 22], and the algorithm has been
investigated in studies with simulation CT data [21, 22] and real CT experimental data [24,
25].

The ASD-POCS algorithm employs iteratively the steepest-descent (SD) and projection-
onto-convex-sets (POCS) methods for alternatingly minimizing image TV and data distance
D for a given ε. Both SD and POCS steps are followed by a non-linear projection operation
that enforces the positivity constraint by setting all negative image voxels to zero. The
strengths of SD and POCS within each iteration are adaptively adjusted for balancing the
effect of each other, such that, in the ℝN space of f, the image change is maneuvered along
the iso-data-distance hyperplane specified by ε toward the one with the minimum TV [22].
The detailed work flow and implementation are described in [22]. Throughout the study,
finitial = 0 is used as the initial image estimate in ASD-POCS and POCS algorithms.

C. Stopping criteria

The convergence of the ASD-POCS algorithm has not been demonstrated theoretically.
Instead, we have derived a necessary condition on the solution convergence and have
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utilized it for monitoring and adjusting the computation design. This condition on the
convergence of the ASD-POCS algorithm is given by

(4)

where

(5)

and ∇̄f indicates a gradient operator that excludes zero elements of f. Our experience
suggests that cα is a sensitive parameter and that, for practical applications, iterations after
cα reaches below −0.5 generally result in insignificant visual/quantitative change in
reconstructed images.

IV. Evaluation of Image Quality

Evaluation of image quality reconstructed from real data in practical applications is non-
trivial, because the reconstruction performance depends sensitively on the degree of object
structural complexity, because image quality is multi-faceted, and because the ground truth
is generally unavailable. In the work, we carried out a detailed evaluation study on image
reconstruction of two different specimens, which represent varying degrees of object
structural complexity. The image-quality evaluation for each specimen was performed at
different levels, including (1) visualization-based evaluation, (2) quantitative-metric-based
evaluation, and (3) task-specific evaluation. Some of the evaluation concerns making
comparison between the reconstructed and reference (or, surrogate truth) images. In a
typical, current micro-CT application, an image f0 is reconstructed generally from the full
data by use of the FDK algorithm, which we refer to as the FDK-reference image. Clearly, f0

so obtained is not the real “truth”, and as discussed in Sec. VII below, different reference
images can lead to different evaluation results. We also refer to the image reconstructed
from a subset of data with a reduced number of views as a “test image” ft.

A. Visualization-based evaluation

We first performed qualitative, visualization-based evaluation for reconstructed images.
With the aid of the FDK-reference image as a surrogate truth, we visually compare test
images obtained with different algorithms within corresponding transverse, coronal, and
sagittal slices, and display their volume-rendered vasculature images. Furthermore, we
examine the recovery faithfulness of subtle blood vessels and the smoothness of uniform
background region by showing images within selected regions of interest (ROI) in zoomed-
in display with a narrow gray-scale window.

B. Quantitative-metric-based evaluation

In addition to visualization-based evaluation, we employed the following two metrics to
assess quantitatively the similarity between test images to a reference image: (1) the root
mean squared error (RMSE), and (2) the universal quality index (UQI) [26], which are
defined as

(6)
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(7)

where vectors ft and f0 denote the reconstructed and reference images of N voxels “T”
matrix transposition, and

The RMSE is widely used for measuring reconstruction accuracy, whereas the UQI can be
used for evaluating the similarity between test and reference images. Furthermore, the
Euclidean data distance D and cα can also be used as two quantitative metrics for evaluation
of reconstructed images.

C. Segmentation-based evaluation

An important application of micro-CT imaging is to analyze quantitatively physiology-
related features such as contrast-enhanced interbranch vessels segmented from the
reconstructed images. Therefore, we also evaluated image quality in segmenting interbranch
vessels. Without loss of generality, we carried out the segmentation task based upon image
histograms by separating the voxels representing two types of distinct materials in the
imaged specimen: contrast-enhanced blood vessels and the rest of the specimen, including
the myocardium, soft tissue, air, and wax that was used as the potting material. In the
segmentation study, for a given threshold value, a binary image was formed in which voxels
representing the contrast-enhanced blood vessels and other materials were assigned values 1
and 0, respectively. Furthermore, we considered the histogram of the FDK-reference image
a bimodal distribution and selected a threshold value such that fine blood vessels were
preserved as much as possible, whereas all other materials were removed. The segmented
voxels of the contrast-enhanced vessels and other materials (labeled by 1 and 0) in the FDK-
reference image were treated as the “true” vessel voxels, i.e., the truth positivities, and the
“true” non-vessel voxels, i.e., the truth negativities.

For a histogram of a reconstructed (i.e., test) image, unlike the reference image, we expect
some overlap between the two modes. When a threshold (i.e., a decision variable) is applied
to the histogram for segmenting the contrast-enhanced vessels, the segmented voxels for the
vessels and other materials generally differ from the “truth” obtained from the FDK-
reference image. We define voxels “correctly” segmented as vessels and non-vessels as true
positivities and true negativities. We subsequently define the ratio between the true
positivities of a reconstructed image and the truth positivities of the reference image as the
sensitivity. Similarly, the specificity is defined as the ratio between the true negativities of a
reconstructed image and the truth negativities of the reference image. Like receiver
operating characteristic (ROC) analysis, we also refer to sensitivity as the true-positive
fraction (TPF) and to 1 minus specificity as the false-positive fraction (FPF) [27]. The
segmentation result is dependent on the chosen threshold value. Whereas a high TPF can be
achieved with a low threshold, the FPF can also be prohibitively high due to noise and
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artifacts. On the other hand, a high threshold reduces both TPF and FPF. In the study, we
varied the threshold value, i.e., the decision variable, and drew an “ROC” curve by plotting
TPF versus FPF. The ROC curve and the area under the curve (AUC) were used for
quantifying the degree of segmentation success based upon a reconstructed image.

D. Vasculature-feature-estimation-based evaluation

A major goal of the specimen study is to determine morphologic features such as the
vasculature volume and surface that are of physiologic interest. Although vasculature
features can be determined accurately by use of carefully designed and prepared pathologic
slices of the specimen, it is considered that micro-CT imaging can be an economical and
robust alternative and can supplement pathologic methods in determining the vasculature
features. We have developed methods and software for computing vasculature features, such
as the total vasculature volume (TVV) and surface-area to volume ratio (SVR), from
volumetric CT images, and the methods have been validated in extensive studies for
yielding image-based vasculature features that correlate well with the corresponding
pathology results [28].

In an attempt to evaluate further reconstruction quality in terms of determining morphologic
features of the vasculature, we applied the methods and software to test images, and
compared the estimate results of TVV and SVR with those obtained from the FDK-reference
image.

V. Imaging of Porcine Heart Specimen

We performed micro-CT scans of a contrast-enhanced vasculature biopsy specimen from a
pig heart. In the specimen preparation, we injected MICROFIL, a lead-based contrast agent,
into the main left coronary artery at 100 mm Hg pressure until the coronary sinus showed
the polymer emerging. The vein and artery were clamped, and the heart was excised and
kept overnight in a refrigerator to allow setting of the polymer. The tissue sample was then
further excised to yield a biopsy coronary artery specimen, which was approximately 2 cm
in diameter so as to include some myocardium around the artery, and about 2–3 cm in length
along the artery. The specimen was stored in 10% formalin solution for 24 hours, blotted
dry, and then immersed in low-temperature-melting wax within a 20 cc plastic syringe
barrel.

Using configuration A specified in Table I, we collected a full data set at 361 views from the
prepared porcine heart specimen. In an attempt to mimic scans with reduced numbers of
views, we extracted from the full data set several subsets of data, which consisted of
different numbers of projection views uniformly distributed over 2π. We subsequently
reconstructed images from the subsets of data by using the ASD-POCS algorithm and
carried out an analysis of image reconstruction from reduced data. For the reason that will
be explained at the end of Sec. V-E, we illustrate here in detail our result only for the scan
with 60 views, which represent one sixth of the full data. However, the 60-view result and
observations can be generalized largely to other reduced scans under consideration; and we
thus summarize below reconstruction and analysis results as functions of the number of
views. In the study, we also reconstructed images by use of the FDK and POCS algorithms
for the purpose of comparison.

Like any other iterative algorithms, the convergence of the ASD-POCS and POCS
algorithms depends upon a number of factors such as the amount of data (i.e., the number of
projections), the quality of data, and the task-specific image quality desired. For the 60-view
data set, based on the study on the reconstruction evolution as a function of iterations, we
chose to stop the ASD-POCS and POCS reconstructions at 200 iterations, as a number of
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indices used for monitoring the calculation convergence suggest that their changes become
stabilized at around 200 iterations. Also, in the ASD-POCS reconstruction, we selected ε =
22.7, which is the Euclidean data distance at the 55th iteration after the POCS step.

A. Visualization-based evaluation

In Fig. 1, we display images reconstructed from the 60-view data set by use of the ASD-
POCS, FDK, and POCS algorithms within transverse (z = −4.5 mm), coronal (x = 2.5 mm),
and sagittal (y = 2.5 mm) slices, respectively. We intentionally chose to display a transverse
slice away from the middle plane at z = 0 mm to include potential cone-beam effects. For
comparison, we also show the FDK-reference image within the corresponding slices. We
display in Fig. 2 volume-rendered images of the vessel trees, after appropriately
thresholding out the background tissue, obtained from reconstructions by use of the ASD-
POCS, FDK, and POCS algorithms. Again, for comparison, we also display the result of the
FDK-reference image in Fig. 2. Visual inspection of the reconstructions in Figs. 1 and 2
suggests that the ASD-POCS algorithm can effectively suppress streak artifacts and noise
observed in images obtained with FDK and POCS algorithms and yield images visually
more similar to the FDK-reference image than other algorithms.

In an effort to examine reconstruction details, we selected eight square ROIs within the
middle transverse slice at z = 0 mm, each of which comprises 32 × 32 pixels, as shown in
the left panel of Fig. 3. In particular, four ROIs, enclosed by solid-line squares, which were
chosen to include vascular structures of different sizes, are referred to as s-ROIs, whereas
the other four ROIs, enclosed by dotted-line squares, which were selected to include the
background, are referred to as b-ROIs. In Fig. 4, we display zoomed-in images within these
ROIs using a narrow display window. The results indicate that the ASD-POCS algorithm
can recover fine vessel details while suppressing noise and artifacts in background regions.

We also studied how the ASD-POCS reconstruction evolves as a function of the iteration
number. In Fig. 5, we show images within a transverse slice at z = 0 mm at iterations 2, 10,
30, 60, 100, and 150, respectively. The intermediate images suggest that contrast-enhanced
vascular structures are reconstructed even at early iterations, and that the reduction of streak
artifacts requires additional iterations.

B. Quantitative-metric-based evaluation

We performed evaluation studies of image reconstruction using quantitative metrics. From
the FDK-reference and reconstructed images, we computed their RMSEs and UQIs over the
image support and summarize them in Table II. Results of both metrics suggest that the
ASD-POCS algorithm yields images more similar to the FDK-reference image than the
FDK and POCS algorithms.

For assessing quantitatively the reconstruction as a function of iterations, we also computed
at each iteration the Euclidean data distance D and quantity cα given in Eq. (4), which can
be used for monitoring the convergence properties of the ASD-POCS algorithm. As
displayed in Fig. 6, for the particular case under study, the data distance approaches the
prescribed ε, whereas cα reaches below −0.8 after around 150 iterations, suggesting that
images after 150 iterations may be used as approximate solutions to the optimization
problem in Eq. (2). This is also corroborated by observing images of comparable quality at
150 and 200 iterations in Figs. 5 and 4. Moreover, using the FDK-reference image, we
calculated RMSEs and UQIs within the image support at different iterations and display
them in Fig. 7. Both metrics appear to converge after about 150 iterations in this study.
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C. Segmentation-based evaluation

We carried out an evaluation study of image quality in a segmentation task. As discussed in
Sec. IV-C, we first plot the overall bimodal histogram of the FDK-reference image in the top
panel of Fig. 8, in which the two distinct clusters of voxels are centered around 0.2 cm−1 and
1.0 cm−1, respectively, corresponding to the blood vessels and background in the FDK-
reference image. The clear separation of the two modes can be attributed to their
considerable attenuation-coefficient difference and relatively small volume of the vessel
contrast agent. We also plot in Fig. 8 histograms of 60-view reconstructions of the ASD-
POCS, FDK, and POCS algorithms. Both modes remain well localized in the ASD-POCS
histogram, whereas they exhibit wider spreads in the FDK and POCS histograms. The
visible streaks and noise are largely responsible for the observed histogram spread, which
leads, nevertheless, to little ambiguity for distinguishing between the two modes. For
carrying out a quantitative assessment on image-based segmentation performance, we first
used a threshold value of 0.35 cm−1 to determine the “true” vasculature image, as shown in
the right panel of Fig. 3, from the FDK-reference image. Using the “true” vasculature image,
and following the strategy described in Sec. IV-C, we calculated the TPFs and FPFs based
on the ASD-POCS, FDK, and POCS histograms and subsequently the corresponding ROC
curves, which are shown in the bottom panel of Fig. 8. For the ROC curves, we then
computed their AUCs, which are summarized in Table II. Although the ROC curve and
AUC obtained with the ASD-POCS algorithm are both higher than their counterparts
obtained with other algorithms, the differences are only marginal. The reason for this can be
attributed to the fact that the well-separated bimodal histograms shown in the top panel of
Fig. 8 for all algorithms under study permit an easy segmentation task. As will be
demonstrated in Sec. VI, the segmentation task becomes more challenging for the porcine
kidney specimen, which has more complex structures than the porcine heart specimen.

D. Quantitative estimation of vasculature features

We further evaluated the quality of reconstructed images in a task of determining
vasculature morphologic features within the porcine heart specimen. We applied the
methods and software, which were designed and routinely used for the FDK-reference
image to images reconstructed from 60-view data by use of the ASD-POCS, FDK, and
POCS algorithms, to estimate TVV and SVR, and we subsequently compared them with
their counterparts obtained from the FDK-reference image. We note that the methods and
software entail multiple steps in processing of reconstructed images, including erosion,
dilation, thresholding, and region-growing, and involve a number of parameters that were
optimized for working with the FDK-reference image [28]. In Table III, we show results of
TVVs and SVRs estimated from the FDK-reference image and images reconstructed from
60-view data by use of the ASD-POCS, FDK, and POCS algorithms, respectively. The
results suggest that 60-view data can yield accurate quantitative information about blood-
vessel morphology.

E. Image reconstruction as a function of the number of views

In the study for the porcine heart specimen described above, we focused on image
reconstruction from 60-view data because 60 views represent a substantial reduction from
the full 361 views and because, as the results above demonstrate, images with quality
comparable to that of the FDK-reference image can be reconstructed by use of the ASD-
POCS algorithm and possibly other algorithms. However, it is also of practical interest to
investigate image reconstructions from data acquired at different numbers of views, as such
an investigation may engender insights into an adequate selection of an approximately
minimum number of projections for a given imaging task. Therefore, in addition to the 60-
view reconstruction studied above, we extracted 40-, 90-, 120-, and 180-view subsets of data
from the 361-view data set for studying image reconstruction as a function of the number of
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projections. Without loss of generality, the projection views for each of the subsets of data
are evenly distributed over 2π. From each of the data subsets, we reconstructed images by
use of the ASD-POCS, FDK, and POCS algorithms and display in Fig. 9 the reconstructed
images within a transverse slice at z = 0 mm. Clearly, the overall image quality improves as
the number of projections increases. For the 40-view case, even though the images contain
visually prominent artifacts due to severe angular under-sampling, the structures of major
arteries can readily be discerned in the images. Therefore, although images reconstructed
from 40-view data may be visually less appealing, they can be of practical utility as far as
the determination of major artery structures is the concern. This observation is particular
true for the results obtained with the ASD-POCS algorithm.

We also carried out a quantitative study of image reconstruction as a function of the view
numbers by calculating the UQI described in Sec. IV-C. Specifically, using the FDK-
reference and reconstructed images shown in Fig. 9, we computed UQIs and plotted them in
Fig. 10 as a function of the view numbers. Using images at a given iteration number, we also
carried out an ROC study of vasculature segmentation described in Sec. IV-C from which
we subsequently calculated the corresponding AUCs and plotted them in Fig. 10. These
ROC results suggest that the ASD-POCS algorithm performs better than do the other
algorithms under study. At a large number of views, depending upon the metrics used, the
FDK result can appear comparable to, or even better than, the ASD-POCS result. This is
because the FDK-reference image was used in computing the metrics. As discussed in Sec.
VII below, a bias is expected toward favorably images obtained with the same algorithm
used for yielding the reference image. For the porcine heart specimen study, the results
indicate that image quality of the ASD-POCS algorithm reaches largely a plateau around 60
projections and that data of additional views contribute incrementally to an improvement in
image quality.

VI. Imaging of Porcine Kidney Specimen

We also performed micro-CT scans of a contrast-enhanced vasculature biopsy specimen
from a pig kidney. In the specimen preparation, we injected MICROFIL into the renal
coronary artery at 100 mm Hg pressure until the coronary sinus showed the polymer
emerging. The vein and artery were clamped, and the kidney was excised and kept overnight
in a refrigerator to allow setting of the polymer. The tissue sample was then further excised
to yield a biopsy kidney artery specimen, which was approximately 2 cm in diameter and
extended from the cortical surface into the kidney through the medulla. The specimen was
stored in 10% formalin solution for 24 hours, blotted dry, and then immersed in low-
temperature-melting wax within a 20 cc plastic syringe barrel.

Using configuration B described in Table I, we collected a full data set at 361 views from
the prepared porcine kidney specimen. Again, in an attempt to mimic scans with reduced
numbers of views, we extracted from the full data set several subsets of data, consisting of
different numbers of projection views uniformly distributed over 2π. We subsequently
reconstructed images from the subsets of data by using the ASD-POCS algorithm and
carried out an analysis of image reconstruction from reduced data. Unlike the 60-view study
of the porcine heart specimen in Sec. V, we illustrate and analyze in detail our result for the
90-view study, because the kidney specimen contains significantly more and finer vascular
structures than the porcine heart specimen. Still, the 90-view data set represents only one
quarter of the data in a conventional, full scan, and the result and observations obtained can
be generalized largely to other reduced scans under consideration, as demonstrated by our
results below.
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From the 90-view data, we reconstructed images by using the ASD-POCS, FDK, and POCS
algorithms. Based on the study below on the reconstruction evolution as a function of the
number of iterations, we chose to stop the ASD-POCS and POCS reconstructions at 200
iterations, because a number of indices used for monitoring of the calculation convergence
suggest that their changes have become stabilized around 200 iterations. Also, in the ASD-
POCS reconstruction, we selected ε = 106.1, which is the Euclidean data distance at the 80th
iteration after the POCS step.

A. Visualization-based evaluation

In Fig. 11, we display images reconstructed from the 90-view data by use of the ASD-
POCS, FDK, and POCS algorithms, within transverse (z = −4.5 mm), coronal (x = 5.3 mm),
and sagittal (y = −2.4 mm) slices. Again, an off-middle transverse slice (away from z = 0
mm) is used for display of potential cone-beam effects. For comparison, the FDK-reference
image within the corresponding slices is shown in Fig. 11. We also display in Fig. 12
volume-rendered images of the vasculature, after appropriately thresholding out the
background tissue, obtained from reconstructions by use of the ASD-POCS, FDK, and
POCS algorithms. Again, for comparison, we show the volume-rendered FDK-reference
image in Fig. 12. Visual inspection of reconstructions in Figs. 11 and 12 suggests that the
ASD-POCS algorithm can effectively suppress streak artifacts and noise observed in images
obtained with the FDK and POCS algorithms, thus yielding images with higher visual
similarity to the FDK-reference image than those obtained with other algorithms.

In an effort to examine reconstruction details, we selected eight square ROIs within the
transverse slice at z = 0 mm, each of which comprises 32 × 32 pixels, as shown in the left
panel of Fig. 13. In particular, four s-ROIs, enclosed by solid-line squares, were chosen to
include vascular structures of different sizes, and four b-ROIs, enclosed by dotted-line
squares, were placed in uniform background. In Fig. 14, we display zoomed-in images
within these ROIs using a narrow display window. The results again indicate that the ASD-
POCS algorithm can reveal fine vessel details while suppressing noise and artifacts in
background regions.

We also studied how the ASD-POCS reconstruction evolves as a function of the iteration
number. In Fig. 15, we show images within a transverse slice at z = 0 mm at iterations 2, 10,
30, 60, 100, and 150. Again, as suggested by the intermediate images, the contrast-enhanced
vascular structures are reconstructed even at early iterations, whereas reduction of streak
artifacts requires additional iterations.

B. Quantitative-metric-based evaluation

We performed evaluation studies of image reconstruction using quantitative metrics. From
the FDK-reference and reconstructed images, we computed their RMSEs and UQIs over the
image support, as shown in Table IV. Once again, results of both metrics suggest that the
ASD-POCS algorithm yields images more similar to the FDK-reference image than other
algorithms. For assessing quantitatively image reconstruction as a function of iterations, we
also computed at each iteration the Euclidean data distance D and quantity cα, which are not
shown here because they are similar to those in Fig. 6. In this case, cα reaches below −0.5
after about 150 iterations, suggesting that images after 150 iterations may be used as
approximate solutions to the optimization problem in Eq. (2). Again, this is corroborated by
the observation that image quality at 150 iterations in Fig. 15 is comparable to that at 200
iterations in Fig. 14. Moreover, using the FDK-reference image, we also calculated RMSEs
and UQIs within the image support for images at different iterations. These quantitative
results, which are not shown here, follow trends similar to those in Fig. 7, and appear to
converge after about 150 iterations.
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C. Segmentation-based evaluation

We performed evaluation studies on image quality in an image-segmentation task. As
discussed in Sec. IV-C, we first plot the overall bimodal histogram of the FDK-reference
image in the top panel of Fig. 16, in which the two major clusters of voxels centered around
0.4 cm−1 and 0.9 cm−1 correspond respectively to the vasculature and background in the
reference image. Compared to the histogram of the FDK-reference image in Sec. V, the
cluster corresponding to the vasculature is taller and broader and overlaps with the cluster
corresponding to the background. We also plot in Fig. 16 histograms of 90-view
reconstructions of the ASD-POCS, FDK, and POCS algorithms. The background voxels and
the vasculature voxels can be separated reasonably well in the ASD-POCS histogram;
however, unlike the case for the porcine heart specimen in Fig. 8, they cannot be
distinguished well in FDK and POCS histograms. This is understandable because the kidney
specimen is considerably more complex in structure than the heart specimen. To assess
segmentation performance quantitatively, we first used a threshold value of 1.1 cm−1 to
determine the “true” vasculature image, as shown in the right panel of Fig. 13, from the
FDK-reference image. Using the “true” vasculature image, and following the strategy
described in Sec. IV-C, we calculated the TPFs and FPFs based on image histograms of the
ASD-POCS, FDK, and POCS reconstructions and subsequently the corresponding ROC
curves, which are plotted in the bottom panel of Fig. 16. For the ROC curves, we then
computed their AUCs and show them in Table IV. It is evident that, for the porcine kidney
specimen, the segmentation task is more challenging than that for the porcine heart
specimen, and that the ROC curve and AUC obtained with the ASD-POCS algorithm are
significantly higher than its counterparts obtained with other algorithms.

D. Quantitative estimation of vasculature features

We further evaluated reconstruction quality in a task of characterizing vasculature
morphologic features by applying the same methods and software used in Sec. V to
computing TVVs and SVRs in images reconstructed from 90-view data by use of the ASD-
POCS, FDK, and POCS algorithms. The computed TVVs and SVRs, along with those
computed from the FDK-reference image, are summarized in Table V. These TVV and SVR
results suggest that 90-view data can yield accurate, quantitative information about the blood
vessel morphology.

E. Image reconstruction as a function of the number of views

In addition to the 90-view result described above, we extracted 40-, 60-, 120-, and 180-view
subsets of data from the 361-view data set for studying image reconstruction as a function of
the number of projections. Without loss of generality, the projection views for each of the
data subsets are evenly distributed over 2π. From each of the data subsets, we reconstructed
images using the ASD-POCS, FDK, and POCS algorithms and display in Fig. 17
reconstructed images within a transverse slice at z = 0 mm. Clearly, the overall image
quality improves as the number of projections increases. For the 40-view case, even though
the images contain visually prominent artifacts because of severe angular under-sampling,
the structures of major arteries can readily be discerned in the images. Therefore, although
images reconstructed from 40-view data set may be visually less appealing, they can also be
of practical utility in the determination of major artery structures. This observation is
particularly true for the ASD-POCS results.

We have carried out a quantitative study of image reconstruction as a function of the number
of views by calculating UQI as described in Sec. IV-C. Specifically, using the FDK-
reference and reconstructed images shown in Fig. 17, we computed UQIs and plotted them
in Fig. 18 as a function of the number of views. Using images at a given iteration number,
we also carried out an ROC study of vasculature segmentation as described in Sec. IV-C.
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Based upon the ROC curves obtained in the study, we calculated the corresponding AUCs
and plotted them in Fig. 18. The results suggest that the ASD-POCS algorithm yields higher
ROC curve and larger AUC than other algorithms. At a large number of views, depending
upon the metrics used, the FDK result can be comparable to the ASD-POCS result. This is
because the FDK-reference image was used in computation of the metrics, and the metric
computation from the FDK reconstruction at a large number of views is biased toward the
FDK-reference image. As discussed in Sec. VII below, when different reference images are
used, such a bias toward the FDK reconstruction can be reduced or eliminated. For the study
on the porcine kidney specimen, the results indicate that the image quality of the ASD-
POCS algorithm reaches largely a plateau after around 90 projections, and that data of
additional views may lead to small improvement in image quality.

VII. Discussion

In this work, we investigated and applied the ASD-POCS algorithm to image reconstruction
from data acquired at a reduced number of projection views in micro-CT imaging of porcine
organ specimens. A motivation for the work was to demonstrate and evaluate the possibility
of performing low-dose micro-CT imaging by reducing the number of projections through
appropriate algorithm development in micro-CT imaging. As simulation studies have been
reported extensively in recent publications on the ASD-POCS algorithm, the focus of the
work centers on application and evaluation of the ASD-POCS algorithm in studies involving
real experimental data, which contain a variety of physical artifacts that cannot be imitated
completely in simulation data.

In our study, porcine heart and kidney specimens were imaged by use of a micro-CT scanner
for determining vasculature features. We have carried out detailed analyses of image
properties reconstructed from data acquired at a number of views ranging from 40 to 180. In
addition to visual inspection of reconstructed images, we have performed quantitative
evaluation of algorithm performance by using a number of metrics designed for revealing
different facets of image quality. The results of our study indicate that, for imaging
conditions under consideration, including specimen preparation, X-ray flux, and data
calibration, the ASD-POCS algorithm can yield images with quality comparable to that of
the FDK-reference image, from only one sixth to one quarter of the full data currently used
in micro-CT specimen imaging. These results can be exploited for reducing imaging time
and radiation dose thus possibly for increasing system throughput and improving image
quality by minimizing potential radiation-induced deformation and damage to the imaged
subject.

In practical micro-CT imaging, computation time for any reconstruction algorithm and, in
particular, for iterative algorithms can be of concern. Accelerated computation can be
achieved by streamlining/parallelizing the algorithms and/or by exploiting the available, or
rapidly available, high-performance commodity computational hardware such as multi-core
CPU and graphic processing units [22, 29]. On the other hand, as opposed to the examples
shown above, which were typically obtained after more than 100 iterations, reconstruction
results at early (for instance, <30) iterations may, depending on the specific imaging task,
well suffice for the intended application. As observed in Figs. 5 and 15, ASD-POCS
reconstructions obtained after about 30 iterations can be visually very close to images at
later iterations and to the FDK-reference image, except for minor differences in some small-
structure details, which may, however, be largely eliminated by subsequent post-processing
steps, such as thresholding or smoothing, required by the vasculature-specimen imaging
task. This observation is corroborated by the evolution of the similarity-based metrics
shown, e.g., in Fig. 7, in which RMSE and UQI reach plateaus after 20 – 50 iterations, much
earlier than the cα that stabilizes after around 150 iterations. The above discussion of
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approximate solutions (at early iterations) of the optimization problem in Eq. (2) provides a
rationale for, rather than prevents one from, using intermediate results in practical
applications.

In this study, in addition to the ASD-POCS algorithm, we have considered the FDK and
POCS algorithms for image reconstruction from data with reduced numbers of projections.
The purpose of considering the two algorithms in the study is only to illustrate the fact that
some of the existing algorithms without appropriate modifications are unlikely to yield
consistently images of quality comparable to that of the FDK-reference image. A key
motivation for this study was to demonstrate the potential and robustness of the ASD-POCS
algorithm in image reconstruction of practical utility from reduced data. However, it is also
possible that other algorithms exist [30–33], and that, when they are optimized for a given
reconstruction task, they can yield images of quality comparable to that of the FDK-
reference image. Although it is of technical and practical interest to investigate and optimize
such algorithms for image reconstruction, such an investigation is, we feel, beyond the scope
of the current work. It is nevertheless worthy of noting that the ASD-POCS algorithm in
effect provides a framework for deriving other algorithm variants to solve the optimization
problem in Eq. 2. For example, the POCS step can be substituted by other methods such as
gradient descent and simultaneous algebraic reconstruction technique (SART).

Evaluation results about image quality clearly depend upon a host of factors, including
parameters and algorithms for data processing and image reconstruction. They can also be
affected significantly by the selection of a reference image in the absence of ground truth, as
in a real-data study. In the evaluation studies presented above, we used a reference image
reconstructed from full data by use of the FDK algorithm, largely because it is the image
currently being used in practical applications. However, it should be noted that the FDK-
reference image represents only an approximate reconstruction; consequently, different
evaluation results are likely to be obtained when a reference image different from the FDK-
reference image is used in an evaluation study. In an attempt to demonstrate this point, from
full data of the porcine heart and kidney specimens, we also used the ASD-POCS algorithm
to reconstruct images; we refer to them as the ASD-POCS-reference images. In Fig. 19, we
display the ASD-POCS- and FDK-reference images of the porcine heart and kidney
specimens by using narrow gray-scale windows to reveal the visual differences between the
two reference images. Furthermore, for both specimens, using their respective ASD-POCS-
reference images, we re-evaluated the reconstruction quality by computing UQIs as a
function of the view number, and plot the results in Fig. 20. It can be observed that they
differ considerably from their counterparts shown in the left panels of Figs. 10 and 18,
respectively. Despite the observed significant differences in UQI resulting from the use of
different reference images, the ASD-POCS algorithm seems to perform consistently better
than other algorithms considered in this study.
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Figure 1.
Images of the porcine heart specimen within transverse (row 1), coronal (row 2), and sagittal
(row 3) slices reconstructed from the 60-view data set by use of the (a) ASD-POCS, (c)
FDK, and (d) POCS algorithms, respectively. (b) The FDK-reference images within the
corresponding slices. Display window: [0, 0.8] cm−1.
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Figure 2.
Volume-rendered vasculature images of the porcine heart specimen obtained from the 60-
view data by use of the (a) ASD-POCS, (c) FDK, and (d) POCS algorithms. For
comparison, a volume-rendered vasculature image obtained from the FDK-reference image
is shown in (b).
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Figure 3.
Images of the porcine heart specimen. Left: s-ROIs (solid-line squares) and b-ROIs (dotted-
line squares) within the transverse slice at z = 0 mm. The s-ROIs contain vessel structures,
whereas b-ROIs contain only background regions. Right: “True segmentation” obtained
from the FDK-reference image by use of a threshold of 0.35 cm−1, which is used for
evaluation of algorithm performance in a segmentation task described below.
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Figure 4.
Images of the porcine heart specimen. Row 1: Zoomed-in images within s-ROIs, display
window: [0.15,0.5] cm−1; Row 2: Images within the entire transverse slice at z = 0 mm,
display window: [0, 0.8] cm−1; and Row 3: Zoomed-in images within b-ROIs, display
window: [0.1,0.35] cm−1. Images are reconstructed from the 60-view data by use of the (a)
ASD-POCS, (c) FDK, and (d) POCS algorithms, respectively. In addition, the FDK-
reference images are displayed in (b). Note that, for the purpose of showing fine image
details, the display windows for the ROI images are narrower than that for images in row 2.
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Figure 5.
Images of the porcine heart specimen within the transverse slice at z = 0 mm, reconstructed
from 60-view data by use of the ASD-POCS algorithm at iterations (a) 2, (b) 10, (c) 30, (d)
60, (e) 100, and (f) 150. Display window: [0, 0.8] cm−1.
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Figure 6.
Data distance D (left) and cα (right) computed from images of the porcine heart specimen
reconstructed from 60-view data by use of the ASD-POCS algorithm at different iterations.
The dotted line in the plot for the data distance indicates the selected ε.
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Figure 7.
RMSE (left) and UQI (right) over the image support of the porcine heart specimen,
calculated from the 60-view ASD-POCS reconstruction.
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Figure 8.
Histograms and ROC curves of images of the porcine heart specimen. Top: histograms of
the FDK-reference image (dash-dotted) and images reconstructed from the 60-view data set
by use of the ASD-POCS (solid), FDK (dotted), and POCS (dashed) algorithms. The inset
plot shows a zoomed-in distribution around attenuation coefficient of 1.0 cm−1. Bottom:
ROC curves obtained from 60-view reconstructions by use of the ASD-POCS (solid), FDK
(dotted), and POCS (dashed) algorithms. The inset plot displays the magnified ROC curves
in the upper-left corner.
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Figure 9.
Images of the porcine heart specimen reconstructed from (a) 40-, (b) 90-, (c) 120-, and (d)
180-view data, respectively, by use of the ASD-POCS (row 1), FDK (row 2), and POCS
(row 3) algorithms. Display window: [0,0.8] cm−1.
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Figure 10.
UQI (left) and AUC (right) obtained from images of the porcine heart specimen, within a
transverse slice at z = 0 mm, reconstructed from data consisting of different numbers of
projections by use of the ASD-POCS (Δ), FDK (□), and POCS (×) algorithms.
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Figure 11.
Images of the porcine kidney specimen within transverse (row 1), coronal (row 2), and
sagittal (row 3) slices reconstructed from the 90-view data by use of the (a) ASD-POCS, (c)
FDK, and (d) POCS algorithms, respectively. (b) The FDK-reference image within the
corresponding slices. Display window: [0, 3] cm−1.
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Figure 12.
Volume-rendered vasculature images of the porcine kidney specimen obtained from 90-view
data by use of the (a) ASD-POCS, (c) FDK, and (d) POCS algorithms. For comparison,
volume-rendered vasculature image obtained from the FDK-reference image is shown in (b).
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Figure 13.
Images of the porcine kidney specimen. Left: s-ROIs (solid squares) and b-ROIs (dotted
squares) within the transverse slice at z = 0 mm. The s-ROIs contain vascular structures,
whereas b-ROIs contain only background regions. Right: “true segmentation” obtained from
the FDK-reference image by use of a threshold of 1.1 cm−1, which is used for evaluation of
the algorithm performance in the segmentation task described below.
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Figure 14.
Images of the porcine kidney specimen. Row 1: Zoomed-in images within s-ROIs, display
window: [0.5,1.7] cm−1; Row 2: Images within the entire transverse slice at z = 0 mm,
display window: [0, 3] cm−1; and Row 3: Zoomed-in images within b-ROIs, display
window: [0.4,0.8] cm−1. Images are reconstructed from the 90-view data by use of the (a)
ASD-POCS, (c) FDK, and (d) POCS algorithms, respectively. In addition, the FDK-
reference images are displayed in (b). Note that, for the purpose of showing fine image
details, the display windows for the ROI images are narrower than that of images in row 2.
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Figure 15.
Images of the porcine kidney specimen within the transverse slice at z = 0 mm reconstructed
from the 90-view data by use of the ASD-POCS algorithm at iterations (a) 2, (b) 10, (c) 30,
(d) 60, (e) 100, and (f) 150. Display window: [0, 3] cm−1.

Han et al. Page 30

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 May 06.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 16.
Histrograms and ROC curves of images of the porcine kidney specimen. Top: histograms of
the FDK-reference image (dash-dotted) and images reconstructed from the 90-view data set
by use of the ASD-POCS (solid), FDK (dotted), and POCS (dashed) algorithms. Bottom:
ROC curves obtained from 90-view reconstructions by use of the ASD-POCS (solid), FDK
(dotted), and POCS (dashed) algorithms.
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Figure 17.
Images of the porcine kidney specimen within the transverse slice at z = 0 mm reconstructed
from (a) 40-, (b) 60-, (c) 120-, and (d) 180-view data sets by use of the ASD-POCS (row 1),
FDK (row 2), and POCS (row 3) algorithms. Display window: [0, 3] cm−1.
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Figure 18.
UQI (left) and AUC (right) obtained from images of the porcine kidney specimen, within the
transverse slice at z = 0 mm, reconstructed from different number of projections by use of
the ASD-POCS (Δ), FDK (□), and POCS (×) algorithms.
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Figure 19.
Images within the transverse slice at z = 0 mm reconstructed from the full, 361-view data by
use of the ASD-POCS (column 1) and FDK (column 2) algorithms for the porcine heart
(row 1) and kidney (row 2) specimens, respectively. Images in rows 1 and 2 are displayed
with gray-scale windows [0.1,0.5] cm−1 and [0.1,1.7] cm−1. Note that, for the purpose of
showing image fine details, the images are displayed with a narrower gray-scale window.
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Figure 20.
UQI as a function of projection views between the ASD-POCS-reference image and images
reconstructed by use of ASD-POCS (Δ), FDK (□), and POCS algorithms (×), for the
porcine heart (left) and kidney (right) specimen data.
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Table I

Configurations Used for Specimen Data Acquisition

Items Configuration A Configuration B

Anode/filter materials W/Hf Mo/Zr

kVp 60 30

Effective energy (keV) 40 18

Source to rotation-axis distance (cm) 87.3 72.0

Source to detector distance (cm) 88.6 73.3

Detector bin size (µm) 17.32 19.69

Detector array size 1188 × 1171 1024 × 900
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Table II

Quantitative Assessment of Porcine Heart Specimen Images

Metrics ASD-POCS FDK POCS

RMSE (×0.01) 2.79 7.04 9.02

UQI 0.946 0.760 0.661

AUC 0.9998 0.9953 0.9902
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Table III

Estimation of Vasculature Features of the Porcine Heart Specimen

Metrics Reference ASD-POCS FDK POCS

TVV (mm3) 117.8 117.4 118.5 119.6

SVR (mm−1) 2.34 2.35 2.40 2.42
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Table IV

Quantitative Assessment of Porcine Kidney Specimen Images

Metrics ASD-POCS FDK POCS

RMSE 0.134 0.276 0.295

UQI 0.947 0.827 0.805

AUC 0.978 0.932 0.918

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 May 06.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Han et al. Page 40

Table V

Estimation of Vasculature Features of the Porcine Kidney Specimen

Metrics Reference ASD-POCS FDK POCS

TVV (mm3) 57.9 55.9 59.2 49.9

SVR (mm−1) 14.76 14.53 14.11 14.13
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