
Algorithm Engineering
for fundamental

Sorting and Graph Problems

genehmigte

Dissertation
von

Vitaly Osipov
aus Sverdlovsk

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

von der

Fakultät für Informatik
des

Karlsruher Instituts für Technologie

Tag der mündlichen Prüfung: 14. April 2014
Erster Gutachter: Prof. Dr. Peter Sanders
Zweite Gutachter: Prof. Dr. Ulrich Meyer

Abstract

Fundamental Algorithms build a basis knowledge for every computer science undergraduate
or a professional programmer. It is a set of basic techniques one can find in any (good)
coursebook on algorithms and data structures. Thus, if one checks the contents of one
such recent book by Mehlhorn and Sanders [105] he would find that we address most of the
algorithmic problems covered in the book. In particular, we present current advances in such
classical topics as sorting, graph traversals, shortest paths, minimum spanning trees, graph
matchings and partitioning
One can argue that all these problems are folklore with optimal worst-case behaviour. It

is certainly true as long as the assumptions we use to derive the runtime bounds hold for
a particular problem or available architecture at hand. In most of the coursebooks it is a
Random Access Machine (RAM) model assuming that the input fits into the main memory
of the computer and access time is unform throughout the size of the available memory.
Unfortunately, it is often not the case for the real world architectures that posses a number
of memory hierarchy layers including several levels of cache, main memory and an external
hard drive. For instance, classical graph traversal algorithms become orders of magnitude
slower as soon as data does not fit into the main memory and the operating system is
forced to use a hard drive. Another problem for the classical coursebook algorithms is a
rapidly growing parallelism. Currently it ranges from several cores in commodity home
workstations (multicores) up to hundreds of cores available in Graphical Processing Units
(GPUs). Classical approaches often become inefficient or even inapplicable in such settings.
Even being on the safe side, that is in sequential RAM model, the worst-case optimality alone
does not guarantee the best performance in practice. The reason for it is that the worst cases
are rare in practice and thus the theoretically worse algorithms often perform better than
their worst-case optimal counterparts. Clever heuristics often have further positive impact
on the performance.
In this thesis we try to close the gap between theoretically worst-case optimal classical

algorithms and the real-world circumstances one face under the assumptions imposed by the
data size, limited main memory or available parallelism.

Contents

1. Introduction 7
1.1. Our main contributions. 8

2. Models for Algorithm Design 10
2.1. Random Access Machine . 10
2.2. External Memory Model . 12
2.3. Parallel Random Access Machine . 13
2.4. General Purpose Computation on GPUs . 14

3. Algorithm Engineering Infrastruture 16
3.1. Algorithm Engineering Methodology . 16
3.2. Machine Configurations . 17
3.3. Data Analysis . 17

4. Sorting 19
4.1. Divide and Conquer Approaches . 19
4.2. Sorting on GPU . 20
4.3. GPU Sample Sort . 21

4.3.1. Algorithm Design . 23
4.3.2. Implementation Details for the Original Algorithm 24
4.3.3. Implementation Details for the Improved Algorithm 25
4.3.4. Special Case: 16- and 32-way Distribution 26
4.3.5. Sorting Small Buckets. 26
4.3.6. Tuning Architecture-Dependent Parameters 27
4.3.7. Experimental Study of Original Algorithm on Tesla 30
4.3.8. Experimental Study of Algorithms on Fermi and Performance Portability 34
4.3.9. Evaluation of a Special-case Treatment for 16-and 32-way Distribution 36

4.4. Conclusion . 39

4

5. Suffix Sorting 40
5.1. Preliminaries . 40
5.2. Related Work . 41
5.3. Prefix-Doubling Algorithms . 42
5.4. Induced Sorting . 43
5.5. Parallel Suffix Array Construction for Shared Memory Architectures 44

5.5.1. Algorithm Design . 46
5.5.2. Experimental Study . 49
5.5.3. Discussion . 50

5.6. Suffix Array Construction in External Memory 51
5.6.1. Algorithm Design . 51
5.6.2. Splitting Large Tuples. 53
5.6.3. I/O Analysis of eSAIS with Split Tuples 56
5.6.4. Experimental Study . 58

6. Breadth First Search on Massive Graphs 63
6.1. Algorithms . 64

6.1.1. Related Work . 65
6.1.2. Our Contribution . 66
6.1.3. Improvements of MR BFS and MM BFS R 66

6.2. Algorithm Design of MM BFS D . 67
6.2.1. A Heuristic for Maintaining the Pool 69
6.2.2. Experimental Study . 70
6.2.3. Results with Heuristic. 74

6.3. Conclusion . 74
6.3.1. Discussion . 75

7. Single Source Shortest Paths on Massive Graphs 76
7.1. Overview . 77
7.2. Algorithm Design . 78

7.2.1. Experimental Study . 82
7.2.2. Early Results on Flash Memory. 88

7.3. Conclusions . 89

8. Minimum Spanning Tree 90
8.1. Overview . 90
8.2. Kruskal’s Algorithm . 92
8.3. Algorithm Design . 93

8.3.1. Results for Random Edge Weights. 93
8.3.2. Implementation. 95
8.3.3. Parallelization. 95
8.3.4. More Sophisticated Variants. 96
8.3.5. Experiments . 97

8.4. Conclusions . 101

5

9. Graph Matching 103
9.1. Global Path Algorithm . 104

9.1.1. Filter-GPA . 105
9.1.2. Analysis for Random Edge Weights 106

9.2. Massively Parallel Matchings . 109
9.3. Local Max . 110

9.3.1. Sequential Model . 111
9.3.2. CRCW PRAM Model. 111
9.3.3. MapReduce Model. 111
9.3.4. External Memory Models. 111
9.3.5. O

(
log2 n

)
work-optimal CREW solution 111

9.4. Implementation and Experimental Study . 113
9.4.1. Sequential Speed and Quality . 114
9.4.2. GPU Implementation . 117

9.5. Conclusions And Future Work . 119

10.Graph Partitioning 120
10.1. Multilevel Graph Partitioning . 120
10.2. n-Level Graph Partitioning . 122

10.2.1. Local Search Strategy . 123
10.2.2. Trial Trees . 124
10.2.3. Experimental Study . 125

10.3. Conclusion . 130

11.Discussion 132

Bibliography 133

A. Complete Data Sets 147

B. List of Publications 154

C. Zusammenfassung 157

6

CHAPTER 1

Introduction

Fundamental Algorithms build a basis knowledge for every computer science undergraduate
or a professional programmer. It is a set of basic techniques one can find in any (good)
coursebook on algorithms and data structures. Thus, if one checks the contents of one
such recent book by Mehlhorn and Sanders [105] he would find that we address most of the
algorithmic problems covered in the book. In particular, we present current advances in such
classical topics as sorting, graph traversals, shortest paths, minimum spanning trees, graph
matchings and partitioning
One can argue that all these problems are folklore with optimal worst-case behaviour. It

is certainly true as long as the assumptions we use to derive the runtime bounds hold for
a particular problem or available architecture at hand. In most of the coursebooks it is a
Random Access Machine (RAM) model assuming that the input fits into the main memory
of the computer and access time is unform throughout the size of the available memory.
Unfortunately, it is often not the case for the real world architectures that posses a number
of memory hierarchy layers including several levels of cache, main memory and an external
hard drive. For instance, classical graph traversal algorithms become orders of magnitude
slower as soon as data does not fit into the main memory and the operating system is forced
to use a hard drive. In this case we say that the problem is stated in External Memory (EM)
settings.
Another problem for the classical coursebook algorithms is a rapidly growing parallelism.

Currently it ranges from several cores in commodity home workstations (multicores) up to
hundreds of cores available in Graphical Processing Units (GPUs). Classical approaches
often become inefficient or even inapplicable in such settings.
Even being on the safe side, that is in sequential RAM model, the worst-case optimality

alone does not guarantee the best performance in practice. The reason for it is that the worst
cases are rare in practice and thus the theoretically worse algorithms often perform better
than their worst-case optimal counterparts. Clever heuristics often have further positive
impact on the performance.

7

In this thesis we try to close the gap between theoretically worst-case optimal classical
algorithms and the real-world circumstances one face under the assumptions imposed by the
data size, limited main memory or available parallelism.

1.1. Our main contributions.

Sorting. We consider two problems – a general-purpose comparison-based sorting and a
special case of string sorting – a suffix array construction.
General purpose sorting is a basic building block for many advanced algorithms, and graph

algorithms in particular we consider later. Suffix array is a text index data structure that
is widely used in text processing, compression, web search and computational biology. We
propose massively parallel algorithms and their implementation on commodity Graphical
Processing Units (GPUs) for both of this problems with a world leading performance [92,
125]. For the suffix array construction we also give an external memory algorithm, which is
about factor two faster than its counterpart [22].
Having sorting at hand, we turn to the classical graph algorithms.

Massive Graph Breadth First Search Traversal As soon as the input graph does not fit
into the internal memory of the computer, classical algorithm become unviable. We we show
how to traverse graphs in external memory settings in hours or at most days where the
classical coursebook approaches would take at least months [6].

Single Source Shortest Paths. Using ideas from our external memory graph traversal
algorithm we extend it to another classical problem of computing single source shortest
paths in graphs. We propose the first implementation of a semi-external memory algorithm
making the problem solvable for graphs, which allow storing one bit per vertex in internal
memory. Thus, the problem becomes viable for graphs, whose size exceeds the size of
available memory by a large margin [109].

Minimum Spanning Tree. In this case we stay in the RAM model and propose a simple
heuristic that improves a classical Kruskal’s algorithm. Our heuristic avoids sorting of edges
that are “obviously” not in the MST. For random graphs with random edge weighs we can
also show that the expected runtime of our algorithm is O(m+ n log n log m

n
), that is linear

for not too sparse graphs. The algorithm has also very good practical performance over the
entire range of edge densities. Moreover, an equally simple parallelization seems to be the
currently best practical algorithm on multicore machines [127].

Graph Matchings. We show that the the same idea of avoiding resorting of edges that are
guaranteed not to be part of the solution can be extended to another classical problem –
a maximum weight matching and considerably improve the Global Path Algorithm (GPA)
[103]. The performance evaluation confirms very good practical performance as in sequential
as in multicore settings.

8

Unfortunately due to its limited parallelizability GPA is not suitable for massively parallel
architectures. Therefore we turn to even simpler local max algorithm [66]. We prove that
the algorithm performs linear work and allows implementation in several models of parallel
computation. We also evaluate its implementation for GPUs [23]. Though both our ap-
proaches are approximation algorithms with the worst-case guarantee of 1/2 we show that
for real world instances they are only a few percent off from the optimal solution.

Graph Partitioning. Next, we show that even NP-complete graph partitioning problem
can be solved efficiently using fairly simple approximation and local optimization techniques
[126]. Indeed, we propose an algorithm based on an extreme idea of approximating initial
graph by building a graph hierarchy of up to potentially n levels. We start with the initial
graph and obtain the next level by contracting a single edge. This allows a very fine-grained
contraction of a graph and therefore leads to a better abstraction of the initial graph on the
higher levels of the hierarchy. Experimental evaluation showed that the algorithm scales well
for large inputs and produces the best known partitioning results for many real world graphs.
For example, in the well known Walshaw’s benchmark tables we achieve 155 improvements
dominating the entries for large graphs.

9

CHAPTER 2

Models for Algorithm Design

Algorithm design requires a precise model of the architecture the algorithm is intended
for. Due to complexity of real-world architectures it is often counterproductive to cover all
architectural details in the model. A large variety of parameters make algorithm design and
analysis complicated. It is often a good practice to simplify the model by concentrating on
a few essential parameters and neglecting the rest that does not make considerable impact
on performance. There a number of widely-used machine models that proved to reflect the
predicted theoretical behaviour in practice. In the following chapters we will consider two
major models that are relevant for us: a random access machine (RAM) or von Neumann
model [120] and its simple extension external memory model [3, 169]. We will also consider
more exotic one describing NVidia Graphic Processing Units (GPUs) codenamed compute
unified device architecture (CUDA).

2.1. Random Access Machine

Random access machine is a variant of von Neumann’s Model [120] introduced by Sheperdson
and Sturgis [155] in 1963. In the following we describe essential RAM’s features, for details
refer to [105]. RAM has a single processing unit with uniform unbounded main memory ,
meaning that all memory cell accesses cost the same constant amount of time. Each memory
cell C[i], i = [0, . . . ,∞) is capable of storing a word, an integer, whose bit length is logarithmic
in the input size. And there can be only a finite number of memory cells occupied at any point
of time. Besides the main memory, RAM possesses a number of registers R1, R2, . . . , Rk, and
is capable of performing the following operations on them:

❼ Rl := C[Rr] loads a word from the memory cell indexed by a word contained in Rr

into Rl

10

CPU

RAM

. . .

Figure 2.1.: RAM model

❼ C[Rl] := Rr stores a word contained in Rr into the memory cell indexed by a word
contained in Rl.

❼ binary operations Rb=Rl ⊙Rr, where ⊙ can be an

arithmetic +,−,·
bitwise | (or), & (and), >> (shift right), << (shift left), ⊕ (exclusive or, xor)

comparison ≤, ≥, <, > resulting in true (1) or false (0)

logical ∨, ∧ operating on logical true (1) and false (0)

casting reinterpreting a word contained in a register as a floating-point number.

operation.

❼ unary operations Rl = ⊙Rr, where ⊙ can be −, ¬ (logical not), ∼ (bitwise not)

❼ Rl := C assigns a constant value to Rl

❼ JZ j, Rr if Rr is 0 continues execution at the memory cell j

❼ J j continues execution at the memory cell j

The success of this model is due to its simple design and powerful features. Von Neumann’s
model proved to be an elegant and accurate enough abstraction of a vast variety of much
more complex modern hardware that did not even exists in the time it was invented. It still
serves as a standard programming model for most of industrial applications.
Though modern architectures are quite far from the simplistic von Neumann’s model,

introduction of a more accurate model would make it much more complex and difficult to
handle.
Unfortunately, in some cases, such refinements are impossible to avoid. This is the case

in particular, when the favourable assumption of unbounded main memory does not hold in
real life. As soon as the input data does not fit into the main memory, RAM is not capable
anymore to predict the algorithm’s performance in practice.
In the next section we describe a slight extension of RAM called external memory model

that overcomes this shortcoming and targets scenarios we pictured above.

11

CPU

RAM

. . .

B

Figure 2.2.: External Memory model

2.2. External Memory Model

In contrast to abstract RAM the main memory of a real-world architecture is not only
bounded, but is also much more complex than assumed by the cost model of RAM. Thus, a
current microprocessor has a file of registers supporting several parallel accesses per clock cy-
cle, first level (L1) cache memory with 1 or 2 accesses per clock, second level (L2) cache with
a latency of 10 clock cycles [105]. Besides that some microprocessors have a third level cache
(L3) that is made of fast static random access memory cells. The main memory consists
of dynamic random access memory cells with access latency up to dozens of nanoseconds.
Finally, a computer system have a hard drive, which is often used by the operating system
to swap data that does not fit into the main memory. The access time latency of a hard
drive of up to 10ms is 107 higher than the access time to a register. However, both, main
memory and a hard drive, are optimized for block-wise accesses. Thus, accessing 1 byte from
the main memory can be only twice slower than reading a block of 16 contiguous bytes. And
as soon as the hard drive starts reading contiguous data the transfer rate reaches about 50–
70MBs per second. Hence, instead of a single level uniform cost main memory assumed by
RAM, we have a multilevel memory hierarchy with large variety of latencies and nontrivial
strategies of migrating data between different levels [105].

To reflect the limited amount of the main memory, different access latencies between dif-
ferent memory hierarchy levels and block-wise access pattern Aggarwal, Vitter and Shriver
[3, 169] extended RAM and introduced a notion of an external memory model . The model
considers only two levels of the hierarchy, but these can be any: as, for instance, cache/main
memory as main memory/hard drive. The latter configuration has significantly more pro-
nounced effect, since accessing data in main memory is orders of magnitude faster than
reading data from a hard drive.

In contrast to RAM there is a limited M words of fast internal (main in terms of RAM)

12

RAM

CPU CPU CPU

. . .

. . .

Figure 2.3.: PRAM model

memory. Processing of data in internal memory is similar to RAM. Besides internal memory
there is slow external memory. Transfers of data between internal and external memory
happen in blocks of B contiguous words and are called input/output operations, or I/Os for
short. The input data is assumed to be considerably larger than the size of internal memory
and objective is to minimize the number of I/Os besides internal memory operations.

Accessing data on a hard drive consists of seek time ts to position the hard drive’s head and
tB transfer time to move the data. Though, by choosing an appropriate B, we can eliminate
ts from the model. Let B be the number of words, such that the time tB to transfer them
into the main memory is approximately ts. Now, if we access less than B words and count
it is as one I/O, that is as accessing the whole block of B contiguous words, we account for
at most factor two more time than needed. If we access D > B contiguous words and count
it as ⌈D/B⌉ I/Os, we are also at most factor two off from what we really spent.

Though being pretty young compared to RAM, this model proved to produce accurate
results in practice. There is a wide range of scientific papers from purely theoretical results
to implementations that are successfully used in practical applications, see an overview by
Vitter [168]. Trying to further extend the model and introduce further parameters such as,
for instance, hard drive caches, dependencies of the seek time and the current position of the
reading head would make the model much more complicated and, thus, would be probably
counter productive. One would need to adapt parameters for different manufactures and
take care of complex hardware details that are even sometimes not publicly available.

2.3. Parallel Random Access Machine

In time when a parallel processor is a commonplace, the need for a model capturing growing
parallelism becomes essential for algorithm design. Interestingly, an extension of RAM called
parallel random access machine (PRAM), stems from late 70s [51, 60, 149], when parallel
architectures were rather exotic. PRAM consists of several sequential processors, each having
its own private memory, accompanied with global memory shared among processors for
communication. In one unit of time each processor can access either its private memory or
global memory. There exist several PRAM models differentiating by the mean they handle

13

SM
shared

PU PU PU

PU PU PU

SM
shared

PU PU PU

PU PU PU

SM
shared

PU PU PU

PU PU PU

global

. . .

Figure 2.4.: CUDA architecture

parallel accesses to common global memory locations. Thus, EREW PRAM does not allow
parallel reads or writes from the same memory location. CREW PRAM allows parallel reads,
but no parallel writes. While CRCW PRAM allows both, as parallel reads as parallel writes.
The way PRAM resolves write conflicts leads to further classification. In the common

model all processors writing simultaneously to the same memory cell write the same value
Arbitrary model only one of the processors participating in parallel write succeeds. The al-
gorithm should work correctly independently on the processor that succeeds. Priority model
assumes that there exists a linear ordering on processors, and the smallest processor succeeds
in a simultaneous write. Despite this diversity different models do not differ significantly in
parallel performance. Thus, an algorithm for the strongest CRCW PRAM in the priority
model can be simulated by the weakest EREW PRAM at the cost of O(log p) time, where
p is the number of processors. Analogously, as long as the number of processors is large
enough, PRAM in common model can be simulated by PRAM in priority model with no
asymptotical overhead.
Unfortunately, the growth of memory and number of processors causes increase in memory

access time, thus making PRAM impossible to realize in practice. Nevertheless it serves a
working horse for many algorithmists since decades and is probably the most widely accepted
model for parallel processing.

2.4. General Purpose Computation on GPUs

With the growth of parallelism available in emerging architectures, graphical processing units
(GPUs) in particular, the necessity for further refinement of existing models became appar-
ent.
In 2008 NVidia introduced Tesla, a unified graphic and computing architecture, along with

a programming model codenamed compute unified device architecture (CUDA).
In the same year Apple Inc. in cooperation with another CPU, GPU, embedded-processor

and software companies like AMD, IBM, Quallcomm, Intel and Invidia proposed an alter-
native technology called Open Computing Language (OpenCL for short). OpenCL is not
limited to GPU, but targets a wide range of shared memory parallel architectures.
In the following we will describe mainly CUDA, since it is the main technology we use in

this thesis. Though most of the high-level CUDA components showed in Figure 2.4 are also
present in OpenCL.

14

Though there is no established theoretical model for designing algorithms for GPUs, phys-
ical design and optimization recommendations allow us to draw a parallel to some of the
features and objectives inherent to the existing models like PRAM or external memory.
Analogous to PRAM’s processors we have p thread blocks in CUDA that share global

memory for communication between them. In contrast to PRAM, each thread block is
not a sequential processor, but a t-threaded processor, where threads behave in a SIMD
fashion executing the same single instruction in one unit of time. Wether a thread block
is able to realize the full parallelism depends on the availability of data in thread’s private
registers at the point of time the instruction is ready to be executed. To achieve maximum
bandwidth, threads must read continuous chunks of global memory. Thus, we can assume
that each thread block has to load the data in blocks of size t, which make it similar to
external memory model. Besides global memory, each thread block possess a limited private
memory, called shared memory . In terms of external memory model, the global memory
can be viewed as external and shared as internal memory. Though, in contrast to external
memory model, the processing of data in shared memory should be done in SIMD fashion.
Namely, one should ensure that (a) the execution paths of different threads do not diverge
and (b) parallel load of data by t threads into registers should happen from t independent
shared memory banks. As long as several threads request different data from the same bank
these requests get serialized and thus the hardware is not able to realize full SIMD width
parallelism.

Implementation The hardware implements this model as following. Current Kepler archi-
tecture features up to 15 streaming multiprocessors (SM for short) each having 192 processing
units (PUs for short) or in other notation cores , see Figure 2.4. A CUDA thread block vir-
tualizes streaming multiprocessor, while threads virtualize processing units. There can be
up to 232−1 thread blocks each having up to 2048 threads. The hardware schedules threads
in groups of size 32, called warps, thus physical SIMD width is 32 only. There is also 32
shared memory banks respectively. Thus, as an optimization strategy, one should optimize
I/O operations and SIMD instructions for groups of threads of size 32, but not for the whole
thread block’s width. The number of threads in a thread block should be at least the num-
ber of physical cores or more. Hyper-threading helps the hardware to fully utilize available
parallelism and hide memory latency.
Unfortunately, one cannot directly translate results from PRAM or external memory

model. PRAM does not account for fast shared memory and SIMD fashion processing.
Since the ratio between accessing GPU’s global memory in random fashion and consecu-
tively is much smaller than accessing the hard drive and CPU’s main memory, pure external
memory algorithms are also of limited use for GPUs. For instance, sorting the data and
further accessing it continuously is still slower than random gather from global memory.
Thus, in algorithm design, we can not limit ourselves to a single optimization criteria. If
we optimize for I/O operations and ignore SIMD behaviour, our algorithm easily becomes
compute bound due to high serialization rate. If we ignore I/Os, threads wait for data, and
become memory bandwidth bound. Finding the right balance between compute load and
memory bandwidth for a particular problem is probably the most difficult task in this model.

15

CHAPTER 3

Algorithm Engineering Infrastruture

In this chapter we describe an “infrastructure” we use throughout the thesis for design,
implementation and experimental evaluation of our results.

3.1. Algorithm Engineering Methodology

We follow algorithm engineering methodology, probably most thoroughly described by Sanders
[140]. One of its most important aims is to supply a faster transfer of new algorithmic results
into real applications.
Historically, the algorithm design was limited to developing theoretical solutions with

worst-case boundaries for some particular machine model. Some of the problems with this
approach include:

❼ machine model might not reflect real hardware;

❼ theoretical boundaries might include large constant factors;

❼ worst-cases might be rare in practice;

❼ the algorithm might be too difficult to implement.

The algorithm engineering cycle (see Figure 3.1) suggests that the design and analysis of
algorithms using realistic machine models should get continues feedback from algorithm’s
implementation using inputs stemming from real-world applications. Moreover, each part
of the cycle is equally important for obtaining the final solution. Thus, for instance, we
should not limit ourselves to the widely-used RAM Model (see Section 2.1) and take the
hard-drive into consideration as soon as our input does not fit into the main memory of
the machine (see Section 2.2). We should not hide constant factor under the O(·) notation,
since it may have great impact on the performance. Real-world inputs is the main source

16

appl. engin.

realistic
models

design

implementation

libraries
algorithm−

perf.−

guarantees

a
p
p
lic

a
tio

n
s

falsifiable

induction

hypothesesanalysis experiments

algorithm
engineering real

Inputs

deduction

Figure 3.1.: Algorithm Engineering cycle [140]

of the performance evaluation. The synthetical inputs are not enough. While designing
the algorithm and especially reusing existing results, we should keep the algorithm simple
enough to be implementable.
Throughout the thesis we mostly show the last iteration of this cycle, omitting unsatis-

factory or unsuccessful iterations.

3.2. Machine Configurations

Throughout the thesis, we use the following machines to do the performance study of our im-
plementations. We keep the details in Table 3.1 and refer to the corresponding configuration
names in the sections, where we use them.

3.3. Data Analysis

There several ways to analyze the performance data we obtain thorough the experimental
study. One can aggregate data within the main benchmark application. The problem with
this approach is, that if we want to redo experiments for some part of the input data it is
often difficult and error-prone to update the aggregated numbers.
Another popular approach is to output per instance performance data into separate text

data files or one large file. And than run a script, that aggregates the data that we need. This
approach allows to recompute part of the experiments, since it does not hide per instance

17

Name CPU/ Frequency Multi- Cores RAM Sections
GPU [GHz] proccesors per MP [GB]

A Intel Q6600 2.4 1 4 8 4.3.7
B NVidia Tesla C1060 30 8 4 4.3.7
C Intel i7 920 2.67 1 4 6 5.5.2, 9.4
D NVidia Fermi GTX 480 15 32 1.5 5.5.2, 4.3.8
E Intel Xeon X5355 2.66 2 4 16 5.6.4
F Intel Xeon E5-2670 2.6 2 8 32 5.6.4
G AMD Opteron 270 2.0 1 2 3 6.2.2, 7.2.1
H AMD Opteron 2350 2.0 2 4 16 8.3.5

Table 3.1.: Machine configurations we used throughout the thesis

data in the aggregated values. The problem with this approach is, that the one need to
write our own scripts to aggregate the data. As any other application scripts may contain
errors. Another problem is that one usually does not see individual per instance data, since
it is scattered in within one large or many different files. This way it is possible to overlook
instances that demonstrate erroneous behaviour.
We use, in our opinion, the most flexible the least error-prone database based approach.

We output all per-instance results into a database. All aggregation operations we perform
in SQL using built-in operations, thus, minimizing the probability of making an error in the
script. We are also able to detect erroneous behaviour by sorting results in the database
by the value in question to see the outliers. This approach proved to be very flexible and
efficient throughout experiments we performed in the thesis.
As for visualisation, we can export results from the database into a comma-separated text

file, which is easily read by most of the plotting applications. In our experiments we use
Gnuplot - a widely-used open source graphing utility that is available for many operations
systems including Linux, Windows, OSX etc.

18

CHAPTER 4

Sorting

Sorting is one of the most widely researched computational problems in computer science.
It is an essential building block for numerous algorithms, whose performance depends on
the efficiency of sorting. In particular we use sorting for suffix array construction in Chap-
ter 5, graph algorithms for constructing minimum spanning trees and matchings (Chapters 8
and 9). Practically all nontrivial external memory algorithms (for instance Breadth First
Search form Chapter 6 and Single Source Shortest Path from Chapter 7) are based on I/O
efficient sorting. It is also an internal primitive utilized by database operations, and there-
fore, any application that uses a database may benefit from an efficient sorting algorithm.
Geographic information systems, computational biology, and search engines are further fields
that involve sorting. Hence, it is of utmost importance to provide efficient sort primitives for
nowadays architectures, which exploit architectural attributes, such as increased parallelism
that were not available before.
References. The contents of this chapter is based on the joint work with Nikolaj Leischner
and Peter Sanders [92] and PEPPHER project reports [131]. Most of the wording of the
original publication is preserved.

4.1. Divide and Conquer Approaches

Due to vast research in the area, there is too much work done to review it here. Therefore,
we mainly focus on sorting algorithms for parallel architectures that are most relevant to
our work.
Until recently, refined versions of quicksort were considered among the fastest comparison-

based , that is requiring a comparison function on keys only, sorting algorithms for single core
machines used in practice [117]. However, the emergence of current generation CPUs fea-
turing several cores, large caches and an SIMD instruction set, turned the focus on more
cache efficient divide-and-conquer approaches that were able to expose a higher level of par-

19

allelism. Indeed, to our knowledge there is no efficient quicksort implementation, which
exploits SIMD instructions. Moreover, despite having perfect spatial locality, quicksort re-
quires at least log (n/M) scans until subproblems fit into a cache of size M .
A general divide-and-conquer technique can be described in three steps: the input is

recursively split into k tiles while the tile size exceeds a fixed size M , individual tiles are
sorted independently and merged into the final sorted sequence. Most divide-and-conquer
algorithms are based either on a k-way distribution or a k-way merge procedure. In the
former case, the input is split into tiles that are delimited by k ordered splitting elements.
The sorted tiles form a sorted sequence, thus making the merge step superfluous. As for a
k-way merge procedure, the input is evenly divided into logk n/M tiles, that are sorted and
k-way merged merged together. In contrast to two-way quicksort or merge sort, multi-way
approaches perform logk n/M scans through the data (in expectation for k-way distribution).
This general pattern gives rise to several efficient manycore algorithms varying only in the

way they implement individual steps. For instance, in a multicore gcc sort routine [159],
each core gets an equal-sized part of the input (thus k is equal to the number of cores), sorts
it using introsort [117], and finally, cooperatively k-way merges the intermediate results.
Another recently published multicore algorithm following the same pattern additionally

uses SIMD instructions [148]. For a CPU cache of size M it divides the input into n/M
equal-sized parts, sorts them using bitonic sort and SIMD instructions in cache [19], and
finally multi-way merges results. To our knowledge this algorithm is the fastest published
multicore sorting approach at least for the key types reported in the paper.

4.2. Sorting on GPU

Though GPUs are generally better suited for computational rather than combinatorial prob-
lems, new architectural capabilities of graphics processors brought considerable attention to
sorting on GPUs.
For example, Sengupta et al. [154] developed an efficient scan (prefix sum) primitive –

an essential building block for data parallel computation with numerous applications. By
reducing counting sort to a number of scan primitives, Satish et al. [147] were able to design
an efficient radix sort algorithm. They also gave the first implementation of quicksort that
was based on a segmented scan primitive [154]. However, high overhead induced by this
approach led to a sort that was not competitive to an explicit partitioning scheme, that was
used in an alternative implementation by Cederman and Tsigas [32].
One of the first GPU-based two-way merge sort algorithms appeared as the second phase

of a two step approach by Sintorn and Assarsson [160]. The algorithm divides the input
into n/4 tiles, sorts all of them and merges the chunks in log (n/4) iterations by assigning
one thread to each pair of sorted sequences. To improve parallelism in the last iterations, it
initially partitions the input into sufficiently many tiles assuming that the keys are uniformly
distributed. Another recent approach is bbsort [35] based on initial partitioning similar to
that of hybrid sort.
As for comparison-based sorting algorithms on GPUs in general, the fastest algorithm

currently described in the literature is a two-way merge sort by Satish et al. [147]. It divides

20

the input into n/256 tiles, sorts them using odd-even merge sort [19], and two-way merges
the results in log2 (n/256) iterations. In contrast to hybrid sort, several threads can work
cooperatively on merging two sequences, therefore eliminating the need for prior partitioning.
Recently, Satish et.al [148] further improved their merge sort performance.
In the same work [147], Satish et al. presented a very efficient variant of radix sort, which

was until recently superior to all other GPU and CPU sorting algorithms, at least for 32-bit
integer keys and key-value pairs.
Merrill and Grimshaw implemented an efficient scan routine that operated at the GPUs

memory bandwidth [108], which they later used for an efficient implementation of radix sort
that outperformed all available radix sort implementations by a large margin [107].
In the following subsections, we present the design of a sample sort algorithm for manycore

GPUs. Despite being one of the most efficient comparison-based sorting algorithms for
distributed memory architectures, its performance on GPUs was previously unknown. We
show that it is the best current comparison-based sorting algorithm for GPUs.
In our original publication [92], we described the design and implementation of sample sort

for Nvidia GPUs using CUDA. We showed that sample sort was also robust to the commonly
accepted set of distributions used for experimental evaluation of sorting algorithms [64],
and performed equally well for the whole range of input sizes. Our experimental study
demonstrated that our implementation was faster than all previously published comparison-
based GPU sorting algorithms, and outperformed the state-of-the-art radix sort from the
Thrust library on 64-bit integers and some nonuniform distributions of 32-bit integers. One
of the main reasons for a better performance of sample sort over quicksort and two-way
merge sort is that it needs less accesses to global memory, since it processes the data in a
few multi-way phases rather than in a larger number of two-way phases.
Based on these results, we continued our work on sample sort in the following directions

❼ a new implementation that is particularly efficient for smaller distribution degrees,
exploiting coalesced writing for speeding up the distribution phase

❼ for the smallest distribution degrees 16 and 32 we adopt a distribution phase of radix
sort [107]

❼ a better implementation of the sorting routine for small inputs

We show that

❼ our implementation outperforms a new tuned variant of merge sort [148] for large
uniformly distributed inputs on Nvidia’s Tesla architecture

❼ sample sort scales well and achieves the best published performance in comparison-
based sorting on Nvidia’s Fermi architecture

4.3. GPU Sample Sort

Sample sort is considered to be one of the most efficient comparison-based algorithms for
distributed memory architectures. Its sequential version is probably best described in pseu-

21

Algorithm 1: Serial sample sort

1 SampleSort(e = 〈e1, . . . , en〉, k)
2 begin
3 if n < M then return SmallSort(e)
4

5 choose a random sample S = S1, . . . , Sak−1 of e
6 Sort(S)
7 〈s0, s1, . . . , sk〉 = 〈−∞, Sa, . . . , Sa(k−1),∞〉
8 for 1 ≤ i ≤ n do
9 find j ∈ {1, . . . , k}, such that sj−1 ≤ ei ≤ sj

10 place ei in bucket bj
11 return Concatenate(SampleSort(b1, k), . . . , SampleSort(bk, k))

12 end

13 end

docode, see Algorithm 1. The oversampling factor a trades off the overhead for sorting the
splitters and the accuracy of partitioning, which is crucial for load balance.

The splitters partition the input elements into k buckets delimited by successive splitters.
Each bucket is then sorted recursively, and the concatenation forms the sorted output. If
M is the size of the input when SmallSort is applied, the algorithm requires O(logk n/M)
k-way distribution phases, expectedly, until the whole input is split into n/M buckets. Using
quicksort as sorter for the small cases leads to an expected execution time of O(n log n).

Satish et al. [147] pointed out that their main reason for favoring merge sort over sample
sort was its implicit load balancing. They considered it more beneficial than sample sort’s
avoidance of interprocessor communication. Since the bucket sizes heavily depend on the
quality of the splitters, this argument is certainly true. However, sufficiently large random
samples yield provably good splitters independent of the input distribution. Therefore, one
should not overestimate the impact of load balancing on the performance.

On the other hand, due to the high cost of global memory accesses on GPUs, multi-way
approaches are more promising than two-way: Each k-way distribution phase requires only
O(n) memory accesses. Expected logk(n/M) passes are needed until buckets fit into fast
GPU shared memory M . Thus, we can expect O(n logk (n/M)) global memory accesses
instead of O(n log2 (n/M)) required by two-way merge sort [147]. This asymptotic behav-
ior motivated our work in the direction of k-way sorting algorithms, and sample sort in
particular.

Before we describe the design of GPU sample sort, we should mention that hybrid sort [160]
and bbsort [35] involve a distribution phase, assuming that the keys are uniformly distributed.
The uniformity assumption simplifies partitioning, but makes these approaches not compet-
itive to sample sort on nonuniform distributions, see Subsection 4.3.7. Moreover, although
such distribution approaches are suitable for numerical keys, they are not comparison-based.

22

tl tl tl tl

Input

Thread

Blocks

Prefix

Sum

0

1

k−1

0

1

k−1

Input

0 1 2 k−1

Output

Bucket indices

Thread

Blocks

...
...

...

...

Figure 4.1.: An iteration of k-way distribution

4.3.1. Algorithm Design

A high-level design of a sample-sort’s distribution phase, while the bucket size exceeds a
fixed size M , can be described in 4 phases corresponding to individual GPU kernel launches,
see Figure 4.1.
We divide the input into p = ⌈n/(t · ℓ)⌉ tiles of t · ℓ elements and assign one block of t

threads to each tile, thus each thread processes ℓ elements sequentially.

Phase 1. Choose splitters as in Algorithm 1.

Phase 2. Each thread block computes the bucket indices for all elements in its tile, counts
the number of elements in each bucket, and stores this per-block k-entry histogram in
global memory.

Phase 3. Perform a prefix sum over the k × p histogram tables stored in a column-major
order to compute global bucket offsets in the output, e. g. use the Thrust implemen-
tation [154].

Phase 4. Each thread block finally stores elements at their proper output positions using
the global offsets computed in the previous step.

For buckets of size less than M , one can use any GPU sorting algorithm. In our original
implementation [92], we chose to use an adaptation of quicksort by Cederman and Tsigas [32].
The improved implementation described in the next Subsection also uses sample sort again
on the highest level, see Subsection 4.3.5 for details.
In the following subsections, we give a detailed description of each phase, including design

choices we made motivated by architectural attributes, and the performance guidelines re-
viewed in Section 2.4. The subsections highlight the differences between the original variant
presented in [92], and the improved one presented here.

23

4.3.2. Implementation Details for the Original Algorithm

For the original algorithm, we fixed ℓ and t, making p depend on the input size.

Phase 1. We take a random sample S of a · k input elements using a simple linear-
congruential random number generator for GPUs, which takes its seed from the CPU-based
Mersenne Twister [102]. Then we sort the sample, and place each a-th element of S in the
array of splitters b such that they form a complete binary search tree with b[1] = sk/2 as the
root. The left child of b[j] is placed at position 2j and the right child at position 2j + 1, see
Algorithm 2.

Phase 2. To speed up the traversal of the search tree and save accesses to global memory,
each block loads b into its shared memory.
To find the target bucket index for an element, we adopt a technique that was originally

used to prevent branch mispredictions, impeding instruction-level parallelism on commodity
CPUs [146]. In our case, it allows avoiding conditional branching of threads while traversing
the search tree. Indeed, a conditional increment in the loop is replaced by a predicated in-
crement. Therefore, threads concurrently traversing the search tree do not diverge, avoiding
serialization. Since all possible values for k are known at compile time, the compiler can
unroll the loop, which further improves the performance.

Algorithm 2: Serial search tree traversal

3k/8
s

 k/8
s

5k/8
s

7k/8
s

 k/4
s

3k/4
s

 k/2
s

< <

<

1
b

2
b

3
b

4
b

5
b

6
b

7
b

8
b

< < < <> > > >

>>

>

b = 〈sk/2, sk/4, s3k/4, sk/8, s3k/8, s5k/8, s7k/8 . . .〉

TraverseTree(ei)
begin

j := 1
repeat log2 k times

j := 2j + (ei > b[j]) // left or right child?

1 j := j − k + 1 // bucket index

2

end

Having computed the bucket indices for its elements, each thread block counts the sizes
of the resulting buckets by incrementing counters in its shared memory. For correctness,

24

we use atomic add instructions here. Since many threads may increment the same counter,
we lower contention by splitting threads into groups and use individual counter arrays per
group. We found r = 8 arrays to be a good compromise between overhead for handling
several arrays and a lack of parallelism when only one array is used. On hardware that does
not support atomic operations, we can explicitly avoid conflicts by using a single thread per
group for counting.
Per-block k-entry histograms in global memory resulting from the vector sum computation

on the bucket size arrays form the output of this phase. Note that the larger the tiles, i.e., the
larger the parameters t and ℓ, the less histogram data is produced by this phase, reducing the
number of global memory accesses. On the other hand side, large tiles decrease parallelism.
Therefore, the parameter ℓ allows a flexible trade-off between these two effects.

Phase 4. This phase basically repeats the second phase. The difference is that instead of
counting the number of elements in the buckets, each block computes local offsets within
each bucket for its elements. Hence, by using results of the prefix sum in the previous phase,
it computes the final element positions and stores the elements there.
At first glance, it seems to be inefficient to do some work twice in phases 2 and 4, namely

computing the bucket indices. However, we found out that storing the bucket indices in
global memory in-between (as in [146]) was not faster than just recomputing them, i.e.,
since Phase 4 is completely memory-bandwidth-bound, the hardware is capable of hiding
computation behind memory-intensive operations.

4.3.3. Implementation Details for the Improved Algorithm

This time, we fix (dependent on architecture, see Subsection 4.3.6) the number of thread
blocks p and the number of threads per blocks, and vary ℓ accordingly.

Phase 1. As in the original algorithm from Subsection 4.3.2.

Phase 2. Bucket indices of input elements and bucket sizes are computed similarly to the
original algorithm. An important difference is that every block of t input elements is ordered
by the bucket index, and written out as such to global memory. In addition to the p ·k-sized
histogram table as in the original algorithm, we store bucket sizes per each such block of t
elements, which are used again in Phase 4. A benefit of the locally ordered layout, especially
for small k, is a significantly more efficient Phase 4, which may coalesce writes of elements
belonging to the same bucket.

Phase 4. Loads the bucket size information per block of t elements from global memory,
and recomputes the bucket indices of the block elements as in Phase 2. By using results of
the prefix sum in the Phase 3, it is able to compute element positions in the output. Since
every block of t elements is now presorted by the bucket indices, threads within one warp are
likely to write their elements into consecutive positions of the same bucket in global memory.
The hardware is thus capable of combining such requests into one memory transaction, which

25

is significantly more efficient. The efficiency of such an approach heavily depends on k, the
warp size, and the maximum number of threads per block. Indeed, the smaller k and the
larger t is, the more likely it is that the writes performed by threads within one warp are
combined into one memory transaction. The choice of concrete parameter values for different
architectures is outlined in Subsection 4.3.6.

4.3.4. Special Case: 16- and 32-way Distribution

A recent work by Merrill and Grimshaw [107] describes a very efficient implementation of
the radix sort. It is in turn based on the, to our knowledge, most efficient implementation
of a scan (prefix sum) primitive by the same authors [108]. The sorting rate reaches up to
one billion 32-bit integers per second on the NVidia Fermi architecture. That is at least 2x
faster compared to the implementations available before.

Radix sort iterates over the d-bit digit places of the k-bit integer keys from the least-
significant to the most significant. In each pass the algorithm performs a stable distribution
of keys into 2d buckets. Thus, the radix sort requires k/d scans to sort the input.

Our interest in this radix sort implementation is due to the efficiency of its distribution
pass. Although it was originally designed for integers only, we generalized the implementation
for the usage of arbitrary keys and comparison functions.

Such small distribution degree allows fine-grained optimizations on the thread block level.
In Phase 2 it allows contention free updates of bucket counters, therefore we do not need
atomic operations anymore. Moreover, we do not order elements in Phase 2 as in improved
algorithm in Subsection 4.3.3, but rather do it in shared memory in Phase 4, before dis-
tributing elements to the global memory. In contrast to the improved algorithm we do not
need to write anything to global memory in Phase 2, and do not need to load bucket sizes
from global memory in Phase 4. In the same time due to ordering in shared memory we ben-
efit from coalesced writing in Phase 4 as in improved algorithm. Unfortunately, due to the
limited amount of shared memory, such optimizations are possible for very small distribution
degrees only.

Thus, our sample sort implementation currently uses two adapted radix distribution passes
(d = 4 or 5) in order to distribute keys into a sufficient number of buckets and then sorts
the buckets using our small case sorter, which we described in detail the next subsection.

4.3.5. Sorting Small Buckets.

We delay the sorting of small buckets until the whole input is partitioned into buckets
of size at most M . Since the number of buckets grows with the input size, it is much
larger than the number of SMs in the usual cases. Therefore, we can use a single thread
block per bucket without sacrificing exploitable parallelism. To improve load-balancing we
schedule the buckets for sorting ordered by size. In the original algorithm, we employed GPU
quicksort by Cederman and Tsigas [32] for sorting the buckets. GPU quicksort does not cause
any serialization of work, except for pivot selection and stack operations. Additionally, its
consumption of registers and shared memory is modest.

26

hardware parameter value Tesla/Fermi

o overload factor recommended for architecture 5/5
T hardware limit on threads per block 512/1024
S number of streaming multiprocessors 15/30
E size of shared memory (in number of elements) 16KB/48KB

Table 4.1.: The given hardware parameters and recommendations.

In the improved version, we use an implementation of sample sort that is run by a single
thread block. It has a fixed small distribution degree k and falls back to GPU quicksort
when bucket sizes drop below M ′ ≪ M . This approach allows us to proceed with the
parallel sorting of buckets as soon as the distribution phase produces enough of them to
saturate the hardware. See Subsection 4.3.6 for the concrete set of parameters.
For sequences that fit into shared memoryM ′′ ≪M ′ ≪M , the quicksort routines switches

to an odd-even merge sorting network [19]. In our experiments, we found it to be faster than
the bitonic sorting network and other approaches like a parallel merge sort.
In summary, we have four stages of sorting in the improved algorithm. Distribution for

large inputs parallelized over all SMs, then local distribution parallelized over one thread
block, then two-way partitioning in quicksort, then odd-even merge sort.

4.3.6. Tuning Architecture-Dependent Parameters

By well-chosen tuning parameter values, we try to achieve good performance for a wide
range of input and hardware characteristics. In the following, we will derive dependencies
and formulas that allow us to calculate good parameter values. Table 4.2 summarizes the
affected parameters, while Table 4.1 states the hardware parameters given as input.

Original algorithm on Tesla architecture. Since Phase 4 of the original algorithm is not
optimized for memory coalescing, the distribution time is significantly slower than the im-
proved variant and does not scale that well with k, given that the work increases only
logarithmically (see Figure 4.2). Therefore, to minimize the overall runtime of the algorithm
we minimized the number of rounds performed by the distribution. We chose a maximum k
such that r ·k (where r is the replication factor, see Subsection 4.3.2) integers fit into shared
memory, and we have at least o active blocks per multiprocessor, providing a reasonable par-
allelism as suggested by [108]. We set M by experimentally trading-off the nonuniformity of
bucket sizes produced by the k-way distribution, against the better performance of quicksort
on small instances. This way, we achieve an almost uniform sorting rate throughout the
whole input size range. The concrete values are k = 128 and M = 217.
We choose the oversampling factor as to produce a good quality sample, but still to allow

sorting the samples in the second phase to be completely performed in shared memory, thus
inducing almost no overhead compared to a smaller oversampling factor. In practice, this
amounts to a = 30 for 32-bit integers, and a = 15 for 64-bit integers.

27

parameter / formula GPU value for original value for improved

k
distribution degree Tesla 128 variable

k ≤ E/(ro) Fermi 128 variable

t
number of threads per block Tesla 256 512

t ≤ T Fermi 256 1024

ℓ
number of elements per thread Tesla 8 n/(t · p)

ℓ := n/(t · p) Fermi 8 n/(t · p)
p

number of thread blocks Tesla n/t · ℓ) 150
p := oS Fermi n/(t · ℓ) 75

M
fallback to small case sorter Tesla 217 216

determined experimentally Fermi 217 216

M ′′ fallback to odd-even merge sort Tesla 210 210

M ′′ ≤ E/o,M ′′ ∈ 2N Fermi 210 211

r
histogram replication factor Tesla 8 8
determined experimentally Fermi 8 8

Table 4.2.: The deduced tuning parameters for the two algorithm variants, on Tesla and Fermi.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

220 221 222 223 224 225 226 227

10
6 d

is
tr

ib
ut

ed
 e

le
m

en
ts

 /
s

number of elements

Original
k=16
k=32

k=64
k=128

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

400

600

800

1000

1200

1400

1600

1800

2000

number of elements

Improved
k=16
k=32

k=64
k=128

Figure 4.2.: Processing rate of the distribution phase of the original (left) and the improved (right)
algorithm on Tesla. The input consists of uniformly distributed 32-bit integers.

28

When choosing the numbers t (threads per block) and ℓ (elements per thread), we have
to achieve a compromise between the parallelism exposed by the algorithm, the amount of
data ((n · k)/(t · ℓ) indices) written in the second phase, and memory latency in the fourth
phase. We choose t = 256 and ℓ = 8.

As stated here for the original algorithm, we made good guesses on the parameter values,
based on personal experience. For the improved algorithm, we will describe how to do this
in a more systematic way.

Improved algorithm on Tesla and Fermi architecture. Due to a better performance of
the improved algorithm’s distribution stage, we found it beneficial to vary the distribution
degree depending on the input size. We use the following optimization rule: (1) Determine
the bucket size M that maximizes the performance of the small case sorting algorithm (by
processing rate, i. e. comparisons per time unit); (2) Depending on the input size, choose
the distribution degree such that after at most two rounds, the distribution produces enough
buckets p of approximate size M to saturate the hardware. We assume that the sizes of the
buckets produced in one distribution round are approximately equal. Indeed, we observed
[92] that our sample sort performance does not depend significantly on the distribution of
input keys, as long as the oversampling factor is large enough.

We determine M experimentally by running the small case sorter on p buckets of size M ,
and settle it to 216 for both Tesla and Fermi, the two architectures coincide here. As seen
in Figure 4.3, the number of comparisons per time unit has a local maximum for this M
for Fermi, and going much larger would result in too few buckets, having a negative effect
on the load-balancing over the streaming multiprocessors. This value is also good choice for
Tesla. Choosing the peak value M = 214 for Tesla threatens performance, since the bucket
size will not be the exact value, but spread around the target bucket size. For 213, though,
the performance would drop significantly.

In contrast to the original algorithm, we do not fix the sequential work ℓ per thread, but
rather the number of thread blocks p. This shrinks the histogram table produced in Phase 2,
and therefore the runtime of scan primitive in Phase 3. As recommended by the vendor, we
found p equaling o = 5 times the number of multiprocessors to be enough to saturate the
hardware. Therefore, for Tesla we choose p = 150, while for Fermi p = 75, directly deduced
from their number of SMs S.

To decrease the amount of data output in Phase 2 and improve coalesced writing in
Phase 4, it is profitable to set the number of threads per block to the maximum allowed by
the hardware, i. e. t = 512 for Tesla t = 512 and t = 1024 for Fermi.

As for the choice of M ′′, we settle it to the maximum power of 2 such that at each SM
can run o thread blocks. That is, o ·M ′′ elements should fit into shared memory of an SM.

Overall, we focus on the distribution phase for selecting the parameters via formulas.
For sorting buckets, we fix M ′′, but then-on rely on experimental results. This retains the
possibilities to replace the small case sorter in a black-box fashion.

29

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

211 212 213 214 215 216 217 218 219 220

n
lo

g
n

/ t
im

e
[1

/µ
s]

number of elements n

Tesla
Fermi

Figure 4.3.: Performance of the small case (SM-local) sorter, depending on the input size, for both
platforms.

4.3.7. Experimental Study of Original Algorithm on Tesla

We report on experimental results of our original sample sort implementation on sequences
of floats, 32-bit and 64-bit integers, and key-value pairs where both keys and values are
32-bit integers. We compare the performance of our algorithm to a number of existing GPU
implementations including: Thrust and CUDPP radix sorts, and Thrust merge sort [147], as
well as quicksort [32], hybrid sort [160] and bbsort [35]. Since most of the other algorithms
do not accept arbitrary key types, we omit them for the inputs they were not implemented
for. We have not included approaches based on graphics APIs in our benchmark, bitonic
sort in particular [62], since they are not competitive to the CUDA-based implementations
listed above.
Our experimental machine has configuration A and the GPU has configuration B, see

Section 3.2. In comparison to commodity Nvidia cards, the Tesla C1060 has a larger memory
of 4GB, that allows a better scalability evaluation. We compiled all implementations using
CUDA 2.3 and GCC 4.3.2 on 64-bit Suse Linux 11.1 with optimization level -O3.
We do not include the time for transferring the data from host CPU memory to GPU

memory, since sorting is often used as a subroutine for large-scale GPU computations.
For the performance analysis we used a commonly accepted set of distributions motivated

and described in [64].

Uniform. A uniformly distributed random input in the range [0, 232 − 1].

Gaussian. A Gaussian distributed random input approximated by setting each value to an
average of 4 random values.

30

 20

 40

 60

 80

 100

 120

 140

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

s
o
rt

e
d
 e

le
m

e
n
ts

 /
 t

im
e
 [

µ
s
]

number of elements

Uniform
cudpp radix
thrust radix

sample
thrust merge

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

1
0

6
 s

o
rt

e
d

 e
le

m
e

n
ts

 /
 s

number of elements

Sorted

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1
0

6
 s

o
rt

e
d

 e
le

m
e

n
ts

 /
 s

number of elements

DDuplicates

Figure 4.4.: Sorting rates on key-value pairs.

31

 20

 30

 40

 50

 60

 70

 80

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

1
0

6
 s

o
rt

e
d

 e
le

m
e

n
ts

 /
 s

number of elements

Uniform

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

 20

 30

 40

 50

 60

 70

 80

1
0

6
 s

o
rt

e
d

 e
le

m
e

n
ts

 /
 s

number of elements

Sorted

Figure 4.5.: Sorting rates on 64-bit integer keys.

Bucket Sorted. For p ∈ N, the input of size n is split into p blocks, such that the first
n/p2 elements in each of them are random numbers in [0, 231/p − 1], the second n/p2

elements in [231/p, 232/p− 1], and so forth.

Staggered. For p ∈ N, the input of size n is split into p blocks such that if the block index is
i ≤ p/2 all its n/p elements are set to a random number in [(2i−1)231/p, (2i)(231/p−1)].

Deterministic Duplicates. For p ∈ N, the input of size n is split into p blocks, such that
the elements of the first p/2 blocks are set to log2 n, the elements of the second p/4
processors are set to log2(n/2), and so forth.

We use p = 240 (the number of scalar processors of a Tesla C1060).

Key-value pairs. Since the best comparison-based sorting algorithm, Thrust merge sort,
is designed for key-value pairs only, we can fairly compare it to our sample sort only on
this input type. On uniformly distributed keys, our sample sort implementation is at least
25% faster, and on average achieves a 68% higher performance than Thrust merge sort. For
key-value pairs, we do not depict all distributions, but rather mention only the behavior of
our implementation on uniform inputs, and worst-case sorted sequences. Sample sort is at
least as fast as Thrust merge sort, and still is 30% better on average, see Figure 4.4.
Similarly to radix sort on commodity CPUs, CUDPP radix sort is considerably faster

than the comparison-based sample and merge sort on 32-bit integer keys. However, on low-
entropy inputs, such as Deterministic Duplicates, see Figure 4.4, even for such short-length
key types, radix sort is outperformed by sample sort.

64-bit integer keys. With the growth of the key length, radix sort’s dependence on the
binary key representation renders Thrust radix sort (the only implementation accepting 64-
bit keys) uncompetitive to sample sort. On uniformly distributed keys, our sample sort is at
least 63%, and on average 2 times faster than Thrust radix. On a sorted sequence, for which

32

cudpp radix
thrust radix

quick

bbsort
hybrid (float)

sample

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

Uniform

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

Gaussian

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

Sorted

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

Staggered

 0

 50

 100

 150

 200

 250

 300

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

number of elements

Bucket

 0

 50

 100

 150

 200

 250

 300

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

number of elements

DDuplicates

Figure 4.6.: Sorting rates on 32-bit integers.

33

our implementation performs worst, its sorting rate does not deviate significantly from the
uniform case, see Figure 4.5.

32-bit integer keys. Since the majority of GPU sorting implementations are able to sort
32-bit integers, we report sample sort’s behavior on all distributions listed above, referring
to Figure 4.6. We include hybrid sort results on floats, since it is the only key type accepted
by this implementation, and the sorting rates of other algorithms on floats are similar to the
ones on integer inputs.
The short length of the key type allows both implementations of radix sort to outperform

all algorithms, similar to the 32-bit integer key-value pairs case. Sample sort demonstrates
the fastest and still robust performance over all other approaches except for the radix sorts.
In particular, it is on average more than 2 times faster than quicksort and hybrid sort, for a
uniform distribution. Due to the uniformity assumption, and hence, a reduced computational
cost involved as we mentioned in Section 4.3, bbsort is competitive, but still outperformed
by our implementation. On the other hand, the performance of bbsort as well as hybrid
sort on Bucket and Staggered distributions significantly degrades when compared to the
uniform case. Moreover, on the Deterministic Duplicates input, bbsort becomes completely
inefficient, while hybrid sort crashes.
Sample sort is robust with respect to all tested distributions and performs almost equally

well on all of them. It demonstrates a sorting rate close to constant, i.e., scales almost
linearly with the input size. A higher level of parallelism, and hence, a better possibility
of hiding memory latency on large inputs, dominate the logarithmic factor in the runtime
complexity.

Exploring bottlenecks. Figure 4.7 reports sorting rates of CUDPP and Thrust radix sorts
as well as Thrust merge sort and our sample sort on two different GPUs: Nvidia Tesla
C1060 and Zotac GTX 285 (both Tesla architecture). These GPUs have the same number
of scalar processors, but the GTX 285 is clocked at 1.476GHz and Tesla at 1.296GHz, i.e.,
13% slower. The measured memory bandwidth of GTX 285 is 124.7GB/s, while Tesla’s
is 70% slower, only 73.3GB/s. The average improvements of CUDPP and Thrust radix
sorts on the GTX 285 are 30% and 25% respectively, while Thrust merge and sample sorts
improve just by 18%. This indicates that none of the algorithms is solely computationally or
memory bandwidth bounded. However, the larger improvement for both radix sorts suggests
that they are rather memory bandwidth bounded, while merge and sample sort are more
computationally bounded.

4.3.8. Experimental Study of Algorithms on Fermi and Performance

Portability

Overall Comparison of Algorithms on Both Platforms. Our Fermi’s configuration D
is listed in Section 3.2. In Figure 4.8, we show performance results for the original and the
improved algorithm, for both platforms respectively. The improved algorithm is significantly
better in most cases, in particular for large inputs, and for Tesla, by up to 40%. The best

34

 20

 40

 60

 80

 100

 120

 140

 160

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

1
0

6
 s

o
rt

e
d
 e

le
m

e
n
ts

 /
 s

number of elements

Uniform
cudpp radix GTX285
cudpp radix C1060
thrust radix GTX285
thrust radix C1060

sample GTX285
sample C1060
thrust merge GTX285
thrust merge C1060

Figure 4.7.: Sorting rates on uniform key-value pairs on Tesla C1060 (filled dots) and Zotac GTX285
(hollow dots).

 100

 120

 140

 160

 180

 200

 220

 240

 260

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

1
0

6
 s

o
rt

e
d
 e

le
m

e
n
ts

 /
 s

number of elements

Uniform
Improved Fermi

Original Fermi
Improved Tesla

Original Tesla

Figure 4.8.: Comparison of the original and the improved algorithm on both platforms.

35

reported performance for GPU comparison-based sorting is by Satish et. al. [147] achieves
on average 176 million elements per second. However, for the largest input, it lies around
150–160 on GTX 280. Our implementation sorting rate is 164 millions elements per second
on Tesla C1060, and thus is superior for larger input sizes. As mentioned in Subsection 4.3.7,
on a GTX 285, which is comparable to the GTX 280, our algorithm achieves even 18% better
performance than on C1060. Thus, we expect an even larger margin over our competitors.
Generally, Fermi is about 50% faster than Tesla. For very small inputs, though, the

performance of the improved algorithm on Fermi drops significantly. This is probably due
to too little work per thread ℓ. It might be better to have a lower bound for ℓ.

Tuning Parameter Quality. Next, we will analyze in detail the quality of the systematically
chosen tuning parameters1. The corresponding performance results are shown in Figure 4.9.
For the distribution degree k, we compare against a fixed k = 128 (as in the original algo-

rithm), and against doubling or halving the determined k. For Tesla, in fact, the calculated
k is usually best, or close to the best. The only input size where it is significantly worse
than the doubled k, is for 223 elements. For large inputs, the chosen k clearly wins, and the
curve is overall monotonic and quite smooth. Things look even better for Fermi, where the
other choices for k lead to highly erratic or embarrassingly bad (fixed k) performance.
The number p of thread blocks actually does not influence the performance that much, at

least in the range we tried. For both platforms, the chosed p is among the best values.
The number of threads per block is strictly limited the hardware. A large number of

threads, though, increases parallelism and thus the possibility of hiding memory latency. On
the other hand, the number of concurrent threads limits the number of registers usable by a
single thread. For Tesla in fact, choosing the maximum number gives the best performance.
For Fermi, we actually lose performance for t = 1024 instead of t = 512. However, this loss
is not dramatic, and the choice is better than t = 256, since it is dominated for large inputs.
M ′′ determines the maximum size for which the small case sorter finally uses odd-even

merge sort. For Tesla, choosing it too large (M ′′ = 2048) gives a serious performance hit,
and the chosen M ′′ actually gives the best results. The results for all tried M ′′ are very
similar, and for the maximum input, we see that the systematically made choice is actually
best.
Overall, in most cases, the systematically derived values give the best or nearly best

performance. Erratic behavior and bad performance penalties are usually avoided, when
compared to simpler or different choices. This shows that the chosen approach carries over
to new architectures.

4.3.9. Evaluation of a Special-case Treatment for 16-and 32-way
Distribution

In this subsection we study an impact of one further optimization of the improved algorithm,
our adaptation of the radix sort[107] distribution pass we described in Subsection 4.3.4.

1For many of the tuning parameters, we only consider powers of 2, because we except smaller changes to
have only little influence.

36

 80

 100

 120

 140

 160

 180

 200

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

tuned k

fixed k=128

doubled tuned k

halved tuned k

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

tuned k

fixed k=128

doubled tuned k

halved tuned k

 100

 110

 120

 130

 140

 150

 160

 170

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

tuned p=150
doubled p=300

halved p=75

 120

 140

 160

 180

 200

 220

 240

 260

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

tuned p=75
doubled p=150

halved p=36

 100

 110

 120

 130

 140

 150

 160

 170

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

tuned t=512

t=256

 120

 140

 160

 180

 200

 220

 240

 260

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

tuned t=1024

t=512

t=256

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

number of elements

tuned M’’=1024

doubled M’’=2048

halved M’’=512

 120

 140

 160

 180

 200

 220

 240

 260

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

number of elements

tuned M’’=2048

doubled M’’=4096

halved M’’=1024

Figure 4.9.: Comparing varied parameter values against the systematically chosen ones, for Tesla
(left) and Fermi (right).

37

 50

 100

 150

 200

 250

 300

220 221 222 223 224 225 226 227

10
6 s

or
te

d
el

em
en

ts
 /

s

number of elements

Uniform
Special Fermi

Improved Fermi
Special Tesla

Improved Tesla

Figure 4.10.: Sorting rate of the improved sample sort (“Improved”) and the variant involving
adaptation of radix sort distribution (“Special”) on 32-bit uniform integer inputs for
NVidia Tesla and Fermi architectures

 0

 200

 400

 600

 800

 1000

 1200

 1400

220 221 222 223 224 225 226 227

10
6 s

or
te

d
el

em
en

ts
 /

s

number of elements

Uniform
Radix Fermi
Radix Tesla

Special Fermi
Special Tesla

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

220 221 222 223 224 225 226 227

10
6 s

or
te

d
el

em
en

ts
 /

s

number of elements

Uniform
Radix Fermi
Radix Tesla

Special Fermi
Special Tesla

Figure 4.11.: Sorting rate of the variant involving adaptation of radix sort distribution (“Special”)
and state-of-the-art radix sort on 32-bit (left) and 64-bit (right) integer inputs for
NVidia Tesla and Fermi architectures

38

As seen on the Figure 4.10, the overall performance of the sample sort implementation
degraded slightly on the Tesla architecture, but gained a significant performance boost on
the Fermi architecture.
It is also of independent interest to compare the general purpose comparison based sample

sort implementation with the somewhat limited (due to its binary key representation depen-
dency), but very efficient state-of-the-art radix sort [107] on integer inputs across different
key lengths and architectures. Figure 4.11 compares the performance of our sample sort im-
plementation and the radix sort implementation on uniformly distributed 32-bit (left) and
64-bit (right) integers for Fermi and Tesla architectures. As we can see, the performance
of the radix sort for 32-bit integers on the Tesla architecture outperforms sample sort by
a factor of 2.5 and 3.5 on Fermi. For 64-bit integers the difference is not that significant
though. In particular, on the Fermi architecture radix sort outperforms sample sort by 40%
only. As the key length increases, radix sort needs to perform more passes through the data,
while sample sort’s number of passes does not change. Thus, as the key length increases,
sample sort also becomes competitive with radix sort for sorting integers.

4.4. Conclusion

In this chapter, we improved the design and implementation of our sample sort algorithm
such that it outperforms all previous comparison-based approaches. Our experimental study
demonstrates that our implementation is robust to different input types, thus disproving a
previous conjecture that the performance of sample sort on GPUs is highly dependent on
the distribution of keys [147].
This is an indication that multi-way algorithms in general and the sample sort’s multi-

way distribution in particular are superior on GPUs to two-way approaches, which require
more passes to process the data. In this respect, we believe that the performance of other
multi-way approaches should be explored further.
Though we implemented the algorithm using GPUs, our techniques should also suit other

manycore architectures well.
By systematically choosing tuning parameters, we have transferred the algorithm’s excel-

lent performance to the new Fermi architecture.

39

CHAPTER 5

Suffix Sorting

Besides general-purpose sorting, many applications require specialized sorting of strings or
string’s suffixes. If one uses a comparison-based sorting algorithm to sort all suffixes of a
string of length n, it would require O(n2 log n) time, since in general case the time to compare
two suffixes is O(n). Suffix sorting is a base of a so called suffix array construction prob-
lem. Therefore, it appears surprising that there exist suffix array construction algorithms
(SACAs) that solve this problem in linear time [76, 87, 121]. Even more surprising is that
despite of wide usage in text processing, compression, web search, biology and extensive re-
search over two decades there is a lack of efficient algorithms that are able to exploit shared
memory parallelism in practice. We try to close this gap and develop the first approach ex-
posing shared memory parallelism that significantly outperforms the state-of-the-art existing
implementations for sufficiently large strings.
For large data sets stemming from such applications as genome processing or web search

the bottleneck in most cases is I/O efficiency rather than computation. For such instances,
we develop a new SACA in external memory model. Our algorithm outperforms the previous
best external memory implementations [42] by a factor of about two in time and I/O-volume.
References. The contents of this chapter is based on the paper [125] and on the joint
work with Timo Bingmann and Johannes Fischer [22]. Most of the wording of the original
publications is preserved.

5.1. Preliminaries

To simplify the description of the algorithms and make it easier for a direct comparison to
the existing listings, we use the notation of the overview paper by Puglisi et al. [137].
Let T = t1t2 . . . tn be a finite nonempty string of length n, where letters belong to an

indexed alphabet Σ. A notion of an indexed alphabet can be defined as follows

❼ λj, j = 1, 2, . . . , σ ∈ Σ are ordered: λ1 < λ2 < . . . < λσ;

40

❼ we can define an array A[λ1 . . . λσ], such that accessing A[λj], j ∈ 1 . . . σ can be done
in constant time;

❼ λσ − λ1 ∈ O(n).

This means, that Σ can be mapped to an integer alphabet of a limited range. This restric-
tion though is commonly accepted and non-restrictive for a computational string processing.
A substring Ti = ti . . . tn of T is called ith suffix of T . Since i ranges from 1 to n there

are n suffixes of T .
Thus, by a given string T our goal is to compute a suffix array SAT , or SA for short.

SA[1 . . . n] is an integer array, where SA[j] = i ⇔ Ti is the jth suffix in ascending lexico-
graphical order. For convenience, we denote Ti = ti . . . tn as a suffix i and append the string
with a sentinel ✩, which we assume to be less than any letter λ ∈ Σ.
In the course of the algorithm description, we will need a notion of an inverse suffix array

denoted as ISAT , or ISA for short. It is an integer array ISA[1 . . . n], such that

ISA[i] = j ⇔ SA[j] = i

For example for Σ = {a, b, c, d, r, ✩} and string

1 2 3 4 5 6 7 8 9 10 11 12

T = a b r a c a d a b r a ✩

SA = 12 11 8 1 4 6 9 2 5 7 10 3
ISA = 4 8 12 5 9 6 10 3 7 11 2 1

Most SACAs proceed by ordering suffixes by their prefixes of increasing length h ≥ 1,
the process that we call h-sorting. The obtained partial order is denoted as h-ordering of
suffixes into h-order. Suffixes that are equal in h-order are called h-equal . They have the
same h-rank and belong to the same h-group of h-equal suffixes. If h-sort is stable, then the
h-groups for a larger h “refine” the h-groups for a smaller h.
To store a partial h-order, we use an approximate suffix array denoted as SAh or an

approximate inverse suffix array denoted as ISAh.

5.2. Related Work

The suffix tree of a string is a compact trie of all its suffixes. The suffix array and methods
for constructing it were proposed by Manber and Myers in 1990 [98] as a simple and space
efficient alternative to suffix trees. It is simply the lexicographically sorted array of the suffix
indices of a string. Suffix tree and methods for its construction were involved in hundreds
of papers over the last two decades. The milestones of this research include the following
results:

❼ there exist space-efficient linear time (in the string length) SACAs [76, 87, 121];

❼ there exist supralinear time algorithms that are faster in practice than their linear time
counterparts [99, 101, 115, 137];

41

❼ if a problem is solvable using a suffix tree its asymptotic complexity does not change
when the suffix array is used instead [2]

There are three basic techniques for constructing suffix arrays [137] that we informally de-
note by prefix-doubling, induced copying and recursion. In short, prefix-doubling approaches
iteratively sort the suffixes by their prefixes that double in length in each iteration, see Sec-
tion 5.3. Induced copying algorithms sort a sample of the suffixes and use them to induce
the order of the non-sample suffixes, see Section 5.4 Recursion methods recursively reduce
the input string length in each iteration. Thus, the existing algorithms can be implicitly
divided into three classes according to the technique they exploit. Besides those that can be
classified into a single class there exist hybrid approaches that combine at least two of the
basic techniques.
On the theoretical side both the induced copying and the recursion class contain linear

time algorithms. The Ko and Aluru (KA) [87], Kärkkäinen and Sanders (KS) [76] as well
as the recent Nong et al. (SAIS) [121] algorithms can be referred to the hybrid recursive
approaches that use the induced copying technique. Though, the underlying ideas behind
inducing are different. KA and SAIS use a sample of input-dependent suffixes (SL-inducing),
while KS’s choice of the sample is input-independent and is merely based on the regular suffix
positions in the input string (DC-inducing).
In practice algorithms based on SL-inducing outperform their DC-inducing counterparts

[137]. Moreover, for real-world instances supralinear O(n2 log n) algorithms are often even
faster [137]. As long as we are concerned with practical performance and do not insist on
linearity, the O(n log n) Larsson and Sadakane (LS) [91] algorithm becomes competitive.
LS is based on the original prefix-doubling Manber and Myers (MM) [98] algorithm with a
powerful filtering criterion on top that makes it significantly (by a factor of 10 or so [137])
faster in practice.

5.3. Prefix-Doubling Algorithms

Algorithms belonging to the prefix-doubling class construct from a given h-order, h ≥ 1 a
2h-order of the suffixes of T in O(n) time. They require at most log n iterations to build a
SA of T , and therefore the overall runtime is O(n log n).
Initially prefix doubling algorithms construct SA1 using linear time bucket sort and proceed

further by employing the following idea due to Karp et al. [78]:

Observation 1. Suppose that SAh and ISAh have been computed for some h > 0, where
i = SAh[j] is the jth suffix in h-order and h-rank[i] = ISAh[i]. Then, a sort using the integer
pairs

(ISAh[i], ISAh[i+ h])

as keys, i+ h ≤ n, computes a 2h-order of the suffixes i. (Suffixes i > n− h are necessarily
fully sorted)

The MM algorithm applies Observation 1 in the following way. By scanning suffixes
i = SAh[j] from left to right (that is in h-order) the algorithm necessarily scans the suffixes

42

i− h > 0 within their h-groups in 2h-order. It also maintains the invariant that the h-rank
of the suffix i is the leftmost position (head) of its h-group in SAh. Conceptually, MM is
described in Algorithm 3.

Algorithm 3: MM algorithm [98]

1 initialize SA1 by sorting suffixes by their first character
2 initialize ISA1[i] as the head of i’s 1-group in SA1

3 h = 1
4 while exist non-singleton h-groups do

/* h-group(i) is the h-group the suffix i belongs to */

/* head(i) is the first position in SAh of the h-group i */

/* offset(i) tracks the current position within the h-group i */

5 offset(h-group(·))← head(h-group(·))
6 for 1 ≤ j ≤ n do
7 i = SAh[j]− h
8 if i > 0 then
9 q ← offset(h-group(i))

10 SA2h[q]← i
11 if (q = head(h-group(i))) ∨ (h-group(i) 6= h-group(SA2h[q − 1]) then
12 2h-group(i)← q
13 head(2h-group(i))← q

14 else
15 dh-group(i)← dh-group(SA2h[q − 1])
16 end
17 increase offset(h-group(i))

18 end

19 end
20 compute ISA2h by ISA[i]← 2h-group(i)
21 h = h · 2
22 end

LS algorithm differs from MM in the following aspects:

❼ LS explicitly sorts suffixes i (i ≤ n−h, suffixes i > n−h are necessarily sorted) within
each of h-group in SAh by ISAh[i+ h] using ternary-split quicksort [21];

❼ LS avoids rescanning singleton h− groups in the loop 6–19, see Algorithm 3.

5.4. Induced Sorting

Following previous work [121], we classify all suffixes into one of the two types : S and L.
For suffix Ti the type(i) is S if Ti < Ti+1, and L otherwise. Suffix Tn is fixed as type S.
Furthermore, we distinguish the “left-most” occurrences of either type as S∗ and L∗; more

43

precisely, Ti is S
∗ if Ti is S-type and Ti−1 is L-type. Symmetrically, Ti is L

∗-type if Ti is L-type
and Ti−1 is S-type. The last suffix Tn = [✩] is always S∗, while the first suffix is never S∗ or
L∗. Sometimes we also say the character ti is of type(i).
Using these classifications, one can identify subsequences within the suffix array. The

range of suffixes starting with the same character c is called the c-bucket, which itself is
composed of a sequence of L-suffixes followed by S-suffixes. We also define the repetition
count for a suffix Ti as rep(i) := maxk∈N0

{ti = ti+1 = · · · = ti+k}; then the L/S subbuckets
can further be decomposed into ranges of equal repetition counts, which we call repetition
buckets.
The principle behind induced sorting is to deduce the lexicographic order of unsorted

suffixes from a set of already ordered suffixes. Many fast suffix sorting algorithms incorporate
this principle in one way or another [137] and we call them SL-inducing based. They are
built on the following inducing lemma [87]:

Lemma 1. If the lexicographic order of all S∗-suffixes is known, then the lexicographic order
of all L-suffixes can be induced iteratively smallest to largest.

Proof. We start with L := S∗ as the lexicographically ordered set of S∗-suffixes. Iteratively,
choose the unsorted L-suffix Ti /∈ L that, among all unsorted L-suffixes, has smallest first
character ti and smallest rank of suffix Ti+1 within L, such that Ti+1 is already in L. From
these properties, Ti < Tj for all Tj ∈ L\{Ti} follows due to the transitive ordering of L-suffix
chains, and Ti can be inserted into L as the next larger L-suffix. This procedure ultimately
sorts all L-suffixes, because each has an S∗-suffix to its right.

Analogously, the order of all S-suffixes can be induced iteratively largest to smallest, if the
relative order of all L∗-suffixes is known. Therefore, it remains to find the relative order of
S∗-suffixes.
For each S∗-suffix Ti, we define the k-th S∗-substring [ti, . . . , tj], where Tj is the next

S∗-suffix in the string. The last S∗-suffix [✩] is fixed to be an S∗-substring by itself. We
call the last character tj of each S∗-substring the overlapping character. S∗-substrings are
ordered lexicographically, with each component compared first by character and then by
type, L-characters being smaller than S-characters in case of ties. This partial order allows
one to apply lexicographic naming to S∗-substrings [121]. By representing each S∗-substring
by its lexicographic name in the super-alphabet Σ∗, one can efficiently reduce the problem of
finding the relative order of S∗-suffixes to recursively suffix sorting the string of lexicographic
names.

5.5. Parallel Suffix Array Construction for Shared Memory

Architectures

Parallel suffix array construction solutions exist in the distributed [53, 89] as well as parallel
external memory settings [20, 42]. The most efficient of them are based on KS algorithm
(DC-inducing). As for shared memory parallel SACAs, we see almost no progress in the area.
The main reasons for that are: (1) all the fastest practical sequential algorithms based on the

44

SL-inducing technique are difficult to parallelize; (2) the DC-inducing and prefix-doubling
techniques involve large overheads making parallelization using a small number of cores of
little (if at all) use. Thus, we either need better parallalizable approaches involving smaller
overheads, or go beyond commodity multicore machines and design algorithm that would
scale well with the number of cores and hence compensate for the increased overhead.

We pursue the second option and reduce the suffix array construction problem to a number
of parallel primitives such as prefix sum, radix sorting and random gather/scatter from/to
the memory. The performance of our approach depends merely on the scalability and the
efficiency of these primitives on a particular architecture. In this section we conduct the
performance study of our implementation on manycore NVidia GPUs, though the method
itself can be easily transferred to another shared memory (such as multicores, IBM CELL
or Intel Xeon Phi) or even distributed architecture, as long as the necessary primitives are
available.

Due to a lack of parallel approaches exploiting SL-inducing technique, the choice of the
algorithm that would suit a manycore architecture boils down to the prefix-doubling or DC-
inducing based methods. The considerations that lead us to the final decision were mainly the
asymptotic runtime, the performance on the real-world data and efficiency of the necessary
parallel primitives. Analyzing the first two aspects we found out that the better asymptotic
behavior of KS algorithm alone does not guarantee the better performance on real world
data [137]. Moreover, practical implementation of KS algorithm, requires sorting of large
tuples (up to five 32-bit integers) using comparison based sorting and merging afterwards
[20, 42]. Though there exist efficient comparison based GPU sorting (see Chapter 4 and
merging [147, 148] primitives, their performance is still inferior to that of GPU radix sorting
[92, 107, 147, 148]. In contrast to KS, prefix-doubling algorithms (LS and MM) require radix
sorting of (32-bit key, 32-bit value) pairs only.

Comparing MM and LS algorithms we found out that each of them has drawbacks with
respect to parallelization. LS requires simultaneous sorting of a (possibly large) number of
various-size chunks of data and thus needs load balancing. Comparison-based sorting is also
considerably slower on GPU than radix sorting, while radix-sorting of small instances of
(possibly) large numbers is suboptimal. Therefore, in our approach we perform an implicit
2h-sort similar to MM. On the other hand, MM induces large overheads by re-sorting suffixes
whose final positions in the SA are already defined. Unfortunately, we cannot skip singleton
h-groups i while scanning SAh as LS does. Though being fully sorted themselves, these
suffixes still can be important for determining 2h-rank of suffixes i−h. A simple modification
of this rule allows formulation of the filtering criterion that we employ in our approach, see
Algorithm 3

Observation 2. If in the k-th iteration of the MM algorithm

1. suffix i = SA2k [j] forms a singleton 2k-group,

2. i < 2k+1 or suffix i− 2k+1 also forms a singleton 2k-group

then for all further iterations j > k either i < 2j or suffix i− 2j forms a singleton 2j-group.

45

Proof. By induction on j. The base of induction j = k + 1 is due to the second condition.
Assume that for j < k + t, t > 1 the observation is true. If i − 2k+t > 0 then the suffix
i− 2k+t−1 forms a singleton 2k+t−1-group at iteration k + t− 1 by the induction hypothesis.
Hence, due to the condition in line 11 the suffix i − 2k+t−1 − 2k+t−1 = i − 2k+t forms a
singleton 2k+t-group at the end of this iteration.

Therefore, we can skip singleton h-groups in the loop 6–19 (see Algorithm 3) in the following
iterations as soon as conditions of Observation 2 get fulfilled. We should mention that run-
ning time was our primary goal. Therefore, our implementation is not particular lightweight
in memory consumption and requires for a string of length n a total of 32n byte storage in
GPU memory.
For completeness we should mention that Sun and Ma [163] attempted to design a SACA

for GPUs. They implemented the original MM algorithm and compared it to its CPU
counterpart on random strings. Though their GPU implementation demonstrated a speedup
of up to 10 for sufficiently large inputs, the significance of the result is questionable since
for real world data MM is proven to be more than an order of magnitude slower than the
currently fastest SACAs [137]. Moreover, random strings having an average longest common
prefix of length 4 are easy instances for MM.

5.5.1. Algorithm Design

In order to simplify the description of the algorithm, we do not give its full parallel version.
We present a “parallel ready” serial description. Having that, it is not particularly difficult
to fill in details of the parallel solution. In the following, we discuss parallelization of each
code block of Algorithm 4.

Initialization (lines 1 – 3). We initialize SAh and ISAh by sorting suffixes by their first h
characters. In contrast to the original MM algorithm we initially use h = 4 characters. This
is exactly the maximum number of one byte characters that can be combined into one 32-bit
key integer that we use for 4-sorting a corresponding suffix.
The GPU implementation of the algorithm 4-sorts the suffixes using radix sorting of

(key, suffix id) pairs. We compute a head of each 4-group by determining the starting posi-
tion of a corresponding sequence of equal keys. ISA4[i] is initialized with the 4-rank of the
suffix i, which equals the head of its 4-group in SA4. In parallel it can be done by, firstly,
comparing every two consecutive keys and storing either the position of the key if it differs
from the previous one or 0 otherwise in an auxiliary array aux. And, secondly, computing
inclusive prefix sum(aux,max) over aux using max binary operator. We initialize ISA4 by
scattering aux using suffix id as ISA4 offsets and making singleton 4-groups negative.

Inducing (lines 9 – 11) and Filtering (lines 13 – 15) . Analogously to MM Algorithm 3
(lines 7–10) suffixes i in h-order induce the 2h-order of suffixes i−h. Unfortunately, we cannot
use implicit inducing in the parallel version since insertion of suffixes into newly constructed
2h-groups would result in a lot of contention. Therefore, we explicitly accompany suffixes
i − h with their h-ranks (see lines 10 and 14 of Algorithm 4) in order to track in which

46

Algorithm 4: “parallel-ready” description of the algorithm

1 initialize SA4 by sorting suffixes by their first 4 characters
2 initialize ISA4[i] with the 4-rank of i = head of i’s 4-group in SA4

3 mark singleton 4-groups by making corresponding entries in ISA4 negative
4 Size← n
5 while Size > 0 do

/* SAh[i] contains ith suffix in h-order */

/* 2h-rank[i] is the 2h-rank of the suffix SAh[i]

h-rank[i] =

{
−h-rank(SAh[i]) if SAh[i] + h is a singleton h-group

h-rank(SAh[i] + h)

ISAh[i] =

{
h-rank(i)

−h-rank(i) if i is a singleton h-group

*/

6 s← 0
7 for 0 ≤ j < Size do
8 i← SAh[j]− h
9 if (i > 0) ∧ (ISAh[i] > 0) then

10 (SA2h, 2h-rank, h-rank)[s++]← (i, ISAh[i], ISAh[SAh[j]])
11 end
12 i← SAh[j]
13 if (ISAh[i] < 0) ∧ (i− 2h) > 0 ∧ (ISAh[i− 2h] > 0) then
14 (SA2h, 2h-rank, h-rank)[s++]← (i, ISAh[i],−ISAh[i])
15 end

16 end
17 radix sort(key(2h-rank), value(SA2h, h-rank))
18 head← 0 /* correcting 2h-ranks */

19 for 1 ≤ j < s do
20 if 2h-rank[j] 6= 2h-rank[head] then
21 head← j
22 else
23 if h-rank[j] 6= h-rank[head] then
24 2h-rank[j]← 2h-rank[j] + j − head
25 head← j

26 else
27 2h-rank[j]← 2h-rank[head]
28 end

29 end

30 end
31 ISA2h[SA2h[i]]← 2h-group[SA2h[i]] and make singleton 2h-groups negative
32 Size← s, h← h · 2
33 end

47

h-group they are inserted. By stably sorting these suffixes using their h-ranks we get exactly
the same 2h-order as the MM Algorithm.
Moreover, in order to obtain new 2h-groups we need to determine pairs of consecutive

h-equal suffixes whose 2h-order is induced by the suffixes that are not h-equal (condi-
tion in line 11 of Algorithm 3). Therefore, we include the h-rank of inducing suffixes also
(lines 10 and 14 of Algorithm 4). Thus, we need to construct triples containing the h-rank
of suffix i− h, i− h itself and the h-rank of i.
We additionally employ Observation 2 in order to avoid re-sorting of singleton h-groups. As

soon as the conditions of Observation 2 are fulfilled the algorithm excludes the corresponding
suffixes from further processing.
In order to implement this phase in parallel, the algorithm performs two scans through

the data. In the first scan we define which elements can be skipped by storing 0s in the
corresponding entries of auxiliary array aux. After running prefix sum(aux,+) over aux
each triple gets its position in the compacted array and therefore can be placed in the
correct position in the second pass through the data in parallel.

Sorting (line 17) We stably radix sort triples by h-ranks of the suffixes to construct SA2h.

Computing 2h-ranks (lines 18 – 30). The 2h-rank of a suffix i is equal to its h-rank
incremented by the offset of the leftmost h-equal suffix j (possibly i itself), such that 2h-
order of i and j is induced by h-equal suffixes.
The parallel implementation consists of two phases. In the first phase, we compute for

each suffix the position of the leftmost h-equal suffix from it. This can be done by (1)
defining suffixes that lie in the beginning of the group (each element is compared with its
predecessor), (2) storing the positions of such suffixes or 0 otherwise in an auxiliary array
aux and (3) computing prefix sum(aux,max). Thus, aux contains the computed positions
for corresponding suffixes. In the second phase for suffixes that lie in the beginning of new
2h-groups (conditions in lines 20 and 23 are verified for each two consecutive elements)
we store in an auxiliary array ãux their old h-rank incremented by the difference of their
position and corresponding value in aux. For the rest of suffixes we store 0. By computing
prefix sum(ãux,max) we obtain new 2h-ranks in ãux.
We update ISA2h by scattering values of ãux and making ISA2h values corresponding to

singleton 2h-groups negative (line 31).

Implementation Details. Thus, we reduced our “parallel-ready” approach in Algorithm 4
to a number of parallel primitives. In particular prefix sum, radix sort, scatter/gather
to/from the memory. In our implementation, we use memory-bandwidth optimal GPU
prefix sum and the most efficient GPU radix sort by Merrill and Grimshaw [107, 108].

Memory Consumption. We mainly targeted performance, therefore our implementation is
not particularly lightweight in memory consumption. We need to sort integer triples requiring
6n integers and maintain ISA and SA itself. Thus, the overall memory consumption is 8n
integers.

48

1/4

1/2

 1

 2

 4

 8

 16

 32

10
4

10
5

10
6

10
7

10
8

s
p

e
e

d
u

p

string length

 0

 0.5

 1

 1.5

 2

10
4

10
5

10
6

10
7

10
8

s
p

e
e

d
u

p

string length

Figure 5.1.: The relative speedup of GPU SACA compared to serial LS algorithm (left) and 4-core
divsufsort compared to its sequential version (right)

5.5.2. Experimental Study

Our experimental machine has configuration C and the GPU configuration D, see Sec-
tion 3.2. We compiled all implementations using CUDA 4.1 RC 2 and Microsoft Visual
Studio 2010 on 64-bit Windows 7 Enterprise with maximum optimization level.
We do not include the time for transferring the data from host CPU memory to GPU

memory as suffix array construction is often a subroutine in a more complex algorithm.
Therefore, we expect applications to reuse the constructed data structure for the further
processing on GPU.
We performed the performance analysis on widely used benchmark sets of files including

Calgary Corpus, Canterbury Corpus, Large Canterbury Corpus, Manzini’s Large Corpus,
Maximum Compression Test Files, Protein Corpus and The Gauntlet [115]. Due to the
GPU memory capacity and the memory requirements of our implementation we include into
the benchmark strings of size at most 45 MB.
In Figure 5.1 (left) we show the relative speedup of our implementation over the original

LS Algorithm [91]. For instances under 105 characters the usage of a GPU is inferior to
simple serial implementation. Such short instances are not capable to saturate the hardware
and efficiently exploit available parallelism. On the other hand, the CPU is able to realize
the full potential of its cache that fits the whole input.
Though for larger instances our implementation achieves a considerable speedup of up to 18

over its sequential counterpart. Sufficiently small fluctuations in speedup for approximately
equally sized instances suggests that the behavior of our MM variant is similar to LS. Hence,
our filtering criterion, see Observation 2, also effectively prevents resorting of fully sorted
suffixes. This way we avoid an order of magnitude performance drop inherent to the original
MM algorithm when compared to LS in practice [137].
We also compare the performance of our implementation to Yuta Mori’s highly tuned

CPU implementation divsufsort 2.01 [115], which also makes use of available parallelism by
exploiting OpenMP constructs, see Figure 5.2. We should mention that divsufsort scales
pretty bad with the number of processors, since algorithmically it is not a parallel solution,

49

 0

 1

 2

 3

 4

 5

 6

10
4

10
5

10
6

10
7

10
8

s
p

e
e

d
u

p

string length

calgary
manzini

compression
protein

gauntlet
canterbury

large canterbury

Figure 5.2.: The relative speedup of GPU SACA compared to 4-core divsufsort

see Figure 5.1 (right). Nevertheless, we enabled the OpenMP option in order to show the
performance one would be able to obtain using available shared memory CPU solutions and
compare it with the performance of our GPU implementation.
The relative speedup fluctuates significantly depending on the instance. This is due to

different techniques that are used in the algorithms. For example, three instances that are
simply multiple concatenation of some string from the Gauntlet set are still faster on a CPU.
The reason is, that these are the most difficult inputs for prefix doubling algorithms. The
filtering criterion is also of little help here, since most of the suffixes get fully sorted only on
the last few iterations of the algorithm. While for the class of induced copying algorithms,
which includes divsufsort, this kind of instances are not particularly hard.
Nevertheless, our implementation achieves a speedup of up to 6 for the majority of signif-

icantly large instances.

5.5.3. Discussion

In this section we demonstrated the design of a suffix array construction algorithm for parallel
architectures. We reduced a well known MM algorithm to a number of parallel primitives
such as prefix sum, radix sorting, scatter/gather to/from the memory. We proposed a new
simple filtering criterion, that allows MM to avoid extensive resorting of fully sorted suffixes
similar to the LS Algorithm. We implemented the proposed approach for manycore NVidia
Fermi architecture, though the same method can be applied for any shared or even distributed
memory architecture as long as the necessary parallel primitives are available. We showed
a speedup of up to 18 over sequential LS algorithm, and demonstrated the efficiency of our
filtering criterion. We compared the performance of our parallel implementation on a set of
widely used instances and showed a significant speedup of up to 6 for majority of sufficiently

50

large instances over the state-of-the-art OpenMP assisted divsufsort algorithm.
In this work we used massive parallelism to compensate for inherent overheads induced by

parallelizable approaches, though it would be of immediate interest to find asymptotically
optimal algorithms that are, firstly, parallelizable and, secondly, have better constant factors
in runtime and thus induce less overheads in practice.

5.6. Suffix Array Construction in External Memory

While being very fast, our GPU implementation is limited by the available GPU memory,
which is currently rather limited. Thus, applications involving massive data processing like
genome sequencing or search engines are out of scope of our GPU solution. To tackle this
problem we turned to the External Memory (EM) model, see Section 2.2
In 2009 Nong et al. [121] presented an extremely elegant linear time algorithm called SAIS

(based on the SL-inducing principle [70, 87], see Section 5.4) that was on par with the best
superlinear algorithms on all practical inputs. Its worst-case guarantees also imply that it
has a similar behavior on all inputs, while for all engineered superlinear algorithms [99, 101,
151, etc.] there exist worst-case inputs where their running time shoots up by several orders
of magnitude.
Unfortunately, being inherently sequential, this algorithm is not suitable for our shared

memory parallel solution. On the other hand, motivated by the superior performance of
the SAIS algorithm over other suffix array construction algorithms in internal memory, we
investigate if the SL-inducing principle can be exploited also in the EM model.
We make the first comparative study of suffix arrays in EMmodel that includes the induced

sorting principle, since all previous studies [17, 42] were conducted before the advent of SAIS.
We show that SAIS is suitable for the EM model by reformulating the original algorithm
such that it uses only scanning, sorting, merging and a priority queue - three primitives and a
data structure that are efficient in terms of EM model as in theory [9] as in practice [41, 141].
We make careful implementation decisions in order to keep the I/O-volume low. As a result,
our new algorithm, called eSAIS, is about two times faster than the EM-implementation
of DC3 [42]. The I/O volume is reduced by a similar factor. Since we do not use parallel
components in our implementation we do not make direct comparison to a more recent DC3
implementation involving shared memory parallel components and parallel asynchronous
I/Os [20]. The speedup reported in the paper [20] of up to 1.63 over sequential version [42]
suggests that even the parallel version would be outperformed by our implementation of
SAIS.

5.6.1. Algorithm Design

Our first goal is to design an EM algorithm based on the induced sorting principle that
runs in sorting complexity and has a lower constant factor than DC3 [42]. The basis for
this algorithm is an efficient EM priority-queue (PQ) [41], as suggested by the proof of
Lemma 1. Since it is derived from RAM-based SAIS, we call our new algorithm eSAIS
(External Suffix Array construction by Induced Sorting). We first comment on details of the

51

Algorithm 5: eSAIS description in tuple pseudo-code

1 eSAIS(T = [t0 . . . tn−1]) begin
2 Scan T back-to-front, create [(s∗k) | k ∈ [0, K)] for K S∗-suffixes, and sort

S∗-substrings:
P := SortS∗ [([ti . . . tj], i, type(j)) | (i, j) = (s∗k, s

∗
k+1), k ∈ [0, K)] // with

s∗K := n− 1
3 N = [(nk, i)] := LexnameS∗(P) // choose lexnames nk ∈ [0, K) for S∗-substrings
4 R := [nk | (nk, i) ∈ Sort(N by 2nd component)] // sort lexnames to string order
5 if the lexnames in N are not unique then
6 SAR := eSAIS(R) // recursion with |R| ≤ |T |

2

7 ISAR := [rk | (k, rk) ∈ Sort[(SAR[k], k) | k ∈ [0, K)]] // invert permutation

8 else // (Sort sorts lexicographically unless stated otherwise.)
9 ISAR := R // ISAR has been generated directly

10 end
11 S∗ := [(tj, S, ISAR[k], [tj−1 . . . ti], j) | (i, j) = (s∗k−1, s

∗
k), k ∈ [0, K)] // s∗−1 := 0

12 ρL := 0, QL := CreatePQ(S∗ by (ti, y, r, [ti−1 . . . ti−ℓ], i))
/* induce from next S∗- or L-suffix */

13 while (ti, y, r, [ti−1 . . . ti−ℓ], i) = QL.extractMin() do
14 if y = L then AL.append((ti, i)) // save i as next L-type in SA

15 if ti−1 ≥ ti then QL.insert(ti−1, L, ρL++, [ti−2 . . . ti−ℓ], i− 1)// Ti−1 is L-type?
16 else L∗.append((ti, L, ρL++, [ti−1 . . . ti−ℓ], i)) // Ti−1 is S-type

17 end
18 Repeat lines 11–15 and construct AS from L∗ array with inverted PQ order and

ρS--.
19 return

[i | (t, i) ∈ Merge((ti, i) ∈ AL and (tj, j) ∈ AS.reverse() by first component)]

20 end

pseudocode shown as Algorithm 5, which is a simplified variant of eSAIS. Subsection 5.6.2
is then devoted to complications that arise due to large S∗-substrings.

Let R denote the reduced string consisting of lexicographic names of S∗-suffixes. The
objective of lines 2–9 is to create the inverse suffix array ISAR, containing the ranks of all
S∗-suffixes in T . In line 2, the input is scanned back-to-front, and the type of each suffix i is
determined from ti, ti+1, and type(i+ 1). Thereby, S∗-suffixes are identified, and we assume
there areK S∗-suffixes withK−1 S∗-substrings between them, plus the sentinel S∗-substring.
For each S∗-substring, the scan creates one tuple. These tuples are then sorted as described
at the end of Section 5.4 (note that the type of each character inside the tuple can be deduced
from the characters and the type of the overlapping character). After sorting, in line 3 the
S∗-substring tuples are lexicographically named with respect to the S∗-substring ordering,
and the output tuple array N is naturally ordered by names nk ∈ [0, K). The names must be
sorted back to string order in line 4. This yields the reduced string R, wherein each character
represents one S∗-substring. If the lexicographic names are unique, the lexicographic ranks

52

of S∗-substrings are simply the names in R (lines 8–9). Otherwise the ranks are calculated
recursively by calling eSAIS and inverting SAR (lines 5–7).
With ISAR containing the ranks of S∗-suffixes, we apply Lemma 1 in lines 10–15. The

PQ contains quintuples (ti, y, r, [ti−1, . . . , ti−ℓ], i) with (ti, y, r) being the sort key, which is
composed of character ti, indicator y = type(i) with L < S and relative rank r of suffix Ti+1.
To efficiently implement Lemma 1, instead of checking all unsorted L-suffixes, we design the
PQ to create the relative order of S∗- and L-suffixes as described in the proof. Extraction
from the PQ always yields the smallest unsorted L-suffix, or, if all L-suffixes within a c-
bucket are sorted, the smallest S∗-suffix i with unsorted preceding L-suffix at position i− 1
(hence ti−1 > c). Thus diverging slightly from the proof, the PQ only contains L-suffixes
Ti where Ti+1 is already ordered, plus all S∗-suffixes where Ti−1 has not been ordered; so
at any time the PQ contains at most K items. In line 11, the PQ is initialized with the
array S∗, which is built in line 10 by reading the input back-to-front again, re-identifying
S∗-suffixes and merging with ISAR to get the rank for each tuple. Notice that the characters
of S∗-substrings are saved in reverse order. The while loop in lines 12–15 then repeatedly
removes the minimum item and assigns it the next relative rank as enumerated by ρL; this
is the inducing process. If the extracted tuple represents an L-suffix, the suffix position i is
saved in AL as the next L-suffix in the ti-bucket (line 13). Extracted S∗-suffixes do not have
an output. If the preceding suffix Ti−1 is L-type, then we shorten the tuple by one character
to represent this suffix, and reinsert the tuple with its relative rank (line 14). However, if
the preceding suffix Ti−1 is S-type, then the suffix Ti is L

∗-type, and it must be saved for the
inducing of S-suffixes (line 15). When the PQ is empty, all L-suffixes are sorted in AL, and
L∗ contains all L∗-suffixes ranked by their lexicographic order.
With the array L∗ the while loop is repeated to sort all S-suffixes (line 16). This process

is symmetric with the PQ order being reversed and using ρS-- instead of incrementing. If
ti−1 > ti occurs, the tuple can be dropped, because there is no need to recreate the array
S∗ (as all L-suffixes are already sorted). When both AL and AS are computed, the suffix
array can be constructed by merging together the L- and S-subsequences bucket-wise (line
17). AS has to be reversed first, because the S-suffix order is generated largest to smallest.
Note that in this formulation the alphabet Σ is only used for comparison.

5.6.2. Splitting Large Tuples.

After the detailed description of Algorithm 5, we must point out two issues that occur in the
EM setting. While S∗-substrings are usually very short, at least three characters long and on
average four, in pathological cases they can encompass nearly the whole string. Thus in line
2–3 of Algorithm 5, the tuples would grow larger than an I/O block B, and one would have
to resort to long string sorting [12]. More seriously, in the special case of [✩] being the only

S∗-suffix, the while-loop in lines 12–15 inserts n(n+1)
2

characters, which leads to quadratic I/O
volume. Both issues are due to long S∗-substrings, but we will deal with them differently.
Long string sorting in EM can be dealt with using lexicographic naming and doubling

[12, Sect. 4]. However, instead of explicitly sorting long strings, we integrate the doubling
procedure into the suffix sorting recursion and ultimately only need to sort short strings
in line 2 of Algorithm 5. This is done by dividing the S∗-substrings into split substrings of

53

Algorithm 6: Inducing step with S∗-substrings split by D0 and D, replacing lines
10–15 of Algorithm 5

/* split positions, with s∗−1 = 0 */
1 D := { s∗k −D0 − ν ·D | ν ∈ N, s

∗
k −D0 − ν ·D > s∗k−1, k ∈ [0, K) }

2 S∗ := Sort[(tj, ISAR[k], [tj−1 . . . ti], j,1i∈D) | j = s∗k, i = max(s∗k−1, j−D0), k ∈ [0, K)]
3 L := Sort[(tj, rep(j), j, [tj−1 . . . ti],1i∈D) | j ∈ D, i = max(s∗k−1, j −D), tj is L-type]
4 S := Sort[(tj, rep(j), j, [tj−1 . . . ti],1i∈D) | j ∈ D, i = max(s∗k−1, j −D), tj is S-type]
5 ρL := 0, a := ⊥, ra = 0, S∗ := Stack(S∗),
QL := CreatePQ(∅ by (ti, r, [ti−1 . . . ti−ℓ], i, c))

6 while QL.NotEmpty() or S∗.NotEmpty() do
7 while QL.Empty() or t < QL.TopChar() with (t, r, [ti−1 . . . ti−ℓ], i, c) = S∗.Top()

do
8 QL.insert(ti−1, ρL++, [ti−2 . . . ti−ℓ], i− 1, c), S∗.Pop() // induce from S∗

9 end
/* next a-repetition bucket */

10 a′ := a, a := QL.TopChar(), ra := (ra + 1)1a′=a, m := ρL, M := ∅ while
QL.TopChar() = a and QL.TopRank() < m do // induce from L-suffixes

11 (ti, r, [ti−1 . . . ti−ℓ], i, c) = QL.extractMin(), AL.append((ti, i)) // save i as
next L-type

12 if ℓ > 0 then
13 if ti−1 ≥ ti then QL.insert(ti−1, ρL++, [ti−2 . . . ti−ℓ], i− 1, c) // Ti−1 is L
14 else L∗.append((ti, ρL++, [ti−1 . . . ti−ℓ], i, c)) // Ti−1 is S

15 else if ℓ = 0 and c = 1 then M.append(i, ρL++,) // need continuation?
16

17 end
18 foreach

Merge([(a, ra, i, r) | (i, r) ∈ Sort(M)] with (a, ra, i, [ti−1, . . . , ti−ℓ], c) ∈ L) do
19 if ti−1 ≥ ti then QL.insert(ti−1, r, [ti−2 . . . ti−ℓ], i− 1, c) // Ti−1 is L-type
20 else L∗.append((a, r, [ti−1 . . . ti−ℓ], i, c)) // Ti−1 is S-type

21 end

22 end

54

length at most B, starting at the beginning, and lexicographically naming them along with all
other substrings. Thereby, a long S∗-substring is represented by a sequence of lexicographic
names in the reduced string. The corresponding split tuples are formed in the same way as
S∗-substring tuples in P , they also overlap by one character, except that this character need
not be S∗-type. After the recursive call, long S∗-substrings are correctly ordered among all
other S∗-substring due to suffix sorting, and split tuples can easily be discarded in line 10
as they do not correspond to any S∗-suffix. The d-critical version of SAIS [122, Sect. 4] is a
similar approach.
The second issue arises due to repeated re-insertions of payload characters into the PQ

in line 14, possibly incurring quadratic I/O volume. This again is handled by splitting the
S∗-substrings, now starting at the end, into chunks of size D0 or D (D0 ≥ D indicating when
to split at all, and D ≥ 1 being the actual split length). Lines 10–15 of Algorithm 5 have
to be replaced by Algorithm 6, which we will describe in the following. Let D be the set
of splitting positions, counting first D0 and then D characters backwards starting at each
S∗-suffix until the preceding S∗-suffix is met. As before, for each S∗-substring a tuple is stored
in the S∗ array, except that only the initial D0 payload characters are copied. We call these
items seed tuples. If an S∗-substring consists of more than D0 characters, a continuation
tuple is stored in one of the two new arrays L or S in lines 3–4, depending on the type of
its overlapping character. This overlapping character ti will later be used together with its
repetition count rep(i) to efficiently match continuation tuples with preceding tuples (see
Section 5.4 for the definition of repetition counts); rep(i) is easily calculated while reading
the text back-to-front. Along with both seed and continuation tuples we save a flag 1i∈D

marking whether a continuation exists.
Differing from Algorithm 5, in line 5 the PQ is initialized as empty and S∗ will be pro-

cessed as a stack. This modification separates the while loop into inducing from S∗-suffixes
in lines 7–8 and inducing from L-suffixes in lines 10–15. The two induction sources are alter-
nated between, with precedence depending on their top character: QL.TopChar() = ti with
(ti, r, τ, i, c) = QL.Top(). Since L-suffixes are smaller than S∗-suffixes if they start with the
same character, the while loop in 7–8 may only induce from S∗-suffixes with the first char-
acter being smaller than QL.TopChar(); otherwise, the while loop in 10–15 has precedence.
When line 9 is reached, the loop in 10–15 extracts all suffixes from the PQ starting with
a, after which the S∗ stack must be checked again. In lines 11–14 the extracted tuple is
handled as in Algorithm 5, however, when there is no preceding character ti−1 in the tuple
and the continuation flag c is set, the tuple underruns and the matching continuation must
be found. For each underrun tuple, the required position i and its assigned rank ρL is saved
in the buffer M , which will be sorted and merged with the L array in line 16. Matching
of the continuation tuple can be postponed up to the smallest rank at which a continued
tuple may be reinserted into the PQ. This earliest rank is m = ρL, as set in line 9, because
any reinsertion will have r ≥ ρL, and thus the while loop 10–15 extracts exactly the ra-th
repetition bucket of a. Because continuation tuples must only be matched exactly once per
repetition bucket, the continuation tuples are sorted by (tj, rep(j), j), whereby L can be
sequentially merged with M if M is kept sorted by the first component and L scanned as a
stack.
In Subsection 5.6.3 we compute the optimal values for D0 and D, and analyze the resulting

55

T 2

T

P
3

Lexname

N
4

R
6

Recursion
SAR

7
ISAR

10

2
S∗

4
S

3
L

QL
6–15

while-loop

M

16–18

AL

AS

17 SAT

Induce S

L∗

file
node

streaming
node

sorting
node

Algorithm 5 Algorithm 6 Algorithm 5

Figure 5.3.: Data flow graph of the algorithm; numbers refer to the line numbers of Algorithm 5 and
Algorithm 6, respectively. The input T is read and saved to a file (2), while creating
tuples. Sorting these tuples yields P , whose entries are lexicographically named in N
(3) and sorted again by string index, resulting in R (4). If names are not unique in R,
the algorithm calls itself recursively (6) to calculate SAR. The suffix array is inverted
into ISAR (7) and resulting ranks are merged with T to create seed and continuation
tuples (10), which are distributed into sorters (2,3,4) in Algorithm 6. The main while-
loop (6–15) reads from array S∗ and priority-queue QL. Depending on the calculation,
the while-loop outputs final L-suffix order information into AL, stores merge requests
to M when tuples underrun, reinserts a shortened tuple, or it saves L∗-tuples. Merge
requests are handled by matching tuples from M and L (16–18) and reinserting into
QL. When the while-loop for inducing L-suffixes finishes, the process is repeated with
seed tuples from L∗ and continuation tuples from S, yielding the final S-suffix order
values in AS . The output suffix array is constructed by merging AL and AS (17).

I/O volume.

5.6.3. I/O Analysis of eSAIS with Split Tuples

We now analyze the overall I/O performance of our algorithm and find the best splitting
parameters D0 and D, both under practical assumptions. We will focus on calculating the
I/O volume processed by Sort in lines 2–4 and 16, and by the PQs.

For simplicity, we assume that there is only one elementary data type, disregarding the
fact that characters can be smaller than indices, for instance. Thus a tuple is composed
of multiple elements of equal size. We write Sort(n) or Scan(n) as the number of I/Os
needed to sort or scan an array of n elements. For our practical experiments we assume
n ≤ M2

B
, and thus can relate Sort(n) = 2Scan(n), which is equivalent to saying that

n elements can be sorted with one in-memory merge step. With parameters M = 230 (1
GiB) and B = 210 (1 MiB), as used in our experiments, up to 250 (1 PiB) elements can be
sorted under this assumption. Furthermore, we also assume that the PQ has amortized I/O
complexity Sort(n) for sorting n elements, an assumption that is supported by preliminary
experiments.

In the analysis we denote the length of S∗-substrings excluding the overlapping character,
thus the sum of their lengths is the string length. For further simplicity, we assume that
line 15 of Algorithm 6 always stores continuation requests in M , and unmatched requests

56

are later discarded. Thus our analysis can ignore the boolean continuation variables.
For a broader view of the algorithm, we abstracted Algorithm 5 (including Algorithm 6)

into a pipelined data flow graph in Figure 5.3.

Lemma 2. To minimize I/O cost Algorithm 6 should use D = 3 and D0 = 8 for splitting
S∗-strings.

Proof. We first focus on the number of elements sorted and scanned by the algorithm for one
S∗-substring of long length ℓ = kD for k ∈ N1 when splitting by period D and set D0 := D.
In this proof we count amortized costs Sort(1) per element sorted and Scan(1) per element
scanned. This is possible, as all n

ℓ
S∗-substrings are processed by the algorithm sequentially.

For one S∗-substring the algorithm incurs Sort(D+3) for sorting S∗ (line 2) and Sort((ℓ
D
−

1)·(D+3)) for sorting L and S (lines 3–4). In QL and QS a total of Sort(ℓ
D
(1
2
D(D+1))+ℓ·3)

occurs due to repeated reinsertions into the PQs with decreasing lengths. The buffer M (line
16) requires at most Sort((ℓ

D
− 1) · 2), while reading from L and S is already accounted for.

Additionally, at most Scan((D−1) + 3) occurs when switching from QL to QS via L∗, as
at least the first S-character was removed. Overall, this is Sort(ℓ

D
(1
2
D2 + 9

2
D + 5) − 2) +

Scan(D + 2), which is minimized for D =
√
10 ≈ 3.16, when assuming Sort = 2Scan.

Taking D = 3, we get at most Sort(23
3
ℓ− 3) + Scan(5) per S∗-substring.

Next, we determine the value of D0 (as the length at when to start splitting by D). This
offset is due to the base overhead of using continuations over just reinserting into the PQ.
Given an S∗-substring of length ℓ, repeated reinsertions without continuations would incur
Sort(1

2
ℓ(ℓ+ 1) + ℓ · 3)). By putting this quadratic cost in relation to the one with splitting

by D = 3, we get that at length ℓ ≈ 7.7 the cost in both approaches is balanced. Therefore,
we choose to start splitting at D0 = 8.

Theorem 3. For a string of length n the I/O volume of Algorithm 5 is bounded by Sort(17n)+
Scan(9n), when splitting with D = 3 and D0 = 8 in Algorithm 6.

Proof. To bound the I/O volume, we consider a string that consists of n
ℓ
S∗-substrings of

length ℓ, and determine the maximum volume over all 2 ≤ ℓ ≤ n, where ℓ = 2 is the smallest
possible length of S∗-substrings, due to exclusion of the overlapping character. Algorithm 5
needs Scan(2n) to read T twice (in lines 2 and 10) and Sort(n + n

ℓ
· 2) to construct P

in line 2, counting the overlapping character and excluding the boolean type, which can
be encoded into i. In this Sort the I/O volume of LexnameS∗ is already accounted for.
Creating the reduced string R requires sorting of N , and thus Sort(2 · n

ℓ
) I/Os. Then the

suffix array of the reduced string R with |R| ≤ n
ℓ
is computed recursively and inverted using

Sort(2 · n
ℓ
), or the names are already unique. After creating ISAR, Algorithm 6 is used with

the parameters derived in Lemma 2, incurring the amortized I/O cost calculated there for
all n

ℓ
S∗-substrings. The final merging of AL and AS (line 17) needs Scan(2n). In sum this

is

V (n) ≤ Scan(2n) + Sort(n+ n
ℓ
· 2) + Sort(n

ℓ
· 2)

+ V (n
ℓ
) + Sort(n

ℓ
· 2) + Scan(2n)

+n
ℓ
·min{Sort(23

3
ℓ− 3) + Scan(5) ,

Sort(1
2
ℓ(ℓ+ 1) + ℓ · 3) + Scan(ℓ

2
)} .

57

Maximizing V (n, ℓ) for 2 ≤ ℓ ≤ n by ℓ = 2, we get V (n, ℓ) ≤ V (n, 2) ≤ Sort(8.5n) +
Scan(4.5n) + V (n

2
) and, solving the recurrence, V (n, ℓ) ≤ Sort(17n) + Scan(9n). In

Subsection 5.6.4 a worst-case string is constructed with S∗-substrings of length ℓ = 2.

5.6.4. Experimental Study

We implemented the eSAIS algorithm in C++ using the external memory library Stxxl

[41]. This library provides efficient external memory sorting and a priority queue that is
modeled after the design for cached memory [141]. Note that in Stxxl all I/O operations
bypass the operating system cache; therefore the experimental results are not influenced
by system cache behavior. Our implementation and selected input files are available from
http://tbingmann.de/2012/esais/.

Before describing the experiments, we highlight some details of the implementation. Most
notably, Stxxl does not support variable length structures, nor are we aware of a library
with PQ that does. Therefore, in the implementation the tuples in the PQ and the associated
arrays are of fixed length, and superfluous I/O transfer volume occurs. Due to fixed length
structures, the results from the I/O analysis for the tuning parameter D cannot directly
be used. We found that D = D0 = 3 are good splitting values in practice. All results
of the algorithms were verified using a suffix array checker [42, Sect. 8]. We designed the
implementation to use an implicit sentinel instead of ‘✩,’ so that input containing zero bytes
can be suffix sorted as well. Since our goal was to sort large inputs, the implementation can
use different data types for array positions: usual 32-bit integers and a special 40-bit data
type stored in five bytes. The input data type is also variable, we only experimented with
usual 8-bit inputs, but the recursive levels work internally with the 32/40-bit data type.
When sorting ASCII strings in memory, an efficient in-place radix sort [75] is used. Strings
of larger data types are sorted in RAM using g++ STL’s version of introsort. The initial sort
of short strings into P was implemented using a variable length tuple sorter.

We chose a wide variety of large inputs, both artificial and from real-world applications:

Wikipedia is an XML dump of the most recent version of all pages in the English
Wikipedia, which is obtainable from http://dumps.wikimedia.org/; our dump is dated
enwiki-20120601.

Gutenberg is a concatenation of all ASCII text documents from http://www.gutenberg.

org/robot/harvest as available in September 2012.

Human Genome consists of all DNA files from the UCSC human genome assembly
“hg19” downloadable from http://genome.ucsc.edu/. The files were stripped of all char-
acters but {A, G, C, T, N} and normalized to upper-case. Note that this input contains very
long sequences of unknown N placeholders, which influences the LCPs.

Pi are the decimals of π, written as ASCII digits and starting with “3.1415.”

Skyline is an artificial string for which eSAIS has maximum recursion depth. To achieve
this, the string’s suffixes must have type sequence LSLS . . . LS at each level of recursion. Such
a string can be constructed for a length n = 2p, p ≥ 1, using the alphabet Σ = [✩, σ1, . . . , σp]
and the grammar {S → T1✩, Ti → Ti+1σiTi+1 for i = 1, . . . , p− 1 and Tp → σp}. For p = 4
and Σ = [✩, a, b, c, d], we get dcdbdcdadcdbdcd✩; for the test runs we replaced ✩ with σ0.

58

http://tbingmann.de/2012/esais/
http://dumps.wikimedia.org/
http://www.gutenberg.org/robot/harvest
http://www.gutenberg.org/robot/harvest
http://genome.ucsc.edu/

The input Skyline is generated depending on the experiment size, all other inputs are cut to
size.

Our main experimental platform E, see Section 3.2, was a cluster computer, with one
node exclusively allocated when running a test instance. In all tests only one core of the
processor is used. Each node has 850GiB of available disk space striped with RAID0 across
four local disks of size 250GiB; the rest is reserved by the system. We limited the main
memory usage of the algorithms to 1GiB of RAM, and used a block size of 1MiB. The block
size was optimized in preliminary experiments.

Due to the limited local disk space in the cluster computer, we chose to run some addi-
tional, larger experiments on platform F, see Section 3.2. The main memory usage was
limited to 4GiB RAM, we kept the block size at 1MiB and up to six local SATA disk with
1TB of local space were available. Programs on both platforms were compiled using g++

4.4.6 with -O3 and native architecture optimization.

As noted in the introduction, the previously fastest EM suffix sorter is DC3 [42]. We
adapted and optimized the original source code1, which is already implemented using Stxxl,
to our current setup and larger data types. An implementation of DC7 exists that is reported
to be about 20% faster in the special case of human DNA [172], but we did not include it in
our experiments.

Figure 5.4 shows the construction time and I/O volume of eSAIS and DC3 on platform
E using 32-bit keys. The two algorithms eSAIS (open bullets) and DC3 (filled bullets) were
run on prefixes T [0, 2k) of all five inputs, with only Skyline being generated specifically for
each size. In total these plots took 3.2 computing days and over 16.8 TiB of I/O volume,
which is why only one run was performed for each of the 90 test instances.

For all real-world inputs eSAIS’s construction time is about half of DC3’s. The I/O volume
required by eSAIS is also only about 60% of the volume of DC3. The two artificial inputs
exhibit the extreme results they were designed to provoke: Pi is random input with short
LCPs, which is an easy case for DC3. Nevertheless, eSAIS is still faster, but not twice as
fast. The results from eSAIS’s worst-case Skyline show another extreme: eSAIS has highest
construction time on its worst input, whereas DC3 is moderately fast because Skyline can
efficiently be sorted by triples. The high I/O volume of eSAIS for Skyline is due to its
maximum recursion depth, reducing the string only by 1

2
and filling the PQ with n

2
items

on each level. The PQ implementation requires more I/O volume than sorting, because it
recursively combines short runs to keep the arity of mergers in main memory small. Even
though DC3 reduces by 2

3
, the recursion depth is limited by log3 n and sorting is more

straightforward.

Besides the basic eSAIS algorithm, we also implemented a variant which “discards” se-
quences of multiple unique names from the reduced string prior to recursion [42, 138]. How-
ever, we discovered that this optimization has much smaller effect in eSAIS than in other
suffix sorters (see Figure 5.5 (a)-(d)). This is probably due to the induced sorting algorithm
already adapting very efficiently to the input string’s characteristics.

Figure 5.5 (a)-(d) shows the results of all three variants of the algorithms on the real-world
inputs run on platform E.

1http://algo2.iti.kit.edu/dementiev/esuffix/docu/

59

http://algo2.iti.kit.edu/dementiev/esuffix/docu/

224 226 228 230 232

2

3

4

5

Input size n [B]

T
im

e
p
er

in
p
u
t
[

s
M
iB
]

(a) Construction Time

224 226 228 230 232

100

200

300

Input size n [B]

I/
O

vo
lu
m
e
p
er

in
p
u
t
[B B
]

(b) I/O Volume

Plot Input |T | |Σ|
Wikipedia
XML

79 479 MiB 213

Gutenberg
Text

22 975 MiB 256

Human
Genome

2 992 MiB 5

Decimals of pi ∞ 11
Skyline (eSAIS worst-case)∞ ⌊log2 n⌋

eSAIS DC3
(all inputs)

224 226 228 230 232 234 236

101

104

107

Input size n [B]

P
re
fi
x
le
n
gt
h

(c) Average LCP

Figure 5.4.: The first row shows construction time and I/O volume of eSAIS (open bullets) and
DC3 (filled bullets) on experimental platform E. The second row shows selected char-
acteristics of the input strings.

To exhibit experiments with building large suffix arrays, we configured the algorithms
to use 40-bit positions on platform E. Figure 5.5 (c)-(d) show results for the Wikipedia
and Gutenberg input only up to 233, because larger instances require more local disk space
than available at the node of the cluster computer. On average over all tests instances of
Wikipedia, calculation using 40-bit positions take about 33% more construction time and
the expected 25% more I/O volume.

The size of suffix arrays that can be built on platform E was limited by the local disk
space; we therefore determined the maximum disk allocation required. Table 5.1 shows the
average maximum disk allocation measured empirically over our test inputs for 32-bit and
40-bit offset data types.

On platform F we had the necessary 4TiB disk space required to process the full Wikipedia
instance, and these results are shown in Figure 5.6. The maximum size of the in-memory

60

224 226 228 230 232

3

4

T
im

e
p
er

in
p
u
t
[

s
M
iB
]

Construction Time

224 226 228 230 232
100

150

200

250

(a)
W

ik
ip
e
d
ia

(3
2
)

B
y
te
s
p
er

in
p
u
t
[B B
]

I/O Volume

224 226 228 230 232
2

3

4

5

T
im

e
p
er

in
p
u
t
[

s
M
iB
]

224 226 228 230 232
100

200

300

(b
)
G
e
n
o
m
e
(3

2
)

B
y
te
s
p
er

in
p
u
t
[B B
]

224 226 228 230 232

4

6

T
im

e
p
er

in
p
u
t
[

s
M
iB
]

224 226 228 230 232

200

300

400

(c)
W

ik
ip
e
d
ia

(4
0
)

B
y
te
s
p
er

in
p
u
t
[B B
]

224 226 228 230 232
2

4

6

Input size n [B]

T
im

e
p
er

in
p
u
t
[

s
M
iB
]

224 226 228 230 232
0

500

1,000

1,500

(d
)
G
u
te
n
b
e
rg

(4
0
)

Input size n [B]

B
y
te
s
p
er

in
p
u
t
[B B
]

eSAIS DC3
eSAIS discarding

Figure 5.5.: Subfigures (a)-(d) show construction time and I/O volume of all three implementations
run on platform E for three different inputs. Subfigures (a)-(b) use 32-bit positions,
while (c)-(d) runs with 40-bit. On the right hand side, B

B indicates I/O volume in bytes
per input byte.

61

224 226 228 230 232 234 236

2

3

4

Input size n [B]

T
im

e
p
er

in
p
u
t
[

s
M
iB
]

224 226 228 230 232 234 236

200

300

W
ik
ip
e
d
ia

(4
0
)

Input size n [B]

B
y
te
s
p
er

in
p
u
t
[B B
]

eSAIS DC3

Figure 5.6.: Measured construction time and I/O volume of two implementations is shown for the
largest test instance Wikipedia run on platform F using 40-bit positions

eSAIS DC3

32-bit 25n 46n

40-bit 28n 58n

Table 5.1.: Maximum disk allocation in bytes required by the algorithms, averaged and rounded
over all our inputs

RMQ structure was only about 12MiB. Sorting of the whole Wikipedia input with eSAIS
took 2.4 days and 18 TiB I/O volume.

62

CHAPTER 6

Breadth First Search on Massive Graphs

Breadth first search (BFS) is a fundamental graph traversal strategy. It decomposes the
input graph G = (V,E) of n nodes and m edges into at most n levels where level i comprises
all nodes that can be reached from a designated source s via a path of i edges, but cannot
be reached using less than i edges.
Large graphs arise naturally in many applications and very often we need to traverse

these graphs for solving optimization problems. Typical real-world applications of BFS on
large graphs (and some of its generalizations like shortest paths or A∗) include crawling and
analyzing the WWW [118, 156], route planning using small navigation devices with flash
memory cards [59], state space exploration [46], etc.
While modern processor speeds are measured in GHz, average hard disk latencies are in the

range of a few milliseconds. Hence, the cost of accessing a data element from the hard-disk
(an I/O) is around a million times more than the cost of an instruction, see Section 2.2 for
details. Therefore, it comes as no surprise that the I/Os dominate the runtimes of even basic
graph traversal strategies like BFS on large graphs, making their standard implementations
non-viable. One way to ease this problem can be to represent the graph [25, 26] in a more
compact way that minimizes the I/Os required by the standard algorithms. However, such
approaches work only for graphs with good separators. The other approach that we consider
in this chapter relies on new algorithmic ideas capturing the I/Os into the performance
metric of the computation model. In order to do so, we need to look beyond the traditional
RAM model which assumes an unbounded amount of memory with unit cost access to any
location.
Ajwani et al. [5] showed that the randomized variant of the o(n) I/O algorithm of Mehlhorn

and Meyer [104] (MM BFS) can compute the BFS level decomposition for large graphs
(around a billion edges) in a few hours for small diameter graphs and a few days for large
diameter graphs. We improve upon their implementation of this algorithm by reducing the
overhead associated with each BFS level, thereby improving the results for large diameter
graphs which are more difficult for BFS traversal in external memory. Also, we present

63

the implementation of the deterministic variant of MM BFS and show that in most cases, it
outperforms the randomized variant. The running time for BFS traversal is further improved
with a heuristic that preserves the worst case guarantees of MM BFS. Together, they reduce
the time for BFS on large diameter graphs from days shown in [5] to hours. In particular,
on line graphs with random layout on disks, our implementation of the deterministic variant
of MM BFS with the proposed heuristic is more than 75 times faster than the previous best
result for the randomized variant of MM BFS in [5].

References. The contents of this chapter is based on the joint work with Ulrich Meyer
and Deepak Ajwani, who has also literally used parts of the original publication in his PhD
thesis [4, 6]. Most of the wording of the original publication is preserved.

6.1. Algorithms

BFS is well-understood in the RAM model. There exists a simple linear time algorithm
[38] (hereafter refered as IM BFS) for the BFS traversal in a graph. IM BFS keeps a set
of appropriate candidate nodes for the next vertex to be visited in a FIFO queue Q. Fur-
thermore, in order to find out the unvisited neighbours of a node from its adjacency list,
it marks the nodes as either visited or unvisited. Unfortunately as reported in [5], even
when half of the graph fits in the main memory, the running time of this algorithm deviates
significantly from the predicted RAM performance (hours as compared to minutes) and for
massive graphs, such approaches are simply non-viable. As discussed before, the main cause
for such a poor performance of this algorithm on massive graphs is the number of I/Os it
incurs. Remembering visited nodes needs Θ(m) I/Os in the worst case and the unstructured
indexed access to adjacency lists may result in Θ(n) I/Os.
The algorithm by Munagala and Ranade [116] (refered as MR BFS) ignores the second

problem but addresses the first by exploiting the fact that the neighbours of a node in BFS
level i are all in BFS levels i + 1, i or i − 1. Thus, the set of nodes in level i + 1 can be
computed by removing all nodes in level i and i− 1 from the neighbours of nodes in level i.
The resulting worst-case I/O-bound is O(n+ Sort(n+m)).
Mehlhorn and Meyer suggested another approach [104] (MM BFS) which involves a pre-

processing phase to restructure the adjacency lists of the graph representation. It groups
the vertices of the input graph into disjoint clusters of small diameter and stores the adja-
cency lists of the nodes in a cluster contiguously on the disk. Thereafter, an appropriately
modified version of MR BFS is run. MM BFS exploits the fact that whenever the first node
of a cluster is visited then the remaining nodes of this cluster will be reached soon after.
By spending only one random access (and possibly, some sequential accesses depending on
cluster size) in order to load the whole cluster and then keeping the cluster data in some
efficiently accessible data structure (pool) until it is all used up, on sparse graphs the total
amount of I/O can be reduced by a factor of up to

√
B. The neighbouring nodes of a BFS

level can be computed simply by scanning the pool and not the whole graph. Though some
edges may be scanned more often in the pool, unstructured I/O in order to fetch adjacency
lists is considerably reduced, thereby saving the total number of I/Os. The preprocessing
of MM BFS comes in two variants: randomized and deterministic (referred as MM BFS R

64

and MM BFS D, respectively). In the randomized variant, the input graph is partitioned
by choosing master nodes independently and uniformly at random with a probability µ and
running a BFS like routine with joint adjacency list queries from these master nodes “in
parallel”.
The deterministic variant first builds a spanning tree for G and then constructs an Euler

tour T for the tree. Next, each node v is assigned the rank in T of the first occurrence of
the node (by scanning T and a sorting step). We denote this value as r(v). T has length
2V − 1; so r(v) ∈ [0; 2V − 2]. Note that if for two nodes u and v, the values r(v) and r(u)
differ by d, then d is an upper bound on the distance between their BFS level. Therefore,
we chop the Euler tour into chunks of

√
B nodes and store the adjacency lists of the nodes

in the chunk consecutively as a cluster.
The randomized variant incurs an expected number ofO(

√
n · (n+m) · log(n)/B+Sort(n+

m)) I/Os, while the deterministic variant incurs O(
√

n · (n+m)/B + Sort(n + m) +
ST (n,m)) I/Os, where ST (n,m) is the number of I/Os required for computing a span-
ning tree of a graph with n nodes and m edges. Arge et al. [10] show an upper bound of
O((1 + log log (D · B · n/m)) · Sort(n+m)) I/Os for computing such a spanning tree.
Brodal et al. [30] gave a cache oblivious algorithm for BFS achieving the same worst case

I/O bounds as MM BFS D. Their preprocessing is similar to that in MM BFS D, except that
it produces a hierarchical clustering using the cache oblivious algorithms for sorting, spanning
tree, Euler tour and list ranking. The BFS phase uses a data-structure that maintains a
hierarchy of pools and provides the set of neighbours of the nodes in a BFS level efficiently.
The other external memory algorithms for BFS are restricted to special graphs classes

like trees [31], grid graphs [11], planar graphs [97], outer-planar graphs [95], and graphs of
bounded tree width [96].

6.1.1. Related Work

Ajwani et al. [5] showed that the usage of the two external memory algorithms MR BFS
and MM BFS R along with disk parallelism and pipelining can alleviate the I/O bottleneck
of BFS on many large sparse graph classes, thereby making the BFS viable for these graphs.
Even with just a single disk, they computed a BFS level decomposition of small diameter
large graphs (around 256 million nodes and a billion edges) in a few hours and moderate and
large diameter graphs in a few days, which otherwise would have taken a few months with
IM BFS. As for their relative comparison, MR BFS performs better than MM BFS R on
small-diameter random graphs saving a few hours. However, the better asymptotic worst-
case I/O complexity of MM BFS helps it to outperform MR BFS for large diameter sparse
graphs (computing in a few days versus a few months), where MR BFS incurs close to its
worst case of Ω(n) I/Os.
Independently, Christiani [37] gave a prototypical implementation of MR BFS, MM BFS R

as well as MM BFS D and reached similar conclusions regarding the comparative perfor-
mance between MR BFS and MM BFS R. Though their implementation of MR BFS and
MM BFS R is competetive and on some graph classes even better than [5], their experi-
ments were mainly carried out on smaller graphs (up to 50 million nodes). Since their main
goal was to design cache oblivious BFS, they used cache oblivious algorithms for sorting,

65

minimum spanning tree and list ranking even for MM BFS D. As we discuss later, these
algorithms slow down the deterministic preprocessing in practice, even though they have the
same asymptotic I/O complexity as their external memory counterparts.

6.1.2. Our Contribution

Our contributions are the following:

❼ We improve upon the MR BFS and MM BFS R implementation described in [5] by re-
ducing the computational overhead associated with each BFS level, thereby improving
the results for large diameter graphs.

❼ We discuss the various choices made for a fast MM BFS D implementation. This
involved experimenting with various available external memory connected component
and minimum spanning tree algorithms. Our partial re-implementation of the list
ranking algorithm of [157] adapting it to the STXXL framework outperforms the other
list ranking algorithms for the sizes of our interest. As for the Euler tour in the
deterministic preprocessing, we compute the cyclic order of edges around the nodes
using the STXXL sorting.

❼ We conduct a comparative study of MM BFS D with other external memory BFS
algorithms and show that for most graph classes, MM BFS D outperforms MM BFS R.
Also, we compared our BFS implementations with Christiani’s implementations [37],
which have some cache-oblivious subroutines. This gives us some idea of the loss factor
that we will have to face for the performance of cache-oblivious BFS.

❼ We propose a heuristic for maintaining the pool in the BFS phase of MM BFS. This
heuristic improves the runtime of MM BFS in practice, while preserving the worst case
I/O bounds of MM BFS.

❼ Putting everything together, we show that the BFS traversal can also be done on
moderate and large diameter graphs in a few hours, which would have taken the im-
plementations of [5] and [37] several days and IM BFS several months. Also, on low
diameter graphs, the time taken by our improved MR BFS is around one-third of that
in [5]. Towards the end, we summarize our results (Table 6.13) by giving the state of
the art implementations of external memory BFS on different graph classes.

6.1.3. Improvements of MR BFS and MM BFS R

The computation of each level of MR BFS involves sorting and scanning of neighbours of
the nodes in the previous level. Even if there are very few elements to be sorted, there
is a certain overhead associated with initializing the external sorters. In particular, while
the STXXL stream sorter (with the flag DSTXXL SMALL INPUT PSORT OPT) does not
incur an I/O for sorting less than B elements, it still requires to allocate some memory and
does some computation for initialization. This overhead accumulates over all levels and for

66

large diameter graphs, it dominates the running time. This problem is also inherited by the
BFS phase of MM BFS. Since in the pipelined implementation of [5], we do not know in
advance the exact number of elements to be sorted, we can’t switch between the external
and the internal sorter so easily. In order to get around this problem, we first buffer the first
B elements and initialize the external sorter only when the buffer is full. Otherwise, we sort
it internally.

In addition to this, we make the graph representation for MR BFS more compact. Except
the source and the destination node pair, no other information is stored with the edges.

6.2. Algorithm Design of MM BFS D

There are three main components for the deterministic variant of MM BFS – sorting, con-
nected components/ minimum spanning tree, and list ranking. The MM BFS D implemen-
tation of Christiani [37] uses the cache-oblivious lazy funnel-sort algorithm [28] (CO sort).
As Table 6.1 shows, the STXXL stream sort (STXXL sort) proved to be much faster on
external data. This is in line with the observations of Brodal et al. [29], where it is shown
that an external memory sorting algorithm in the library TPIE [166] is better than their
carefully implemented cache-oblivious sorting algorithm, when run on disk.

Regarding connected components and minimum spanning forest, Christiani’s implemen-
tations [37] use the cache oblivious algorithm given in [1] (CO MST). Empirically, we found
that the external memory implementation of [43] (EM MST)1 performs better than the one
in [1]. Table 6.2 shows the total time required for their deterministic preprocessing using
CO MST and EM MST on low diameter random graphs and on high diameter line graphs.

n CO sort STXXL sort

256× 106 21 8
512× 106 46 13
1024× 106 96 25

Table 6.1.: Timing in minutes for sorting n elements using CO sort and with using STXXL sort

As for list ranking, we found Sibeyn’s algorithm in [157] promising as it has low constant
factors in its I/O complexity. Sibeyn’s implementation relies on the operating system for
I/Os and does not guarantee that the top blocks of all the stacks remain in the internal
memory, which is a necessary assumption for the asymptotic analysis of the algorithm.
Besides, its reliance on internal arrays and swap space puts a restriction on the size of the
lists it can rank. The deeper integration of the algorithm in the STXXL framework, using
the STXXL stacks and vectors in particular, made it possible to obtain a scalable solution,

1Though [43] uses randomization of node order, we still denote this variant of preprocessing deterministic
for consistency. Any other EM MST algorithm can be used instead.

67

Graph class CO MST EM MST

Random graph;
n = 228, m = 230 107 35
Line graph with contiguous
disk layout; (Simple Line) n = 228 38 16
Line graph with random
disk layout (Random Line); n = 228 47 22

Table 6.2.: Timing in hours required by deterministic preprocessing by Christiani’s implementation
using CO MST and EM MST.

Graph class n m Long clusters Random clusters

Grid(214 × 214) 228 229 51 28

Table 6.3.: Time taken (in hours) by the BFS phase of MM BFS D with long and random clustering

which could handle graph instances of the size we require while keeping the theoretical worst
case bounds.

Christiani uses the algorithm in [36] for list ranking the Euler tour. While his cache obliv-
ious list ranking implementation takes around 14.3 hours for ranking 229 element random
list using 3 GB RAM, our adaptation of Sibeyn’s algorithm takes less than 40 minutes in
the same setting.

To summarize, our STXXL based implementation of MM BFS D uses our adaptation
of [157] for list ranking the Euler tour around the minimum spanning tree computed by
EM MST. The Euler tour is then chopped into sets of

√
B consecutive nodes which after

duplicate removal gives the requisite graph partitioning. The BFS phase remains similar to
MM BFS R.

Quality of the spanning tree The quality of the spanning tree computed can have a
significant impact on the clustering and the disk layout of the adjacency list after the de-
terministic preprocessing, and consequently on the BFS phase. For instance, in the case of
grid graph, a spanning tree containing a list with elements in a snake-like row major order
produces long and narrow clusters, while a “random” spanning tree is likely to result in
clusters with low diameters. Such a “random” spanning tree can be attained by assigning
random weights to the edges of the graph and then computing a minimum spanning tree or
by randomly permuting the indices of the nodes. The nodes in the long and narrow clusters
tend to stay longer in the pool and therefore, their adjacency lists are scanned more often.
This causes the pool to grow external and results in larger I/O volume. On the other hand,
low diameter clusters are evicted from the pool sooner and are scanned less often reducing
the I/O volume of the BFS phase. Consequently as Table 6.3 shows, the BFS phase of
MM BFS D takes only 28 hours with clusters produced by “random” spanning tree, while
it takes 51 hours with long and narrow clusters.

68

6.2.1. A Heuristic for Maintaining the Pool

B

B B
External adjacency lists :
STXXL vector

Pool cache :
STXXL vector-cache

External Pool : stxxl vector
Internal Pool :
multimap

Figure 6.1.: Schema depicting the implementation of our heuristic

As noted in Section 6.1, the asymptotic improvement and the performance gain in MM BFS
over MR BFS is obtained by decomposing the graph into low diameter clusters and main-
taining an efficiently accessible pool of adjacency lists which will be required in the next few
levels. Whenever the first node of a cluster is visited during the BFS, the remaining nodes
of this cluster will be reached soon after and hence, this cluster is loaded into the pool. For
computing the neighbours of the nodes in the current level, we just need to scan the pool and
not the entire graph. Efficient management of this pool is thus, crucial for the performance
of MM BFS. In this subsection, we propose a heuristic for efficient management of the pool,
while keeping the worst case I/O bounds of MM BFS.
For many large diameter graphs, the pool fits into the internal memory most of the time.

However, even if the number of edges in the pool is not so large, scanning all the edges in
the pool for each level can be computationally quite expensive. Hence, we keep a portion of
the pool that fits in the internal memory as a multi-map hash table. Given a node as a key,
it returns all the nodes adjacent to the current node. Thus, to get the neighbours of a set of
nodes we just query the hash function for those nodes and delete them from the hash table.
For loading the cluster, we just insert all the adjacency lists of the cluster in the hash table,
unless the hash table has already O(M) elements.
Recall that after the deterministic preprocessing, the elements are stored on the disk

in the order in which they appear on the Euler tour around a spanning tree of the input
graph. The Euler tour is then chopped into clusters with

√
B elements (before the duplicate

removal) ensuring that the maximum distance between any two nodes in the cluster is at
most

√
B − 1. However, the fact that the contiguous elements on the disk are also closer in

terms of BFS levels is not restricted to intra-cluster adjacency lists. The adjacency lists that
come alongside the requisite cluster will also be required soon and by caching these other
adjacency lists, we can save the I/Os in the future. This caching is particularly beneficial
when the pool fits in the internal memory. Note that we still load the

√
B node clusters in

the pool, but keep the remaining elements of the block in the pool-cache. For the line graphs,
this means that we load the

√
B nodes in the internal pool, while keeping the remaining

O(B) adjacency lists which we get in the same block, in the pool-cache, thereby reducing
the I/O complexity for the BFS traversal on line graphs to the computation of a spanning
tree.
We represent the adjacency lists of nodes in the graph as an STXXL vector. STXXL

already provides a fully associative vector-cache with every vector. Before doing an I/O

69

for loading a block of elements from the vector, it first checks if the block is already there
in the vector-cache. If so, it avoids the I/O loading the elements from the cache instead.
Increasing the vector-cache size of the adjacency list vector with a layout computed by the
deterministic preprocessing and choosing the replacement policy to be LRU provides us with
an implementation of the pool-cache. Figure 6.1 depicts the implementation of our heuristic.

6.2.2. Experimental Study

Configuration. We have implemented the algorithms in C++ using the g++ 4.02 compiler
(optimization level -O3) on the GNU/Linux distribution with a 2.6 kernel and the external
memory library STXXL version 0.77. Our experimental platform G, see Section 3.2, has
250 GB Seagate Baracuda hard-disks [152]. These hard-disks have 8 MB buffer cache. The
average seek time for read and write is 8.0 and 9.0 msec, respectively, while the sustained
data transfer rate for outer zone (maximum) is 65 MByte/s. This means that for graphs with
228 nodes, n random read and write I/Os will take around 600 and 675 hours, respectively.
In order to compare better with the results of [5], we restrict the available memory to 1 GB
for our experiments and use only one processor and one disk.

First, we show the comparison between improved MM BFS R and MR BFS with the cor-
responding implementations in [5]. Then we compare our implementation of MM BFS D
(without our heuristic) with Christiani’s implementation based on cache-oblivious routines.
Finally, we look at the relative performance of improved versions of MR BFS, MM BFS R
and MM BFS D. We summarize this section by highlighting the best algorithms for each
graph class and its run-time. Note that some of the results shown in this section have been
interpolated using the symmetry in the graph structure.

Graph classes. We consider the same graph classes as in [5] – Random, Grid, MR worst
graph, MM worst graph, line graphs with different layouts and the webgraph. They cover a
broad spectrum of different performances of external memory BFS algorithms.
Random graph: On a n node graph, we randomly select m edges with replacement (i.e., m
times selecting a source and target node such that source 6= target) and remove the duplicate
edges to obtain random graphs.
MR worst graph: This graph consists of B levels, each having n

B
nodes, except the level 0

which contains only the source node. The edges are randomly distributed between consec-
utive levels, such that these B levels approximate the BFS levels. The initial layout of the
nodes on the disk is random. This graph causes MR BFS to incur its worst case of Ω(n)
I/Os.
Grid graph (x× y): It consists of a x× y grid, with edges joining the neighouring nodes in
the grid.

MM BFS worst graph: This graph causes MM BFS R to incur its worst case of Θ(n·
√

logn
B

+

Sort(n)) I/Os.
Line graphs : A line graph consists of n nodes and n−1 edges such that there exist two nodes
u and v, with the path from u to v consisting of all the n− 1 edges. We took two different
initial layouts – simple, in which all blocks consists of B consecutively lined nodes and the

70

random in which the arrangement of nodes on disk is given by a random permutation.
Web graph: As an instance of a real world graph, we consider an actual crawl of the world
wide web [165], where an edge represents a hyperlink between two sites. This graph has
around 130 million nodes and 1.4 billion edges. It has a core which consists of most of its
nodes and behaves like a random graph.

Graph class n m MM BFS R of [5] Impr. MM BFS R
Phase 1 Phase 2 Phase 1 Phase 2

Random 228 230 5.1 4.5 5.2 3.8
MM worst ∼ 4.3 · 107 ∼ 4.3 · 107 6.7 26 5.2 18
MR worst 228 230 5.1 45 4.3 40

Grid (214 × 214) 228 229 7.3 47 4.4 26
Simple Line 228 228 − 1 85 191 55 2.9
Random Line 228 228 − 1 81 203 64 25
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 6.2 3.2 5.8 2.8

Table 6.4.: Timing in hours taken for BFS by the two MM BFS R implementations

Graph class n m MM BFS R of [5] Impr. MM BFS R
I/O wait Total I/O wait Total

MM worst ∼ 4.3 · 107 ∼ 4.3 · 107 13 26 16 18
Grid (214 × 214) 228 229 46 47 24 26
Simple Line 228 228 − 1 0.5 191 0.05 2.9
Random Line 228 228 − 1 21 203 21 25

Table 6.5.: I/O wait time and the total time in hours for the BFS phase of the two MM BFS R
implementations on moderate to large diameter graphs

Graph class n m MR BFS of [5] Impr. MR BFS
I/O wait Total I/O wait Total

Random 228 230 2.4 3.4 1.2 1.4
Webgraph ∼ 135× 106 ∼ 1.18× 109 3.7 4.0 2.5 2.6
MM worst ∼ 42.6× 106 ∼ 42.6× 106 25 25 13 13
Simple line 228 228 − 1 0.6 10.2 0.06 0.4

Table 6.6.: Timing in hours taken for BFS by the two MR BFS implementations

Comparing MM BFS R. Table 6.4 shows the improvement that we achieved in MM BFS R.
As Table 6.5 shows, these improvements are achieved by reducing the computation time per
level in the BFS phase. On I/O bound random graphs, the improvement is just around 15%,

71

Graph class n m Christiani’s Our
implementation implementation

Random graph 228 230 107 5.2
Random Line 228 228 − 1 47 3.2

Table 6.7.: Timing in hours for computing the deterministic preprocessing of MM BFS by the two
implementations of MM BFS D

Graph class n m Christiani’s Our
implementation implementation

Random graph 228 230 16 3.4
Random Line 228 228 − 1 0.5 2.8

Table 6.8.: Timing in hours for the BFS phase of MM BFS by the two implementations of
MM BFS D (without heuristic)

Graph class MR BFS MM BFS R MM BFS D

Random graph 1.4 8.9 8.7
Random Line 4756 89 3.6

Table 6.9.: Timing in hours taken by our implementations of different external memory BFS algo-
rithms.

Graph class n m Randomized Deterministic

Random graph 228 230 500 630
Random Line 228 228 − 1 10500 480

Table 6.10.: I/O volume (in GB) required in the preprocessing phase by the two variants of
MM BFS

Graph class n m Randomized Deterministic

Random graph 228 230 5.2 5.2
Random Line 228 228 − 1 64 3.2

Table 6.11.: Preprocessing time (in hours) required by the two variants of MM BFS, with the
heuristic

while on computation bound line graphs with random disk layout, we improve the running
time of the BFS phase from around 200 hours to 25 hours. Our implementation of the ran-
domized preprocessing in the case of the simple line graphs additionally benefits from the

72

way clusters are laid out on the disk as this layout reflects the order in which the nodes are
visited by the BFS. This reduces the total running time for the BFS phase of MM BFS R
on simple line graphs from around 190 hours to 2.9 hours. The effects of caching are also
seen in the I/O bound BFS phase on the grid (214 × 214) graphs, where the I/O wait time
decreases from 46 hours to 24 hours.

Comparing MR BFS. Improvements in MR BFS are shown in the Table 6.6. On ran-
dom graphs where MR BFS performs better than the other algorithms, we improve the
runtime from 3.4 hours to 1.4 hours. Similarly for the web-crawl based graph, the running
time reduces from 4.0 hours to 2.6 hours. The other graph class where MR BFS outper-
forms MM BFS R is the MM worst graph and here again, we improve the performance from
around 25 hours to 13 hours.

Penalty for cache obliviousness. We compared the performance of our implementation
of MM BFS D (without the heuristic) with Christiani’s implementation [37] based on cache-
oblivious subroutines. Table 6.7 and Table 6.8 show the results of the comparison on the
two extreme graph classes - random graphs and line graphs with random layout on disk - for
the preprocessing and the BFS phase respectively. We observed that on both graph classes,
the preprocessing time required by our implementation is significantly less than the one by
Christiani. While pipelining helps the BFS phase of our implementation on random graphs,
it becomes a liability on line graphs as it brings extra computation cost per level.
We suspect that these performance losses are inherent in cache-oblivious algorithms to a

certain extent and will be carried over to the cache-oblivious BFS implementation.

Comparing MM BFS D with other external memory BFS algorithm implemen-
tations. Table 6.9 shows the performance of our implementations of different external mem-
ory BFS algorithms with the heuristic. While MR BFS performs better than the other two
on random graphs saving a few hours, our implementation of MM BFS D with the heuristic
outperforms MR BFS and MM BFS R on line graphs with random layout on disk saving a
few months and a few days, respectively. Random line graphs are an example of a tough
input for external memory BFS as they not only have a large number of BFS levels, but also
their layout on the disk makes the random accesses to adjacency lists very costly. Also, on
moderate diameter grid graph, MM BFS D which takes 21 hours outperforms MM BFS R
and MR BFS. It is interesting to note that Christiani [37] reached a different conclusion
regarding the relative performance of MM BFS D and MM BFS R. As noted before, this is
because of the cache oblivious routines used in their implementation.
On large diameter sparse graphs such as line graphs, the randomized preprocessing scans

the graph Ω(
√
B) times, incurring an expected number of O(

√
n · (n+m) · log(n)/B) I/Os.

On the other hand, the I/O complexity of the deterministic preprocessing is
O((1 + log log (D · B · n/m)) · Sort(n+m)), dominated by the spanning tree computation.
Note that the Euler tour computation followed by list ranking only requires O(Sort(m))
I/Os. This asymptotic difference shows in the I/O volume of the two preprocessing variants
(Table 6.10), thereby explaining the better performance of the deterministic preprocessing
over the randomized one (Table 6.11). On low diameter random graphs, the diameter of

73

the clusters is small and consequently, the randomized variant scans the graph fewer times
leading to less I/O volume.
As compared to MM BFS R, MM BFS D provides dual advantages: First, the preprocess-

ing itself is faster and second, for most graph classes, the partitioning is also more robust,
thus leading to better worst-case runtimes in the BFS phase. The later is because the clus-
ters generated by the deterministic preprocessing are of diameter at most

√
B, while the

ones by randomized preprocessing can have a larger diameter causing adjacency lists to be
scanned more often. Also, MM BFS D benefits much more from our caching heuristic than
MM BFS R as the deterministic preprocessing gathers neighbouring clusters of the graph
on contiguous locations in the disk.

6.2.3. Results with Heuristic.

Graph class n m MM BFS D
Phase1 Phase2

Random 228 230 5.2 3.4
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 3.3 2.4

Grid (221 × 27) 228 ∼ 229 3.6 0.4
Grid (227 × 2) 228 ∼ 228 + 227 3.2 0.6
Simple Line 228 228 − 1 2.6 0.4
Random Line 228 228 − 1 3.2 0.5

Table 6.12.: Time taken (in hours) by the two phases of MM BFS D with our heuristic

Table 6.12 shows the results of MM BFS D with our heuristic on different graph classes.
On moderate diameter grid graphs as well as large diameter random line graphs, MM BFS D
with our heuristic provides the fastest implementation of BFS in the external memory.

6.3. Conclusion

Table 6.13 gives the current state of the art implementations of external memory BFS on
different graph classes.
Our improved MR BFS implementation outperforms the other external memory BFS im-

plementations on low diameter graphs or when the nodes of a graph are arranged on the
disk in the order required for BFS traversal. For random graphs with 256 million nodes
and a billion edges, our improved MR BFS performs BFS in just 1.4 hours. Similarly, im-
proved MR BFS takes only 2.6 hours on webgraphs (whose runtime is dominated by the
short diameter core) and 0.4 hours on line graph with contigous layout on disk. On mod-
erate diameter square grid graphs, the total time for BFS is brought down from 54.3 hours
for MM BFS R implementation in [5] to 21 hours for our implementation of MM BFS D
with heuristics, an improvement of more than 60%. For large diameter graphs like ran-
dom line graphs, MM BFS D along with our heuristic computes the BFS in just about 3.6

74

Graph class n m Current best results
Total time Implementation

Random 228 230 1.4 Improved MR BFS
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 2.6 Improved MR BFS

Grid (214 × 214) 228 229 21 MM BFS D w/ heuristic
Grid (221 × 27) 228 ∼ 229 4.0 MM BFS D w/ heuristic
Grid (227 × 2) 228 ∼ 228 + 227 3.8 MM BFS D w/ heuristic
Simple Line 228 228 − 1 0.4 Improved MR BFS
Random Line 228 228 − 1 3.6 MM BFS D w/ heuristic

Table 6.13.: The best total running time (in hours) for BFS traversal on different graphs with the
best external memory BFS implementations

hours, which would have taken the MM BFS R implementation in [5] around 12 days and
MR BFS and IM BFS a few months, an improvement by a factor of more than 75 and 1300,
respectively.

6.3.1. Discussion

We implemented the deterministic variant of MM BFS and showed its comparative analysis
with other external memory BFS algorithms. Together with the improved implementations
of MR BFS and MM BFS R and our heuristic for maintaining the pool, it provides viable
BFS traversal on different classes of massive sparse graphs. In particular, we obtain an
improvement factor between 75 and 1300 for line graphs with random disk layout over the
previous external memory implementations of BFS.

Acknowledgements

We are grateful to Rolf Fagerberg and Frederik Juul Christiani for providing us their code.
Also thanks are due to Dominik Schultes and Roman Dementiev for their help in using the
external MST implementation and STXXL, respectively. The authors also acknowledge the
usage of the computing resources of the University of Karlsruhe.

75

CHAPTER 7

Single Source Shortest Paths on Massive Graphs

Let G = (V,E) be a graph with |V | = n vertices and |E| = m edges, let s be a vertex of G,
called the source vertex , and let c be an assignment of non-negative lengths to the edges of
G. The single-source shortest-path (SSSP) problem is to find, for every vertex v ∈ V , the
distance, dist(s, v), from s to v, that is, the length of a shortest path from s to v in G.
The classical SSSP-algorithm for general graphs is Dijkstra’s algorithm [44]. Unfortu-

nately, it performs poorly on massive graphs that do not fit into the main memory and are
stored on disk. The reason is that Dijkstra’s algorithm accesses the data in an unstructured
fashion.
Much recent work has focused on algorithms for massive graphs, see [110, 168] for surveys.

These algorithms are analyzed in the external memory model [168], see Section 2.2, which
assumes that the computer has a main memory that can hold M vertices or edges and that
the graph is stored on disk.
In this chapter we report on initial experimental results for a practical I/O-efficient Single-

Source Shortest-Paths (SSSP) algorithm on general undirected sparse graphs where the ratio
between the largest and the smallest edge weight is reasonably bounded (for example integer
weights in {1, . . . , 232}) and the realistic assumption holds that main memory is big enough
to keep one bit per vertex.
While our implementation only guarantees average-case efficiency, i.e., assuming randomly

chosen edge-weights, it turns out that its performance on real-world instances with non-
random edge weights is actually even better than on the respective inputs with random
weights.
Furthermore, compared to the currently best implementation for external-memory BFS [6]

described in Chapter 6, which in a sense constitutes a lower bound for SSSP, the running
time of our approach always stayed within a factor of five, for the most difficult graph classes
the difference was even less than a factor of two.
We are not aware of any previous I/O-efficient implementation for the classic general SSSP

in a (semi) external setting: in two recent projects [34, 139], Kumar/Schwabe-like SSSP

76

approaches on graphs of at most 6 million vertices have been tested, forcing the authors
to artificially restrict the main memory size, M , to rather unrealistic 4 to 16 MBytes in
order not to leave the semi-external setting or produce huge running times for larger graphs:
for random graphs of 220 vertices, the best previous approach needed over six hours. In
contrast, for a similar ratio of input size vs. M , but on a 128 times larger and even sparser
random graph, our approach was less than seven times slower, a relative gain of nearly 20.
On a real-world 24 million node street graph, our implementation was over 40 times faster.
Even larger gains of over 500 can be estimated for random line graphs based on previous
experimental results for Munagala/Ranade-BFS.
Finally, we also report on early results of experiments in which we replace the hard disk

by a solid state disk (flash memory).

References. The contents of this chapter is based on the joint work with Ulrich Meyer
[109]. Most of the wording of the original publication is preserved.

7.1. Overview

Little is known about solving SSSP on directed graphs I/O-efficiently. For undirected graphs,
the algorithm of Kumar and Schwabe (KS SSSP) [90] performs O(n+(m/B) log(n/B)) I/Os.
For dense graphs, the second term dominates; but for sparse graphs, the I/O-bound becomes
O(n).
The SSSP-algorithm of Meyer and Zeh (MZ SSSP) [111] extends the ideas of [104] for

breadth-first search (BFS) to graphs with edge lengths between 1 and K, leading to an
O(

√
nm logK/B +MST(n,m)) bound, where MST(n,m) is the cost of computing a mini-

mum spanning tree.1 Recently [112], the result was further improved to O(
√
nm/B log n+

MST(n,m)) I/Os, thus removing MZ SSSP’s dependence on the edge lengths in the graph.
However, the latter approach is extremely involved and would probably suffer from very high
constant factors in any realistic implementation setting.
When it comes to recent internal-memory SSSP implementations, the 9th DIMACS im-

plementation challenge [124] provides a good overview. As for external-memory SSSP algo-
rithms, to the best of our knowledge, none of the o(n)-I/O SSSP algorithms has ever been
tried out. However, there are two recent papers [34, 139] reporting on external-memory
experiments for KS SSSP like approaches. Unfortunately, all results are for graphs of at
most 6 million vertices, forcing the authors to artificially restrict the usably main memory
size to rather unrealistic 4 to 16 MB in order not to leave the (semi-)external setting. Even
then, computing SSSP for a random graph with n ≃ 106 vertices in the best case takes over
6 hours [139], which is more time than needed to do n I/Os.
Furthermore, using the I/O-library STXXL [41], Ajwani et al. [5, 6], see also Chapter 6,

studied implementations of external-memory BFS, i.e., the unweighted version of SSSP. They
managed to compute BFS on different kinds of undirected graphs featuring over 250 million
nodes and more than a billion of edges in less than 24 hours, see also Chapter 6 for details.

1The current bounds for MST(n,m) are O(sort(m) log log (nB/m)) [10] deterministically and O(sort(m))
randomized [36].

77

Another line of related research is algorithms for point-to-point shortest-path queries in
(semi-)external memory using compression and extensive pre-computation in internal mem-
ory. Typical representatives are, e.g., [18, 59, 142]. The success of these approaches crucially
depends on the special characteristics of the input graphs (in particular road networks). In
contrast we are interested in I/O-efficient general purpose SSSP computation without any
structural assumptions on the input graph.

Our Contribution. We provide initial experimental results for a practical I/O-efficient
SSSP algorithm on undirected graphs where the ratio between the largest and the smallest
edge weight is reasonably bounded (for example integer weights in {1, . . . , 232}). Compared
to the improved external-memory BFS implementation from Chapter 6 our new approach was
never slower than a factor of five, while for the most difficult graph classes the difference was
even less than a factor of two. The result is obtained by simplifying MZ SSSP in two ways:
(1) using the realistic assumption that the main memory is big enough to keep one bit per
vertex (i.e., the weakest form of the semi-external memory setting), thus facilitating to apply
a standard external-memory priority queue without support for decrease key; (2) omitting a
complicated weight-based clustering and using an already existing routine from the Chapter 6
instead. While this simplification maintains the O(

√
nm logK/B+MST(n,m)) I/O-bound

of MZ SSSP for uniformly distributed random edge-weights in {1, . . . , K} it could result in
much more I/O for non-random edge weights: O(

√
nmK/B +MST(n,m)).

However, the performance of our STXXL [41] based implementation revealed just the
opposite behavior: executed on real-world graphs with original non-random weights it was
actually faster than on the same graphs with artificially assigned random weights.

While previous implementation studies [34, 139] for (semi-)external Kumar/Schwabe [90]
kind SSSP approaches dealt with graphs having at most six million vertices, our study covers
graphs of up to 250 million vertices and a billion edges. For random graphs of n = 220 vertices
and m = 8 · n edges, the best previous approach needed over six hours. In contrast, for a
similar ratio of (n+m)/M , but on larger and sparser random graphs of n = 228 vertices and
m = 4 · n edges, our approach was less than seven times slower, a relative gain of nearly 20.
On a real-world 24 million node street graph, our implementation was over 40 times faster.
Even larger gains of over 500 can be estimated for random line graphs based on previous
experimental results, see Chapter 6, for Munagala/Ranade-BFS [116].

7.2. Algorithm Design

Overview. Our SSSP approach is an I/O-efficient version of Dijkstra’s algorithm [44].
Dijkstra uses a priority queue Q to store all vertices of G that have not been settled yet (a
vertex is said to be settled when its final distance from s has been determined); the priority
of a vertex v in Q is the length of the currently shortest known path from s to v. Vertices are
settled one-by-one by increasing distance from s. The next vertex v to be settled is retrieved
from Q using a delete min operation. Then the algorithm relaxes the edges between v and all
its non-settled neighbors, that is, performs a decrease key(w, dist(s, v) + c(v, w)) operation
for each such neighbor w whose priority is greater than dist(s, v) + c(v, w).

78

An I/O-efficient version of Dijkstra’s algorithm has to (a) avoid accessing adjacency lists at
random, (b) deal with the lack of optimal decrease key operations in current external-memory
priority queues, and (c) efficiently remember settled vertices. Since we allow ourselves one
bit per node in internal memory problems (b) and (c) are easily solved. As for (c) the bit
vector is used to keep track which vertices have been visited. Concerning (b) we allow up
to degree(v) many entries for a vertex v in the priority-queue at the same time and when
extracting them discard all but the first one with the help of the bit vector. As for (a)
our approach forms clusters of vertices just like the EM-BFS algorithm of Mehlhorn and
Meyer[104] (i.e., without considering the edge weights at all, see Chapter 6 for details) and
loads the adjacency lists of all vertices in a cluster into a number of “hot pools” of edges as
soon as the first vertex in the cluster is settled. For integer edge weights from {1, . . . , K} we
have k = ⌈log2 K⌉ pools, where the i-th pool is reserved for category i edges, that is, edges
of weight between 2i−1 and 2i − 1.
In order to relax the edges incident to settled vertices, the hot pools are scanned and all

relevant edges are relaxed. However, we use that the relaxation of edges of large weight can
be delayed because if such an edge is on a shortest path, it takes some time before its other
endpoint is settled. Hence, it is sufficient to touch hot pools for higher categories much less
frequently than the pools containing short edges. Unfortunately, due to the simplified clus-
tering, in a worst-case setting the majority of edges might have small weights and still belong
to clusters of large diameter, thus resulting in huge scanning costs for the lower category pools
of our approach: O(

√
nmK/B) I/Os. Still, for random edges weights uniformly distributed

in {1, . . . , K} the total number of expected I/Os remains O(
√

nm logK/B +MST (n,m)),
just like for the much more complicated MZ SSSP algorithm.
In the following we will provide some more details on the implementation.

Graph Data Structure. Boost libraries [158] are considered as the next level of stan-
dardization over Standard Template Library (STL for short). Unfortunately, even though
the Boost Graph Library (BGL for short) includes several graph classes, such as adjacency
list or adjacency matrix, missing guaranties on the layout of edges on the hard drive make
them inapplicable for I/O efficient algorithms. Therefore, we have implemented our own
I/O-efficient graph representation that conforms to the BGL interface, thus providing the
same level of generality.
On a low level our graph class can be parameterized by a vector container compatible

with the STL vector interface, that stores graph edges along with the additional information
defined by the user. In our particular case such a container is an STXXL vector, since it
guaranties that the scanning of edges is performed in O(m/B) I/Os.

Priority Queue. We store nodes with their tentative distances in the I/O efficient priority
queue being part of the STXXL library. Each of its operations takes O(1/B logM/B I/B)
I/O amortized, where I denotes the total number of insertions [141]. Note that we may keep
several entries with different priorities for some vertices at the same time.

Pipelining. Our implementation intensively uses pipelining. Conceptually, pipelining is
a partitioning of the algorithm into practically independent parts that conform to a com-
mon interface, so that the data can be streamed from one part to the other without any
intermediate external-memory storage. This way the I/O complexity may be reduced by up

79

to a constant factor. Moreover, it also leads to a better structured implementation, while
different parts of the pipeline only share a narrow common interface. On the other hand,
the price one sometimes has to pay is higher computational costs and potentially somewhat
larger debugging efforts. For more details on pipelining in the framework of I/O efficient
algorithms, see [41].

Deterministic graph clustering. In the deterministic preprocessing we compute a span-
ning tree for the connected component containing the source node, obtain an Euler tour
around that spanning tree, and eventually form the clusters based on subsequences of the
Euler tour (generated by list-ranking and sorting). We apply the external-memory de-
terministic preprocessing implementation from Chapter 6, which in turn uses a spanning
forest and connected components implementation by Dementiev et al. [43] with expected
sort(m)⌈log n/M⌉ I/O runtime [43]. Furthermore, they use an adaptation of Sibeyn’s list
ranking algorithm [157]. Both implementations are based on STXXL data structures and its
sorting primitive. For more details on the deterministic preprocessing, refer to Chapter 6.

SSSP phase. Figure 7.1 shows the flow-chart of the pipelined loop of the SSSP phase. In
the beginning of each iteration (point 1) we settle a vertex v that has the smallest tentative
distance dist in the priority queue, and mark it visited in the internal memory bit array
done. Along with the node index v each priority queue element stores a bit array, such that
its i-th bit is set to true if v has an incident category i edge. The bit array is constructed
for each node in the preprocessing phase and requires 2 · k bits additional space per edge
in the graph data structure. Having extracted v’s bit array, if the i-th bit is 1 then we put
a pair (v, dist(v)) in the corresponding queue relax i of nodes waiting for relaxation of their
incident category-i edges.

Then we check (point 2) if there are any previously settled nodes in some relax i, whose
incident edges have to be relaxed before settling the next node at the top of the priority
queue. Thus, we check the delayed relaxation condition in Figure 7.1 for the oldest node
within each relax i queue. Observe, that this is sufficient, since the distances associated with
the elements of any of relax i starting from its oldest element do not decrease.

If the condition is satisfied for some category i, then the nodes of the corresponding relax i

queue are sorted by their node index (point 3) and their adjacent category i edges are either
loaded from the corresponding HotPool i (point 4) and relaxed or have to be loaded from
the external graph and therefore are passed further through the pipeline (point 5).

In order not to access the clusters of the external graph more than once, all nodes v are
accompanied with and sorted by their cluster indices c. After that we identify and load the
required external clusters containing currently missing adjacency lists (point 6) and “relax”
them by inserting a potentially non-improving value into the priority queue (recall that we
emulate a decrease key operation via a bit vector plus discarding). All other edges of the just
loaded clusters are sorted and distributed over HotPools corresponding to their categories
(point 7). The loop terminates when the priority queue becomes empty.

A heuristic for maintaining the pool. The asymptotic improvement and performance
gain in MZ SSSP as compared to KS SSSP is due to the partitioning of the input graph into
the clusters and maintaining an efficiently accessible graph cache (hot pools) of adjacency

80

sort

sort

sort

for all if has a category edge
insert in relax_

i v i

v i

load cluster containing node
and relax edges incident to

c v

v

distribute edges over HotPools

Priority Queue

Graph

sort nodes in relax_
relax their adjacent edges from

HotPool_

i

i

internal hash

external stxxl
vector

HotPool_i

HotPool_1

HotPool_2

HotPool_k

adjacency_list()v

category iff
delayed relaxation condition:

tentative_distance(relax_i.top()) +
< tentative_distance(PQ.top())

i

2
i - 1

(node , cluster)
iff is not in the HotPool

v c

v

insert()

insert()

edges

edges

node v

node v

pop()

relax_1

relax_k

relax_i

relax_2

1

2
3

4

5

6
7

set()vdone

Figure 7.1.: Flow-chart of the pipelined SSSP phase implementation. The empty elements of the
pipeline conform to the common pipelining interface, while the solid lines denote the
data stream through the pipeline. Shaded elements represent non-pipelined data struc-
tures with the dashed lines denoting the data exchange through their auxiliary methods.
The numbered circles reflect the order in which the elements flow through the pipeline.

lists, which are guaranteed to be requested soon after. Thus, efficient access patterns to the
hot pools are crucial for the performance of MZ SSSP.

In Chapter 6 we observed, that in the case of BFS for many large diameter graphs, the pool
fits into the internal memory most of the time. We proposed maintaining it partially in an
internal memory hash table, thus using efficient dictionary look up instead of computationally
quite expensive scanning of all hot pool edges. Besides that, we observed that when the
clusters are small enough (O(

√
B) for line graphs), it is worth caching all neighboring clusters

that are anyway loaded into the main memory while reading B elements from the disk. The
last fact is due to the special layout of clusters the deterministic preprocessing produces.
As for implementation, we store adjacency lists in the STXXL vector, thus, loading the
neighboring clusters in its internal memory cache using an LRU replacement strategy, see
Figure 6.1. This heuristic approach appeared to be particularly efficient for medium and
large diameter grid and line graphs.

81

Since the concept of the SSSP graph cache in many aspects resembles the BFS hot pool,
we extended this approach and included it in our SSSP phase implementation.
While in Chapter 6 we had only one hot pool, now we have k hot pools for k different

categories of edges. As well as in the BFS case, we use a multi-map hash table to maintain
O(M) edges internally. Observe, that due to the relaxation condition, Figure 7.1, hot pools
with the low category edges are likely to be requested more often than those of higher
categories. Thus, it is worthwhile reserving more internal memory for the smaller category
hot pools. For the comparative study of different memory allocation strategies refer to
Subsection 7.2.1. As for the caching of neighboring clusters, we use the same technique as
in Chapter 6 to benefit from the special cluster disk layout produced by the deterministic
preprocessing, see Figure 6.1.

7.2.1. Experimental Study

Configuration. We implemented our algorithm using the C++ programming language and
the GNU compiler 4.2.1 (optimization level -O3) on an Open Suse Linux 10.3 distribution
and the external-memory STXXL library version 1.1.0.
Our experimental platform G, see Section 3.2 has 250 GB Seagate Baracuda hard disks.

The hard drive buffer cache is 8 MB big. The average seek time for read and write is 8.0
and 9.0 msec respectively. The data transfer rate for outer zone (maximum) is 65 MByte/s.
Therefore, for a graph with 228 nodes n random read and write I/Os would take around 600
and 675 hours, respectively.
In order to use equivalent hardware to the one for the BFS implementation in Chapter 6,

we restrict the available memory to at most 1 GB and only use one processor and one disk.

Real world road network graphs. We did the experiments for the largest road network
graphs that we could access, that is, the European2 and the US graphs. The former one
features around 33 million nodes and 40 million edges, while the later has 24 million nodes
and 29 million edges.
While being one of the most popular applications, SSSP on road networks is not necessarily

the best illustration for our algorithm due to the following reasons: (1) even the European
road network is rather small for realistic external-memory settings; (2) the special structure
of road networks allows recent specialized approaches to outperform the general purpose
Dijkstra algorithm by several orders of magnitude, e.g., see [18, 59]. Although no theoretical
I/O bounds are given, the algorithm in [59] has been designed with the explicit goal of
being efficient on devices with small internal memory and slow storage memories (e.g., flash
memories) such as pocket PCs. Similarly, in recent work Sanders et al. [142] propose a highly
efficient algorithm for point-to-point shortest path queries on mobile devices.
In order to bring the problem closer to our settings we (1) reduced the memory size avail-

able for our algorithm to 128 MB and (2) randomly permuted the node indices.

Web graph. As an instance of real world graphs we also consider a crawl of the world wide
web [165]. The nodes of the web graph represent internet pages, while the edges correspond

2provided for scientific use by Ortec company.

82

Graph class n m BFS SSSP

Random (16 bit) 228 230 8.6 36
Random (32 bit) 228 230 8.6 39.2

Grid (214 × 214, 16 bit) 228 229 21 33.6
Grid (214 × 214, 32 bit) 228 229 21 37.6
Random line (16 bit) 228 228 3.7 7.6
Webgraph (32 bit) ≈ 135× 106 ≈ 1.18× 109 5.7 28.7

Table 7.1.: Timing in hours for the currently best BFS implementation vs. our SSSP approach
(both including preprocessing).

to the links between them. Our instance of the web graph has around 135 million nodes
and 1.2 billion edges. Structurally the web graph is close to a random graph, with a small
fraction of larger diameter branches. Therefore, the I/O runtime is similar to the one for
random graphs.

Synthetic graph classes. In order to isolate the performance penalty for computing SSSP
as opposed to BFS, we consider the same graph classes as in Chapter 6:
Random graphs : A random graph with n nodes and about m edges is obtained by selecting
m times a random source and a random target with source 6= target and subsequently remove
the duplicate edges.
Grid graph (x × y): They consist of a xy grid, with edges joining the neighboring nodes in
the grid.
Line graphs: They have n nodes and n− 1 edges, such that there exist two nodes with the
path between them containing all other nodes. A simple line graph is laid out on the disk,
such that each disk block B contains consecutively lined nodes whereas for a random line
graph the arrangement of nodes is given by a random permutation.

Comparing BFS and SSSP. We compared our SSSP implementation against BFS im-
plementation from Chapter 6. The result in Table 7.1 indicates, that while Ajwani et al.
perform BFS traversal for any of the graph classes within one day, we compute SSSP for
the same graph classes with 16 and 32 bit random weights within just two days. Our SSSP
approach was never slower than a factor of five, while for the most difficult graph class (grids)
the difference was even less than a factor of two.

Comparing KS SSSP and MZ SSSP. If we try to relate different SSSP algorithms with
their BFS counterparts, then KS SSSP and the external-memory BFS algorithm by Muna-
gala and Ranade (MR BFS for short) [116] share similar ideas (and access patterns), whereas
MZ SSSP corresponds to Mehlhorn and Meyer’s BFS algorithm (MM BFS for short).
In Chapter 6 we showed that MR BFS outperforms MM BFS for low diameter graphs,

such as random or web graphs, while medium and large diameter graph instances become
practically infeasible for it (hours as opposed to months for line graphs). As for KS SSSP and
MZ SSSP, we expect the later one to significantly outperform the former for the whole range
of graphs that we consider. The reason for it is due to the incremental nature of Dijkstra’s
algorithm. Indeed, while MR BFS extracts adjacency lists in a batched fashion level by

83

Node indices n/106 m/106 RAM SSSP by [139] SSSP phase Preprocessing
I/O w. Total I/O w. Total I/O w. Total

original 24 29 1024 4550 4964 155 1414 420 547
original 24 29 512 4848 5222 191 1449 484 614
original 24 29 128 5059 5444 2815 4059 956 1123
permuted 24 29 2048 209350 209873 136 1417 428 589
permuted 24 29 1024 * * 175 1458 455 611
permuted 24 29 512 * * 187 1474 529 685
permuted 24 29 128 * * 2892 4158 951 1139

Table 7.2.: Timing in seconds for US road network with original or permuted node indices and
original edge weights using RAM in megabytes. Fields marked with * are omited due to
high computation cost.

Road Network n/106 m/106 SSSP phase
I/O wait Total

original × original 34 39 4269 6011
permuted × original 34 39 4635 6392
permuted × 32-bit 34 39 7802 10819

Table 7.3.: Timing in seconds for European road network with original or permuted node indices
and original or 32-bit random edge weights using 128 MB of RAM.

level, KS SSSP loads edges incident to the settled vertices consecutively vertex by vertex.
Therefore, for the expected O(log n) levels of a random graph MR BFS spends on average
O(n/B log n) I/Os, while KS SSSP requires one I/O per vertex, thus exhibiting worst case
Ω(n) I/O performance in practice.

This observation is in line with the recent implementation of a Kumar/Schwabe-like ap-
proach by Sach and Clifford [139], who used a cache oblivious priority queue and an internal-
memory bit array like us in our approach. They observed in practice that for random graphs
the I/O complexity for extracting adjacency lists was a dominating factor over maintaining
the priority queue.

Moreover, as it is shown in Table 7.2 the performance of their algorithm on the real world
road networks also significantly depends on the layout of edges. As we already mentioned
above, available real world road network instances initially incorporate spatial locality, thus
facilitating more efficient adjacency lists extraction. Therefore, for original vertex numbering
the runtime of their implementation only slightly depends on the internal memory available
for the system. However, a random permutation of vertices has a significant impact on
the performance, thus showing overwhelming dependence of the runtime on the layout of
adjacency lists on a disk. On contrary, the runtime of our SSSP algorithm in Table 7.2 barely
depends on the original vertex indices, which is a desirable feature for a general purpose SSSP
solver.

84

Graph class n m MR BFS [116] SSSP

Random line 228 230 4760 7.6

Table 7.4.: Timing in hours for MR BFS and SSSP (including preprocessing, for 16-bit random
edge weights).

As for large diameter graphs, in Chapter 6 we showed that MM BFS drastically outper-
forms MR BFS for random line graphs. Since the I/O performance for MR BFS constitutes
a lower bound for KS SSSP, we directly compare the MR BFS results from Chapter 6 with
our SSSP approach in order to estimate an advantage of more than a factor of 500, see
Table 7.4.
To summarize, the MZ SSSP preprocessing step allows the subsequent SSSP phase to

significantly outperform any Kumar/Schwabe like approach that ignores I/O complexity for
extracting adjacency lists.
Next, we show that the delayed relaxation condition further improves MZ SSSP’s perfor-

mance by allowing a batched relaxation of edges of higher categories.

Delayed relaxation of edges. As we already discussed in Section 7.2, the delayed re-

 10
 100

104

106

108

 0 2 4 6 8 10 12 14 16 18

re
la

xa
tio

ns

category

 10
 100

104

106

108

 0 5 10 15 20 25

re
la

xa
tio

ns

category

 10
 100

104

106

108

 0 5 10 15 20 25

re
la

xa
tio

ns

category

Figure 7.2.: The comparison between the number of batched relaxations (black) with the total
number of relaxations (gray) in logarithmic scale. From left to right: European road
network graph with original edges, with random 32 bit weights and web graph with 32
bit random weights

laxation condition in Figure 7.1 allows postponing relaxation of longer edges. For each edge
category we measured the number of batched relaxations of nodes having incident edges in
this category, and compared it to the number of relaxations that would have been performed
without the relaxation condition in use. In the series of diagrams Figure 7.2 and Figure 7.3
we compare the number of batched relaxations (in black) with the their overall number (in
gray) in logarithmic scale.
Note, that in case of the European road network with real distances, delayed relaxation is

even more beneficial than for 32 bit random weights on the same graph (compare first and
second histograms in Figure 7.2). Even in the first, most notable category, the number of
batched relaxations is around 20% of the overall number. Thus, on average the algorithm
relaxes a batch of first category edges incident to five different nodes at once. In the next
categories the ratio drops to at most 1%, that is, on average at least 100 nodes at once. The

85

 10
 100

104

106

108

 0 2 4 6 8 10

re
la

xa
tio

ns

category

 10
 100

104

106

108

 0 5 10 15 20 25

re
la

xa
tio

ns

category

 10
 100

104

106

108

 0 5 10 15 20 25

re
la

xa
tio

ns

category

Figure 7.3.: The comparison between the number of batched relaxations (black) with the total
number of relaxations (gray) in logarithmic scale. From left to right: random graph
with 16 bit random weights, random graph with 32 bit random weights and random
grid graph with 32 bit random weights

higher ratio for the last few categories is only due to the low number of long distances in the
road network.
On the contrary, the same road network graph with 32 bit random weights (second his-

togram in Figure 7.2) demonstrates a small ratio only for the upper half of the categories,
while in the first categories the relaxations are performed in a one-by-one manner. This in
turn leads to a significant performance loss, refer to Table 7.3 for the exact timing.
Besides the European road network, we computed ratios for the web graph and synthetic

instances, that have 16 and 32 bit random weights.
The first category of the random graph with 16 bit random weights has the largest number

of batched relaxations with the ratio of about 1.3%, that further decreases to up to 4 ·10−6%
in the last category (first histogram in Figure 7.3).
For the web graph (last histogram in Figure 7.2) and the random graph with 32 bit random

weights (second column in Figure 7.3) we see similar behavior: one-by-one relaxations in the
lower categories, and rapidly decreasing ratio in the higher categories.
As a rule of thumb for graphs with random edge weights, the bigger the diameter, the larger

the number of categories, where relaxations have to be performed in a one-by-one fashion.
For instance, for the random graph with 32 bit edge weights the ratio drops significantly
already for the categories 14 − 15, while for the grid this value can be found around the
18 − 19th category (compare the second and the third histograms in Figure 7.3). The
most extreme case is the line graph, where essentially all relaxations have to be performed
consecutively one after the other.

Quality of the spanning tree. In Chapter 6 we observed that the shape of the spanning
tree in the preprocessing step plays an important role for the quality of the clustering. In
line with the Chapter 6 for the grid graph we observed a considerable improvement in the
SSSP phase I/O runtime when the spanning tree is “randomized”. The reason for it is, that
a spanning tree with elements in a snake-like row major order produces long and narrow
clusters, while a “random” one is more likely to result in low diameter clusters. The former
clusters tend to stay in the hot pools longer, hence, increasing their sizes, that eventually
results in a larger I/O volume for storing hot pools and for re-scanning them while retrieving
adjacency lists. On the other hand, the latter ones are evicted from the hot pools sooner,

86

thus reducing I/O runtime. Most notably, for a simple grid graph with random 16 bit
weights, clustering with the randomized input of the spanning tree algorithm gives about
30% runtime improvement over the unrandomized one, Table 7.5.

Graph class n m Preprocessing SSSP phase
I/O wait Total I/O wait Total

Simple Grid (214 × 214, 16 bit) 228 229 2.5 3 30 44.4
Simple Grid (214 × 214, 32 bit) 228 229 2.5 3 27.8 35.3
Random Grid (214 × 214, 16 bit) 228 229 2.4 3.2 23.7 30.4
Random Grid (214 × 214, 32 bit) 228 229 2.4 3.2 26.4 34.4

Table 7.5.: Quality of the spanning tree.

Different memory allocation strategies for the heuristic. The delayed relaxation

Graph class n m no cache decreasing uniform
I/O wait Total I/O wait Total I/O wait Total

Random (16 bit) 228 230 22.34 34 19.9 30.83 - -
Random Grid 228 229 26.6 34.56 26.4 34.4 26 31.3

(32 bit 214 × 214)
Simple Line (16 bit) 228 228 - - 0.1 6.6 0.1 4.1

Table 7.6.: Different memory allocation strategies for the heuristic.

condition for random edge weights, Figure 7.1, implies that edges in the lower categories are
relaxed more often than those in the higher categories. This suggests, that in general the hot
pools storing the lower category edges should get more internal memory than those storing
the higher category edges.
In most of our experiments, Table 7.1 in particular, we used common 128 MB of RAM for

all hot pool caches and 64 MB for the adjacency list vector cache, see Figure 6.1. By default
the overall 128 MB of RAM are split among the hot pools such that the category i hot pool
receives only half of the memory that is available for the category i − 1 hot pool. We call
this strategy “decreasing”.
As it is indicated in Figure 7.2 and Figure 7.3, the number of categories, where relaxations

have to be performed consecutively in a one by one fashion, increase with growing diameter.
Therefore, for the middle range diameter grid graph and large diameter line graph it is worth
distributing available memory equally throughout all hot pools. This strategy is denoted as
“uniform”.
For the random graph with 16 bit weights “decreasing” shows better results, since the

bulk of batched relaxations is performed in the low level category hot pools, see Figure 7.3.
As for the larger diameter grid and line graphs “uniform” appears to be the best choice. The
reason for it is that due to the regular structure and small degree of these graph classes there

87

are not that many (only one in case of line graph) paths between any two nodes, meaning
that the algorithm needs to load edges quite often even from high category category hot
pools. This is in line with observation in Section 7.2 (Figure 7.3), that grid (and especially
line) graphs only nodes having high category edges are relaxed in a batched manner, while
in the low categories nodes need to be relaxed basically one by one.

7.2.2. Early Results on Flash Memory.

Graph class n m SSSP phase on HDD SSSP phase on SSD
I/O wait Total I/O wait Total

Random (32 bit) 228 229 14.9 18 11.4 14.5
Random Grid (214 × 214, 32 bit) 228 229 18.6 22.1 11.4 15

Random Line (32 bit) 228 228 1.5 2.2 3.9 4.6

Table 7.7.: Preliminary results on flash memory.

We also performed preliminary tests of our SSSP implementation on modern flash memory
also known as solid state disks (SSDs). These are non-volatile, reprogrammable memories,
which have recently become a commonplace in storage device technology. Flash memory
devices are lighter, more shock resistant and consume less power. Moreover, since random
read accesses are faster on solid state disks compared to traditional mechanical hard-disks,
flash memory is fast becoming the dominant form of end-user storage in mobile computing.
Flash memory devices typically consist of an array of memory cells that are grouped into

pages of consecutive cells, where a fixed amount of consecutive pages form a block . Reading
is performed pagewise whereas writing typically requires erasing a whole block. Thus, the
latency for reading a byte is usually much smaller than for writing it. Finally, each block
can sustain only a limited number of erasures. To prevent blocks from wearing prematurely,
flash devices usually have an built-in micro-controller that dynamically maps the logical
block addresses to physical addresses so as to even out the erase operations sustained by the
blocks.

Previous and related work on flash. Most previous algorithmic work on flash memories
deals with wear leveling, block-mapping and flash-targeted file systems (see [56] for a com-
prehensive survey). There are not many algorithms designed to exploit the characteristics of
flash memories. Ajwani et. al [8] proposed a model reflecting similarities and differences to
the external memory model. Wu et al. [173, 174] proposed flash-aware implementations of
B-trees and R-trees without file system support by explicitly handling block-mapping within
the application data structures.
Other works include the use of flash memories for model checking [16] or for route planning

(point-to-point shortest paths) on mobile devices [59, 142].
An adaptation of our previously mentioned EM-BFS implementation (see Chapter 6) for

flash memory was discussed in [7]. In there, a 32 GB Hama SSD (2.5” IDE) was used. Due
to limited bandwidth of this device (less than 30 MB/s) only a combination of flash plus

88

a traditional hard disk (in that case a 500 GB SEAGATE Barracuda 7200.11) was more
profitable than using the hard disk alone: the small read-only graph clusters reside on flash
from where they can be retrieved using fast random reads, whereas the hot pool with its
frequent sequential rewriting of large data sequences stays on the hard disk in order to profit
from higher throughput.

Results. We performed experiments on a newer machine featuring an Intel Quad Core
Q6600 CPU, 8GB of RAM, a fast hard drive and a solid state disk. We used the gcc compiler
4.3.2 with optimization level O3 on a Debian Linux distribution and STXXL version 1.2.2.
The available internal memory was restricted to at most 1 GB and only one processor was
used. As for 2009, we observed that the performance of solid state disks has significantly
improved over the last year: priced similarly as the 32 GB device purchased for [7] a year ago,
our current 64 GB Hama SSD (3.5” SATA) was not only offering double the capacity but also
featured significantly increased throughput of measured 84 MB/s (reading), and 75 MB/s
(writing). Although our 500 GB SEAGATE Barracuda 7200.11 hard disk applied in these
experiments still offered higher throughput (about 100 MB/s for sequential access of large
blocks), now for medium diameter grid and large diameter random graphs even using a SSD
alone resulted in faster SSSP execution, see Table 7.7. On the other hand, for random line
graphs, the SSSP phase using the hard drive benefits from a larger throughput and sequential
reading speed. Indeed, as observed in Chapter 6, for line graphs, the Euler-tour based
preprocessing lays out the clusters on external memory storage in a way, that the clusters
that are visited soon after each other during a BFS traversal are located sequentially, thus
facilitating sequential reading. While the node visiting order for BFS and SSSP traversals
may differ significantly in general, it is very similar for line graphs.
In order to be able to accommodate larger data sets on flash, we actually used two 64 GB

SSD devices. For fair comparison with a single hard disk the two SSDs were concatenated into
one raid (thus to preventing parallel I/Os). Of course, even better results can be obtained
by striping data blocks over the SSDs, thus significantly increasing the throughput. Note
that we did not yet tune our SSSP code towards the special metrics of flash memory: The
cluster size in the SSSP algorithm was chosen in a way so as to balance the random reads
and sequential I/Os on the hard disks, but now in this new setting, we can reduce the cluster
size as the random I/Os are being done much faster by the flash memory. Our experiments
suggest that this leads to even further improvements in the runtime of the SSSP algorithm.

7.3. Conclusions

We have provided a practical implementation for undirected SSSP in external-memory un-
der the assumptions that at least one bit can be kept for each vertex and that the edge
weights are reasonably bounded. It remains a challenging open problem to come up with
a practically feasible solution for sparse directed graphs, even without theoretical guarantees.

Acknowledgements. We would like to thank Deepak Ajwani and Andreas Beckmann for
helpful discussions and assistance with the flash disks.

89

CHAPTER 8

Minimum Spanning Tree

A minimum spanning tree (MST) of a graph G = (V,E) is a minimum total weight subset
of E that forms a spanning tree of G. The MST problem has been intensively studied in the
past since it is a fundamental network design problem with many applications and because it
allows for elegant and multifaceted polynomial-time algorithms. We present Filter-Kruskal
– a simple modification of Kruskal’s algorithm that avoids sorting edges that are “obviously”
not in the MST. For arbitrary graphs with random edge weights Filter-Kruskal runs in time
O
(
m+ n log n log m

n

)
, i.e. in linear time for not too sparse graphs. Experiments indicate that

the algorithm has very good practical performance over the entire range of edge densities. An
equally simple parallelization seems to be the currently best practical algorithm on multicore
machines.

References. The contents of this chapter is based on the joint work with Peter Sanders
[127]. Most of the wording of the original publication is preserved.

8.1. Overview

In practice (on sequential machines and in internal memory), two simple algorithms dating
back at least half a century still perform best in most cases [43, 84, 114].

The Jarńık–Prim algorithm [71, 136] grows a tree starting from an arbitrary node. Imple-
mented using efficient priority queues, its running time is O(m+ n log n). Even with simpler
priority queues, it performs well for random edge weights1 – time O

(
m+ n log n log m

n

)
[123].

Kruskal’s algorithm [88] grows a forest in time O((m+ n) logm) by scanning the edges
in order of increasing weight and adding those that join two trees in the current forest. In
practice, Kruskal outperfoms Jarńık–Prim for sparse graphs. For denser graphs, Kruskal

1here and in the following we use the following model for random edge weights: the edge weights are all
different, can otherwise have arbitrary values, and are randomly permuted.

90

suffers from the O(m logm) time needed for sorting all the edges. Therefore it is a natural
idea to avoid sorting heavy edges that cannot contribute to the MST. Kershenbaum and van
Slyke [85, 114] do this by building a priority queue of edges in linear time. Then Kruskal’s
algorithm subsequently removes the lightest edge until n − 1 tree edges have been found.
For random graphs with random edge weights, the MST edges are expected to be among
the O(n log n) lightest edges. Hence, we get an average execution time of O

(
m+ n log2 n

)
.

Unfortunately, the stopping idea fails already if the MST contains a single heavy edge. Note
that this can even happen for random edge weights: Consider a “lollipop graph” consisting
of a random graph and an additional path of length k attached to one of its nodes. The
MST needs all the path edges, about half of which will belong to the heavier half of the
edges for random edge weights. Brennan [72, 128] implements the stopping idea more cache
efficiently by integrating Kruskal’s algorithm with quicksort (qKruskal). Apply Kruskal to
small inputs. Otherwise, as in quicksort, partition the edges into a light part and a heavy
part. Recurse on the light part. If the MST is not complete yet, recurse on the heavy part.
A key idea for more robust improvements of Kruskal is filtering – early discarding of edges

that connect nodes in the same component of the forest defined by the MST edges already
found. In [85] filtering is applied to edges about to be sifted up in a heap based implemen-
tation of Kruskal. However, no analysis is given and heap based algorithms are unlikely to
be efficient on modern machines due to the cache inefficiency. In this chapter we investi-
gate the idea to apply filtering to qKruskal – before recursing on the heavy part, remove all
heavy edges that are within a component of the current forest. In Section 8.3 we explain the
algorithm Filter-Kruskal in more detail. The analysis shows that for arbitrary graphs with
random edge weights, Filter-Kruskal runs in expected time O

(
m+ n log n log m

n

)
. Note that

this is the same performance also achieved by Jarńık–Prim using binary heaps [123]. The
experiments reported in Subsection 8.3.5 confirm that Filter-Kruskal performs very well for
both sparse and dense graphs. Moreover, Filter-Kruskal allows a more coarse-grained and
hence more practical parallelization than Jarńık–Prim.

Related Work

MSTs can even be found in linear (expected) time [73, 86]. This algorithm can filter out
edges without any sorting using sophisticated data structures that can check whether an
edge e is the heaviest edge on the cycle defined by the minimum spanning forest (MSF)
of an edge sample and e. However, such algorithms are complicated and large constant
factors are involved. To check whether general edge filters are useful at all, [84] invests
Θ(n log n) preprocessing to allow for a better constant factor in filtering. This algorithm
only significantly outperforms Jarńık–Prim for rather dense graphs with weights that force
m decrease key operations. Katajainen and Navalainen [83] refine the heap based algorithm
from [85] by first performing a bucket sort of the edges. For uniformly distributed random
edge weights, this yields (near) linear expected execution time. It should be noted that this
result is quite different from ours: (1) bucket sorting does not work in the comparison based
model, whereas our algorithms are comparison based. (2) the result in [83] only holds for
“smooth” (i.e, close to uniform) distributions of independent random edge weights whereas
our result holds for random permutations of arbitrary edge weights and in particular when

91

edge weights are independently drawn from an arbitrary probability distribution. (3) for
uniformly distributed edge weights, even basic Kruskal runs in (near) linear time if we use
bucket sort. Indeed, experiments in [83] demonstrate that filtering does not help if bucket
sorting can be used.

8.2. Kruskal’s Algorithm

Algorithm 7: Pseudocode for Kruskal and Filter-Kruskal. T is a set of MST edges
already known and P is the partition of V induced by T . When used as a standalone
method, the procedures are called with empty T and a trivial partition P . The result
is output in T .

1 Kruskal(E, T : Sequence of Edge, P : UnionFind)
2 begin
3 Sort (E) /* by increasing edge weight */

4 foreach {u, v} ∈ E do
5 if u, v are in different components of P then
6 add edge {u, v} to T
7 join the partitions of u and v in P

8 end

9 end
10

11 Filter-Kruskal(E, T : Sequence of Edge, P : UnionFind)
12 begin
13 if m ≤ kruskalThreshold(n, |E|, |T |) then
14 Kruskal(E,T,P)
15 else
16 pick a pivot p ∈ E
17 E≤:= 〈e ∈ E : e ≤ p〉
18 E>:= 〈e ∈ E : e > p〉
19 Filter-Kruskal(E≤, T, P)
20 E>:= Filter(E>, P)
21 Filter-Kruskal(E>, T, P)

22 end
23

24 Filter(E, T : Sequence of Edge, P : UnionF ind)
25 begin
26 return 〈{u, v} ∈ E : u, v are in different components of P 〉
27 end

Let G = (V,E) denote an undirected, weighted graph with |V | = {1, . . . , n}. Let m = |E|.
Since we need Kruskal’s algorithm as a subroutine, we outline it here for self-containedness.

92

Algorithm 7 gives pseudocode that should be self-explaining. When Kruskal skips an edge
{u, v} that falls within a single component of T , this is safe because {u, v} closes a cycle in T
and is at least as heavy as all edges in T . In this situation, the cycle property of MSTs tells us
that {u, v} is not needed for an MST. The most sophisticated aspect of the algorithm is the
Union-Find data structure P maintaining a partition of the nodes into components defined
by the MST edges T found so far. P supports an operation union joining two partitions and
an operation find(v) returning the node number of the representative of the partition of the
node v. Indeed, the implementation will exploit that partitions are represented using parent
references defining trees rooted at the representatives and that the paths leading to the roots
are very short in an amortized sense (union-by-rank and path compression). In particular,
if m≫ n, most path lengths will be one.

8.3. Algorithm Design

Algorithm 7 gives pseudocode for Filter-Kruskal. Similar to [128], the basic approach is to
use quicksort for sorting the edges and to move the edge scanning part of Kruskal into the
quicksort code. Hence, the algorithm now calls Kruskal on small2 inputs and it calls itself
for the lighter part of the edges. The only new ingredient at this level of abstraction is that
before recursing on the heavier edges E>, they are filtered. Filtering removes those edges
that fall within the same component of the current node partitioning. Note that these edges
are heavier than all edges in T and close a cycle in T . Hence, the cycle property implies
that the filtered edges are not needed for an MST. The advantage of filtering is that filtered
edges need not be sorted.

8.3.1. Results for Random Edge Weights.

In this subsection we only state the lemmas and theorems, the corresponding proofs are
available in the original paper [127].
We first show that we can essentially restrict the analysis to counting comparisons since

this quantity is indicative of the total execution time:

Lemma 4. Let C denote the number of (edge weight) comparisons performed by Filter-
Kruskal. Then Filter-Kruskal performs ≤ n − 1 union operations, an expected number of
≤ 2m+ C find operations, and O(m+ C) work outside union and find operations.

Lemma 5 ([153]). Consider n union operations and M find operations on a union-find
data structure with n elements using path compression and union by rank. Then the total
execution time3 is O(M + n log∗ n) where log∗ n denotes the iterated logarithm with log∗ n = 0
for n ≤ 1 and log∗ n = 1 + log∗ log n otherwise.

2As far as asymptotic performance is concerned, any choice of the function kruskalThreshold works as long
as kruskalThreshold(n, |E|, |T |) = O(n).

3A more well known bound is Mα(m,n) where α is the inverse Ackermann function. However, we need a
bound that is linear in M .

93

 2

 2.5

 3

 3.5

 4

 4.5

 32 64 27 28 29 210211212213214215216217218219220221222

co
m

pa
ris

on
s

/ e
dg

es
 m

 =
 n

 lo
g(

n)

number of nodes n

filterKruskal
log(log(x))

Figure 8.1.: Number of edge comparisons performed by algorithm Filter-Kruskal for random graphs
with n log n edges.

Using these lemmas we analyze Filter-Kruskal for random edge weights. Without loss of
generality, we can assume that the edge weights are the set 1..m.

Theorem 6. Given an arbitrary graph and random edge weights, the expected running time
of Filter-Kruskal is O

(
m+ n log(n) log m

n

)
.

We also give an informal argument why the complexity computed above is tight in the
sense that using the sampling lemma from [33] we cannot expect a better result. Suppose,
we had an algorithm that filters every edge with respect to all lighter edges “for free”. Then,∑

n<i≤m n/i = Θ
(
n log m

n

)
edges would survive this filtering (in expectation). Sorting those

edges also yields the bound from Theorem 6.
Note that the term n log(n) log m

n
in the execution time of Filter-Kruskal can be simplified

to O(n log(n) log log n), i.e., for m = Ω (n log(n) log log(n)) we get linear execution time.
This is up to a factor log n/ log log n better than qKruskal for random graphs with random
edge weights and recall that our result applies to arbitrary graphs with random edge weights.

Indeed, it seems that for random graphs with random edge weights we get even a better
bound. Figure 8.1 indicates that the number of edge comparisons executed by Filter-Kruskal
for graphs with n log n edges4 is proportional to n log n (at least the double-logarithmic up-
per bound from Theorem 6 is too pessimistic). This is quite strong evidence that the
expected running time of Filter-Kruskal for random graphs with random edge weights is
O(m+ n log(n)): First observe that by Lemma 4 and Lemma 5, the comparisons are rep-
resentative of the asymptotic execution time. Second, for instances with less than n log n
edges, the running time cannot be larger. Finally, random graph theory tells us that the
n log n lightest edges will define the MST with high probability5. Hence, all the heavier

4Throughout this chapter log x stands for log
2
x.

5The threshold for connectivity is at n ln(n)/2 edges.

94

edges will be filtered out anyway. We believe that a formal proof would not be too difficult
by looking even closer at the structure of random graphs. In particular, since the number of
nodes outside the giant component shrinks geometrically with the average degree, the prob-
ability that an edge survives filtering will also shrink geometrically with its rank divided by
n. We believe that the same bound also applies to many other classes of graphs. Indeed we
do not know a family of graphs for which Filter-Kruskal with random edge weights would
take more than O(m+ n log(n)) expected time.

8.3.2. Implementation.

Form≫ n log(n) log log n, most of the work is done in O(m) element comparisons performed
using quicksort partitioning and the associated find operations in function Filter. Therefore,
it makes sense to think about the constant factors involved here and to compare them with
the constant factors involved in the Jarńık–Prim algorithm. The number of comparisons
(and associated finds) can be reduced by a constant factor by choosing pivots more carefully.
Therefore, for an input segment of size k, our pivot is the median of a random sample of
size
√
k. For the find operations, observe that most of the find operations will follow two

single parent references to a common representative. This common case can be made fast as
follows: When filtering an edge (u, v), we first load the parent references pu and pv of u and
v respectively. When pu = pv, we can immediately discard (u, v). Otherwise, we complete
the find operations for u and v and compare the results as usual.6 All in all, when most
edges are filtered out immediately in this way, the resulting 2m random memory references
may dominate the running time for large, not too sparse graphs – the quicksort partitioning
operations work cache efficiently.

Now let us compare this to the best case of the Jarńık–Prim algorithm where for most
edges (u, v), we perform one random memory access to the distance value of v, compare
it with the edge weight and discard (u, v) without accessing the priority queue. Since all
edges are stored in both directions, we also get 2m random memory accesses. Hence, we
can expect Filter-Kruskal and Jarńık–Prim to perform similarly for large, sufficiently dense
instances.

8.3.3. Parallelization.

Most parts of Filter-Kruskal are well suited for parallelization – we can parallelize partition-
ing, sorting, and filtering. It is interesting to note that the find-operations done for filtering
are logically completely independent although, due to path compression, there may be si-
multaneous read and write accesses to the same parent references. However, no matter how
such operations are executed by the hardware, we will get correct results since we maintain
the invariant that parent references eventually lead to the representative. Only the union-
find operations in the Kruskal -call for the base case have to be executed sequentially. On
average, these will only be called for O(n) edges however.
6We use the same trick within Kruskal’s algorithm.

95

 5

 10

 15

 20

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

nu
m

be
r

of
 c

om
pa

ris
on

s
/ n

number of nodes n

m=n m=2n m=4n

Figure 8.2.: Number of edge comparisons performed by algorithm Filter-Kruskal+ for random
graphs.

We have implemented a multicore parallel version of Filter-Kruskal. Sorting and partition-
ing uses a parallel implementation of the C++ standard template library [159]. Partitioning
is done using the inplace parallel algorithm from [167].

8.3.4. More Sophisticated Variants.

Besides removing edges during filtering that are not needed for an MST, we can also
identify some MST edges for good. Consider the multigraph Gs whose nodes are the
components currently represented in the union-find data structure and whose edges are
Es:= {(find(u), find(v)) : (u, v) ∈ E>} where E> contains the edges which survived filtering.
For an edge (u, v) ∈ E>, if find(u) or find(v) have degree one in Gs, then (u, v) is an MST
edge. More generally, all edges outside the two-core7 of Gs correspond to MST edges and
can be found in time linear in the size of Gs.

We have implemented the first variant of the algorithm (henceforth called Filter-Kruskal+)
since degree-one nodes of Gs can be identified easily by maintaining a counter for each
representative. Indeed, counter values 0, 1, and “> 1” suffice and can be stored together
with the rank information in the unused parent references of component representatives (see
also [43]). Figure 8.2 indicates that we get a near linear number of comparisons for sparse
random graphs. Unfortunately, we will see that the overhead even for this simple measure
is such that we see no improvement with respect to running time. Therefore we refrain from
implementing the two-core refinement because this would even require building a proper
adjacency-list representation of Gs which would probably be even slower. For the conversion
time, refer to the Figure 8.7.

If we would take the time to build Gs explicitly, it would probably be even better to solve

7The k-core of a graph G is the maximal vertex induced subgraph of G with minimal degree k. All k-cores
can be found in linear time by subsequently removing small degree nodes.

96

the MST problem recursively forGs. With this measure we would move into the direction of a
variant of the linear time randomized algorithm [73]. The difference would be that by taking
advantage of random edge weights, we do not need a complicated data structure for filtering
out heaviest edges on a cycle. Instead, we recurse on the lighter half of the edges and use a
simple union-find data structure (which for this application could be made to run in linear
time). The only missing ingredient to a linear time algorithm would be a node reduction
algorithm. We could use the traditional Boruvka algorithm [119], or the sequential node
reduction from [43]. The latter algorithm has an interesting deterministic variant where in
each step, we remove the node with minimum degree. We have not implemented any of these
algorithms because we do not think they could be competitive to our simple Filter-Kruskal
algorithm in practice.

8.3.5. Experiments

Algorithms. We have experimented with Kruskal, qKruskal – the Kruskal modification
from [128], Filter-Kruskal, Filter-Kruskal+ from Subsection 8.3.4, and several variants of
Jarńık–Prim (JP). For JP we only show results for the best implementations: pJP for Irit
Katriel’s implementation with pairing heaps [84] and qJP , our own implementation combined
with Paredes’s quickHeap priority queue [128]. qJP is considerably faster than Paredes’s own
code since we use a faster graph representation (adjacency arrays rather than adjacency lists).
We also use a multicore implementation of Filter-Kruskal (Filter-Kruskal P for P cores) and
a version of Kruskal with parallel sorting of edges (KruskalP). Our graph data structure
implements the interface of the Boost Graph Library [158], but uses a graph representation
that is specific to the algorithm. For the variants of Kruskal’s algorithm this is simply an
array of edges, for the JP algorithm, we use an adjacency array representation. We have
also measured the time needed for converting between these representations.

Implementation. The implementation uses C++ with the GNU compiler version 4.3.1 and
optimization level O3. The experiments were run on a platform H, see Section 3.2.

Instances. Unfortunately, there is no established suite of real world instances for MST
problems. Mostly, synthetic graphs families from the study [114] were used in the past.
From these we use random graphs with random edge weights, random graphs with weights
that force a decrease key for every edge, and random geometric graphs where n random points
in the unit square are connected with their k closest neighbors with respect to Euclidean
distance. Note that the resulting edge weights are not independent random numbers. We
also use lollipop graphs with random edge weights where a path of length n/2 is appended
to a random graph with n/2 nodes. Perhaps most interestingly, we have obtained a few
instances generated by the image segmentation method by Jan Wassenberg (see also [48]),
that was applied to satelite images, [162].

Random Edge Weights. Figure 8.3 (left) shows the running time of the algorithms dis-
cussed above for random graphs with random edge weights. Lets first consider the middle

97

 10

 100

 1 2 4 8 16 32 64 128 256

tim
e

/ m
 [n

s]

Kruskal
qKruskal
Kruskal8

filterKruskal+

filterKruskal
filterKruskal8

qJP
pJP

 10

 100

 1000

 1 2 4 8 16 32 64 128

tim
e

/ m
 [n

s]

 10

 100

 1 4 16 64 256 1024

tim
e

/ m
 [n

s]

 10

 100

 1 4 16 64 256 1024

tim
e

/ m
 [n

s]

 100

 1000

 1 2 4 8 16

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

 100

 1000

 1 2 4 8 16

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Figure 8.3.: On the left: time per edge for random graphs with random edge weights and 210 (top),
216 (middle), and 222 (bottom) nodes. On the right: time per edge for lollipop graphs
with random edge weights and 211 (top), 217 (middle), and 223 (bottom) nodes

graph with measurements for n = 216 nodes. Kruskal’s algorithm performs well for up to
8n edges where it is also well parallelizable. For more dense graphs, JP is better. None

98

of the two priority queue variants is a clear winner. Quickheaps are a bit better for very
sparse graphs whereas pairing heaps win for more dense graph. qKruskal does improve on
Kruskal and outperforms qJP. Filter-Kruskal shows uniformly good performance over the
entire range of densities. It is clearly better than qKruskal and only for rather dense graph
it is still outperformed by JP. On 8 cores, Filter-Kruskal becomes the clear winner. Note
that a parallel implementation of JP does not look promising except for very large, very
dense graphs where parallelizing the innermost loop becomes interesting.
A more direct comparison to the sophisticated parallel MST implementations by Bader

and Cong [15] would be interesting. However, they only report speedups for at least one
million nodes and our codes are considerably faster than their codes if one simply scales the
clock frequency of the machines. Hence, it currently looks like our algorithms are better at
least for a small number of cores and in particular for small inputs.
Somewhat disappointingly, the “improved” Algorithm Filter-Kruskal+ is always slightly

slower than Filter-Kruskal – even the moderate additional effort for including degree-one
edges never really pays off. We view this as an indication that even more complicated
algorithms like [73] are even more far from being practical than we thought.
We have performed analogous experiments for smaller and larger random graphs with

n = 1024 and n = 222 (see Figure 8.3, left). The ranking of the algorithms is similar as
before, except that for very large graphs, Filter-Kruskal consistently outperforms JP. For
small graphs, it is not astonishing that parallelization is not worthwhile. Here, pJP is the
best algorithm throughout whereas qJP performs worse than both pJP and Filter-Kruskal.

Lollipop Graphs. For lollipop graphs (see Figure 8.3, right) we see similar result as for
random graphs. The biggest difference is that qKruskal is now no better than Kruskal. JP
ourperforms sequential Filter-Kruskal for sufficiently dense graphs but not by a large margin.

Difficult Instances. For the difficult instances, we see in Figure 8.4 that qJP becomes
extremely slow, pJP and Filter-Kruskal are now somewhat worse than Kruskal, qKruskal
yields a slight improvement over Kruskal and parallel Kruskal is the best algorithm.

Random Geometric Graphs. For random geometric graphs (see Figure 8.5) with 216 nodes,
we again have similar ranking as for random graphs, except that this time Filter-Kruskal
outperforms the JP variants.

Real World Instances. Surprisingly, for the image segmentation instances shown in Fig-
ure 8.6, Filter-Kruskal is again the best algorithm. As for lollipop graphs, qKruskal performs
no better than Kruskal which is a confirmation of the intuition that this heuristics is not
very robust.

Summary. The bottom line is that Kruskal remains a good algorithm for very sparse graphs
and Filter-Kruskal and pJP contend for the best performance on more dense instances. We
tend to give preference to Filter-Kruskal for three reasons. First, it shows good performance
also for sparse graphs. Second, it is easily parallelizable, yielding a speedup of above two

99

 10

 100

 1000

 10000

 100000

 1 2 4 8 16 32 64 128 256

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8

qJP
pJP

filterKruskal

Figure 8.4.: Time per edge for graphs that are bad for JP with 216 nodes.

 10

 100

 4 8 16 32 64 128 256

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

Kruskal
qKruskal
Kruskal8
filterKruskal+
filterKruskal
filterKruskal8
qJP
pJP

Figure 8.5.: Time per edge for random geometric graphs with 216 nodes.

already on low cost servers. Third, it only requires a list of edges as its input whereas JP
needs a full fledged adjacency array. Figure 8.7 shows that building an adjacency array from
a list of edges can take an order of magnitude longer than computing the MST!8 This means
that in cases where the adjacency array is not available, Filter-Kruskal will be much faster
than JP. In contrast, building a list of edges from an adjacency array is very fast, indeed, the
times given in Figure 8.7 are overestimates because we could fuse the loops for conversion
and for the top level partitioning – scan the adjacency array and output to a partitioned
array of edges.

8We use the standard conversion algorithm that essentially performs a bucket sort on the endpoints of
the edges [105, page 169], causing ≈ 10m cache faults. For large instances, this could be somewhat
accelerated by using multipass algorithms but it is unlikely that the general picture gets reversed.

100

 4 8 16

tim
e

/ m
 [n

s]

m / n
Kruskal

qKruskal
Kruskal8

filterKruskal+

 10

 100

 4 8 16

m / n
filterKruskal

filterKruskal8
qJP
pJP

Figure 8.6.: Time per edge for two families of graphs stemming from two satelite image segmenta-
tion problems for two different resolutions (800 000 nodes on the left, 4 163 616 nodes
on the right) and different number of pixels considered in the “neighborhood” of each
pixel.

 10

 100

 1000

 2 4 8 16 32 64 27 28 29 210211212213214215216

tim
e

/ m
 [n

s]

number of edges m / number of nodes n

n=216, Edges -> Adj. Array
n=222, Edges -> Adj. Array
n=216, Adj. Array -> Edges
n=222, Adj. Array -> Edges

Figure 8.7.: Time per edge for converting between edge sequences and adjacency arrays.

8.4. Conclusions

Enhancing Kruskal’s algorithm with a simple filtering step leads to considerably improved
performance. In particular, for arbitrary graphs with random edge weights, we obtain linear
expected execution time for all but rather sparse graphs. It seems that this also applies
to edge weights occurring in some real world applications. The resulting Filter-Kruskal
algorithm not only outperforms Kruskal’s algorithm but is also competitive with the Jarńık–
Prim algorithm even for dense graph. Filter-Kruskal considerably outperforms Jarńık–Prim
if multiple cores are available or if the adjacency array is not given as part of the input.

101

The more sophisticated Filter-Kruskal+ algorithm that also includes some edges into the
MST without sorting, is interesting because it seems to yield a practical and relatively simple
algorithm with average case linear execution time. Its somewhat disappointing practical
performance might be offset in the future by more opportunities for parallelization. First
experiments indicate that its nonparallelizable component, that is union-find operations
within Kruskal -call for the base case, grows sublinearly with n (something like n0.6).

Acknowledgements.

We would like to thank Irit Katriel, Rodrigo Paredes, Dominik Schultes and Jan Wassenberg
for providing graph generators, instances, and source codes. We also thank Martin Dietzfel-
binger, Gonzalo Navarro, Rodrigo Paredes for fruitful discussions and Jyrki Katajainen for
useful comments on the original paper.

102

CHAPTER 9

Graph Matching

A matching M of a graph G = (V,E) with |V | = n, |E| = m is a subset of edges such that no
two elements of M have a common end point. Many applications require the computation of
matchings with certain properties, like being maximal (no edge can be added to M without
violating the matching property), having maximum cardinality, or having maximum total
weight

∑
e∈M w(e).

The first polynomial time maximum weight matching algorithm for general graphs is by
Edmonds and dates back to the 60s [47]. Currently the best known theoretical bound is
by Gabow [54] for general graphs, though there exist better algorithms for restricted graph
classes [93], or edge weights [55].
Although as maximum weight as maximal matching problems can be solved optimally

in polynomial time, exact algorithms are not fast enough for many applications involving
large graphs where we need near linear time algorithms. For example, the most efficient
algorithms for graph partitioning rely on repeatedly contracting maximal matchings, often
trying to maximize some edge rating function w. Refer to [68] and Chapter 10 for details
and examples. A folklore algorithm achieving 1/2-approximation ratio sorts the edges by
weight and greedily adds edges into the matching by scanning edges in decreasing order [14].
Note, that the algorithm is linear for integer edge weights. Preis [133] proposed the first
linear time 1/2-approximation algorithm for arbitrary edge weights. Drake and Hougardy
[45] designed a simple algorithm within the same runtime and approximation bounds that
they called Path Growing Algorithm (PGA) and another (2/3 − ǫ)-algorithm running in
O(n/ǫ). Sanders and Pettie developed en even simpler O(n log 1/ǫ) algorithm achieving the
same approximation ratio [132]. By combining greedy [14] with a path growing heuristic [45]
Maue and Sanders designed a Global Path Algorithm (GPA) [103], which is faster and often
better than the (2/3− ǫ) algorithm[132].
By using an idea that we expoited in our Filter-Kruskal algorithm in Chapter 8 we propose

a modification to the original GPA algorithm that allows the algorithm to avoid sorting
of edges that can not be added to the matching it constructs. Our modified algorithm

103

Filter-GPA is almost always faster than GPA and allows easy parallelization similarly to
Filter-Kruskal.
Due to the inherently sequential part of our Filter-GPA its usage for highly parallel ar-

chitectures is limited. Therefore, we turn to even simpler algorithm, a local max [66]. We
propose an approach for implementing the local max algorithm for computing matchings
that is easy to adapt to many models of computation. We show that for computing maxi-
mal matchings the algorithm needs only linear work on a sequential machine and in several
parallel models.
In Section 9.4 we show runtime benefits of our sequential and multicore Filter-GPA. We

also evaluate performance of our local max implementation on commodity Graphical Pro-
cessing Units (GPUs). Our experiments indicate that local max yields surprisingly good
quality in comparison to GPA for the weighted matching problem and runs very efficiently
as on sequential machines as on GPUs.

References. The contents of this chapter is based on the joint work with Marcel Birn,
Peter Sanders, Christian Schulz and Nodari Sitchinava [23]. Most of the wording of the orig-
inal publication is preserved. Filter-GPA part is based on unpublished work with Michael
Axtmann.

9.1. Global Path Algorithm

Algorithm 8: Pseudocode for GPA

1 GPA(E,M : Sequence of Edge, P : PathDS)
2 begin
3 P := ∅
4 Sort (E) /* by decreasing weight */

5 foreach e ∈ E do
6 if IsApplicable(e, P) then add e to P
7 end
8 foreach Path or cycle P in P do
9 M ′:= MaxWeightMatching(P)

10 M := M ∪M ′

11 end

12 end
13

14 IsApplicable(e = {u, v} : Edge, P : PathDS)
15 begin
16 return u and v are endpoints of either an odd length path P ∈ P or two different

paths P1, P2 ∈ P
17 end

The original Global Path Algorithm (GPA) [103] is given in Pseudocode in Algorithm 8.

104

Similarly to Greedy, [14] GPA sorts the edges by weight first and then adds applicable edges
into the path data structure by traversing the edges in decreasing order. A path data structure
P is a collection of paths and even length cycles. At the beginning of the algorithm we can
assume that each node of G is a singleton path. An edge e = {u, v} is called applicable if
either u and v are end points of two different paths P1 and P2 in P . Or they are endpoints
of a single odd length path in P . Having added all applicable edges into P , the algorithm
uses dynamic programming to compute an optimal maximum weight matching of P . Maue
and Sanders show that the algorithm yields approximation ratio of 1/2 for maximum weight
matching of the original graph. Since the path data structure can be implemented to support
constant updates, the running time is dominated by sorting, and thus is O(m log n).

9.1.1. Filter-GPA

Algorithm 9: Pseudocode for Filter-GPA

1 Filter-GPA(E : Sequence of Edge, P : PathDS)
2 begin
3 M := ∅
4 if m ≤ GPAThreshold(n,m) then
5 Sort (E) /* by decreasing weight */

6 foreach e ∈ E do
7 if IsApplicable(e, P) then add e to P
8 end

9 else
10 pick a pivot p ∈ E
11 E≥:= 〈e ∈ E : e ≥ p〉
12 E<:= 〈e ∈ E : e < p〉
13 Filter-GPA(E≥, P)
14 E<:= Filter(E<, P)
15 Filter-GPA(E<, P)

16 if top level of recursion then
17 foreach Path or cycle P in P do
18 M ′:= MaxWeightMatching(P)
19 M := M ∪M ′

20 end
21 return M

22 end
23

24 Filter(E : Sequence of Edge, P : PathDS)
25 begin
26 return 〈e = {u, v} ∈ E : IsApplicable(e,P)〉
27 end

105

Similarly to the Filter-Kruskal algorithm described in Chapter 8, we modify the original
GPA algorithm to avoid sorting of edges that can not be part of the matching produced by
GPA, see Algorithm 9.
If the number of edges exceeds some GPAThreashold, we either choose a random pivot edge

p and partition the input list of edges into two parts E≥ and E<. Or we sort the edges and
compute the set of paths and even cycles similar to the original GPA. Further, we recurse on
E≥. Having computed an intermediate set of paths and even length cycles P of E≥, we first
apply Filter subroutine that filters out nonapplicable edges from E< and only than recurse
on E<. In this manner, we compute the set of applicable edges P of the whole input edge list
E. Therefore we can apply dynamic programming to obtain an optimal maximum weight
matching of P , whose weight is at least 1/2 the weight of the optimal matching of the input
graph.
Note, if we use a common deterministic tie breaking for edge weights, the matchings

computed by GPA and Filter-GPA will be the same.
In Section 9.4 we show that the denser the graph is the more considerably Filter-GPA

outperforms GPA. A simple parallelization further improves its performance.

Parallelization. Some parts of GPA and Filter-GPA are easy to parallelize. This includes
sorting, partitioning and filtering. In terms of Standard Template Library (STL) these
procedures correspond to sort, partition, copy if On the other hand adding applicable edges
to P and dynamic programming are difficult to parallelize.

9.1.2. Analysis for Random Edge Weights

Let G = (V,E) be an undirected graph with random edge weights, |V | = n, |E| = m and
w = E → R. Let R be any subset of E. For simplicity we assume that all edge weights are
different, which is easy to achieve if we break ties by edge ids.

Definition 1. A set of edges S ⊆ R satisfies the path-cycle property for R if

1. S is a set of vertex disjoint paths and even-length cycles

2. S is maximal.

In this case, we say that S is a PC-Set of R or just S ∈ PC-Set (R) for short, where PC-Set (R)
is a set of sets that satisfy Definition 1.
The second property of Definition 1 means that S can not be extended by any additional

edge e ∈ R without violating the first property.
LetX≥y(X>y respectively) denote a set of edges {e ∈ X : w(e) ≥ w(y)} ({e ∈ X : w(e) > w(y)}

respectively) for some y ∈ E.

Definition 2. An edge ē ∈ E is called heavy for S ∈ PC-Set (R) if

❼ either ē ∈ S

❼ or S≥ē ∪ ē ∈ PC-Set (R≥ē ∪ ē)

106

Definition 3. S ∈ PC-Set (R) is called a heavy weight set satisfying the path-cycle prop-
erty if ∀e ∈ R \ S : e is not heavy for S.

We say that S is a HPC-Set of R or S ∈ HPC-Set (R) for short.

Lemma 7. Let {R = {e1, e2, . . . , er} ⊆ E : w(e1) > w(e2) > . . . > w(er)}.
Then for 0 ≤ i < r

Si+1 :=

e1, if i = 0;

Si ∪ ei+1, if ei+1 is heavy for Si

Si, otherwise.

is a HPC-Set of R≥ei+1
.

Proof. For simplicity let Xi denote X≥ei for X ⊆ R.
By induction on i.
Base of induction: i = 0.
R1 = {e1} and it easy to see that S1 = {e1} ∈ HPC-Set (R1).
Induction step i > 0.
If ei+1 is heavy for Si ∈ HPC-Set (Ri), then by Definition 2

Si ∪ ei+1 ∈ PC-Set (Ri+1)

Now, we prove that Si ∪ ei+1 ∈ HPC-Set (Ri+1) by contradiction

∃1 < ı̄ < i+ 1 : ēı ∈ Ri+1 \ (Si ∪ ei+1) ∧ ēı is heavy for Si ∪ ei+1

then by Definition 2,
(Si ∪ ei+1)̄ı ∪ ēı ∈ PC-Set ((Ri+1)̄ı ∪ ēı)

By inductive assumption
(Si)̄ı = Sı̄ ∈ HPC-Set (Rı̄) .

Therefore,
(Si ∪ ei+1)̄ı ∪ ēı = Sı̄ ∪ ēı ∈ PC-Set (Rı̄ ∪ ēı)

Since
ēı /∈ Si ⊇ Sı̄ ⇒ Sı̄−1 = Sı̄,

ēı is heavy for Sı̄−1 and the algorithm should have added ēı to the Sı̄−1 ⊆ Si.
A contradiction.
The last case to consider is when ei+1 is not heavy for Si.

By Definition 2
Si ∪ ei+1 /∈ PC-Set (Ri ∪ ei+1) = PC-Set (Ri+1)

Therefore Si ∈ HPC-Set (Ri) can not be extended by ei+1 on Ri+1 and, therefore, Si ∈
PC-Set (Ri+1). The fact, that Si ∈ HPC-Set (Ri+1) can be proven analogously to the previous
case.

Corollary 1. For distinct edge weights |HPC-Set (R)| = 1

107

Proof. It is clear that for distinct edge weights the sets Si are unique. In particular Sr ∈
HPC-Set (R) is unique. Assume now that

∃S̄ ⊆ R : S̄ ∈ HPC-Set (R) ∧ S̄ 6= Sr.

We prove by induction on i that S̄i = Si.
Base of induction i = 1. It is easy to show that e1 ∈ S̄. Therefore S̄1 = e1 = S1.
Assume that S̄i = Si and consider ei+1 ∈ Ri+1.

ei+1 ∈ Si+1 ⇔ ei+1 is heavy for Si ⇔ ei+1 is heavy for S̄i

⇔ S̄i ∪ ei+1 ∈ PC-Set (Ri+1)⇔ ei+1 ∈ S̄ ⇔ ei+1 ∈ S̄i+1

Corollary 2. GPA computes a set GPA ∈ HPC-Set (E).

Proof. GPA traverses the edges e ∈ E in decreasing order. Let ei ∈ E be the i-th edge in this
order. And Ei denote the set E≥ei , which is the set of traversed edges at the point of time
GPA looks at the edge ei. Since GPA never removes edges from the set GPA it constructs,
let GPAi denote the set of edges added to the GPA after considering ei.
In order to prove the claim it is sufficient to show that GPAi = Si ∈ HPC-Set (Ei) or,

equivalently, by using Lemma 7 for R = E, that GPA adds an edge ei+1 into GPA⇔ ei+1 is
heavy for Si.
This is again easy to see by induction.

The base of induction E1 = e1 is trivial.
Induction step. GPA adds an edge ei+1 to GPAi if and only if it is applicable, that is
GPAi ∪ ei+1 is a set of paths and even-length cycles. Since by the inductive hypothesis

GPAi = Si ∈ HPC-Set (Ei)

this condition is equivalent to Si∪ ei+1 ∈ PC-Set (Ei ∪ ei+1), which in turn equivalent to ei+1

being heavy for Si.

Lemma 8. ∀R ⊆ E : e ∈ E is heavy for S(1) ∈ HPC-Set (R)⇔ e ∈ S(2) ∈ HPC-Set (R ∪ e)

Proof. e ∈ S(2) ∈ HPC-Set (R ∪ e) ⇔ e was added to S
(2)
>e ∈ HPC-Set

(
(R ∪ e)>e

)
⇔ e is

heavy for S
(2)
>e = S

(1)
>e ∈ HPC-Set (R>e)⇔ e is heavy for S(1) ∈ HPC-Set (R).

Lemma 9 (Sampling Lemma). For a random R ⊆ E of size r, the expected number of
edges that are heavy for S ∈ HPC-Set (R) is < mn/r

Proof. Similar to Chan [33] we pick a random edge e ∈ E (independent of R). It suffices to
show that e is heavy for S with probability < n/r. By Lemma 8, it suffices to bound the
probability that e ∈ S ′ ∈ HPC-Set (R ∪ e).
We follow “backward analysis” approach: instead of adding an edge to R we imagine

deleting a random edge from R′ = R ∪ e. Since e is equally likely to be any of edges of S ′

and S ′ has at most n edges (if we have exactly one even length cycle), the probability that
e ∈ S ′ conditioned to fixed choice of R′ is at most n/|R′| = n/r. As this upper bound does
not depend on R′, it holds unconditionally and the result is proven.

108

Since checking if an edge is applicable and adding it to the current set of paths and even-
length cycles can be done in O(1) (corresponding to find and union operations in Lemma 4
respectively) we can formulate the following lemma, similar to Lemma 4.

Lemma 10. Let C denote the number of (edge weight) comparisons performed by Filter-
GPA. Then Filter-GPA performs expected O(n+ 3m+ C) operations.

Having established sampling lemma Lemma 9 and Lemma 10 we can formulate the following
theorem, which is again similar to Theorem 6.

Theorem 11. Given an arbitrary graph G = (V,E) with random edge weights, the expected
running time of Filter-GPA is O

(
m+ n log (n) log m

n

)
.

The proofs of Lemma 10 and Theorem 11 are completely analogous to their MST counter-
parts, therefore we omit them here.

9.2. Massively Parallel Matchings

Though our Filter-GPA algorithm allows partial parallelization, which might be already
sufficient for multicores with small number of cores, the limited parallelizability makes a
problem for massively parallel architectures like GPUs. Therefore we are forced to turn to
alternatives that would allow us to fully utilize massively parallel hardware.

Parallel matching algorithms have been widely studied. There is even a book on the
subject [79] but most theoretical results concentrate on work-inefficient algorithms. The
only linear work parallel algorithms that we are aware of are randomized CRCW PRAM
algorithms by Israeli and Itai [69] and Blelloch et al. [27]. We will call them IIM and BFSM,
respectively. IIM runs in expected O(log n) time and BFSM runs in O

(
log3 n

)
time with

high probability.

Fagginger Auer and Bisseling [13] study an algorithm similar to [69] which we call red-
blue matching (RBM) here. They implement RBM on shared memory machines and GPUs.
They prove good shrinking behavior for random graphs, however, provide no analysis for
arbitrary graphs.

Our CRCW PRAM variant of local max algorithm [66] matches the optimal asymptotic
bounds of IIM. However, our algorithm is simpler (resulting in better constant factors),
removes higher fraction of edges in each iteration (IIM’s proof shows less than 5% per
iteration, while we show at least 50%) and our analysis is a lot simpler. We also provide the
first CREW PRAM algorithm which performs linear work and runs in expected O

(
log2 n

)

time.1 (see Section 9.3). Compared to RBM, the local max implementations remove more
edges in each iteration and provide better quality results for the weighted case.

1While a generic simulation of IIM on the CREW PRAM model will result in a O
(
log2 n

)
time algorithm,

the simulation incurs O(n log n) work due to sorting.

109

9.3. Local Max

Here we consider the following simple local max algorithm [66]: Call an edge locally maximal,
if its weight is larger than the weight of any of its incident edges; for unweighted problems,
assign unit weights to the edges. When comparing edges of equal weight, use tie breaking
based on random perturbations of the edge weights. The algorithm starts with an empty
matching M . It repeatedly adds locally maximal edges to M and removes their incident
edges until no edges are left in the graph. The result is obviously a maximal matching
(every edge is either in M or it has been removed because it is incident to a matched edge).
The algorithm falls into a family of weighted matching algorithms for which Preis [133]
shows that they compute a 1/2-approximation of the maximum weight matching problem.
Hoepman [66] derives the local max algorithm as a distributed adaptation of Preis’ idea.
Based on this, Manne and Bisseling [100] devise sequential and parallel implementations.
They prove that the algorithm needs only a logarithmic number of iterations to compute
maximal matchings by noticing that a maximal matching problem can be translated into a
maximal independent set problem on the line graph which can be solved by Luby’s algorithm
[94]. However, this does not yield an algorithm with linear work since it is not proven that the
edge set indeed shrinks geometrically.2 Manne and Bisseling also give a sequential algorithm
running in time O(m log∆) where ∆ is the maximum degree. On a NUMA shared memory
machine with 32 processors (SGI Origin 3800) they get relative speedup < 6 for a complete
graph and relative speedup ≈ 10 for a more sparse graph partitioned with Metis. Since this
graph still has average degree ≈ 200 and since the speedups are not impressive, this is a
somewhat inconclusive result when one is interested in partitioning large sparse graphs on a
larger number of processors.
Our central observation is:

Lemma 12. [23] Each iteration of the local max algorithm for the unit weight case removes
at least half of the edges in expectation.

Yves et al. [175] uses a similar proof technique to define “preemptive removal” of nodes
for distributed maximal independent set problem.
Assume now that each iteration can be implemented to run with work linear in the number

of surviving edges (independent of the number of nodes). Working naively with the expec-
tations, this gives us a logarithmic number of rounds and a geometric sum leading to linear
total work for computing a maximal matching. This can be made rigorous by distinguishing
good rounds with at least m/4 matched edges and bad rounds with less matched edges. By
Markov’s inequality, we have a good round with constant probability. This is already suffi-
cient to show expected linear work and a logarithmic number of expected rounds. We skip
the details since this is a standard proof technique and since the resulting constant factors
are unrealistically conservative. An analogous calculation for median selection can be found
in [105, Theorem 5.8]. One could attempt to show a shrinking factor close to 1/2 rigorously
by showing that large deviations (in the wrong direction) from the expectation are unlikely

2Manne and Bisseling show such a shrinking property under an assumption that unfortunately does not
hold for all graphs.

110

(e.g., using Martingale tail bounds). However this would still be a factor two away from the
more heuristic argument in Footnote 4 and thus we stick to the simple argument.
There are many ways to implement an iteration which of course depend on the considered

model of computation.

9.3.1. Sequential Model

For each node v maintain a candidate edge C[v], originally initialized to a dummy edge
with zero weight. In an iteration go through all remaining edges e = {u, v} three times.
In the first pass, if w(e) > w(C[u]) set C[u]:= e (add random perturbation to w(e) in case
of a tie). If w(e) > w(C[v]) set C[v]:= e. In the second pass, if C[u] = C[v] = e put e
into the matching M . In the third pass, if u or v is matched, remove e from the graph.
Otherwise, reset the candidate edge of u and v to the dummy edge. Note that except for
the initialization of C which happens only once before the first iteration, this algorithm has
no component depending on the number of nodes and thus leads to linear running time in
total if Lemma 12 is applied.

9.3.2. CRCW PRAM Model.

In the most powerful variant of the Combining CRCW PRAM that allows concurrent writes
with a maximum reduction for resolving write conflicts, the sequential algorithm can be
parallelized directly running in constant time per iteration using m processors.

9.3.3. MapReduce Model.

The CRCW PRAM result together with the simulation result of Goodrich et al. [61] imme-
diately implies that each iteration of local max can be implemented in O(logM n) rounds
and O(m logM n) communication complexity in the MapReduce model, where M is the size
of memory of each compute node. Since typical compute nodes in MapReduce have at least
Ω(mǫ) memory [77], for some constant ǫ > 0, each iteration of local max can be performed
in MapReduce in constant rounds and linear communication complexity.

9.3.4. External Memory Models.

Using the PRAM emulation techniques for algorithms with geometrically decreasing input
size from [36, Theorem 3.2] the above algorithm can be implemented in the external mem-
ory [3] and cache-oblivious [52] models in O(sort(m)) I/O complexity, which seems to be
optimal.

9.3.5. O
(
log2 n

)
work-optimal CREW solution

In this section, we present a O
(
log2 n

)
CREW PRAM algorithm, which incurs only O(m)

work.

111

Consider the following representation of the graph G = (V,E). Let V be a totally ordered
set, i.e., given two vertices u, v ∈ V we can uniquely determine whether u < v or not. Let e
be an array of undirected edges with each entry e[k] storing all the information of a single
edge {u, v} ∈ E, i.e., vertex endpoints u and v, its weight or any other auxiliary data. Let A
be an array of tuples (v, ek), where v ∈ V and ek is the pointer to e[k] representing the edge
{u, v}. Let A be sorted by the first entry, i.e. all tuples (v, ek) pointing to the edges incident
on the same vertex v are in contiguous space in A.
Note that any edge e[k] = {u, v} contains two corresponding entries in A pointing to it:

(u, ek) and (v, ek). During our algorithm, a processor responsible for (u, ek) might need
to find and update entry (v, ek) (and vice versa). The following lemma describes how to
compute for each entry (u, ek) the index of the corresponding entry (v, ek) in A.

Lemma 13. For every edge e[k] = {u, v} entries A[i] = (u, ek) and A[j] = (v, ek) of A can
compute each other’s index in A in O(1) time and O(|A|) work in the CREW PRAM model.

Lemma 14. Using our graph representation, each node v in the graph can apply an associa-
tive operator ⊕ to all edges incident on v in O(log |A|) time and O(|A|) work on the CREW
PRAM model.

Now we are ready to describe the solution to the matching problem. We perform the
following in each phase of the local max algorithm.

1. Each edge e[k] picks a random weight wk.

2. Using Lemma 14, each vertex v identifies k′ such that e[k′] is the heaviest edge incident
on v by applying the associative operator max to the edge weights picked in the
previous step.

3. Using Lemma 13, each entry (v, ek′) checks if e[k
′] = {u, v} is also the heaviest incident

edge on u. If so, the smaller of u and v adds ek′ to the matching and sets the deletion
flag f = 1 on e[k′].

4. Using Lemma 14, each entry (v, ek′) spreads the deletion flag over all edges incident
on v by applying max associative operator on the deletion flags of incident edges on v.
Thus, if at least one edge incident on v was added to the matching, all edges incident
on v will be marked for deletion.

5. Now we must prepare the graph representation for the next phase by removing all
entries of e and A marked for deletion, compacting e and A and updating the pointers
of A to point to the compacted entries of e. To perform the compaction, we compute
for each entry e[k], how many entries e[i] and A[i], i ≤ k must be deleted. This can be
accomplished using parallel prefix sums on the deletion flags of each entry in e and A.
Let the result of prefix sums for edge e[k] be dk and for entry A[i] be ri. Then k − dk
is the new address of the entry e[k] and i− ri is the new address of A[i] once all edges
marked for deletion are removed.

112

6. Each entry e[k] that is not marked for deletion copies itself to e[k − dk]. The corre-
sponding entry (v, ek) ∈ A updates itself to point to the new entry e[k−dk], i.e., (v, ek)
becomes (v, ek−dk), and copies itself to A[i− ri].

The algorithm defines a single phase of the local max algorithm. Each step of the phase
takes at most O(|A|) = O(m) work and O(log |A|) = O(logm) = O(log n) time in the CREW
PRAM model. Over O(logm) phases, each with geometrically decreasing number of edges,
the local max algorithm takes overall O

(
log2 n

)
time and O(m) work in the CREW PRAM

model.

9.4. Implementation and Experimental Study

We now report experiments focusing on computing approximate maximum weight matchings.
We consider the following families of inputs, where the first two classes allow comparison
with the experiments from [103].

Delaunay Instances are created by randomly choosing n = 2x points in the unit square
and computing their Delaunay triangulation. Edge weights are Euclidean distances.

Random graphs with n := 2x nodes, αn edges for α = {4, 16, 64}, and random edge weight
chosen uniformly from [0, 1].

Random geometric graphs with 2x nodes (rggx). Each vertex is a random point in the
unit square and edges connect vertices whose Euclidean distance is below 0.55 lnn/n. This
threshold was chosen in order to ensure that the graph is almost connected.

Florida Sparse Matrix. Following [13] we use 126 symmetric non-0/1 matrices from [39]
using absolute values of their entries as edge weights, see Table A.1 in Appendix A for the
full list. The number of edges of the resulting graphs m ∈ (0.5 . . . 16)× 106.
We compare implementations of local max, the red-blue algorithm from [13] (RBM) (their

implementation), heavy edge matching (HEM) [80], greedy, the global path algorithm (GPA)
[103], and Filter-GPA described in Algorithm 9. HEM iterates through the nodes (optionally
in random order) and matches the heaviest incident edge that is nonadjacent to a previously
matched edge. The greedy algorithm sorts the edges by decreasing weights, scans them and
inserts edges connecting unmatched nodes into the matching.
All GPA algorithms use gcc sort routine for sorting edges. All other Algorithms involving

sorting use standard STL Visual Studio 2010 sort routine.
Sequential and shared-memory parallel experiments were performed on a platform C

with a commodity GPU with the configuration D, see Section 3.2. Since our GPA imple-
mentation include parallel sorting we compiled all GPA implementation in 64-bit Ubuntu
Linux 10.04 using gcc 4.7 in parallel mode with the maximum optimization level. We com-
piled all other implementations using CUDA 4.2 and Microsoft Visual Studio 2010 on 64-bit
Windows 7 Enterprise with maximum optimization level.

113

9.4.1. Sequential Speed and Quality

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

217 218 219 220 221 222

w
ei

gh
t r

at
io

 to
 G

P
A

local max
Greedy

HEM (random)
HEM (original)

RBM

 8

 16

 32

 64

 128

 256

217 218 219 220 221 222

tim
e

pe
r

ed
ge

 [n
s]

RBM
GPA

Greedy
local max

HEM (random)
HEM (original)

Filter-GPA

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

217 218 219 220 221

w
ei

gh
t r

at
io

 to
 G

P
A

nodes

 4

 8

 16

 32

 64

 128

 256

217 218 219 220 221

tim
e

pe
r

ed
ge

 [n
s]

nodes

Figure 9.1.: Ratio of the weights computed by GPA and other algorithms (left) for Delaunay (top),
random geometric graph (bottom) instances and the running times (right).

We compare solution quality of the algorithms relative to GPA. Via the experiments in
[103] this also allows some comparison with optimal solutions, which are only a few percent
better there. Figure 9.1 (top) shows the quality for Delaunay graphs (where GPA is about
5 % from optimal [103]). We see that local max achieves almost the same quality as greedy
which is only about 2 % worse than GPA. HEM, possibly the fastest nontrivial sequential
algorithm is about 13 % away while RBM is 14 % worse than GPA, i.e., HEM and RBM
almost double the gap to optimality of local max. Looking at the running times, we see
that HEM is the fastest (with a surprisingly large cost for actually randomizing node orders)
followed by local max, greedy, Filter-GPA, GPA, and RBM. From this it looks like HEM,
local max, and Filter-GPA are the winners in the sense that none of them is dominated
by another algorithm with respect to both quality and running time. Greedy has similar
quality as local max but takes somewhat longer and is not so easy to parallelize. RBM as
a sequential algorithm is dominated by all other algorithms. Perhaps the most surprising
thing is that RBM is fairly slow. This has to be taken into account when evaluating reported

114

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

215 216 217 218

w
ei

gh
t r

at
io

 to
 G

P
A

 8

 16

 32

 64

 128

 256

 512

215 216 217 218

tim
e

pe
r

ed
ge

 [n
s]

RBM
GPA

Greedy
local max

HEM (random)
HEM (original)

Filter-GPA

 0.94

 0.945

 0.95

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

215 216 217 218

w
ei

gh
t r

at
io

 to
 G

P
A

 4

 8

 16

 32

 64

 128

 256

215 216 217 218

tim
e

pe
r

ed
ge

 [n
s]

 0.978

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

215 216 217 218

w
ei

gh
t r

at
io

 to
 G

P
A

nodes

 4

 8

 16

 32

 64

 128

 256

215 216 217 218

tim
e

pe
r

ed
ge

 [n
s]

nodes

Figure 9.2.: Ratio of the weights computed by GPA and other algorithms (left) for Random Graph
instances instances with m = 4n (top), m = 16n (middle), m = 64n (bottom) and the
running times (right).

115

speedups. We suspect that a more efficient implementation is possible but do not expect
that this changes the overall conclusion.
Almost the same behaviour we observe for random geometric graphs Figure 9.1 (bottom),

though our Filter-GPA already outperforms greedy. The denser the graph is, the more
efficient is the Filter-GPA heuristic. Indeed, for random graphs with m = 16n Filter-GPA
outperforms local max already. While for m = 64n it is more than factor two faster than
the local max and factor 4 than the original GPA algorithm, see Figure 9.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

219 220 221 222 223

w
ei

gh
t r

at
io

 to
 G

P
A

edges

local max
Greedy

RBM
HEM (random)

 0

 50

 100

 150

 200

 250

 300

 350

 400

219 220 221 222 223

tim
e

pe
r

ed
ge

 [n
s]

edges

GPA
local max

Greedy
Filter-GPA

Figure 9.3.: Ratio of the weights computed by GPA and other sequential algorithms for sparse
matrix instances and running time.

Looking at the wide range of instances in the Florida Sparse Matrix collection leads to
similar but more complicated conclusions. Figure 9.3 shows the solution qualities for greedy,
local max, RBM and HEM relative to GPA. RBM and even more so HEM shows erratic
behavior with respect to solution quality. Greedy and local max are again very close to
GPA and even closer to each other although there is a sizable minority of instances where
greedy is somewhat better than local max. Looking at the corresponding running times one
gets a surprisingly diverse picture. HEM which is again fastest and RBM which is again
dominated by local max are not shown. There are instances where local max is considerably
faster then greedy and vice versa. A possible explanation is that greedy becomes quite fast

116

 2

 4

 8

 16

 32

 64

 128

 256

217 218 219 220 221 222

T
im

e
pe

r
ed

ge
 [n

s]

nodes

GPA
local max

RBM 4 cores
RBM GPU

local max GPU
GPA4

Filter-GPA
Filter-GPA4

 2

 4

 8

 16

 32

 64

 128

 256

217 218 219 220 221

T
im

e
pe

r
ed

ge
 [n

s]

nodes

GPA
local max

RBM 4
RBM GPU

local max GPU
GPA 4

Filter-GPA
Filter-GPA 4

Figure 9.4.: Time per edge of sequential, multicore and GPU algorithms for Delaunay(left) and
random geometric graph (right) instances.

when there is only a small number of different edge weights since then sorting is quite an
easy problem. Filter-GPA performance on the other hand seems to be the most stable. It
often outperforms all algorithms. The reason is that if there are small number of different
edges, sorting involved in Filter-GPA is fast similar to greedy. If there are many different
edges, filtering helps to avoid extensive resorting. In some sense it combines the best of both
worlds. The only case, when Filter-GPA performs worse is when the graph is sparse making
filtering not effective.

9.4.2. GPU Implementation

Our GPU algorithm is a fairly direct implementation of the CRCW algorithm. We re-
duce the algorithm to the basic primitives such as segmented prefix sum, prefix sum and
random gather/scatter from/to GPU memory. As a basis for our implementation we use
back40computing library by Merrill [106].

Figure 9.4 compares the running time of sequential implementations of GPA, Filter-GPA,
local max, RBM, as well as multicore versions of GPA, Filter-GPA, and RBP algorithm
parallelized for 4 cores. We also include GPU parallelization from [13] and our GPU im-
plementation of local max. While the RBM CPU multicore implementation has troubles
recovering from its sequential inefficiency and is only slightly faster than even sequential
local max, the GPU implementation is impressively fast in particular for small graphs. For
large graphs, the GPU implementation of local max is faster. Since local max has better
solution quality, we consider this a good result. For Delaunay graphs our GPU code is up
to 35 times faster than sequential local max. The results for rgg are slightly worse for GPU
local max – speedup is up to 24 over sequential local max and a speed advantage over GPU
RBM only for the very largest inputs. The Filter-GPA algorithm seems to be the fastest
multicore implementation and has the best quality for all graphs besides sparse Delaunay
instances. We may also be able to learn from the implementation techniques of RBM GPU

117

 4

 8

 16

 32

 64

 128

 256

215 216 217 218

T
im

e
pe

r
ed

ge
 [n

s]

GPA
local max

RBM 4 cores
RBM GPU

local max GPU
GPA4

Filter-GPA
Filter-GPA4

 2

 4

 8

 16

 32

 64

 128

 256

215 216 217 218

T
im

e
pe

r
ed

ge
 [n

s]

 2

 4

 8

 16

 32

 64

 128

 256

215 216 217 218

T
im

e
pe

r
ed

ge
 [n

s]

nodes

Figure 9.5.: Time per edge of sequential, multicore and GPU algorithms for random graph instances
with m = 4n (top), m = 16n (middle) and m = 64n (bottom)

for small inputs in future work.

For random graphs, we get similar behavior. The denser the graph the larger is our speedup

118

over the sequential and GPU RBM implementations. for α = 64 our implementation is faster
than GPU RBM already for n = 215. For n = 218 it is 65% faster than GPU RBM and 30
times faster than the sequential local max.
Our Filter-GPA implementation is also the most efficient for α = 64. Thus, the sequential

Filter-GPA already outperforms multicore RBM. While the parallel one, is less than a factor
4 slower than our GPU implementation.

9.5. Conclusions And Future Work

The local max algorithm is a good choice for massively parallel or external computation
of maximal and approximate maximum weight matchings. On the theoretical side it is
provably efficient for computing maximal matchings and guarantees a 1/2-approximation.
On the practical side it yields better quality at faster speed than several competitors including
the greedy algorithm and RBM. The Filter-GPA algorithm currently seems to be the best
algorithm for sequential and multicore machines. It delivers the best quality and performs
very well for not too sparse graphs.

119

CHAPTER 10

Graph Partitioning

Many important applications of computer science involve processing large graphs, e.g., stem-
ming from finite element methods, digital circuit design, route planning, social networks, etc.
Very often these graphs need to be partitioned or clustered such that there are few edges
between the blocks (pieces).
Consider an undirected graph G = (V,E, c, ω) with edge weights ω : E → R>0, node

weights c : V → R≥0, n = |V |, andm = |E|. We extend c and ω to sets, i.e., c(V ′):=
∑

v∈V ′ c(v)
and ω(E ′):=

∑
e∈E′ ω(e). Γ(v):= {u : {v, u} ∈ E} denotes the neighbors of v.

We are looking for blocks of nodes V1,. . . ,Vk that partition V , i.e., V1 ∪ · · · ∪ Vk = V and
Vi∩Vj = ∅ for i 6= j. The balancing constraint demands that ∀i ∈ 1..k : c(Vi) ≤ Lmax:= (1+
ǫ)c(V)/k+maxv∈V c(v) for some parameter ǫ. The last term in this equation arises because
each node is atomic and therefore a deviation of the heaviest node has to be allowed. The
objective is to minimize the total cut

∑
i<j w(Eij) where Eij:= {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}.

References. The contents of this chapter is based on the joint work with Peter Sanders
[126]. Most of the wording of the original publication is preserved.

10.1. Multilevel Graph Partitioning

A successful heuristic for partitioning large graphs is the multilevel graph partitioning ap-
proach (MGP) depicted in Figure 10.1 where the graph is recursively contracted to a smaller
graph with the same basic structure.
After applying an initial partitioning algorithm to this small graph, the contraction is

undone and, at each level, a local refinement method improves the partition induced by the
coarser level.
By default, our initial inputs will have unit edge and node weights. However, even those

will be translated into weighted problems in the course of the algorithm.

120

input
graph

match

... ...
local improvement

partitioning

initial
uncontractcontract

output
partitionc

o
n
tra

c
tio

n
 p

h
a
s
e

re
fi
n
e
m

e
n
t
p
h
a
s
e

Figure 10.1.: Multilevel graph partitioning.

Contracting an edge {u, v} simply means replacing the nodes u and v by a new node x
connected to the former neighbors of u and v. We set c(x) = c(u) + c(v). If replacing edges
of the form {u, w} , {v, w} would generate two parallel edges {x, w}, we insert a single edge
with ω({x, w}) = ω({u, w}) + ω({v, w}).
Uncontracting an edge e undoes its contraction. Partitions computed for the contracted

graph are extrapolated to the uncontracted graph in the obvious way, i.e., u and v are put
into the same block as x.

Local Refinement is done by moving single nodes between blocks. The gain gB(v) of
moving node v to block B is decrease in total cut size caused by this move. For example, if
v has 5 incident edges of unit weight, 2 of which are inside v’s block and 3 of which lead to
block b then gB(v) = 3− 2 = 1.

Most systems instantiate MGP in a very similar way: Maximal matchings are contracted
between two levels that try to include as many heavy edges as possible. Local refinement
uses a linear time variant of local search. MGP has two crucial advantages over most other
approaches to graph partitioning: We get near linear execution time since the graph shrinks
geometrically and we get good partitioning quality since a good solution on some level yields
a good initial solution on the next finer level, i.e., local search needs little work to further
improve the solution.

Our central idea is to get even better partitions by making subsequent levels as similar as
possible – we (un)contract only a single edge between two levels. We call this n-GP since
we have (almost) n levels of hierarchy. More details are described in Section 10.2. n-GP
has the additional advantage that there is no longer a need for an algorithm finding heavy
matchings. This is remarkable insofar as a considerable amount of work on approximate
maximum weight matching was motivated by the MGP application [45, 103, 132, 133]. Still,
at first glance, n-GP seems to have substantial disadvantages also. Firstly, storing each level
explicitly would lead to quadratic space consumption. We avoid this by using a dynamic
graph data structure with little space overhead. Secondly, choosing maximal matchings
instead of just a single edge for contraction has the side effect that the graph is contracted
everywhere, leading to a more uniform distribution of node weights. We solve this problem
by explicitly factoring node weights into the edge rating function prioritizing the edges to

121

be contracted. Already in [67, 68] edge ratings have proven to lead to better results for
graph partitioning. Perhaps the most serious problem is that the most common approach
to local search is to let it run for a number of steps proportional to the current number of
nodes. In the context of n-GP this could lead to a quadratic overall number of local search
steps. Therefore, we develop a new, more adaptive stopping criteria for the local search that
drastically accelerates n-GP without significantly reducing partitioning quality.

We have implemented n-GP in the graph partitioner KaSPar (Karlsruhe Sequential Parti-
tioner). Experiments reported in Subsection 10.2.3 indicate that KaSPar scales well to large
networks, computes the best known partitions for many instances of a “standard bench-
mark” and needs time comparable to system that previously computed the best results for
large networks. Section 10.3 summarizes the results and discusses future directions.

Related Work

There has been a huge amount of research on graph partitioning so that we refer to in-
troductory and overview papers such as [50, 80, 150, 171] for more material. Well-known
software packages based on MGP are Chaco [65], DiBaP [113], Jostle [170, 171], Metis [81,
82], Party [134, 135], and Scotch [129, 130].

KaSPar was developed partly in parallel with KaPPa (Karlsruhe Parallel Partitioner) [68].
KaPPa is a “classical” matching based MGP algorithm designed for scalable parallel execu-
tion and its local search only considers independent pairs of blocks at a time. Still, for k = 2,
its interesting to compare KaSPar and KaPPa since KaPPa achieves the previously best par-
titioning results for many large graphs, since both systems use a similar edge ratings, and
since running times for a two processor parallel code and a sequential code could be expected
to be roughly comparable. Since our implementation of KaSPar Schulz and Sanders further
improved their partitioner by using max-flow min-cut computations in KaFFPa (Karlsruhe
Fast Flow Partitioner) [144]. They also developed its distributed evolutionary version [143]
and developed a special algorithm for perfectly balanced graph partitioning problem [145].

There is a long tradition of n-level algorithms in geometric data structures based on
randomized incremental construction (e.g, [24, 63]). Our motivation for studying n-level
are contraction hierarchies [58], a preprocessing technique for route planning that is at the
same time simpler and an order of magnitude more efficient than previous techniques using
a small number of levels.

10.2. n-Level Graph Partitioning

Algorithm 10 gives a high-level recursive summary of n-GP. The base case is some other
partitioner used when the graph is sufficiently small. In KaSPar, contraction is stopped
when either only 20k nodes remain, no further nodes are eligible for contraction, or there are
less edges than nodes left. The latter happens when the graph consists of many independent
components. As observed in [68] Scotch [130] produces better initial partitions than metis,
and therefore we also use it in KaSPar .

122

Algorithm 10: n-GP

1 n-GP(G, k, ǫ)
2 begin
3 if G is small then
4 return initialPartition(G, k, ǫ)
5 pick the edge e = {u, v} with the highest rating
6 contract e
7 P := n-GP(G, k, ǫ)
8 uncontract e
9 activate(u), activate(v), localSearch()

10 return P
11 end

The edges to be contracted are chosen according to an edge rating function. KaSPar
adopts the rating function

expansion∗({u, v}):= ω({u, v})
c(u)c(v)

which fared best in [68]. As a further measure to avoid unbalanced inputs to the initial
partitioner, KaSPar never allows a node v to participate in a contraction if the weight of v
exceeds 1.5n/(20k). Selecting contracted edges can be implemented efficiently by keeping
the contractable nodes in a priority queue sorted by the rating of their most highly rated
incident edge.
In order to make contraction and uncontraction efficient, we use a “semidynamic” graph

data structure: When contracting an edge {u, v}, we mark both u and v as deleted, introduce
a new node w, and redirect the edges incident to u and v to w. The advantage of this
implementation is that edges adjacent to a node are still stored in adjacency arrays which
are more efficient than linked lists needed for a full fledged dynamic graph data structure. A
disadvantages of our approach is a certain space overhead. However, it is relatively easy to
show that this space overhead is bounded by a logarithmic factor even if we contract edges in
some random fashion (see [43]). In Subsection 10.2.3 we will demonstrate experimentally that
the overhead is actually often a small constant factor. Indeed, this is not very surprising since
the edge rating function is not random, but designed to keep the contracted graph sparse.
Overall, with respect to asymptotic memory overhead, n-GP is no worse than methods with
a logarithmic number of levels.

10.2.1. Local Search Strategy

Our local search strategy is similar to the FM-algorithm [49] that is also used in many other
MGP systems. We now outline our variant and then discuss differences.
Originally, all nodes are unmarked. Only unmarked nodes are allowed to be activated

or moved from one block to another. Activating a node v ∈ B′ means that for blocks

123

{B 6= B′ : ∃ {v, u} ∈ E ∧ u ∈ B} we compute the gain

gB(v) =
∑
{ω({v, u}) : {v, u} ∈ E, v ∈ B} −

∑
{ω({v, u}) : {v, u} ∈ E, v ∈ B′}

of moving v to block B. Node v is then inserted into the priority queue PB using gB(v)
as the priority. We call a queue PB eligible if the highest gain node in Pb can be moved
to block B without violating the balance constraint for block B. Local search repeatedly
looks for the highest gain node v in any eligible priority queue PB and moves v to block B.
When this happens, node v becomes nonactive and marked, the unmarked neighbors of v
get activated and the gains of the active neighbors are updated. The local search is stopped
if either no eligible nonempty queues remain, or one of the stopping criteria described below
applies. After the local search stops, it is rolled back to the lowest cut state reached during
the search (which is the starting state if no improvement was achieved). Subsequently all
previously marked nodes are unmarked. The local search is repeated until no improvement
is achieved.
The main difference to the usual FM-algorithm is that our routine performs a highly

localized search starting just at the uncontracted edge. Indeed, our local search does nothing
if none of the uncontracted nodes is a border node, i.e., has a neighbor in another block. Other
FM-algorithms initialize the search with all border nodes. In n-GP the local search may find
an improvement quickly after moving a small number of nodes. However, in order to exploit
this case, we need a way to stop the search much earlier than previous algorithms which
limit the number of steps to a constant fraction of the current number of nodes |V |.

Stopping Using a Random Walk Model. It makes sense to make a stopping rule more
adaptive by making it dependent on the past history of the search, e.g., on the difference
between the current cut and the best cut achieved before.
We model the gain values in each step as identically distributed, independent random

variables whose expectation µ and Variance σ2 is obtained from the previously observed p
steps. Then in the next s steps, we can expect a deviation from the expectation (p+ s)µ by
something of the order

√
sσ2. The expression (p + s)µ +

√
sσ2 is maximized for s∗:= σ2

4µ2 .

Now the idea is to stop when for some tuning parameter x, (p + s∗)µ + x
√
s∗σ2 > 0,

i.e., it is reasonably likely that a random walk modelling our local search can still give an
improvement. This translates to the condition p > σ2

µ2 (
x
2
− 1

4
) or simply pµ2 ≫ σ2.

Thus, we can derive that it is unlikely that the local search will produce a better cut if

pµ2 > ασ2 + β (10.1)

where α and β are tuning parameters. Parameter β is a base value that avoids stopping just
after a small constant number of steps that happen to have small variance. Currently we set
it to lnn.

10.2.2. Trial Trees

It is a standard technique in optimization heuristics to improve results by repeating various
parts of the algorithm. We generalize several approaches used in MGP by adapting an idea

124

initially used in a fast randomized min-cut algorithm [74]: After reducing the number of
nodes by a factor c, we perform two independent trials using different random seeds for tie
breaking during contraction, initial partitioning, and local search. Among these trials the
one with the smaller cut is used for continuing upwards. This way, we perform independent
trials at many levels of contraction controlled by a single tuning parameter c. As long as
c > 2, the total number of contraction steps performed stays O(n).

10.2.3. Experimental Study

Implementation. We implemented KaSPar in C++ using gcc-4.3.2. We use priority queues
based on paring heaps [164] available in the policy-based elementary data structures library
(pb ds) for implementing contraction and refinement procedures. In the following experi-
mental study we compared KaSPar to Scotch 5.1, kMetis 4.0 and the same version of KaPPa
as in [68].

System. We performed our experiments on a single core the platform E, see Section 3.2
running Suse Linux Enterprise 10.

Instances. We report results on two suites of instances summarized in Table 10.1. rggX is
a random geometric graph with 2X nodes that represent random points in the unit square
and edges connect nodes whose Euclidean distance is below 0.55

√
lnn/n. This threshold

was chosen in order to ensure that the graph is almost connected. DelaunayX is the De-
launay triangulation of 2X random points in the unit square. Graphs bcsstk29..fetooth and
ferotor..auto come from Chris Walshaw’s benchmark archive [161]. Graphs bel, nld, deu and
eur are undirected versions of the road networks of Belgium, the Netherlands, Germany,
and Western Europe respectively, used in [40]. Instances af shell9 and af shell10 come from
the Florida Sparse Matrix Collection [39]. coAuthorsDBLP, coPapersDBLP, citationCiteseer,
coAuthorsCiteseer and cnr2000 are examples of social networks taken from [57].
For the number of partitions k we choose the values used in [161]: 2, 4, 8, 16, 32, 64. Our

default value for the allowed imbalance is 3 % since this is one of the values used in [161]
and the default value in Metis.
When not otherwise mentioned, we perform 10 repetitions for the small networks and 5

repetitions for the other. We report the arithmetic average of computed cut size, running
time and the best cut found. When further averaging over multiple instances, we use the
geometric mean in order to give every instance the same influence on the final figure.

Configuring the Algorithm. We use two sets of parameter settings fast and strong. These
methods only differ in the constant factor α in the local search stopping rule, see Equa-
tion (10.1) in the contraction factor c for the trial tree (Subsection 10.2.2), and in the
number of initial partitioning attempts a performed at the coarsest level of contraction:

strategy α c a
fast 1 8 25/ log2 k
strong 4 2.5 100/ log2 k

125

Table 10.1.: Basic properties of the graphs from our benchmark set. The large instances are split
into five groups: geometric graphs, FEM graphs, street networks, sparse matrices, and
social networks. Within their groups, the graphs are sorted by size.

Medium sized instances
graph n m
rgg17 217 1 457 506
rgg18 218 3 094 566
Delaunay17 217 786 352
Delaunay18 218 1 572 792
bcsstk29 13 992 605 496
4elt 15 606 91 756
fesphere 16 386 98 304
cti 16 840 96 464
memplus 17 758 108 384
cs4 33 499 87 716
pwt 36 519 289 588
bcsstk32 44 609 1 970 092
body 45 087 327 468
t60k 60 005 178 880
wing 62 032 243 088
finan512 74 752 522 240
ferotor 99 617 662 431
bel 463 514 1 183 764
nld 893 041 2 279 080
af shell9 504 855 17 084 020

Large instances
graph n m
rgg20 220 13 783 240
Delaunay20 220 12 582 744
fetooth 78 136 905 182
598a 110 971 1 483 868
ocean 143 437 819 186
144 144 649 2 148 786
wave 156 317 2 118 662
m14b 214 765 3 358 036
auto 448 695 6 629 222
deu 4 378 446 10 967 174
eur 18 029 721 44 435 372
af shell10 1 508 065 51 164 260
Social networks
coAuthorCiteseer 227 320 1 628268
coAutorhDBLP 299 067 1 955 352
cnr2000 325 557 3 216 152
citationCiteseer 434 102 32 073 440
coPaperDBLP 540 486 30 491 458

Note that this are considerably less parameters compared to KaPPa. In particular, there
is no need for selecting a matching algorithm, an edge coloring algorithm, or global and local
iterations for refinement.

Scalability. Figure 10.2 shows the number of edges touched during contraction (KaSPar
strong, small and large instances). We see that this scales linearly with the number of input
edges and with a fairly small constant factor between 2 and 3. Interestingly, the number of
local search steps during local improvement (Figure 10.3) decreases with increasing input
size. This can be explained by the sublinear number of border vertices that we have in graphs
that have small cuts and by small average search space sizes for the local search. Indeed,
Figure 10.4 indicates that the average length of local searches grows only logarithmically
with n. All this translates into fairly complicated running time behavior. Still, Figure 10.5
warrants the conclusion that running time scales “near linearly” with the input size.1 The

1This may not apply to the social networks which have considerably worse behavior.

126

 1

 2

 3

 4

 5

104 105 106 107 108

m
em

or
y

ov
er

he
ad

m

Figure 10.2.: Number of edges created during contraction.

 0.1

 1

 10

 100

 1000

104 105 106 107

lo
ca

l s
ea

rc
h

st
ep

s
/ n

n

k=64
k=32
k=16
k=8
k=4
k=2

Figure 10.3.: Total number of local search steps. The nearly straight lines represent series for the
graphs rgg15..rgg24 and Delaunay15..Delaunay24 for different k.

127

 0

 2

 4

 6

 8

 10

104 105 106 107

av
g

lo
ca

l s
ea

rc
h

st
ep

s
/ l

n(
n)

n

k=64
k=32
k=16
k=8
k=4
k=2

Figure 10.4.: Average length of local searches.

 1

 10

 100

 1000

 10000

104 105 106 107

ru
nn

in
g

tim
e

/ m
 [µ

s]

m

k=64
k=32
k=16
k=8
k=4
k=2

Figure 10.5.: Running Time.

term in the running time depending on k grows sublinearly with the input size so that for
very large graphs the number of blocks does not matter much.

Does the Random Walk Model Work? We have compared KaSPar fast with a variant
where the stopping rule is disabled (i.e., α =∞). For the small instances this yields about 1
% better cut sizes at the cost of an order of magnitude larger running time. This is a small
improvement both compared to the improvement KaSPar achieves over other systems and
compared to just repeating KaSPar fast 10 times (see Table 10.2).

Do Trial trees help? We use the following evaluation: We run KaSPar strong and measure
its elapsed time. Then for different values of initial partitionings a we repeat KaSPar strong
without trial trees(c = 0), until the sum of the run times of all repetitions exceeds the run
time of KaSPar strong. Than for different values a we compare the best edge cut achieved
during repeated runs to the one produced by KaSPar strong. Finally, we average the obtained
results over 5 repetitions of this procedure. If we then quality the computed partitions, we

128

usually get almost identical results (a fraction of a percent difference). However, most of the
time trial trees are a bit better and for road networks we get considerable improvements.
For example, for the European network we get an improvement of 10 % on average over all
k.

Comparison with other Systems. Table 10.2 summarizes the results by computing geo-
metric means over 10 runs for the small instances and over 5 runs for the large instances
and social networks. We exclude the European road network for k = 2 because KaPPa runs
out of memory in that case. Detailed per instance results can be found in the Appendix A,
Tables A.2 and A.3. KaPPa strong produces 5.9 % larger cuts than KasPar strong for small
instances (average value) and 8.1 % larger cuts for the large instances. This comparison
might seem a bit unfair because KaPPa is about five times faster. However, KaPPa is using
k processors in parallel. Indeed, for k = 2 KaSPar strong needs only about twice as much
time. Also note that KaPPa strong needs about twice as much time as KaSPar fast while
still producing 6 % larger cuts despite running in parallel. The case k = 2 is also interesting
because here KaPPa and KaSPar are most similar – parallelism does not play a big role (2
processors) and both local search strategies work only on two blocks at all time. Therefore
6 % improvement of KaSPar over KaPPa we can attribute mostly to the larger number of
levels.

Scotch and kMetis are much faster than KaSPar but also produce considerably larger cuts
– e.g., 32 % larger for large instances (kMetis, average). For the European road network,
the difference in cut size even exceeds a factor of two. Such gaps usually cannot be breached
by just running the faster solver a larger number of times. For example, for large instances,
Scotch is only a factor around 4 faster than KaSPar fast, yet its best cut values obtained
from 5 runs are still 12.7 % larger than the average values of KaSPar fast.

For social networks all systems have problems. KaSPar lags further behind in terms of
speed but extends its lead with respect to the cut size. We mostly attribute the larger
run time to the larger cut sizes relative to the number of nodes which greatly increase the
number of local searches necessary. A further effect may be that the time for a local search
step is proportional to the number of partitions adjacent to the nodes participating in the
local search. For “well behaved” graphs this is mostly two, but for social networks which
get denser on the coarser levels this value can get larger.

The Walshaw Benchmark [161] considers 34 graphs using k ∈ {2, 4, 8, 16, 32, 64} and
balance parameter ǫ ∈ {0, 0.01, 0.03, 0.05} giving a total of 816 table entries. Only cut sizes
count – running time is not reported. We tried all combinations except the case ǫ = 0
which KaSPar cannot handle yet. We ran KaSPar strong with a time limit of one hour and
report the best result obtained in the Appendix A, Tables A.4 to A.6. KaSPar improved
155 values in the benchmark table: 42 for 1%, 49 for 3% and 64 for 5% allowed imbalance.
Moreover, it reproduced equally sized cuts in 83 additional cases. If we count only results
for graphs having over 44k nodes and ǫ > 0, KaSPar improved 131 and reproduced 27 cuts,
thus summing up to 63% of large graph table slots. We should note, that 51 of the new
improvements are over partitioners different from KaPPa. Most of the improvements lie in

129

Table 10.2.: Geometric means over all instances.

code small graphs large graphs social networks
best avg. t[s] best avg. t[s] best avg. t[s]

KaSPar strong 2 675 2 729 7.37 12 450 12 584 87.12 - - -
KaSPar fast 2 717 2 809 1.43 12 655 12 842 14.43 93657 99062 297.34
KaSPar fast, α =∞ 2 697 2 780 23.21 - - - - - -
KaPPa strong 2 807 2 890 2.10 13 323 13 600 28.16 117701 123613 78.00
KaPPa fast 2 819 2 910 1.29 13 442 13 727 16.67 117927 126914 46.40
kMetis 3 097 3 348 0.07 15 540 16 656 0.71 117959 134803 1.42
Scotch 2 926 3 065 0.48 14 475 15 074 3.83 168764 168764 17.69

Large Instances
k KaSPar strong KaPPa strong

best avg. t[s] best avg. t[s]
2 2 842 2 873 36.89 2 977 3 054 15.03
4 5 642 5 707 60.66 6 190 6 384 30.31
8 10 464 10 580 75.92 11 375 11 652 37.86
16 17 345 17 567 102.52 18678 19 061 39.13
32 27 416 27 707 137.08 29 156 29 562 31.35
64 41 284 41 570 170.54 43 237 43 644 22.36

the lower triangular part of the table, meaning that KaSPar is particularly good for either
large graphs, or smaller graphs with small k. On the other hand, for small graphs, large
k, and ǫ = 1% KaSPar was often not able to obtain a feasible solution. A primary reason
for this seems to be that initial partitioning yields highly infeasible solutions that KaSPar is
not able to to improve considerably during refinement. This is not astonishing, since Scotch
targets ǫ = 3% and does not even guarantee that.

10.3. Conclusion

n-GP is a graph partitioning approach that scales to large inputs and currently computes the
best known partitions for many large graphs, at least when a certain imbalance is allowed.
It is in some sense simpler than previous methods since no matching algorithm is needed.
Although our current implementation of KaSPar is a considerable constant factor slower than
the fastest available MGP partitioners, we see potential for further tuning. In particular,
thanks to our adaptive stopping rule, KaSPar needs to do very little local search, in particular
for large graphs and small k. Thus it suffices to tune the relatively simple contraction routine
to obtain significant improvements. On the other hand, the adaptive stopping rule might
also turn out to be useful for matching based MGP algorithms.

A lot of opportunities remain to further improve KaSPar. In particular, we did not yet
attempt to handle the case ǫ = 0 since this may require different local search strategies. We

130

also want to try other initial partitioning algorithms and ways to integrate n-GP into other
metaheuristics like evolutionary search.
We expect that n-GP could be generalized for other objective functions, for hypergraphs,

and for graph clustering. More generally, the success of n-GP also suggests to look for more
applications of the n-level paradigm.
An apparent drawback of n-GP is that it looks inherently sequential. However, we could

probably obtain a good parallel algorithm by contracting small sets of highly rated, inde-
pendent edges in parallel. Indeed, in the light of our results for KaSPar the complications
coming from the need to find maximal matchings of heavy edges seem unnecessary, i.e., a
parallelization of n-GP might be fast and simple.

Acknowledgements. We would like to thank Christian Schulz for supplying data for KaPPa,
Scotch and Metis.

131

CHAPTER 11

Discussion

In this thesis we showed that many classical algorithmic problems need to be reconsidered
under new challenging circumstances, that is, for instance, massive data or growing paral-
lelism. The advances even in classical well studied problems are possible and highly required
with the development of new hardware and ever growing data. We showed that following
“algorithm engineering” methodology we were able to design algorithms, that are good not
only in theory but demonstrate excellent behaviour in practice also.
Trying to solve the problem, we first chose the appropriate machine model having right

objective function for the problem and data size at hand. Having fixed the model, we
designed and analyzed the algorithm taking as asymptotic behaviour as constant factors into
account. We devoted considerable time to implementations and optimizations to achieve
the best performance. We used as synthetical and worst-case as real-world instances for
evaluation of our implementations. We believe that in order to achieve the best performance
one should look at the problem at very detail rather than pursue generality. Typical inputs
may also often give algorithmic insights and lead to even larger performance boost.
Having used this general approach we developed algorithms with the world leading perfor-

mance at the time of the writing (in time or/and quality). We worked as on basic algorithms
as sorting (sample sort and suffix array construction) as more advanced graph algorithms
(breadth first search, minimum spanning tree, single-source shortest paths, matchings, graph
partitioning). Our main focus was parallelism (sample sort, suffix array, matching, mini-
mum spanning tree) and massive data (suffix array, breadth first search, single-source short-
est paths). We also proposed heuristics that allowed us to show better expected runtime
bounds (minimum spanning tree, matchings) as well as to tackle NP hard problem (graph
partitioning).

132

Bibliography

[1] James Abello, Adam L. Buchsbaum, and Jeffery R. Westbrook. “A Functional Ap-
proach to External Graph Algorithms”. In: Algorithmica 32.3 (2002), pp. 437–458.

[2] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. “Replacing Suffix
Trees with Enhanced Suffix Arrays”. In: Journal of Discrete Algorithms 2.1 (2004),
pp. 53–86.

[3] Alok Aggarwal and Jeffrey S. Vitter. “The Input/Output Complexity of Sorting and
Related Problems”. In: Communications of the ACM 31.9 (1988), pp. 1116–1127.

[4] Deepak Ajwani. “Traversing Large Graphs in Realistic Settings”. PhD thesis. Uni-
versität des Saarlandes, 2008.

[5] Deepak Ajwani, Roman Dementiev, and Ulrich Meyer. “A Computational Study of
External-Memory BFS Algorithms”. In: Proceedings of the 17th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA’06). SIAM, 2006, pp. 601–610.

[6] Deepak Ajwani, Ulrich Meyer, and Vitaly Osipov. “Improved External Memory BFS
Implementation”. In: Proceedings of the 9th Workshop on Algorithm Engineering and
Experiments (ALENEX’07). SIAM, 2007.

[7] Deepak Ajwani, Itay Malinger, Ulrich Meyer, and Sivan Toledo. “Characterizing the
Performance of Flash Memory Storage Devices and Its Impact on Algorithm De-
sign”. In: Proceedings of the 7th Workshop on Experimental Algorithms (WEA’08).
Vol. 5038. Lecture Notes in Computer Science. Springer, 2008, pp. 208–219.

[8] Deepak Ajwani, Andreas Beckmann, Riko Jacob, Ulrich Meyer, and Gabriel Moruz.
“On Computational Models for Flash Memory Devices”. In: Proceedings of the 8th
International Symposium on Experimental Algorithms (SEA’09). Vol. 5526. Lecture
Notes in Computer Science. Springer, 2009, pp. 16–27.

[9] Lars Arge. “The Buffer Tree: A Technique for Designing Batched External Data
Structures”. In: Algorithmica 37.1 (2003), pp. 1–24.

133

[10] Lars Arge, Gerth Stølting Brodal, and Laura Toma. “On External-Memory MST,
SSSP and Multi-Way Planar Graph Separation”. In: Algorithms 53.2 (2004), pp. 186–
206.

[11] Lars Arge, Laura Toma, and Jeffrey S. Vitter. “I/O-efficient Algorithms for Problems
on Grid-based Terrains”. In: ACM Journal of Experimental Algorithmics 6 (2001),
pp. 1–20.

[12] Lars Arge, Paolo Ferragina, Roberto Grossi, and Jeffrey S. Vitter. “On Sorting Strings
in External Memory”. In: Proceedings of the 29th Annual ACM Symposium on the
Theory of Computing (STOC’97). ACM Press, 1997, pp. 540–548.

[13] Bas O. Fagginger Auer and Rob H. Bisseling. “A GPU Algorithm for Greedy Graph
Matching”. In: Facing the Multicore-Challenge II. Vol. 7174. Lecture Notes in Com-
puter Science. Springer, 2012, pp. 108–119.

[14] David Avis. “A Survey of Heuristics for the Weighted Matching Problem”. In: Net-
works 13.4 (1983), pp. 475–493.

[15] David A. Bader and Guojing Cong. “A Fast, Parallel Spanning Tree Algorithm for
Symmetric Multiprocessors (SMPs)”. In: Journal of Parallel and Distributed Com-
puting 65.9 (2005), pp. 994–1006.

[16] Jǐŕı Barnat, Luboš Brim, Stefan Edelkamp, Damian Sulewski, and Pavel Šimeček.
“Can Flash Memory Help in Model Checking?” In: Proceedings of the 13th Int’l Work-
shop on Formal Methods for Industrial Critical Systems. Vol. 5596. Lecture Notes in
Computer Science. Springer, 2008, pp. 159–174.

[17] Marina Barsky, Ulrike Stege, and Alex Thomo. “A Survey of Practical Algorithms for
Suffix Tree Construction in External Memory”. In: Software – Practice and Experience
40.11 (2010), pp. 965–988.

[18] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik Schultes.
“In Transit to Constant Time Shortest-Path Queries in Road Networks”. In: Proceed-
ings of the 9th Workshop on Algorithm Engineering and Experiments (ALENEX’07).
SIAM, 2007.

[19] Kenneth E. Batcher. “Sorting Networks and Their Applications”. In: Proceedings of
AFIPS Spring Joint Computing Conference. Vol. 32. ACM Press, 1968, pp. 307–314.

[20] Andreas Beckmann, Roman Dementiev, and Johannes Singler. “Building a Parallel
Pipelined External Memory Algorithm Library”. In: Proceedings of the 23rd Int’l
Parallel and Distributed Processing Symposium (IPDPS’09). IEEE Computer Society
Press, 2009, pp. 1 –10.

[21] Jon L. Bentley and Robert Sedgewick. “Fast Algorithms for Sorting and Searching
Strings”. In: Proceedings of the 8th Annual ACM–SIAM Symposium on Discrete Al-
gorithms (SODA’97). SIAM, 1997, pp. 360–369.

[22] Timo Bingmann, Johannes Fischer, and Vitaly Osipov. “Inducing Suffix and LCP
Arrays in External Memory”. In: Proceedings of the 15th Workshop on Algorithm
Engineering and Experiments (ALENEX’13). SIAM, 2013.

134

[23] Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari Sitchinava.
“Efficient Parallel and External Matching”. In: Proceedings of the Int’l Conference
on Parallel Processing (Euro-Par’13). Lecture Notes in Computer Science. to appear.
Springer, 2013.

[24] Marcel Birn, Manuel Holtgrewe, Peter Sanders, and Johannes Singler. “Simple and
Fast Nearest Neighbor Search”. In: Proceedings of the 12th Workshop on Algorithm
Engineering and Experiments (ALENEX’10). SIAM, 2010.

[25] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. “An Experimental Analysis of
a Compact Graph Representation”. In: Proceedings of the 6th Workshop on Algorithm
Engineering and Experiments (ALENEX’04). SIAM, 2004, pp. 49–61.

[26] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. “Compact Representation of
Separable Graphs”. In: Proceedings of the 14th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA’03). SIAM, 2003, pp. 679–688.

[27] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. “Greedy Sequential Maximal
Independent Set and Matching are Parallel on Average”. In: Proceedings of the 24th
Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’12). ACM
Press, 2012, pp. 308–317.

[28] Gerth Stølting Brodal and Rolf Fagerberg. “Cache Oblivious Distribution Sweeping”.
In: Proceedings of the 28th International Colloquium on Automata, Languages, and
Programming (ICALP’02). Vol. 1470. Lecture Notes in Computer Science. Springer,
2002, pp. 426–438.

[29] Gerth Stølting Brodal, Rolf Fagerberg, and Kristoffer Vinther. “Engineering a Cache-
oblivious Sorting Algorithm”. In: ACM Journal of Experimental Algorithmics 12
(2008).

[30] Gerth Stølting Brodal, Rolf Fagerberg, Ulrich Meyer, and Norbert Zeh. “Cache-
oblivious Data Structures and Algorithms for Undirected Breadth-First Search and
Shortest Paths”. In: Proceedings of the 9th Scandinavian Workshop on Algorithm
Theory (SWAT’04). Vol. 3111. Lecture Notes in Computer Science. Springer, 2004,
pp. 480–492.

[31] Adam L. Buchsbaum, Michael Goldwasser, Suresh Venkatasubramanian, and Jeffery
R. Westbrook. “On External Memory Graph Traversal”. In: Proceedings of the 14th
Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’03). SIAM, 2003,
pp. 859–860.

[32] Daniel Cederman and Philippas Tsigas. “A Practical Quicksort Algorithm for Graph-
ics Processors”. In: Proceedings of the 16th Annual European Symposium on Algo-
rithms (ESA’08). Vol. 5193. Lecture Notes in Computer Science. Springer, 2008,
pp. 246–258.

[33] Timothy M. Chan. “Backwards Analysis of the Karger-Klein-Tarjan Algorithm for
Minimum Spanning Trees”. In: Information Processing Letters 67.6 (1998), pp. 303–
304.

135

[34] Mo Chen, Rezaul Alam Chowdhury, Vijaya Ramachandran, David Lan Roche, and
Lingling Tong. Priority Queues and Dijkstra’s Algorithm. Tech. rep. TR-07-54. The
University of Texas at Austin, Department of Computer Sciences, 2007.

[35] Shifu Chen, Jing Qin, Yongming Xie, Junping Zhao, and Pheng-Ann Heng. “A Fast
and Flexible Sorting Algorithm with CUDA”. In: Proceedings of the 9th International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP’09).
Vol. 5574. Lecture Notes in Computer Science. 2009, pp. 281–290.

[36] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar-
ren Erik Vengroff, and Jeffrey S. Vitter. “External-Memory Graph Algorithms”.
In: Proceedings of the 6th Annual ACM–SIAM Symposium on Discrete Algorithms
(SODA’95). SIAM, 1995, pp. 139–149.

[37] Frederik J. Christiani. “Cache-Oblivious Graph Algorithms”. MA thesis. University
of Southern Denmark, 2005.

[38] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. MIT Press, 2001.

[39] Tim Davis. The University of Florida Sparse Matrix Collection. http://www.cise.
ufl.edu/research/sparse/matrices/.

[40] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. “Engineer-
ing Route Planning Algorithms”. In: Algorithmics of Large and Complex Networks.
Vol. 5515. Lecture Notes in Computer Science. Springer, 2009, pp. 117–139.

[41] Roman Dementiev, Lutz Kettner, and Peter Sanders. “STXXL: Standard Template
Library for XXL Data Sets”. In: Software – Practice and Experience 38.6 (2008),
pp. 589–637.

[42] Roman Dementiev, Juha Kärkkäinen, Jens Mehnert, and Peter Sanders. “Better Ex-
ternal Memory Suffix Array Construction”. In: ACM Journal of Experimental Algo-
rithmics 12 (2008), 3.4:1–3.4:24.

[43] Roman Dementiev, Peter Sanders, Dominik Schultes, and Jop Sibeyn. “Engineering
an External Memory Minimum Spanning Tree Algorithm”. In: Exploring New Fron-
tiers of Theoretical Informatics 155 (2004), pp. 195–208.

[44] Edsger W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In:
Numerische Mathematik 1 (1959), pp. 269–271.

[45] Doratha E. Drake and Stefan Hougardy. “Improved Linear Time Approximation
Algorithms for Weighted Matchings”. In: Proceedings of the 6th Int’l Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX’03).
Vol. 2764. Lecture Notes in Computer Science. Springer, 2003, pp. 14–23.

[46] Stefan Edelkamp, Shahid Jabbar, and Stefan Schrödl. “External A*”. In: Proceed-
ings of the 271th Annual German Conference on Advances in Artificial Intelligence
(KI’04). Vol. 3238. Lecture Notes in Computer Science. Springer, 2004, pp. 226–240.

[47] Jack Edmonds. “MaximumMatching and a Polyhedron with 0,1-vertices”. In: Journal
of Research of the National Bureau of Standards B 69 (1965), pp. 125–130.

136

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

[48] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. “Efficient Graph-Based Image
Segmentation”. In: International Journal of Computer Vision 59.2 (2004), pp. 167–
181.

[49] C. M. Fiduccia and R. M. Mattheyses. “A Linear-Time Heuristic for Improving Net-
work Partitions”. In: Proceedings of the 19th ACM/IEEE Conference on Design Au-
tomation. IEEE, 1982, pp. 175–181.

[50] Per-Olof Fjallstrom. “Algorithms for Graph Partitioning: A Survey”. In: Linkoping
Electronic Articles in Computer and Information Science 3.10 (1998).

[51] Steven Fortune and James Wyllie. “Parallelism in Random Access Machines”. In: Pro-
ceedings of the 10th Annual ACM Symposium on the Theory of Computing (STOC’78).
ACM Press, 1978, pp. 114–118.

[52] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
“Cache-Oblivious Algorithms”. In: Proceedings of the 40st Annual IEEE Symposium
on Foundations of Computer Science (FOCS’99). IEEE Computer Society Press,
1999, pp. 285–297.

[53] Natsuhiko Futamura, Srinivas Aluru, and Stefan Kurtz. “Parallel Suffix Sorting”. In:
Electrical Engineering and Computer Science (2001). paper 64.

[54] Harold N. Gabow. “Data Structures for Weighted Matching and Nearest Common
Ancestors with Linking”. In: Proceedings of the 1th Annual ACM–SIAM Symposium
on Discrete Algorithms (SODA’90). SIAM, 1990, pp. 434–443.

[55] Harold N. Gabow and Robert E. Tarjan. “Faster Scaling Algorithms for General
Graph Matching Problems”. In: Journal of the ACM 38.4 (1991), pp. 815–853.

[56] Eran Gal and Sivan Toledo. “Algorithms and Data Structures for Flash Memories”.
In: ACM Computing Surveys 37.2 (2005), pp. 138–163.

[57] Robert Geisberger, Peter Sanders, and Dominik Schultes. “Better Approximation of
Betweenness Centrality”. In: Proceedings of the 10th Workshop on Algorithm Engi-
neering and Experiments (ALENEX’08). SIAM, 2008, pp. 90–100.

[58] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. “Contrac-
tion Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks”. In:
Proceedings of the 7th Workshop on Experimental Algorithms (WEA’08). Vol. 5038.
Lecture Notes in Computer Science. Springer, 2008, pp. 319–333.

[59] Andrew V. Goldberg and Renato F. Werneck. “Computing Point-to-Point Shortest
Paths from External Memory”. In: Proceedings of the 7th Workshop on Algorithm
Engineering and Experiments (ALENEX’05). SIAM, 2005, pp. 26–40.

[60] Leslie M. Goldschlager. “A Unified Approach to Models of Synchronous Parallel Ma-
chines”. In: Proceedings of the 10th Annual ACM Symposium on the Theory of Com-
puting (STOC’78). ACM Press, 1978, pp. 89–94.

137

[61] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. “Sorting, Searching, and
Simulation in the MapReduce Framework”. In: Proceedings of the 22th International
Symposium on Algorithms and Computation (ISAAC’11). Vol. 7074. Lecture Notes
in Computer Science. Springer, 2011, pp. 374–383.

[62] Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. “GPUTera-
Sort: High Performance Graphics Co-processor Sorting for Large Database Manage-
ment”. In: Proceedings of the the Int’l Conference on Management of Data (SIG-
MOD’06). ACM Press, 2006, pp. 325–336.

[63] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. “Randomized Incremental
Construction of Delaunay and Voronoi Diagrams”. In: Algorithmica 7.1-6 (1992),
pp. 381–413.

[64] David R. Helman, David A. Bader, and Joseph JáJá. “A Randomized Parallel Sort-
ing Algorithm with an Experimental Study”. In: Journal of Parallel and Distributed
Computing 52.1 (1998), pp. 1–23.

[65] Bruce Hendrickson. “Chaco: Software for Partitioning Graphs”. http://www.sandia.
gov/~bahendr/chaco.html.

[66] Jaap-Henk Hoepman. “Simple Distributed Weighted Matchings”. In: arXiv preprint
cs/0410047 (2004).

[67] Manuel Holtgrewe. “A Scalable Coarsening Phase for a Multi-Level Partitioning Al-
gorithm”. Diploma thesis. Universität Karlsruhe, 2009.

[68] Manuel Holtgrewe, Peter Sanders, and Christian Schulz. “Engineering a Scalable High
Quality Graph Partitioner”. In: Proceedings of the 24th Int’l Parallel and Distributed
Processing Symposium (IPDPS’10). IEEE Computer Society Press, 2010, pp. 1–12.

[69] Amos Israeli and Alon Itai. “A Fast and Simple Randomized Parallel Algorithm for
Maximal Matching”. In: Information Processing Letters 22.2 (1986), pp. 77–80.

[70] Hideo Itoh and Hozumi Tanaka. “An Efficient Method for in Memory Construction
of Suffix Arrays”. In: Proceedings of the 6th Symposium on String Processing and
Information Retrieval (SPIRE’99). IEEE Computer Society Press, 1999, pp. 81–88.

[71] Vojtěch Jarńık. “O jistém problému minimálńım”. In: Práca Moravské Pr̆́ırodovĕdecké
Spolec̆nosti 6 (1930). In Czech., pp. 57–63.

[72] J. J.Brennan. “Minimal Spanning Trees and Partial Sorting”. In: Operations Research
Letter 1.3 (1982), pp. 113–116.

[73] David R. Karger, Philip N. Klein, and Robert E. Tarjan. “A Randomized Linear-
Time Algorithm to Find Minimum Spanning Trees”. In: Journal of the ACM 42.2
(1995), pp. 321–328.

[74] David R. Karger and Clifford Stein. “A New Approach to the Minimum Cut Prob-
lem”. In: Journal of the ACM 43.4 (1996), pp. 601–640.

[75] Juha Kärkkäinen and Tommi Rantala. “Engineering Radix Sort for Strings”. In:
Proceedings of the 16th Symposium on String Processing and Information Retrieval
(SPIRE’09). Vol. 5280. Lecture Notes in Computer Science. Springer, 2009, pp. 3–14.

138

http://www.sandia.gov/~bahendr/chaco.html
http://www.sandia.gov/~bahendr/chaco.html

[76] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. “Linear Work Suffix Array
Construction”. In: Journal of the ACM 53.6 (2006), pp. 918–936.

[77] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. “A Model of Computation
for MapReduce”. In: Proceedings of the 21st Annual ACM–SIAM Symposium on Dis-
crete Algorithms (SODA’10). SIAM, 2010, pp. 938–948.

[78] Richard M. Karp, Raymond E. Miller, and Arnold L. Rosenberg. “Rapid Identification
of Repeated Patterns in Strings, Trees and Arrays”. In: Proceedings of the 4th Annual
ACM Symposium on the Theory of Computing (STOC’78). ACM Press, 72, pp. 125–
136.

[79] Marek Karpiński and Wojciech Rytter. Fast Parallel Algorithms for Graph Matching
Problem. Oxford University Press, 1998.

[80] George Karypis and Vipin Kumar. “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs”. In: SIAM Journal on Scientific Computing 20.1
(1998), pp. 359–392.

[81] George Karypis and Vipin Kumar. MeTiS, A Software Package for Partitioning Un-
structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of
Sparse Matrices, Version 4.0. 1998. url: http://glaros.dtc.umn.edu/gkhome/
views/metis.

[82] George Karypis and Vipin Kumar. MeTis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/~metis.
2009. url: http://www.cs.umn.edu/~metis.

[83] Jyrki Katajainen and Olli Nevalainen. “An Alternative for the Implementation of
Kruskal’s Minimal Spanning Tree Algorithm”. In: Science of Computer Programming
3.2 (1983), pp. 205–216.

[84] Irit Katriel, Peter Sanders, and Jesper Larsson Träff. “A Practical Minimum Span-
ning Tree Algorithm Using the Cycle Property”. In: 11th European Symposium on
Algorithms (ESA). Vol. 2832. Lecture Notes in Computer Science. Springer, 2003,
pp. 679–690.

[85] A. Kershenbaum and Richard M. Van Slyke. “Computing Minimum Spanning Trees
Efficiently”. In: Proceedings of the ACM Annual Conference (ACM’72). ACM Press,
1972, pp. 518–527.

[86] Valerie King. “A Simpler Minimum Spanning Tree Verification Algorithm”. In: Algo-
rithmica 18.2 (1997), pp. 263–270.

[87] Pang Ko and Srinivas Aluru. “Space Efficient Linear Time Construction of Suffix
Arrays”. In: Proceedings of the 14th Annual Symposium on Combinatorial Pattern
Matching (CPM’03). Vol. 2676. Lecture Notes in Computer Science. 2003, pp. 200–
210.

[88] Joseph B. Kruskal. “On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem”. In: Proceedings of the American Mathematical Society 7.1 (1956),
pp. 48–50.

139

http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis

[89] Fabian Kulla and Peter Sanders. “Scalable Parallel Suffix Array Construction”. In:
Parallel Computing 33.9 (2007), pp. 605 –612.

[90] Vijay Kumar and Eric J. Schwabe. “Improved Algorithms and Data Structures for
Solving Graph Problems in External Memory”. In: Proceedings of the 8th Int’l Sym-
posium on Parallel and Distributed Processing (PDP’96). IEEE Computer Society
Press, 1996, pp. 169–176.

[91] Jesper N. Larsson and Kunihiko Sadakane. “Faster Suffix Sorting”. In: Theoretical
Computer Science 387.3 (2007), pp. 258–272.

[92] Nikolaj Leischner, Vitaly Osipov, and Peter Sanders. “GPU Sample Sort”. In: Pro-
ceedings of the 24th Int’l Parallel and Distributed Processing Symposium (IPDPS’10).
IEEE Computer Society Press, 2010.

[93] Richard J. Lipton and Robert E. Tarjan. “Applications of a Planar Separator Theo-
rem”. In: SIAM Journal on Computing 9.3 (1980), pp. 615–627.

[94] Michael Luby. “A Simple Parallel Algorithm for the Maximal Independent Set Prob-
lem”. In: SIAM Journal on Computing 15.4 (1986), pp. 1036–1053.

[95] Anil Maheshwari and Norbert Zeh. “External Memory Algorithms for Outerplanar
Graphs”. In: Proceedings of the 10th Int’l Symposium on Algorithms and Computation
(ISAAC’99). Vol. 1741. Lecture Notes in Computer Science. Springer, 1999, pp. 307–
316.

[96] Anil Maheshwari and Norbert Zeh. “I/O-efficient Algorithms for Graphs of Bounded
Treewidth”. In: Proceedings of the 12th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA’01). SIAM, 2001, 89––90.

[97] Anil Maheshwari and Norbert Zeh. “I/O-optimal Algorithms for Planar Graphs Using
Separators”. In: Proceedings of the 13th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA’02). SIAM, 2002, 372––381.

[98] Udi Manber and Gene Myers. “Suffix Arrays: A New Method for On-line String
Searches”. In: Proceedings of the 1th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA’90). SIAM, 1990, pp. 319–327.

[99] Michael A. Maniscalco and Simon J. Puglisi. “An Efficient, Versatile Approach to
Suffix Sorting”. In: ACM Journal of Experimental Algorithmics 12 (2008), 1.2:1–
1.2:23.

[100] Fredrik Manne and Rob H. Bisseling. “A Parallel Approximation Algorithm for the
Weighted Maximum Matching Problem”. In: Proceedings of the 7th Int’l Conference
on Parallel Processing and Applied Mathematics (PPAM’07). Vol. 4967. Lecture Notes
in Computer Science. Springer, 2008, pp. 708–717.

[101] Giovanni Manzini and Paolo Ferragina. “Engineering a Lightweight Suffix Array Con-
struction Algorithm”. In: Algorithmica 40.1 (2004), pp. 33–50.

[102] Makoto Matsumoto and Takuji Nishimura. “Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator”. In: ACM Transac-
tions on Modeling and Computer Simulation 8.1 (1998), pp. 3–30.

140

[103] Jens Maue and Peter Sanders. “Engineering Algorithms for Approximate Weighted
Matching”. In: Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07).
Vol. 4525. Lecture Notes in Computer Science. Springer, 2007, pp. 242–255.

[104] Kurt Mehlhorn and Ulrich Meyer. “External-Memory Breadth-First Search with Sub-
linear I/O”. In: Proceedings of the 10th Annual European Symposium on Algorithms
(ESA’02). Vol. 2461. Lecture Notes in Computer Science. Springer, 2002, pp. 723–
735.

[105] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures. The Basic Tool-
box. Springer, 2008.

[106] Duane Merrill. Back40computing: Fast and Efficient Software Primitives for GPU
Computing. http://code.google.com/p/back40computing/.

[107] Duane Merrill and Andrew S. Grimshaw. “High Performance and Scalable Radix
Sorting: a Case Study of Implementing Dynamic Parallelism for GPU Computing”.
In: Parallel Processing Letters 21.2 (2011), pp. 245–272.

[108] Duane Merrill and Andrew S. Grimshaw. Parallel Scan for Stream Architectures.
Tech. rep. Department of Computer Science, University of Virginia, 2009.

[109] Ulrich Meyer and Vitaly Osipov. “Design and Implementation of a Practical I/O-
efficient Shortest Paths Algorithm”. In: Proceedings of the 11th Workshop on Algo-
rithm Engineering and Experiments (ALENEX’09). SIAM, 2009.

[110] Ulrich Meyer, Peter Sanders, and Jop Sibeyn. Algorithms for Memory Hierarchies.
Vol. 2625. Lecture Notes in Computer Science. Springer, 2003.

[111] Ulrich Meyer and Norbert Zeh. “I/O-Efficient Undirected Shortest Paths”. In: Pro-
ceedings of the 11th Annual European Symposium on Algorithms (ESA’03). Vol. 2832.
Lecture Notes in Computer Science. Springer, 2003, pp. 434–445.

[112] Ulrich Meyer and Norbert Zeh. “I/O-Efficient Undirected Shortest Paths with Un-
bounded Edge Lengths”. In: Proceedings of the 14th Annual European Symposium on
Algorithms (ESA’06). Vol. 4168. Lecture Notes in Computer Science. Springer, 2006,
pp. 540–551.

[113] Henning Meyerhenke, Burkhard Monien, and Thomas Sauerwald. “A New Diffusion-
Based Multilevel Algorithm for Computing Graph Partitions”. In: Journal of Parallel
and Distributed Computing 69.9 (2009), pp. 750–761.

[114] Bernard M.E. Moret and Henry D. Shapiro. “An Empirical Assessment of Algorithms
for Constructing a Minimum Spanning Tree”. In: DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science 15 (1994), pp. 99–117.

[115] Yuta Mori. Suffix Array Construction Algorithms Benchmark Set. http://code.
google.com/p/libdivsufsort/wiki/SACA_Benchmarks.

[116] Kamesh Munagala and Abhiram G. Ranade. “I/O-Complexity of Graph Algorithms”.
In: Proceedings of the 10th Annual ACM–SIAM Symposium on Discrete Algorithms
(SODA’99). SIAM, 1999, pp. 687–694.

141

http://code.google.com/p/back40computing/
http://code.google.com/p/libdivsufsort/wiki/SACA_Benchmarks
http://code.google.com/p/libdivsufsort/wiki/SACA_Benchmarks

[117] David R. Musser. “Introspective Sorting and Selection Algorithms”. In: Software:
Practice and Experience 27.8 (1997), pp. 983–993.

[118] Marc Najork and Janet L. Wiener. “Breadth-first Crawling Yields High-quality Pages”.
In: Proceedings of the 10th Int’l Conference on World Wide Web (WWW’01). ACM
Press, 2001, pp. 114–118.

[119] Jaroslav Nes̆etr̆il, Eva Milková, and Helena Nes̆etr̆ilová. “Otakar Boruvka on Mini-
mum Spanning Tree Problem: Translation of Both the 1926 Papers, Comments, His-
tory”. In: Discrete Mathematics 233.1 (2001), pp. 3–36.

[120] John von Neumann. First Draft of a Report on the EDVAC. Tech. rep. University of
Pennsylvania, 1945.

[121] Ge Nong, and Wai Hong Chan. “Linear Suffix Array Construction by Almost Pure
Induced-Sorting”. In: Proceedings of Data Compression Conference (DCC’09). IEEE
Computer Society Press, 2009, pp. 193–202.

[122] Ge Nong, and Wai Hong Chan. “Two Efficient Algorithms for Linear Time Suffix
Array Construction”. In: IEEE Transactions on Computers 60.10 (2011), pp. 1471–
1484.

[123] Kohei Noshita. “A Theorem on the Expected Complexity of Dijkstra’s Shortest Path
Algorithm”. In: Journal of Algorithms 6.3 (1985), pp. 400–408.

[124] Online Resources of the 9th DIMACS Implementation Challenge: Shortest Paths,
2006. http://www.dis.uniroma1.it/~challenge9/.

[125] Vitaly Osipov. “Parallel Suffix Array Construction for Shared Memory Architec-
tures”. In: Proceedings of the 19th Symposium on String Processing and Information
Retrieval (SPIRE’12). Vol. 7608. Lecture Notes in Computer Science. Springer, 2012.

[126] Vitaly Osipov and Peter Sanders. “n-Level Graph Partitioning”. In: Proceedings of
the 18th Annual European Symposium on Algorithms (ESA’10). Vol. 6346. Lecture
Notes in Computer Science. Springer, 2010.

[127] Vitaly Osipov and Peter Sanders. “The Filter-Kruskal Minimum Spanning Tree Al-
gorithm”. In: Proceedings of the 11th Workshop on Algorithm Engineering and Ex-
periments (ALENEX’09). SIAM, 2009.

[128] Rodrigo Paredes and Gonzalo Navarro. “Optimal Incremental Sorting”. In: Proceed-
ings of the 8th Workshop on Algorithm Engineering and Experiments (ALENEX’06).
SIAM, 2006, pp. 171–182.

[129] Francois Pellegrini. SCOTCH 5.1 User’s Guide. Tech. rep. Laboratoire Bordelais de
Recherche en Informatique, Bordeaux, France, 2008. url: http://www.labri.fr/
perso/pelegrin/scotch/.

[130] Francois Pellegrini. SCOTCH: Static Mapping, Graph, Mesh and Hypergraph Parti-
tioning, and Parallel and Sequential Sparse Matrix Ordering Package. http://www.
labri.fr/perso/pelegrin/scotch/. 2007. url: http://www.labri.fr/perso/
pelegrin/scotch/.

142

http://www.dis.uniroma1.it/~challenge9/
http://www.labri.fr/perso/pelegrin/scotch/
http://www.labri.fr/perso/pelegrin/scotch/
http://www.labri.fr/perso/pelegrin/scotch/
http://www.labri.fr/perso/pelegrin/scotch/
http://www.labri.fr/perso/pelegrin/scotch/
http://www.labri.fr/perso/pelegrin/scotch/

[131] Performance Portability and Programmability for Heterogeneous Many-core Architec-
tures - PEPPHER. http://www.peppher.eu/.

[132] Seth Pettie and Peter Sanders. “A Simpler Linear Time 2/3 − ǫ Approximation
for Maximum Weight Matching”. In: Information Processing Letters 91.6 (2004),
pp. 271–276.

[133] Robert Preis. “Linear Time 1/2-Approximation Algorithm for Maximum Weighted
Matching in General Graphs”. In: Proceedings of the 16th International Symposium
on Theoretical Aspects of Computer Science (STACS’99). Vol. 1563. Lecture Notes
in Computer Science. Springer, 1999, pp. 259–269.

[134] Robert Preis. PARTY Partitioning Library. http://www2.cs.uni-paderborn.de/
cs/robsy/party.html. 1996.

[135] Robert Preis and Ralf Diekmann. The PARTY Partitioning Library, User Guide.
Tech. rep. Tr-rsfb-96-02. University of Paderborn, Germany, 1996. url: http://
www2.cs.uni-paderborn.de/cs/robsy/party.html.

[136] Robert C. Prim. “Shortest Connection Networks and Some Generalizations”. In: Bell
System Technical Journal 36.6 (1957), pp. 1389–1401.

[137] Simon J. Puglisi and William F. Smyth and. “A Taxonomy of Suffix Array Construc-
tion Algorithms”. In: ACM Computing Surveys 39.2 (2007).

[138] Simon J. Puglisi and William F. Smyth and. “The Performance of Linear Time Suffix
Sorting Algorithms”. In: Proceedings of Data Compression Conference (DCC’05).
IEEE Computer Society Press, 2005, pp. 358–367.

[139] Benjamin Sach and Raphael Clifford. “An Empirical Study of Cache-Oblivious Pri-
ority Queues and their Application to the Shortest Path Problem”. Available online
under http://www.cs.bris.ac.uk/~sach/COSP/. 2008.

[140] Peter Sanders. “Algorithm Engineering–an Attempt at a Definition”. In: Efficient
Algorithms. Vol. 5760. Lecture Notes in Computer Science. Springer, 2009, pp. 321–
340.

[141] Peter Sanders. “Fast Priority Queues for Cached Memorys”. In: ACM Journal of
Experimental Algorithmics (2000), pp. 316–321.

[142] Peter Sanders, Dominik Schultes, and Christian Vetter. “Mobile Route Planning”.
In: Proceedings of the 16th Annual European Symposium on Algorithms (ESA’08).
Vol. 5193. Lecture Notes in Computer Science. Springer, 2008, pp. 732–743.

[143] Peter Sanders and Christian Schulz. “Distributed Evolutionary Graph Partitioning”.
In: Proceedings of the 12th Workshop on Algorithm Engineering and Experiments
(ALENEX’12). SIAM, 2012, pp. 16–29.

[144] Peter Sanders and Christian Schulz. “Engineering Multilevel Graph Partitioning Al-
gorithms”. In: Proceedings of the 19th Annual European Symposium on Algorithms
(ESA’11). Vol. 6942. Lecture Notes in Computer Science. Springer, 2011, pp. 469–
480.

143

http://www.peppher.eu/
http://www2.cs.uni-paderborn.de/cs/robsy/party.html
http://www2.cs.uni-paderborn.de/cs/robsy/party.html
http://www2.cs.uni-paderborn.de/cs/robsy/party.html
http://www2.cs.uni-paderborn.de/cs/robsy/party.html
http://www.cs.bris.ac.uk/~sach/COSP/

[145] Peter Sanders and Christian Schulz. “Think Locally, Act Globally: Highly Balanced
Graph Partitioning”. In: Proceedings of the 12th Int’l Symposium on Experimental
Algorithms (SEA’13). Vol. 7933. Lecture Notes in Computer Science. Springer, 2013,
pp. 164–175.

[146] Peter Sanders and Sebastian Winkel. “Super Scalar Sample Sort”. In: Proceedings of
the 12th Annual European Symposium on Algorithms (ESA’04). Vol. 3221. Lecture
Notes in Computer Science. 2004, pp. 784–796.

[147] Nadathur Satish, Mark Harris, and Michael Garland. “Designing Efficient Sorting
Algorithms for Manycore GPUs”. In: Proceedings of the 23rd Int’l Parallel and Dis-
tributed Processing Symposium (IPDPS’09). IEEE Computer Society Press, 2009.

[148] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W.
Lee, Daehyun Kim, and Pradeep Dubey. “Fast Sort on CPUs and GPUs: A Case
for Bandwidth Oblivious SIMD Sort”. In: Proceedings of the the Int’l Conference on
Management of Data (SIGMOD’10). ACM Press, 2010, pp. 351–362.

[149] Walter J. Savitch and Michael J. Stimson. “Time Bounded Random Access Machines
with Parallel Processing”. In: Journal of the ACM 26.1 (1979), pp. 103–118.

[150] Kirk Schloegel, George Karypis, and Vipin Kumar. Graph Partitioning for High Per-
formance Scientific Simulations. Tech. rep. 00-018. University of Minnesota, 2000.

[151] Klaus-Bernd Schürmann and Jens Stoye. “An Incomplex Algorithm for Fast Suffix
Array Construction”. In: Proceedings of the 7th Workshop on Algorithm Engineering
and Experiments (ALENEX’05). SIAM, 2005, pp. 77–85.

[152] Seagate Technology. http://www.seagate.com/cda/products/discsales/marketing/
detail/0,1081,628,00.html.

[153] Raimund Seidel and Micha Sharir. “Top-Down Analysis of Path Compression”. In:
SIAM Journal on Computing 34.3 (2005), pp. 515–525.

[154] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. “Scan Primi-
tives for GPU Computing”. In: Proceedings of the the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware. ACM Press, 2007, pp. 97–106.

[155] John C. Shepherdson and Howard E. Sturgis. “Computability of Recursive Func-
tions”. In: Journal of the ACM 10.2 (1963), pp. 217–255.

[156] Vladislav Shkapenyuk and Torsten Suel. “Design and Implementation of a High-
performance Distributed Web Crawler”. In: Proceedings of the 18th Int’l Conference
on Data Engineering (ICDE’02). IEEE Computer Society Press, 2002, pp. 357–368.

[157] Jop Sibeyn. From Parallel to External List Ranking. Tech. rep. Max Planck Institut
für Informatik, Saarbrücken, Germany, 1997.

[158] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Addison-Wesley, 2002.

[159] Johannes Singler, Peter Sanders, and Felix Putze. “MCSTL: The Multi-core Standard
Template Library”. In: Proceedings of the Int’l Conference on Parallel Processing
(Euro-Par’07). Vol. 4641. Lecture Notes in Computer Science. 2007, pp. 682–694.

144

http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,628,00.html
http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,628,00.html

[160] Erik Sintorn and Ulf Assarsson. “Fast Parallel GPU-sorting Using a Hybrid Algo-
rithm”. In: Journal of Parallel and Distributed Computing 68.10 (2008), pp. 1381–
1388.

[161] A. J. Soper, Chris Walshaw, and Mark Cross. “A Combined Evolutionary Search
and Multilevel Optimisation Approach to Graph Partitioning”. In: Journal of Global
Optimization 29.2 (2004), pp. 225–241.

[162] Space Imaging Gallery. http://www.spaceimagingme.com/content/Gallery/.

[163] Weidong Sun and Zongmin Ma. “Parallel Lexicographic Names Construction with
CUDA”. In: Proceedings of the 15th Int’l Conference on Parallel and Distributed
Systems (ICPADS’09). IEEE Computer Society Press, 2009, pp. 913–918.

[164] Ami Tavory, Vladimir Dreizin, and Benjamin Kosnik. “Policy-Based Data Struc-
tures”. http://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/ IBM Haifa and
Redhat. 2004.

[165] The Stanford WebBase Project. http://www-diglib.stanford.edu/~testbed/
doc2/WebBase/.

[166] Transparent Parallel I/O Environment. http://www.cs.duke.edu/TPIE/.

[167] Philippas Tsigas and Yi Zhang. “A Simple, Fast Parallel Implementation of Quicksort
and its Performance Evaluation on SUN Enterprise 10000”. In: Proceedings of the 11th
Euromicro Conference on Parallel, Distributed and Network-Based Processing. IEEE,
2003, pp. 372–381.

[168] Jeffrey S. Vitter. “External Memory Algorithms and Data Structures: Dealing with
Massive Data”. In: ACM Computing Surveys 33.2 (2001), pp. 209–271.

[169] Jeffrey S. Vitter and E.A.M. Shriver. “Algorithms for Parallel Memory, I: Two-level
Memories”. In: Algorithmica 12.2 (1994), pp. 110–147.

[170] Chris Walshaw. JOSTLE –graph partitioning software. http://staffweb.cms.gre.
ac.uk/~wc06/jostle/. 2005. url: http://staffweb.cms.gre.ac.uk/~wc06/
jostle/.

[171] Chris Walshaw and Mark Cross. “JOSTLE: Parallel Multilevel Graph-Partitioning
Software – An Overview”. In: Mesh Partitioning Techniques and Domain Decompo-
sition Techniques. Civil-Comp Ltd., 2007, pp. 27–58.

[172] DavidWeese. Entwurf und Implementierung eines Generischen Substring-Index. http:
//www.seqan.de/publications/weese06.pdf. 2006.

[173] Chin-Hsien Wu, Li-Pin Chang, and Tei-Wei Kuo. “An efficient R-Tree Implementa-
tion over Flash-memory Storage Systems”. In: Proceedings of the 11th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems.
ACM Press, 2003, pp. 17–24.

[174] Chin-Hsien Wu, Tei-Wei Kuo, and Li-Pin Chang. “An Efficient B-tree Layer Imple-
mentation for Flash-memory Storage Systems”. In: ACM Transactions on Embedded
Computing Systems 6.3 (2007).

145

http://www.spaceimagingme.com/content/Gallery/
http://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/
http://www-diglib.stanford.edu/~testbed/doc2/WebBase/
http://www-diglib.stanford.edu/~testbed/doc2/WebBase/
http://www.cs.duke.edu/TPIE/
http://staffweb.cms.gre.ac.uk/~wc06/jostle/
http://staffweb.cms.gre.ac.uk/~wc06/jostle/
http://staffweb.cms.gre.ac.uk/~wc06/jostle/
http://staffweb.cms.gre.ac.uk/~wc06/jostle/
http://www.seqan.de/publications/weese06.pdf
http://www.seqan.de/publications/weese06.pdf

[175] Métivier Yves, John Michael Robson, Saheb-Djahromi Nasser, and Akka Zemmari.
“An Optimal Bit Complexity Randomized Distributed MIS Algorithm”. In: Pro-
ceedings of the 16th Int’l Conference on Structural Information and Communication
Complexity (SIROCCO’09). Vol. 5869. Lecture Notes in Computer Science. Springer,
2010, pp. 323–337.

146

APPENDIX A

Complete Data Sets

147

file n m
2cubes sphere.mtx.graph 101492 772886
af 0 k101.mtx.graph 503625 8523525
af 1 k101.mtx.graph 503625 8523525
af 2 k101.mtx.graph 503625 8523525
af 3 k101.mtx.graph 503625 8523525
af 4 k101.mtx.graph 503625 8523525
af 5 k101.mtx.graph 503625 8523525
af shell1.mtx.graph 504855 8542010
af shell2.mtx.graph 504855 8542010
af shell3.mtx.graph 504855 8542010
af shell4.mtx.graph 504855 8542010
af shell5.mtx.graph 504855 8542010
af shell6.mtx.graph 504855 8542010
af shell7.mtx.graph 504855 8542010
af shell8.mtx.graph 504855 8542010
af shell9.mtx.graph 504855 8542010
apache2.mtx.graph 715176 2051347
BenElechi1.mtx.graph 245874 6452311
bmw3 2.mtx.graph 227362 5530634
bmw7st 1.mtx.graph 141347 3599160
bmwcra 1.mtx.graph 148770 5247616
boneS01.mtx.graph 127224 3293964
boyd1.mtx.graph 93279 558985
c-73.mtx.graph 169422 554926
c-73b.mtx.graph 169422 554926
c-big.mtx.graph 345241 997885
cant.mtx.graph 62451 1972466
case39.mtx.graph 40216 516021
case39 A 01.mtx.graph 40216 516021
case39 A 02.mtx.graph 40216 516026
case39 A 03.mtx.graph 40216 516026
case39 A 04.mtx.graph 40216 516026
case39 A 05.mtx.graph 40216 516026
case39 A 06.mtx.graph 40216 516026
case39 A 07.mtx.graph 40216 516026
case39 A 08.mtx.graph 40216 516026
case39 A 09.mtx.graph 40216 516026
case39 A 10.mtx.graph 40216 516026
case39 A 11.mtx.graph 40216 516026
case39 A 12.mtx.graph 40216 516026
case39 A 13.mtx.graph 40216 516026
cfd1.mtx.graph 70656 878854
cfd2.mtx.graph 123440 1482229
CO.mtx.graph 221119 3722469
consph.mtx.graph 83334 2963573
cop20k A.mtx.graph 99843 1262244
crankseg 1.mtx.graph 52804 5280703
crankseg 2.mtx.graph 63838 7042510
ct20stif.mtx.graph 52329 1323067
darcy003.mtx.graph 389874 933557
dawson5.mtx.graph 51537 479620
denormal.mtx.graph 89400 533412
dielFilterV2clx.mtx.graph 607232 12351020
dielFilterV3clx.mtx.graph 420408 16232900
Dubcova2.mtx.graph 65025 482600
Dubcova3.mtx.graph 146689 1744980
d pretok.mtx.graph 182730 756256
ecology1.mtx.graph 1000000 1998000
ecology2.mtx.graph 999999 1997996
engine.mtx.graph 143571 2281251
F1.mtx.graph 343791 13246661
F2.mtx.graph 71505 2611390
Fault 639.mtx.graph 638802 13987881

file n m
filter3D.mtx.graph 106437 1300371
G3 circuit.mtx.graph 1585478 3037674
Ga10As10H30.mtx.graph 113081 3001276
Ga19As19H42.mtx.graph 133123 4375858
Ga3As3H12.mtx.graph 61349 2954799
Ga41As41H72.mtx.graph 268096 9110190
GaAsH6.mtx.graph 61349 1660230
gas sensor.mtx.graph 66917 818224
Ge87H76.mtx.graph 112985 3889605
Ge99H100.mtx.graph 112985 4169205
gsm 106857.mtx.graph 589446 10584739
H2O.mtx.graph 67024 1074856
helm2d03.mtx.graph 392257 1174839
hood.mtx.graph 220542 5273947
IG5-17.mtx.graph 30162 1034600
invextr1 new.mtx.graph 30412 906915
kkt power.mtx.graph 2063494 6482320
Lin.mtx.graph 256000 755200
mario002.mtx.graph 389874 933557
mixtank new.mtx.graph 29957 982542
mouse gene.mtx.graph 45101 14461095
msdoor.mtx.graph 415863 9912536
m t1.mtx.graph 97578 4827996
nasasrb.mtx.graph 54870 1311227
nd12k.mtx.graph 36000 7092473
nd24k.mtx.graph 72000 14321817
nlpkkt80.mtx.graph 1062400 13821136
offshore.mtx.graph 259789 1991442
oilpan.mtx.graph 73752 1761718
parabolic fem.mtx.graph 525825 1574400
pdb1HYS.mtx.graph 36417 2154174
pwtk.mtx.graph 217918 5708253
qa8fk.mtx.graph 66127 797226
qa8fm.mtx.graph 66127 797226
s3dkq4m2.mtx.graph 90449 2365221
s3dkt3m2.mtx.graph 90449 1831506
shipsec1.mtx.graph 140874 3836265
shipsec5.mtx.graph 179860 4966618
shipsec8.mtx.graph 114919 3269240
ship 001.mtx.graph 34920 2304655
ship 003.mtx.graph 121728 3982153
Si34H36.mtx.graph 97569 2529405
Si41Ge41H72.mtx.graph 185639 7412813
Si87H76.mtx.graph 240369 5210631
SiO.mtx.graph 33401 642127
SiO2.mtx.graph 155331 5564086
sparsine.mtx.graph 50000 749494
StocF-1465.mtx.graph 1465137 9770126
t3dh.mtx.graph 79171 2136467
t3dh a.mtx.graph 79171 2136467
thermal2.mtx.graph 1228045 3676134
thread.mtx.graph 29736 2220156
tmt sym.mtx.graph 726713 2177124
TSOPF FS b162 c3.mtx.graph 30798 896688
TSOPF FS b162 c4.mtx.graph 40798 1193898
TSOPF FS b300.mtx.graph 29214 2196173
TSOPF FS b300 c1.mtx.graph 29214 2196173
TSOPF FS b300 c2.mtx.graph 56814 4376395
TSOPF FS b39 c19.mtx.graph 76216 979241
TSOPF FS b39 c30.mtx.graph 120216 1545521
turon m.mtx.graph 189924 778531
vanbody.mtx.graph 47072 1144913
x104.mtx.graph 108384 5029620

Table A.1.: Full List of Sparse Matrix Collection Instances

148

T
a
b
le

A
.2
.:
A
ll
re
su
lt
s
fo
r
so
ci
al

n
et
w
or
k
in
st
an

ce
s

G
r
a
p
h

k
K
a
S
P
a
r
fa
s
t

K
a
P
P
a

s
t
r
o
n
g

K
a
P
P
a

fa
s
t

K
a
P
P
a

m
in

im
a
l

s
c
o
t
c
h

m
e
t
is

b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e

c
o
A
u
t
h
o
r
s
C
it
e
s
e
e
r

2
1
7
8
5
5

1
8
0
0
3

2
5
.7
7

2
1
7
7
5

2
6
4
6
2

1
2
.9
3

2
9
8
9
4

3
0
9
9
7

1
1
.9
8

3
2
6
7
8

3
5
4
9
2

6
.7
5

3
4
0
6
5

3
4
0
6
5

5
.3
4

2
1
5
8
7

2
2
6
7
4

0
.3
0

c
o
A
u
t
h
o
r
s
C
it
e
s
e
e
r

4
3
4
1
8
0

3
5
3
1
5

5
1
.7
5

4
3
7
7
8

4
6
5
4
0

2
8
.4
3

4
4
8
3
7

4
7
1
5
6

1
7
.0
3

5
0
8
4
5

5
5
5
1
4

5
.7
8

5
2
2
7
7

5
2
2
7
7

7
.5
1

3
9
6
4
9

4
1
5
6
0

0
.3
3

c
o
A
u
t
h
o
r
s
C
it
e
s
e
e
r

8
4
9
5
7
4

5
0
0
5
4

8
5
.4
9

5
6
5
7
4

5
7
6
4
7

4
6
.3
5

5
3
8
3
8

5
5
6
8
6

2
5
.7
7

6
1
3
9
7

6
2
7
5
2

5
.1
0

6
9
9
8
8

6
9
9
8
8

9
.6
1

5
6
2
8
9

5
6
9
9
6

0
.3
6

c
o
A
u
t
h
o
r
s
C
it
e
s
e
e
r

1
6

5
9
5
7
4

5
9
9
1
5

1
2
4
.5
1

6
6
1
7
3

6
6
6
4
8

5
5
.2
6

6
2
1
2
6

6
3
0
8
5

3
1
.0
4

6
5
6
8
1

6
7
0
0
7

5
.7
1

8
3
4
5
7

8
3
4
5
7

1
1
.4
1

6
8
2
9
5

6
8
7
4
4

0
.3
9

c
o
A
u
t
h
o
r
s
C
it
e
s
e
e
r

3
2

6
7
9
5
3

6
8
7
5
2

1
6
9
.7
8

7
2
3
3
1

7
2
7
3
6

6
4
.5
3

7
1
6
0
3

7
2
0
6
2

3
0
.3
4

7
4
1
1
9

7
4
7
6
0

5
.4
9

9
0
8
0
7

9
0
8
0
7

1
2
.9
2

7
7
3
9
9

7
8
2
5
4

0
.4
1

c
o
A
u
t
h
o
r
s
C
it
e
s
e
e
r

6
4

7
6
2
1
0

7
7
3
2
6

1
9
3
.8
5

7
7
6
0
3

7
8
7
5
6

6
4
.4
5

7
9
4
1
1

7
9
8
7
2

2
6
.4
7

8
1
7
7
3

8
2
2
4
4

5
.8
2

1
0
0
7
3
7

1
0
0
7
3
7

1
4
.2
0

8
4
5
3
8

8
5
4
2
6

0
.4
4

c
it
a
t
io
n
C
it
e
s
e
e
r

2
3
2
1
8
1

3
2
2
4
7

4
9
.4
4

3
5
1
2
2

3
6
6
9
6

2
4
.3
7

3
4
8
5
8

4
8
4
6
6

1
5
.3
1

4
7
6
4
1

6
1
0
5
5

1
1
.5
1

3
7
1
7
5

3
7
1
7
5

5
.8
7

3
3
6
8
4

3
4
3
4
4

0
.6
7

c
it
a
t
io
n
C
it
e
s
e
e
r

4
6
7
1
9
4

6
8
3
7
1

1
3
5
.8
2

7
6
8
9
7

7
9
7
8
2

4
7
.8
7

7
6
9
9
4

1
0
1
3
6
9

2
7
.4
0

1
2
0
6
5
6

1
3
3
9
1
6

1
2
.5
4

7
9
5
4
3

7
9
5
4
3

1
1
.0
2

7
3
5
3
6

7
7
5
2
4

0
.7
6

c
it
a
t
io
n
C
it
e
s
e
e
r

8
1
0
3
7
4
3

1
0
5
6
6
3

2
9
7
.7
0

1
1
9
8
5
2

1
2
6
1
2
9

8
5
.9
2

1
1
8
5
0
5

1
3
3
3
3
7

4
7
.0
9

1
8
8
7
3
1

1
9
6
2
0
4

1
3
.4
1

1
2
4
4
4
1

1
2
4
4
4
1

1
5
.3
7

1
0
8
6
5
5

1
1
6
0
8
2

0
.8
3

c
it
a
t
io
n
C
it
e
s
e
e
r

1
6

1
4
8
9
3
2

1
5
1
2
5
6

5
0
7
.6
9

1
5
6
9
8
4

1
6
4
9
8
4

1
1
4
.2
6

1
5
6
1
3
2

1
6
0
5
5
5

5
7
.0
2

2
1
8
7
1
0

2
2
4
8
5
1

1
4
.1
8

1
6
3
9
4
1

1
6
3
9
4
1

1
8
.8
3

1
5
3
8
4
6

1
5
7
0
0
0

0
.9
1

c
it
a
t
io
n
C
it
e
s
e
e
r

3
2

1
9
8
7
5
7

2
0
3
1
7
3

8
4
1
.7
3

2
0
5
9
2
2

2
0
7
9
2
3

1
4
7
.0
2

1
9
8
7
7
1

2
0
7
0
8
9

1
1
1
.1
2

2
4
8
8
9
4

2
5
9
0
9
0

4
5
.5
6

2
1
0
9
5
7

2
1
0
9
5
7

2
1
.8
8

1
9
7
1
4
6

2
0
0
6
5
0

0
.9
8

c
it
a
t
io
n
C
it
e
s
e
e
r

6
4

2
5
5
7
2
2

2
5
8
0
3
7

1
2
1
3
.9
3

2
4
7
4
6
2

2
4
8
9
9
4

1
4
8
.5
8

2
4
0
6
6
0

2
4
1
9
8
0

1
1
5
.1
8

2
7
0
6
9
2

2
7
9
2
4
7

3
9
.0
4

2
6
5
9
7
1

2
6
5
9
7
1

2
5
.0
8

2
4
2
0
1
0

2
4
4
4
2
7

1
.1
0

c
o
A
u
t
h
o
r
s
D
B
L
P

2
4
5
2
9
2

4
5
6
5
0

8
2
.4
2

5
4
8
0
3

5
6
1
4
0

2
3
.1
3

5
5
2
6
3

6
1
6
1
9

1
6
.9
6

6
3
3
0
5

6
4
8
7
2

1
1
.7
8

6
3
3
6
8

6
3
3
6
8

8
.2
3

4
8
9
5
2

5
0
3
4
1

0
.5
3

c
o
A
u
t
h
o
r
s
D
B
L
P

4
8
0
4
0
8

8
1
5
7
5

1
4
4
.6
5

9
4
6
5
1

9
7
5
9
7

5
4
.5
9

9
7
0
0
7

9
8
8
6
5

3
2
.0
9

1
2
3
3
7
3

1
2
6
6
7
5

9
.5
2

1
0
9
8
5
6

1
0
9
8
5
6

1
1
.7
3

8
8
5
1
3

8
8
7
3
4

0
.6
1

c
o
A
u
t
h
o
r
s
D
B
L
P

8
1
0
9
9
4
0

1
1
3
5
7
5

2
6
3
.0
8

1
2
6
2
6
1

1
2
8
1
2
9

8
2
.5
7

1
1
6
8
3
9

1
1
8
1
9
0

4
6
.3
2

1
4
4
8
3
9

1
4
7
0
3
8

8
.6
2

1
4
2
7
4
9

1
4
2
7
4
9

1
4
.4
9

1
1
5
2
0
1

1
1
7
0
7
4

0
.6
9

c
o
A
u
t
h
o
r
s
D
B
L
P

1
6

1
3
2
0
6
7

1
3
5
2
5
9

4
4
0
.4
2

1
4
4
2
2
9

1
4
5
2
2
9

9
8
.6
4

1
3
7
9
4
6

1
3
8
9
6
8

4
6
.2
4

1
5
2
8
0
3

1
5
4
3
6
8

7
.5
1

1
6
9
7
0
6

1
6
9
7
0
6

1
6
.9
7

1
3
8
3
9
9

1
4
0
1
4
9

0
.7
5

c
o
A
u
t
h
o
r
s
D
B
L
P

3
2

1
5
2
1
4
6

1
5
4
5
0
1

7
8
7
.1
6

1
5
7
7
5
4

1
5
9
0
8
6

1
1
3
.7
4

1
5
1
8
8
3

1
5
3
6
0
6

6
2
.9
4

1
6
0
3
3
1

1
6
1
7
7
9

1
4
.8
0

1
8
9
2
0
1

1
8
9
2
0
1

1
8
.9
5

1
6
0
8
4
2

1
6
1
5
6
5

0
.8
2

c
o
A
u
t
h
o
r
s
D
B
L
P

6
4

1
6
8
9
3
9

1
6
9
1
2
2

1
0
9
9
.7
5

1
6
9
6
8
1

1
7
0
4
0
3

1
2
3
.6
9

1
6
9
2
8
3

1
6
9
6
7
1

4
6
.0
8

1
7
4
7
0
8

1
7
5
6
7
9

1
0
.1
1

2
0
7
4
8
6

2
0
7
4
8
6

2
0
.7
0

1
7
5
6
6
0

1
7
7
1
7
2

0
.8
8

c
n
r
2
0
0
0

2
2
1
0

2
3
6

4
9
.5
4

2
5
9
7

3
7
8
9

2
5
.9
0

2
4
3
0

4
8
3
5

2
3
.2
1

2
4
2
2

5
0
5
3

1
8
.4
8

2
0
5
3
7

2
0
5
3
7

3
.7
0

1
7
7
3

2
4
5
1

7
.4
4

c
n
r
2
0
0
0

4
1
5
6
9

1
9
7
3

6
4
.0
2

6
0
8
9

6
9
7
1

4
6
.7
1

6
2
8
4

6
9
3
9

2
7
.5
0

6
1
7
5

7
1
3
8

1
3
.3
4

2
6
8
0
9

2
6
8
0
9

6
.2
0

4
3
0
1

6
3
2
6

8
.0
5

c
n
r
2
0
0
0

8
4
0
9
6

4
9
7
4

7
5
.5
5

7
9
1
4

8
5
1
0

5
5
.0
7

7
3
7
8

7
9
1
1

3
3
.2
0

7
6
8
4

8
3
0
8

1
2
.6
7

3
1
3
7
3

3
1
3
7
3

8
.1
8

7
8
9
9

1
6
9
5
1

8
.8
5

c
n
r
2
0
0
0

1
6

6
9
4
3

1
4
8
2
4

9
2
.5
7

8
7
8
4

1
0
3
8
2

6
1
.4
5

9
3
9
9

9
5
6
7

3
2
.7
2

9
8
0
5

1
0
0
0
3

1
2
.4
5

3
4
9
6
7

3
4
9
6
7

1
0
.8
4

1
2
6
0
1

8
1
7
5
2

9
.4
7

c
n
r
2
0
0
0

3
2

3
8
4
0
5
8

4
0
0
2
7
2

1
8
8
.6
9

3
6
0
6
6
1

3
6
3
6
8
7

8
8
.2
8

3
6
8
1
8
2

3
7
2
5
0
3

4
8
.9
7

3
7
4
7
8
6

3
7
5
7
8
7

1
4
.8
9

4
3
2
8
1
3

4
3
2
8
1
3

1
2
.5
9

3
6
8
0
6
2

4
0
9
1
3
0

9
.7
8

c
n
r
2
0
0
0

6
4

7
1
3
7
7
2

7
2
3
7
1
0

4
8
3
.6
8

6
9
4
2
7
0

7
0
0
5
0
4

1
0
3
.4
2

7
0
6
3
6
6

7
1
2
4
3
4

5
2
.2
7

7
2
2
7
5
4

7
2
7
9
1
7

1
5
.4
9

7
2
7
6
8
5

7
2
7
6
8
5

1
4
.0
6

7
2
3
2
2
1

7
3
7
8
7
4

1
0
.3
1

c
o
P
a
p
e
r
s
D
B
L
P

2
4
6
2
5
3
0

4
6
6
9
4
7

3
7
2
.3
9

5
1
2
3
8
9

5
2
7
2
0
5

8
0
.2
5

4
9
0
0
5
4

5
5
2
4
3
8

6
6
.7
6

5
2
8
9
5
3

5
8
5
6
4
7

6
0
.5
8

6
2
2
3
7
8

6
2
2
3
7
8

4
2
.0
6

5
9
9
7
9
4

6
3
4
2
8
6

2
.3
3

c
o
P
a
p
e
r
s
D
B
L
P

4
8
2
2
5
1
8

8
3
8
0
0
5

7
0
5
.5
9

9
3
7
2
6
7

9
5
2
5
0
5

1
2
2
.2
3

1
0
2
1
7
4
1

1
0
3
4
1
8
1

8
8
.6
6

1
4
0
9
2
7
6

1
4
2
8
0
9
4

4
2
.6
2

1
1
8
8
0
5
2

1
1
8
8
0
5
2

7
6
.1
9

1
0
7
3
0
0
7

1
0
9
1
3
5
5

2
.5
8

c
o
P
a
p
e
r
s
D
B
L
P

8
1
1
8
8
6
9
4

1
2
1
3
3
9
8

1
7
9
4
.7
7

1
2
5
7
6
2
2

1
2
9
3
2
2
3

2
0
1
.4
1

1
2
9
6
0
4
4

1
3
1
5
3
1
3

1
3
1
.6
0

1
6
9
0
9
0
6

1
7
5
1
6
8
8

3
2
.1
6

1
6
8
5
4
3
6

1
6
8
5
4
3
6

9
8
.2
9

1
4
4
2
0
7
9

1
4
9
5
9
4
3

2
.8
1

c
o
P
a
p
e
r
s
D
B
L
P

1
6

1
5
3
4
0
7
8

1
5
4
4
5
9
1

3
9
9
3
.8
4

1
5
4
0
0
5
4

1
5
7
1
9
5
7

3
1
8
.5
6

1
5
9
3
6
4
2

1
6
1
4
8
7
1

1
6
5
.9
8

1
8
1
6
4
6
7

1
8
5
2
6
3
4

2
8
.7
3

2
0
2
8
3
7
4

2
0
2
8
3
7
4

1
3
1
.8
9

1
8
6
4
8
3
6

1
8
8
6
3
4
0

3
.0
1

c
o
P
a
p
e
r
s
D
B
L
P

3
2

1
7
8
9
1
2
9

1
7
9
8
1
0
9

6
5
5
0
.1
8

1
8
2
8
0
1
5

1
8
5
0
5
3
5

4
1
1
.3
4

1
7
9
0
6
9
4

1
8
6
1
1
1
3

2
7
6
.5
1

1
9
2
6
9
7
5

2
0
0
9
4
5
0

3
7
.3
5

2
3
8
0
4
2
4

2
3
8
0
4
2
4

1
5
6
.0
7

2
0
8
7
8
6
8

2
1
2
2
5
6
9

3
.1
7

c
o
P
a
p
e
r
s
D
B
L
P

6
4

2
0
3
9
2
7
1

2
0
5
4
2
4
9

1
0
8
9
7
.4
1

2
1
6
4
3
9
6

2
1
7
7
5
9
6

4
2
3
.0
3

2
0
5
1
7
6
6

2
0
6
1
7
0
2

2
4
4
.4
6

2
1
3
2
7
9
3

2
1
3
9
5
4
1

3
1
.8
7

2
6
9
7
3
2
8

2
6
9
7
3
2
8

1
4
8
.7
2

2
3
4
1
1
5
0

2
3
4
7
8
5
0

3
.3
9

149

T
ab

le
A
.3
.:
A
ll
re
su
lt
s
fo
r
la
rg
e
in
st
an

ce
s.

G
r
a
p
h

k
K

a
S
P
a
r

s
t
r
o
n
g

K
a
S
P
a
r

fa
s
t

K
a
P
P
a

s
t
r
o
n
g

K
a
P
P
a

fa
s
t

K
a
P
P
a

m
in

im
a
l

s
c
o
t
c
h

m
e
t
is

b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e
b
e
s
t

a
v
g

t
im

e

fe
t
o
o
t
h

2
3
8
4
4

3
9
8
7

5
.8

6
3
8
4
0

3
9
8
1

1
.1

6
3
9
5
1

4
3
3
6

3
.7

5
3
8
5
4

4
3
5
3

2
.4

4
4
1
0
9

6
4
9
0

1
.5

9
4
2
5
9

4
2
5
9

0
.3

8
4
3
7
2

4
5
2
9

0
.0

8

fe
t
o
o
t
h

4
6
9
3
7

6
9
9
9

8
.5

4
7
0
3
4

7
1
4
6

1
.4

9
7
0
1
2

7
1
8
9

5
.2

2
7
1
2
6

7
7
5
7

2
.9

7
7
7
8
0

9
1
5
7

0
.9

6
8
3
0
4

8
3
0
4

0
.7

2
7
8
0
5

8
2
8
0

0
.0

8

fe
t
o
o
t
h

8
1
1
4
8
2

1
1
5
6
4

1
3
.4

3
1
1
5
7
4

1
2
0
0
7

1
.9

6
1
2
2
7
2

1
2
7
2
1

6
.8

3
1
2
2
1
5

1
2
6
7
8

4
.0

6
1
3
2
4
3

1
3
6
7
1

0
.7

5
1
2
9
9
9

1
2
9
9
9

1
.0

9
1
3
3
3
4

1
3
7
6
8

0
.0

8

fe
t
o
o
t
h

1
6

1
7
7
4
4

1
7
9
6
6

2
1
.2

4
1
7
9
6
8

1
8
2
8
8

2
.7

9
1
8
3
0
2

1
8
5
7
0

7
.1

8
1
8
1
9
8

1
8
5
2
4

3
.5

5
1
9
5
5
9

1
9
8
1
3

0
.6

5
2
0
8
1
6

2
0
8
1
6

1
.5

9
2
0
0
3
5

2
0
3
8
6

0
.0

9

fe
t
o
o
t
h

3
2

2
5
8
8
8

2
6
2
4
8

3
5
.1

2
2
6
2
4
9

2
6
5
9
2

4
.0

3
2
6
3
9
7

2
6
6
1
7

5
.2

8
2
6
4
0
4

2
6
6
7
7

2
.9

2
2
8
0
7
0

2
8
3
9
1

0
.5

3
2
8
4
3
0

2
8
4
3
0

2
.1

3
2
8
5
4
7

2
9
0
5
2

0
.1

0

fe
t
o
o
t
h

6
4

3
6
2
5
9

3
6
4
6
9

4
9
.6

5
3
6
7
4
1

4
0
3
8
5

5
.8

0
3
6
8
6
2

3
7
0
0
2

4
.7

1
3
6
7
9
5

3
6
9
9
2

2
.5

7
3
8
4
2
3

3
9
0
9
5

0
.6

2
3
8
4
0
1

3
8
4
0
1

2
.6

9
3
9
2
3
3

3
9
3
8
1

0
.1

2

5
9
8
a

2
2
3
7
1

2
3
8
4

6
.5

0
2
3
7
8

2
3
8
9

1
.8

4
2
3
8
7

2
3
9
3

5
.6

4
2
3
9
1

2
4
0
1

3
.7

9
2
4
5
6

2
4
8
5

2
.9

9
2
4
1
7

2
4
1
7

0
.3

9
2
4
4
4

2
5
1
3

0
.1

4

5
9
8
a

4
7
8
9
7

7
9
2
1

1
1
.1

5
7
9
3
5

7
9
7
7

2
.4

2
8
2
3
5

8
2
9
1

1
0
.2

4
8
2
9
1

8
3
8
5

5
.9

4
9
2
2
4

9
8
6
2

2
.6

2
8
2
4
6

8
2
4
6

0
.9

5
8
4
6
6

8
7
2
9

0
.1

5

5
9
8
a

8
1
5
9
2
9

1
5
9
8
4

2
2
.3

1
1
5
9
9
2

1
6
1
2
5

3
.4

8
1
6
5
0
2

1
6
6
4
1

1
2
.2

1
1
6
4
6
1

1
6
5
9
8

7
.0

7
1
7
3
5
1

1
7
8
9
9

2
.9

8
1
7
4
9
0

1
7
4
9
0

1
.6

3
1
7
1
7
0

1
7
5
3
3

0
.1

6

5
9
8
a

1
6

2
6
0
4
6

2
6
2
7
0

3
8
.3

9
2
6
1
0
2

2
6
6
7
2

5
.0

5
2
6
4
6
7

2
6
8
2
5

1
7
.7

4
2
6
6
7
0

2
6
8
8
7

1
2
.5

1
2
7
9
8
3

2
8
5
9
6

6
.7

6
2
9
8
0
4

2
9
8
0
4

2
.3

7
2
7
8
5
7

2
8
8
5
4

0
.1

7

5
9
8
a

3
2

3
9
6
2
5

4
0
0
1
9

6
0
.6

0
4
0
5
6
3

4
0
9
8
6

7
.2

5
4
0
9
4
6

4
1
1
9
0

1
8
.1

6
4
0
9
2
8

4
1
1
8
6

1
1
.9

1
4
3
1
1
1

4
3
7
4
1

7
.7

4
4
4
7
5
6

4
4
7
5
6

3
.2

1
4
3
2
5
6

4
4
2
1
3

0
.1

9

5
9
8
a

6
4

5
8
3
6
2

5
8
9
4
5

8
7
.5

2
5
8
3
2
6

5
9
1
9
9

1
0
.7

2
5
9
1
4
8

5
9
3
8
7

1
4
.1

5
5
9
0
2
6

5
9
2
3
3

9
.6

4
6
1
3
9
6

6
1
9
2
4

6
.2

1
6
4
5
6
1

6
4
5
6
1

4
.1

1
6
1
8
8
8

6
2
7
0
3

0
.2

2

fe
o
c
e
a
n

2
3
1
7

3
1
7

5
.5

5
3
1
7

3
2
2

1
.6

6
3
1
4

3
1
7

3
.2

1
3
1
4

3
1
8

2
.1

1
3
4
3

3
5
5

1
.7

1
4
0
2

4
0
2

0
.1

8
5
4
0

5
7
9

0
.1

1

fe
o
c
e
a
n

4
1
8
0
1

1
8
1
0

9
.4

0
1
8
1
7

1
8
3
7

1
.9

5
1
7
5
6

1
8
2
2

6
.3

0
1
7
5
4

1
8
2
2

3
.0

3
1
9
9
0

2
0
5
1

1
.1

0
2
0
0
0

2
0
0
0

0
.4

4
2
1
0
2

2
1
4
0

0
.1

1

fe
o
c
e
a
n

8
4
0
4
4

4
0
9
7

1
4
.3

3
4
0
8
4

4
1
9
5

2
.5

1
4
1
0
4

4
2
5
2

6
.3

3
4
1
4
3

4
3
3
0

2
.9

3
4
6
8
9

4
9
8
7

0
.7

3
4
9
5
6

4
9
5
6

0
.8

1
5
2
5
6

5
4
7
2

0
.1

2

fe
o
c
e
a
n

1
6

7
9
9
2

8
1
4
5

2
2
.4

1
8
1
2
0

8
3
5
9

3
.3

9
8
1
8
8

8
3
5
0

5
.6

2
8
2
9
4

8
4
6
9

3
.0

4
9
4
5
7

9
5
5
3

0
.7

0
9
3
5
1

9
3
5
1

1
.2

7
1
0
1
1
5

1
0
3
7
7

0
.1

3

fe
o
c
e
a
n

3
2

1
3
3
2
0

1
3
5
1
8

3
6
.5

3
1
3
5
2
6

1
3
8
0
6

5
.0

0
1
3
5
9
3

1
3
8
1
5

4
.3

4
1
3
6
1
8

1
4
0
4
2

2
.1

5
1
5
4
6
5

1
5
6
5
7

0
.4

7
1
5
0
8
9

1
5
0
8
9

1
.8

3
1
6
5
6
5

1
6
8
7
7

0
.1

5

fe
o
c
e
a
n

6
4

2
1
3
2
6

2
1
7
3
9

6
2
.4

6
2
2
0
5
9

2
2
2
0
9

7
.7

8
2
1
6
3
6

2
1
8
5
9

3
.6

8
2
1
8
0
9

2
1
9
7
3

2
.0

2
2
4
1
4
7

2
4
2
7
5

0
.5

1
2
3
2
4
6

2
3
2
4
6

2
.4

9
2
4
1
9
8

2
4
5
3
1

0
.1

7

1
4
4

2
6
4
5
5

6
5
0
7

1
2
.8

1
6
4
6
1

6
4
9
1

3
.0

4
6
5
5
9

6
6
2
3

7
.4

5
6
5
6
3

6
6
3
8

5
.2

3
6
7
4
7

6
7
9
9

3
.6

4
6
6
9
5

6
6
9
5

0
.6

6
6
8
0
4

6
9
7
2

0
.2

0

1
4
4

4
1
5
3
1
2

1
5
4
7
1

2
4
.7

3
1
5
7
1
7

1
5
7
7
4

4
.1

0
1
6
8
7
0

1
6
9
6
3

1
3
.3

3
1
6
9
9
8

1
7
1
2
2

7
.0

0
1
7
3
6
4

1
8
1
0
1

2
.9

7
1
6
8
9
9

1
6
8
9
9

1
.4

4
1
7
1
4
4

1
7
4
8
7

0
.2

1

1
4
4

8
2
5
1
3
0

2
5
4
0
9

3
8
.1

3
2
5
5
5
7

2
6
0
3
9

5
.5

4
2
6
3
0
0

2
6
4
5
7

2
0
.1

1
2
6
4
3
5

2
6
6
1
4

1
0
.4

9
2
7
2
0
6

2
7
8
2
9

2
.9

3
2
8
1
7
2

2
8
1
7
2

2
.2

4
2
8
0
0
6

2
8
1
9
4

0
.2

2

1
4
4

1
6

3
7
8
7
2

3
8
4
0
4

6
9
.3

5
3
8
8
3
0

3
9
1
6
1

8
.3

0
3
9
0
1
0

3
9
3
1
9

2
6
.0

4
3
9
2
6
6

3
9
4
9
2

1
7
.5

3
4
0
2
6
4

4
1
9
7
7

6
.6

3
4
3
7
1
2

4
3
7
1
2

3
.1

2
4
2
8
6
1

4
3
0
4
1

0
.2

4

1
4
4

3
2

5
7
0
8
2

5
7
4
9
2

1
0
6
.4

0
5
7
3
5
3

5
7
8
6
0

1
1
.7

3
5
8
3
3
1

5
8
6
3
1

2
4
.6

0
5
8
1
7
5

5
8
6
5
2

1
6
.0

3
6
1
7
7
4

6
2
1
7
1

8
.7

9
6
3
2
2
4

6
3
2
2
4

4
.1

4
6
1
7
1
6

6
2
4
8
1

0
.2

6

1
4
4

6
4

8
0
3
1
3

8
0
7
7
0

1
4
4
.7

7
8
0
6
0
9

8
1
2
9
3

1
6
.0

5
8
2
2
8
6

8
2
4
5
2

1
9
.1

1
8
2
0
2
9

8
2
4
9
3

1
2
.0

5
8
6
0
6
7

8
6
9
5
0

8
.1

6
8
8
2
4
6

8
8
2
4
6

5
.2

5
8
6
5
3
4

8
7
2
0
8

0
.3

0

w
a
v
e

2
8
6
6
1

8
7
2
0

1
6
.1

9
8
6
5
0

8
6
9
0

3
.2

5
8
8
3
2

9
1
3
2

8
.2

4
8
8
0
9

9
1
0
8

4
.7

2
8
9
6
6

9
3
2
4

2
.8

4
9
3
3
7

9
3
3
7

0
.8

3
9
1
6
9

9
3
4
5

0
.1

9

w
a
v
e

4
1
6
8
0
6

1
6
9
2
0

2
9
.5

6
1
6
8
7
1

1
6
9
7
8

4
.3

9
1
7
0
0
8

1
7
2
5
0

1
4
.5

1
1
7
2
6
3

1
7
5
0
3

6
.8

4
1
8
0
4
1

2
1
1
8
9

1
.8

1
1
9
9
9
5

1
9
9
9
5

1
.7

2
1
9
9
2
9

2
1
9
0
6

0
.2

0

w
a
v
e

8
2
8
6
8
1

2
8
8
1
7

4
6
.6

1
2
8
8
6
5

2
9
2
0
0

6
.0

1
3
0
6
9
0

3
1
4
1
9

2
0
.6

3
3
0
6
2
8

3
1
3
7
1

9
.7

9
3
2
6
1
7

3
3
9
3
7

1
.5

0
3
3
3
5
7

3
3
3
5
7

2
.6

1
3
3
2
2
3

3
3
6
3
9

0
.2

1

w
a
v
e

1
6

4
2
9
1
8

4
3
2
0
8

7
5
.9

7
4
3
2
6
7

4
3
7
7
0

8
.3

1
4
4
8
3
1

4
5
0
4
8

2
0
.5

4
4
4
9
3
6

4
5
2
0
2

1
0
.7

3
4
6
2
9
3

4
7
2
7
0

1
.4

7
4
8
9
0
3

4
8
9
0
3

3
.5

3
4
8
4
0
4

4
9
0
0
0

0
.2

2

w
a
v
e

3
2

6
3
0
2
5

6
3
1
5
9

1
1
2
.1

9
6
2
7
6
4

6
3
2
6
6

1
1
.8

8
6
3
9
8
1

6
4
3
9
0

1
4
.9

4
6
4
0
0
4

6
4
5
3
2

8
.1

9
6
8
0
8
5

6
8
6
2
0

1
.0

2
7
0
5
8
1

7
0
5
8
1

4
.6

8
6
8
0
6
2

6
8
6
0
4

0
.2

5

w
a
v
e

6
4

8
7
2
4
3

8
7
5
5
4

1
5
0
.3

7
8
7
4
0
3

8
7
8
8
9

1
6
.8

8
8
8
3
7
6

8
8
9
6
4

1
2
.5

1
8
8
9
2
4

8
9
2
9
7

6
.0

9
9
2
3
6
6

9
3
4
2
4

1
.0

3
9
6
7
5
9

9
6
7
5
9

5
.9

0
9
2
1
4
8

9
4
0
8
3

0
.2

9

m
1
4
b

2
3
8
2
8

3
8
4
6

2
0
.0

3
3
8
4
5

3
8
7
0

4
.4

9
3
8
6
2

3
9
5
4

1
1
.1

6
3
9
0
0

3
9
4
5

7
.8

0
3
9
5
1

4
2
0
8

5
.6

3
3
8
7
2

3
8
7
2

0
.7

0
4
0
3
6

4
1
5
5

0
.3

1

m
1
4
b

4
1
3
0
1
5

1
3
0
7
9

2
6
.5

1
1
3
1
1
1

1
3
1
6
0

5
.4

2
1
3
5
4
3

1
3
8
1
0

1
8
.7

7
1
4
1
0
4

1
4
2
1
1

1
0
.2

1
1
4
9
9
0

1
5
0
9
4

4
.4

2
1
3
4
8
4

1
3
4
8
4

1
.7

1
1
3
9
3
2

1
4
5
6
0

0
.3

3

m
1
4
b

8
2
5
5
7
3

2
5
7
5
6

4
5
.3

3
2
5
8
3
9

2
6
0
8
6

7
.2

7
2
7
3
3
0

2
7
3
9
3

2
4
.9

7
2
7
4
1
1

2
7
4
5
0

1
1
.7

6
2
8
2
4
1

2
8
5
1
7

3
.7

8
2
7
8
3
9

2
7
8
3
9

2
.8

6
2
8
1
3
8

2
8
5
0
7

0
.3

4

m
1
4
b

1
6

4
2
2
1
2

4
2
4
5
8

8
3
.2

5
4
2
7
2
7

4
3
3
6
5

1
0
.0

7
4
5
3
5
2

4
5
7
6
2

2
8
.1

1
4
5
9
3
1

4
6
1
0
8

1
9
.2

7
4
8
7
6
9

4
9
3
9
7

6
.4

1
5
0
7
7
8

5
0
7
7
8

4
.2

5
4
8
3
1
4

4
9
2
6
9

0
.3

6

m
1
4
b

3
2

6
6
3
1
4

6
6
9
9
1

1
3
3
.8

8
6
6
9
4
2

6
8
0
1
7

1
4
.5

2
6
8
1
0
7

6
9
0
7
5

2
9
.9

4
6
8
7
1
5

6
9
2
2
3

1
7
.9

9
7
2
4
8
4

7
3
5
9
8

8
.1

2
7
5
4
5
3

7
5
4
5
3

5
.7

2
7
2
7
4
6

7
4
1
3
5

0
.4

0

m
1
4
b

6
4

9
9
2
0
7

1
0
0
0
1
4

1
9
8
.2

3
9
9
9
6
4

1
0
0
6
6
6

2
0
.9

1
1
0
1
0
5
3

1
0
1
4
5
5

2
5
.2

6
1
0
1
4
1
0

1
0
1
8
6
1

1
7
.4

6
1
0
6
3
6
1

1
0
7
1
7
3

1
0
.2

4
1
0
9
4
0
4

1
0
9
4
0
4

7
.3

8
1
0
7
3
8
4

1
0
8
1
4
1

0
.4

4

a
u
t
o

2
9
7
4
0

9
7
6
8

6
8
.3

9
9
7
4
4

9
7
7
6

1
0
.9

9
9
9
1
0

1
0
0
4
5

3
0
.0

9
9
8
6
3

1
0
8
5
6

1
8
.8

6
1
0
3
1
3

1
1
8
1
3

1
2
.1

2
1
0
6
6
6

1
0
6
6
6

1
.6

1
1
0
7
8
1

1
2
1
4
7

0
.8

3

a
u
t
o

4
2
5
9
8
8

2
6
0
6
2

7
5
.6

0
2
6
0
7
2

2
6
1
1
6

1
3
.3

5
2
8
2
1
8

2
9
4
8
1

6
4
.0

1
2
9
6
9
0

2
9
9
9
5

3
3
.1

1
3
2
4
7
3

3
3
3
7
1

8
.9

3
2
9
0
4
6

2
9
0
4
6

3
.5

2
2
7
4
6
9

3
0
3
1
8

0
.8

6

a
u
t
o

8
4
5
0
9
9

4
5
2
3
2

9
7
.6

0
4
5
4
1
6

4
5
8
0
6

1
5
.9

8
4
6
2
7
2

4
6
6
5
2

8
5
.8

9
4
7
1
6
3

4
8
2
2
9

4
6
.3

6
4
9
4
4
7

5
3
6
1
7

8
.4

2
4
9
9
9
9

4
9
9
9
9

5
.4

2
4
9
6
9
1

5
2
4
2
2

0
.8

7

a
u
t
o

1
6

7
6
2
8
7

7
6
7
1
5

1
5
3
.4

6
7
7
3
7
6

7
7
8
0
1

2
0
.8

1
7
8
7
1
3

7
9
7
6
9

8
7
.4

1
7
9
7
1
1

8
0
6
8
3

5
8
.2

0
8
4
2
3
6

8
6
0
0
1

1
2
.2

5
8
4
4
6
2

8
4
4
6
2

7
.8

4
8
5
5
6
2

8
9
1
3
9

0
.9

1

a
u
t
o

3
2

1
2
1
2
6
9

1
2
1
8
6
2

2
4
6
.5

0
1
2
2
4
0
6

1
2
3
0
5
2

2
8
.1

2
1
2
4
6
0
6

1
2
5
5
0
0

7
1
.7

7
1
2
4
9
2
0

1
2
5
8
7
6

4
6
.4

4
1
3
1
5
4
5

1
3
3
7
2
3

2
0
.2

3
1
3
3
4
0
3

1
3
3
4
0
3

1
0
.5

8
1
3
3
0
2
6

1
3
4
0
8
6

0
.9

9

a
u
t
o

6
4

1
7
4
6
1
2

1
7
4
9
1
4

3
5
2
.0

9
1
7
4
7
1
2

1
7
6
2
1
4

3
8
.7

6
1
7
7
0
3
8

1
7
7
5
9
5

6
2
.6

4
1
7
7
4
6
1

1
7
8
1
1
9

4
4
.1

4
1
8
5
8
3
6

1
8
7
4
2
4

2
5
.3

9
1
9
3
1
7
0

1
9
3
1
7
0

1
3
.6

8
1
8
8
5
5
5

1
8
9
6
9
9

1
.0

8

d
e
la

u
n
a
y

n
2
0

2
1
7
1
1

1
7
3
1

1
9
6
.3

3
1
7
2
6

1
7
5
3

1
2
.8

8
1
8
5
8

1
8
8
2

3
5
.4

3
1
8
7
9

1
8
9
8

1
8
.6

6
1
9
1
1

1
9
3
7

1
3
.8

7
1
8
7
4

1
8
7
4

1
.1

8
2
0
5
4

2
1
9
4

1
.1

1

d
e
la

u
n
a
y

n
2
0

4
3
4
1
8

3
4
3
9

1
3
0
.6

7
3
4
6
0

3
4
8
0

1
3
.2

1
3
6
7
4

3
7
8
0

6
4
.0

8
3
7
8
4

3
8
2
6

2
4
.3

4
3
8
5
7

3
9
0
0

8
.9

7
3
7
2
3

3
7
2
3

2
.3

5
4
0
4
6

4
0
9
4

1
.1

5

d
e
la

u
n
a
y

n
2
0

8
6
2
7
8

6
3
1
7

1
0
4
.3

7
6
3
6
4

6
3
8
7

1
3
.7

1
6
6
7
0

6
8
5
4

7
0
.0

7
6
6
8
8

6
8
7
2

4
1
.9

2
7
1
6
1

7
3
0
3

6
.1

5
7
1
8
0

7
1
8
0

3
.5

8
7
7
0
5

8
0
2
9

1
.1

3

d
e
la

u
n
a
y

n
2
0

1
6

1
0
1
8
3

1
0
2
1
8

8
4
.3

3
1
0
2
3
0

1
0
3
2
7

1
3
.8

0
1
0
8
1
6

1
1
0
0
8

6
7
.9

2
1
0
8
8
2

1
1
0
6
1

4
8
.0

5
1
1
3
0
7

1
1
5
3
3

6
.3

1
1
1
2
6
6

1
1
2
6
6

4
.7

7
1
1
8
5
4

1
2
4
4
0

1
.1

4

d
e
la

u
n
a
y

n
2
0

3
2

1
5
9
0
5

1
6
0
2
6

1
0
1
.6

9
1
6
2
1
1

1
6
2
3
6

1
4
.9

0
1
6
8
1
3

1
7
0
8
6

4
2
.6

7
1
6
8
1
4

1
7
1
5
0

2
4
.4

4
1
7
9
9
3

1
8
1
7
9

3
.3

3
1
7
7
8
4

1
7
7
8
4

6
.0

4
1
8
8
1
6

1
9
3
0
4

1
.1

8

d
e
la

u
n
a
y

n
2
0

6
4

2
3
9
3
5

2
3
9
6
2

9
7
.0

9
2
4
1
9
3

2
4
2
6
3

1
6
.4

0
2
4
7
9
9

2
5
1
7
9

2
2
.0

4
2
4
9
4
6

2
5
1
2
9

1
2
.8

3
2
6
3
1
4

2
7
0
0
1

1
.7

9
2
6
1
6
3

2
6
1
6
3

7
.3

4
2
8
3
1
8

2
8
5
4
3

1
.2

1

r
g
g

n
2

2
0

s
0

2
2
1
6
2

2
2
0
1

1
9
8
.6

1
2
1
4
6

2
2
1
7

1
6
.7

5
2
3
7
7

2
4
9
8

3
3
.2

4
2
3
7
8

2
4
9
7

2
4
.6

6
2
4
0
0

2
5
3
0

2
0
.7

1
2
8
3
2

2
8
3
2

1
.4

1
3
0
2
3

3
3
2
6

1
.5

7

r
g
g

n
2

2
0

s
0

4
4
3
2
3

4
3
8
9

1
3
0
.0

0
4
3
8
2

4
4
4
8

1
7
.1

8
4
8
6
7

5
0
5
8

3
8
.5

0
4
8
7
0

4
9
7
3

2
1
.0

6
5
1
1
4

5
2
0
0

1
1
.1

1
5
7
3
7

5
7
3
7

2
.8

2
5
7
8
6

6
1
7
4

1
.5

6

r
g
g

n
2

2
0

s
0

8
7
7
4
5

7
9
1
5

1
0
3
.6

6
8
0
3
1

8
1
7
4

1
7
.8

1
8
9
9
5

9
3
9
1

4
6
.0

6
9
2
4
8

9
4
9
3

2
5
.5

0
9
4
2
6

9
6
3
2

7
.8

3
1
1
2
5
1

1
1
2
5
1

4
.4

8
1
1
3
6
5

1
1
7
7
1

1
.5

4

r
g
g

n
2

2
0

s
0

1
6

1
2
5
9
6

1
2
7
9
2

8
6
.1

9
1
2
9
8
1

1
3
1
4
8

1
7
.9

3
1
4
9
5
3

1
5
1
9
9

3
5
.8

6
1
5
0
1
3

1
5
3
3
9

2
4
.6

1
1
5
0
3
9

1
5
4
4
2

7
.2

0
1
7
1
5
7

1
7
1
5
7

6
.1

3
1
7
4
9
8

1
8
1
2
5

1
.5

3

r
g
g

n
2

2
0

s
0

3
2

2
0
4
0
3

2
0
4
7
8

1
0
0
.0

3
2
0
8
0
5

2
0
9
5
8

1
8
.9

9
2
3
4
3
0

2
3
9
1
7

2
6
.0

4
2
3
3
8
3

2
4
2
2
2

1
6
.9

3
2
3
8
4
2

2
4
1
6
4

3
.9

4
2
8
0
7
8

2
8
0
7
8

7
.9

6
2
7
7
6
5

2
8
4
9
5

1
.5

8

r
g
g

n
2

2
0

s
0

6
4

3
0
8
6
0

3
1
0
6
6

9
7
.8

3
3
1
2
0
3

3
1
5
8
4

2
0
.5

0
3
4
7
7
8

3
5
3
5
4

1
1
.6

2
3
5
0
8
6

3
5
5
3
9

9
.9

5
3
5
2
5
2

3
5
6
2
9

2
.0

9
3
8
8
1
5

3
8
8
1
5

9
.8

3
4
1
0
6
6

4
2
4
6
5

1
.5

8

a
f
s
h
e
ll
1
0

2
2
6
2
2
5

2
6
2
2
5

3
1
7
.1

1
2
6
2
2
5

2
6
2
2
5

3
7
.0

0
2
6
2
2
5

2
6
2
2
5

7
8
.6

5
2
6
2
2
5

2
6
2
2
5

6
5
.3

1
2
6
5
2
5

2
6
6
4
0

5
9
.7

6
2
6
8
2
5

2
6
8
2
5

3
.6

4
2
7
6
2
5

2
8
9
5
5

2
.9

9

a
f
s
h
e
ll
1
0

4
5
5
0
7
5

5
5
3
4
5

2
1
0
.6

1
5
5
8
7
5

5
6
3
7
5

3
6
.5

9
5
4
9
5
0

5
5
2
6
5

9
1
.9

6
5
4
9
5
0

5
5
5
0
0

5
1
.5

2
5
8
3
6
6

5
8
6
2
7

2
2
.1

1
5
8
5
0
0

5
8
5
0
0

7
.6

0
6
1
1
0
0

6
4
7
0
5

3
.0

4

a
f
s
h
e
ll
1
0

8
9
7
7
0
9

1
0
0
2
3
3

1
7
9
.5

1
1
0
0
3
2
5

1
0
2
6
6
7

3
8
.4

7
1
0
1
4
2
5

1
0
2
3
3
5

1
3
6
.9

9
1
0
2
1
2
5

1
0
3
1
8
0

6
1
.1

6
1
1
0
3
6
9

1
1
1
0
8
1

1
6
.0

3
1
0
5
3
7
5

1
0
5
3
7
5

1
1
.9

7
1
1
7
6
5
0

1
2
0
1
2
0

3
.0

4

a
f
s
h
e
ll
1
0

1
6

1
6
3
1
2
5

1
6
5
7
7
0

2
1
2
.1

2
1
6
3
6
0
0

1
6
5
3
6
0

4
0
.4

7
1
6
5
0
2
5

1
6
6
4
2
7

1
0
6
.6

3
1
6
5
6
2
5

1
6
6
4
8
0

6
9
.9

7
1
7
4
6
7
7

1
7
5
9
1
8

1
7
.0

0
1
7
1
7
2
5

1
7
1
7
2
5

1
6
.4

5
1
8
4
3
5
0

1
8
8
7
6
5

3
.0

6

a
f
s
h
e
ll
1
0

3
2

2
4
8
2
6
8

2
5
2
9
3
9

1
9
1
.5

3
2
5
2
5
5
5

2
5
6
2
6
2

4
3
.1

4
2
5
3
5
2
5

2
5
5
5
3
5

8
0
.8

5
2
5
2
4
8
7

2
5
5
7
4
6

5
2
.0

0
2
7
0
2
4
9

2
7
5
1
4
9

9
.2

5
2
6
9
3
7
5

2
6
9
3
7
5

2
1
.6

6
2
8
9
4
0
0

2
9
1
5
9
0

3
.1

3

a
f
s
h
e
ll
1
0

6
4

3
7
2
8
2
3

3
7
6
5
1
2

2
0
7
.7

6
3
7
8
0
3
1

3
8
2
1
9
1

4
9
.3

8
3
7
9
1
2
5

3
8
2
9
2
3

4
3
.0

1
3
8
0
2
2
5

3
8
4
1
4
0

2
9
.4

3
4
0
0
3
7
8

4
0
4
0
8
5

4
.8

2
4
0
2
2
7
5

4
0
2
2
7
5

2
7
.3

3
4
2
1
2
8
5

4
2
7
0
4
7

3
.1

8

d
e
u

2
1
6
7

1
7
2

2
3
1
.4

7
1
7
5

1
7
9

5
8
.3

1
2
1
4

2
2
1

6
8
.2

0
2
3
0

2
4
0

4
7
.5

5
2
3
3

2
4
3

3
8
.1

1
2
9
5

2
9
5

3
.1

9
2
6
8

2
8
6

5
.3

8

d
e
u

4
4
1
9

4
2
6

2
4
4
.1

2
4
2
7

4
4
7

5
8
.8

4
5
3
3

5
4
2

7
6
.8

7
5
3
1

5
4
5

4
9
.3

7
5
4
4

5
8
0

2
5
.6

5
7
2
6

7
2
6

6
.4

6
6
9
9

7
6
1

5
.3

5

d
e
u

8
7
6
2

7
7
3

2
5
0
.5

0
7
8
1

7
9
2

5
9
.2

0
9
2
2

9
6
2

9
9
.7

6
9
3
5

9
7
3

4
5
.0

5
9
7
4

1
0
0
7

1
9
.5

7
1
2
3
5

1
2
3
5

9
.8

4
1
1
7
4

1
3
3
0

5
.2

4

d
e
u

1
6

1
3
0
8

1
3
3
3

2
7
8
.3

1
1
3
3
2

1
3
8
7

6
1
.8

2
1
5
5
0

1
6
1
6

1
0
5
.9

6
1
5
5
6

1
6
1
8

7
8
.8

2
1
5
9
3

1
6
5
6

2
1
.7

9
2
0
6
6

2
0
6
6

1
3
.1

1
2
0
4
1

2
1
6
1

5
.1

9

d
e
u

3
2

2
1
8
2

2
2
1
7

2
8
3
.7

9
2
2
5
1

2
2
9
5

6
2
.5

0
2
5
4
8

2
6
1
5

7
3
.1

7
2
5
3
5

2
6
4
1

4
1
.9

3
2
6
2
6

2
7
1
1

1
1
.5

0
3
2
5
0

3
2
5
0

1
6
.2

8
3
3
1
9

3
4
4
5

5
.2

8

d
e
u

6
4

3
6
1
0

3
6
3
1

2
9
3
.5

3
3
6
7
9

3
7
3
7

6
4
.3

8
4
0
2
1

4
0
9
3

4
9
.5

5
4
0
7
8

4
1
4
6

3
1
.6

3
4
1
9
3

4
3
1
7

5
.9

7
4
9
7
8

4
9
7
8

1
9
.4

1
5
1
4
7

5
3
8
5

5
.3

1

e
u
r

2
1
3
3

1
3
8

1
9
4
6
.3

4
1
6
2

2
1
1

7
9
2
.6

8
4
6
9

4
6
9

1
2
.4

5

e
u
r

4
3
5
5

3
7
5

2
1
6
8
.1

0
4
1
6

4
3
1

7
9
4
.4

1
5
4
3

6
1
9

4
4
1
.1

1
5
8
0

6
4
6

2
2
3
.9

6
6
5
7

6
9
7

1
1
3
.3

5
9
5
2

9
5
2

2
5
.3

7
8
4
6

1
6
2
6

2
9
.4

0

e
u
r

8
7
7
4

7
8
6

2
2
3
2
.3

1
8
2
3

8
3
4

8
0
9
.2

1
9
8
6

1
0
3
4

4
1
8
.2

9
1
0
1
3

1
0
3
4

2
0
7
.4

1
1
0
6
0

1
1
1
9

8
0
.9

2
1
6
6
7

1
6
6
7

3
8
.6

7
1
6
7
5

3
2
2
7

2
9
.0

4

e
u
r

1
6

1
4
0
1

1
4
4
0

2
5
5
3
.4

0
1
5
7
5

1
5
9
7

9
3
0
.5

9
1
7
6
0

1
9
0
0

4
9
7
.9

3
1
9
0
7

1
9
3
5

2
9
5
.8

1
1
9
3
1

2
0
4
8

9
4
.5

6
2
9
2
2

2
9
2
2

5
1
.5

0
3
5
1
9

9
3
9
5

3
0
.5

8

e
u
r

3
2

2
5
9
5

2
6
4
3

2
5
9
8
.8

4
2
6
8
1

2
7
6
1

9
5
8
.2

4
3
1
8
6

3
2
9
1

4
1
7
.5

2
3
2
3
1

3
3
1
4

3
0
6
.5

2
3
2
0
2

3
3
8
6

5
5
.6

3
4
3
3
6

4
3
3
6

6
5
.1

6
7
4
2
4

9
4
4
2

3
0
.8

1

e
u
r

6
4

4
5
0
2

4
5
2
6

2
5
3
3
.5

6
4
6
2
2

4
6
7
5

8
6
8
.7

5
5
2
9
0

5
3
9
3

3
0
8
.1

7
5
4
4
8

5
5
3
8

1
8
3
.9

8
5
5
6
9

5
7
7
0

2
9
.6

4
6
7
7
2

6
7
7
2

7
7
.1

4
1
1
3
1
3

1
2
7
3
8

3
0
.3

0

150

G
ra
p
h

2
4

8
16

3
2

6
4

ad
d
20

64
1

59
4

12
12

11
77

18
14

17
04

24
27

21
21

2
6
8
7

3
2
3
6

d
at
a

19
0

18
8

40
5

38
3

69
9

66
0

11
62

1
8
6
5

2
8
8
5

3e
lt

90
89

20
1

19
9

36
1

34
2

65
4

56
9

9
6
9

1
5
6
4

u
k

1
9

19
4
1

42
92

84
17
9

15
2

2
5
8

4
3
8

ad
d
32

1
0

10
3
3

33
6
6

66
1
1
7

11
7

2
1
2

2
1
2

4
9
3

b
cs
st
k
33

10
10
5

10
09
7

21
75
6

21
50
8

34
37
7

34
17
8

56
68
7

54
86
0

7
8
1
3
2

1
0
8
5
0
5

w
h
it
ak
er
3

1
2
6

12
6

38
2

38
0

67
0

65
6

11
63

10
93

1
7
1
7

2
5
6
7

cr
ac
k

18
4

18
3

37
0

36
2

69
6

67
8

11
83

10
92

1
7
0
7

2
5
6
6

w
in
g
n
o
d
al

17
03

16
96

36
09

35
72

55
74

54
43

86
24

84
22

1
1
9
8
0

1
6
1
3
4

fe
4e
lt
2

1
3
0

13
0

3
4
9

34
9

62
2

60
5

10
51

10
14

1
6
5
7

2
5
3
7

v
ib
ro
b
ox

11
53
8

10
31
0

19
26
7

19
19
9

25
19
0

24
55
3

35
51
4

32
16
7

4
6
3
3
1

4
1
3
9
9

4
9
5
2
1

b
cs
st
k
29

2
8
1
8

28
18

8
0
3
5

81
59

14
21
2

13
96
5

23
80
8

21
76
8

3
4
8
8
6

5
7
0
5
4

4e
lt

1
3
8

13
8

32
5

32
1

56
1

53
4

10
09

93
9

1
5
5
9

2
5
9
6

fe
sp
h
er
e

3
8
6

38
6

79
8

76
8

12
36

11
52

19
14

17
30

2
5
6
5

3
6
6
3

ct
i

3
1
8

31
8

95
0

94
4

18
15

18
02

30
56

29
06

5
0
4
4

4
2
2
3

5
8
7
5

m
em

p
lu
s

56
98

54
89

10
23
4

95
59

12
59
9

11
78
5

14
41
0

13
24
1

1
6
3
4
0

1
4
3
9
5

1
6
8
5
7

cs
4

37
8

36
7

97
0

94
0

15
20

14
67

22
85

22
06

3
5
2
1

3
0
9
0

4
1
6
9

b
cs
st
k
30

63
47

63
35

1
6
6
1
7

16
62
2

34
76
1

34
60
4

72
02
8

71
23
4

1
1
5
7
7
0

1
7
3
9
4
5

b
cs
st
k
31

27
23

27
01

7
3
5
1

74
44

1
3
3
7
1

13
41
7

24
79
1

24
27
7

4
2
7
4
5

3
8
0
8
6

6
0
5
2
8

fe
p
w
t

3
4
0

34
0

7
0
4

70
4

1
4
4
1

14
42

28
35

28
06

5
6
1
2

8
4
5
4

b
cs
st
k
32

4
6
6
7

46
67

9
2
4
7

94
92

2
0
8
5
5

21
49
0

3
7
3
7
2

37
67
3

7
2
4
7
1

6
1
1
4
4

9
5
1
9
9

fe
b
o
d
y

2
6
2

26
2

5
9
9

63
6

1
0
7
9

11
56

1
8
5
8

19
31

3
2
0
2

5
2
8
2

t6
0k

78
75

21
3

21
1

47
0

46
5

86
6

84
9

1
4
9
3

1
3
9
1

2
2
1
1

w
in
g

80
3

78
7

16
83

16
66

26
16

25
89

41
47

41
31

6
2
7
1

5
9
0
2

8
1
3
2

b
ra
ck
2

7
0
8

70
8

3
0
2
7

30
38

7
1
4
4

72
69

1
1
9
6
9

11
98
3

1
8
4
9
6

1
7
7
9
8

2
6
5
5
7

fi
n
an

51
2

1
6
2

16
2

3
2
4

32
4

6
4
8

64
8

1
2
9
6

12
96

2
5
9
2

2
5
9
2

1
0
5
6
0

fe
to
ot
h

3
8
1
9

38
23

6
9
3
8

71
03

1
1
6
5
0

11
93
5

1
8
1
1
5

18
28
3

2
6
6
0
4

2
5
9
7
7

3
5
9
8
0

fe
ro
to
r

20
55

20
45

7
4
0
5

74
80

1
2
9
5
9

13
16
5

21
09
3

20
77
3

3
3
5
8
8

3
2
7
8
3

4
7
4
6
1

59
8a

23
90

23
88

7
9
9
2

81
54

1
6
1
7
9

16
46
7

2
6
1
9
6

26
42
7

4
0
5
1
3

4
0
6
7
4

5
9
0
9
8

fe
o
ce
an

38
8

38
7

1
8
5
6

18
78

4
2
5
1

42
99

8
2
7
6

84
32

1
3
8
4
1

1
3
6
6
0

2
1
5
4
8

14
4

64
89

64
79

1
5
1
9
6

15
34
5

2
5
4
5
5

25
81
8

3
8
9
4
0

39
35
2

5
8
3
5
9

5
8
1
2
6

8
1
1
4
5

w
av
e

87
16

86
82

1
6
8
9
1

17
47
5

2
9
2
0
7

30
51
1

4
3
6
9
7

44
61
1

6
4
1
9
8

6
4
5
5
1

8
8
8
6
3

m
14
b

38
28

38
26

1
3
0
3
4

13
39
1

2
5
9
2
1

26
66
6

4
2
5
1
3

43
97
5

6
7
9
9
0

6
7
7
7
0

1
0
1
5
5
1

au
to

1
0
0
0
4

10
04
2

2
6
9
4
1

27
79
0

4
5
7
3
1

47
65
0

7
7
6
1
8

79
84
7

1
2
3
2
9
6

1
2
4
9
9
1

1
7
9
3
0
9

1
7
5
9
7
5

T
a
b
le

A
.4
.:
W
al
sh
aw

B
en
ch
m
ar
k
w
it
h
ǫ
=

1

151

G
ra
p
h

2
4

8
16

3
2

6
4

ad
d
20

63
6

57
6

11
95

11
58

17
65

16
90

23
31

20
95

2
8
6
2

2
4
9
3

3
1
5
2

d
at
a

18
6

18
5

37
9

37
8

66
2

65
0

11
63

11
33

1
9
7
2

1
8
0
2

2
8
0
9

3e
lt

8
7

87
19
9

19
8

34
6

33
6

58
7

56
5

1
0
3
5

9
5
8

1
7
5
6

1
5
4
2

u
k

1
8

18
4
0

40
84

81
15
8

14
8

2
8
1

2
5
1

4
9
3

4
1
4

ad
d
32

1
0

10
3
3

33
6
6

66
1
1
7

11
7

2
1
2

2
1
2

5
0
9

4
9
3

b
cs
st
k
33

1
0
0
6
4

10
06
4

21
08
3

21
03
5

34
15
0

34
07
8

55
37
2

54
51
0

8
0
5
4
8

7
7
6
7
2

1
1
3
2
6
9

1
0
7
0
1
2

w
h
it
ak
er
3

1
2
6

12
6

38
1

37
8

66
2

65
5

11
25

10
92

1
7
5
7

1
6
8
6

2
7
3
3

2
5
3
5

cr
ac
k

1
8
2

18
2

3
6
0

36
0

68
5

67
6

11
32

10
82

1
7
6
5

1
6
7
9

2
7
3
9

2
5
5
3

w
in
g
n
o
d
al

16
81

16
80

35
72

35
61

54
24

54
01

84
76

83
16

1
2
2
8
2

1
1
9
3
8

1
6
8
9
1

1
5
9
7
1

fe
4e
lt
2

1
3
0

13
0

34
9

34
3

60
7

59
8

10
22

10
07

1
6
8
6

1
6
3
3

2
6
5
8

2
5
2
7

v
ib
ro
b
ox

11
53
8

10
31
0

19
23
9

18
77
8

24
69
1

24
17
1

34
22
6

31
51
6

4
3
5
3
2

3
9
5
9
2

5
2
2
4
2

4
9
1
2
3

b
cs
st
k
29

2
8
1
8

28
18

7
9
8
3

80
45

14
04
1

13
81
7

22
44
8

21
41
0

3
5
6
6
0

3
4
4
0
7

5
8
6
4
4

5
5
3
6
6

4e
lt

1
3
7

13
7

3
1
9

31
9

53
3

52
3

94
2

91
4

1
6
3
1

1
5
3
7

2
7
2
8

2
5
8
1

fe
sp
h
er
e

3
8
4

38
4

79
2

76
4

11
93

11
52

18
16

17
06

2
7
1
5

2
4
7
7

3
9
6
5

3
5
4
7

ct
i

3
1
8

31
8

92
4

91
7

17
24

17
16

29
00

27
78

4
3
9
6

4
1
3
2

6
3
3
0

5
7
6
3

m
em

p
lu
s

56
26

53
55

10
14
5

94
18

12
52
1

11
62
8

14
16
8

13
13
0

1
5
8
5
0

1
4
2
6
4

1
8
3
6
4

1
6
7
2
4

cs
4

36
6

36
1

95
9

93
6

14
90

14
67

22
15

21
26

3
1
5
2

3
0
4
8

4
4
7
9

4
1
6
9

b
cs
st
k
30

6
2
5
1

62
51

1
6
4
9
7

16
53
7

3
4
2
7
5

34
51
3

70
85
1

70
27
8

1
1
7
5
0
0

1
1
4
0
0
5

1
7
8
9
7
7

1
7
1
7
2
7

b
cs
st
k
31

2
6
7
6

26
76

71
83

71
81

1
3
0
9
0

13
24
6

24
21
1

23
50
4

3
9
2
9
8

3
7
4
5
9

6
0
8
4
7

5
8
6
6
7

fe
p
w
t

3
4
0

34
0

7
0
4

70
4

1
4
1
6

14
19

27
87

27
84

5
6
4
9

5
6
0
6

8
5
5
7

8
3
4
6

b
cs
st
k
32

4
6
6
7

46
67

8
7
7
8

87
99

2
0
0
3
5

21
02
3

3
5
7
8
8

36
61
3

6
1
4
8
5

5
9
8
2
4

9
6
0
8
6

9
2
6
9
0

fe
b
o
d
y

2
6
2

26
2

5
9
8

60
1

1
0
3
3

10
54

1
7
6
7

18
00

2
9
0
6

2
9
4
7

4
9
8
2

5
2
1
2

t6
0k

7
1

71
21
1

20
7

46
1

45
4

85
1

82
2

1
4
2
3

1
3
9
1

2
2
6
4

2
1
9
8

w
in
g

78
9

77
4

16
60

16
36

25
67

25
51

40
34

40
15

6
0
0
5

5
8
3
2

8
3
1
6

8
0
4
3

b
ra
ck
2

6
8
4

68
4

28
53

28
39

6
9
8
0

69
94

1
1
6
2
2

11
74
1

1
7
4
9
1

1
7
6
4
9

2
6
6
7
9

2
6
3
6
6

fi
n
an

51
2

1
6
2

16
2

3
2
4

32
4

6
4
8

64
8

1
2
9
6

12
96

2
5
9
2

2
5
9
2

1
0
6
3
5

1
0
5
6
0

fe
to
ot
h

37
94

37
92

6
8
6
2

69
46

1
1
4
2
2

11
66
2

1
7
6
5
5

17
76
0

2
5
6
8
5

2
5
6
2
4

3
5
9
6
2

3
5
8
3
0

fe
ro
to
r

1
9
6
0

19
63

7
1
8
2

72
22

1
2
5
4
6

12
85
2

2
0
3
5
6

20
52
1

3
2
1
1
4

3
1
7
6
3

4
7
6
1
3

4
7
0
4
9

59
8a

23
69

23
67

7
8
7
3

79
55

1
5
8
2
0

16
03
1

2
5
9
2
7

25
96
6

3
9
5
2
5

3
9
8
2
9

5
8
1
0
1

5
8
4
5
4

fe
o
ce
an

3
1
1

31
1

17
10

16
98

39
76

39
74

79
19

78
38

1
2
9
4
2

1
2
7
4
6

2
1
2
1
7

2
1
0
3
3

14
4

64
56

64
38

1
5
1
2
2

15
25
0

2
5
3
0
1

25
49
1

3
7
8
9
9

38
47
8

5
6
4
6
3

5
7
3
5
4

8
0
6
2
1

8
0
7
6
7

w
av
e

86
40

86
16

1
6
8
2
2

16
93
6

2
8
6
6
4

28
83
9

4
2
6
2
0

43
06
3

6
2
2
8
1

6
2
7
4
3

8
6
6
6
3

8
7
3
2
5

m
14
b

38
28

38
23

1
2
9
7
7

13
13
6

2
5
5
5
0

26
05
7

4
2
0
6
1

42
78
3

6
5
8
7
9

6
7
3
2
6

9
8
1
8
8

1
0
0
2
8
6

au
to

9
7
1
6

97
82

2
5
9
7
9

26
37
9

4
5
1
0
9

45
52
5

7
6
0
1
6

77
61
1

1
2
0
5
3
4

1
2
2
9
0
2

1
7
2
3
5
7

1
7
4
9
0
4

T
ab

le
A
.5
.:
W
al
sh
aw

B
en

ch
m
ar
k
w
it
h
ǫ
=

3

152

G
ra
p
h

2
4

8
16

3
2

6
4

ad
d
20

61
0

55
0

11
86

11
57

17
55

16
75

22
67

20
81

2
7
8
6

2
4
6
3

3
2
7
0

3
1
5
2

d
at
a

18
3

18
1

36
9

36
8

64
0

62
8

11
30

10
86

1
9
0
7

1
7
7
7

3
0
7
3

2
7
9
8

3e
lt

8
7

87
19
8

19
7

33
6

33
0

57
2

56
0

1
0
0
9

9
5
0

1
6
4
5

1
5
3
9

u
k

1
8

18
3
9

40
81

78
15
0

13
9

2
7
2

2
4
6

4
5
6

4
1
0

ad
d
32

1
0

10
3
3

33
6
3

65
1
1
7

11
7

2
1
2

2
1
2

4
9
1

4
9
3

b
cs
st
k
33

9
9
1
4

99
14

2
0
1
9
8

20
58
4

33
97
1

33
93
8

55
27
3

54
32
3

7
9
1
5
9

7
7
1
6
3

1
1
1
6
5
9

1
0
6
8
8
6

w
h
it
ak
er
3

1
2
6

12
6

38
0

37
8

65
8

65
0

11
10

10
84

1
7
4
1

1
6
8
6

2
6
6
3

2
5
3
5

cr
ac
k

1
8
2

18
2

36
1

36
0

67
3

66
7

10
96

10
80

1
7
4
9

1
6
7
9

2
6
8
1

2
5
4
8

w
in
g
n
o
d
al

16
72

16
68

35
41

35
36

53
75

53
50

84
19

83
16

1
2
1
4
9

1
1
8
7
9

1
6
5
6
6

1
5
8
7
3

fe
4e
lt
2

1
3
0

13
0

34
0

33
5

59
6

58
3

10
13

99
1

1
6
6
5

1
6
3
3

2
6
0
8

2
5
1
6

v
ib
ro
b
ox

11
53
8

10
31
0

19
02
1

18
77
8

24
20
3

23
93
0

34
29
8

31
23
5

4
2
8
9
0

3
9
5
9
2

5
0
9
9
4

4
8
2
0
0

b
cs
st
k
29

2
8
1
8

28
18

7
9
3
6

79
42

13
61
9

13
61
4

21
91
4

20
92
4

3
4
9
0
6

3
3
8
1
8

5
7
2
2
0

5
4
9
3
5

4e
lt

1
3
7

13
7

31
8

31
5

51
9

51
6

92
5

90
2

1
5
7
4

1
5
3
2

2
6
7
3

2
5
6
5

fe
sp
h
er
e

3
8
4

38
4

78
4

76
4

12
19

11
52

18
01

16
92

2
6
7
8

2
4
7
7

3
9
0
4

3
5
4
7

ct
i

3
1
8

31
8

90
0

89
0

1
7
0
8

17
16

28
30

27
25

4
2
2
7

4
0
3
7

6
1
2
7

5
6
8
4

m
em

p
lu
s

55
16

52
67

10
01
1

92
99

12
45
8

11
55
5

14
04
7

13
07
8

1
5
7
4
9

1
4
1
7
0

1
8
2
1
3

1
6
4
5
4

cs
4

36
3

35
6

95
5

93
6

14
83

14
67

21
84

21
26

3
1
1
5

2
9
9
5

4
3
9
4

4
1
1
6

b
cs
st
k
30

6
2
5
1

62
51

1
6
1
8
6

16
33
2

3
4
1
4
6

34
35
0

6
9
5
2
0

70
04
3

1
1
4
9
6
0

1
1
3
3
2
1

1
7
5
7
2
3

1
7
0
5
9
1

b
cs
st
k
31

2
6
7
6

26
76

7
0
9
9

71
52

1
2
9
4
1

13
05
8

23
60
3

23
25
4

3
8
1
5
0

3
7
4
5
9

6
0
7
6
8

5
7
5
3
4

fe
p
w
t

3
4
0

34
0

7
0
0

70
1

1
4
0
5

14
09

2
7
7
2

27
77

5
5
4
5

5
5
4
6

8
4
1
0

8
3
1
0

b
cs
st
k
32

4
6
2
2

46
44

8
4
5
4

84
81

1
9
6
7
8

20
09
9

3
5
2
0
8

35
96
5

6
0
4
4
1

5
9
8
2
4

9
4
2
3
8

9
1
0
0
6

fe
b
o
d
y

2
6
2

26
2

5
9
6

60
1

1
0
1
7

10
54

1
7
2
3

17
84

2
8
0
7

2
8
8
7

4
8
3
4

4
8
8
8

t6
0k

6
5

65
20
2

19
6

45
7

45
4

83
9

81
8

1
3
9
8

1
3
7
6

2
2
2
9

2
1
6
8

w
in
g

78
4

77
0

16
54

16
36

2
5
2
8

25
51

3
9
9
8

40
15

5
9
1
5

5
8
0
6

8
2
2
8

7
9
9
1

b
ra
ck
2

6
6
0

66
0

27
45

27
39

6
6
7
1

67
81

1
1
3
5
8

11
55
8

1
7
2
5
6

1
7
5
2
9

2
6
3
2
1

2
6
2
8
1

fi
n
an

51
2

1
6
2

16
2

3
2
4

32
4

6
4
8

64
8

1
2
9
6

12
96

2
5
9
2

2
5
9
2

1
0
5
8
3

1
0
5
6
0

fe
to
ot
h

37
80

37
73

6
8
2
5

68
64

1
1
3
3
7

11
66
2

1
7
4
0
4

17
60
3

2
5
2
1
6

2
5
6
2
4

3
5
4
6
6

3
5
4
7
6

fe
ro
to
r

1
9
5
0

19
55

70
52

70
45

1
2
3
8
0

12
56
6

2
0
0
3
9

20
13
2

3
1
4
5
0

3
1
5
7
6

4
6
7
4
9

4
6
6
0
8

59
8a

23
38

23
36

7
7
6
3

78
51

1
5
5
4
4

15
72
1

2
5
5
8
5

25
80
8

3
9
1
4
4

3
9
3
6
9

5
7
4
1
2

5
8
0
3
1

fe
o
ce
an

3
1
1

31
1

17
05

16
97

39
46

39
41

7
6
1
8

77
22

1
2
7
2
0

1
2
7
4
6

2
0
8
8
6

2
0
6
6
7

14
4

63
73

63
62

1
5
0
3
6

15
25
0

2
5
0
2
5

25
25
9

3
7
4
3
3

38
22
5

5
6
3
4
5

5
6
9
2
6

7
9
2
9
6

8
0
2
5
7

w
av
e

85
98

85
63

1
6
6
6
2

16
82
0

2
8
6
1
5

28
70
0

4
2
4
8
2

42
80
0

6
1
7
8
8

6
2
5
2
0

8
5
6
5
8

8
6
6
6
3

m
14
b

38
06

38
02

1
2
9
7
6

13
13
6

2
5
2
9
2

25
67
9

4
1
7
5
0

42
60
8

6
5
2
3
1

6
6
7
9
3

9
8
0
0
5

9
9
0
6
3

au
to

94
87

94
50

2
5
3
9
9

25
88
3

4
4
5
2
0

45
03
9

7
5
0
6
6

76
48
8

1
2
0
0
0
1

1
2
2
3
7
8

1
7
1
4
5
9

1
7
3
9
6
8

T
a
b
le

A
.6
.:
W
al
sh
aw

B
en
ch
m
ar
k
w
it
h
ǫ
=

5

153

APPENDIX B

List of Publications

[1] Deepak Ajwani, Ulrich Meyer, and Vitaly Osipov. “Improved External Memory BFS
Implementation”. In: Proceedings of the 9th Workshop on Algorithm Engineering and
Experiments (ALENEX’07). SIAM, 2007.

[2] Deepak Ajwani, Roman Dementiev, Ulrich Meyer, and Vitaly Osipov. “Breadth First
Search on Massive Graphs”. In: DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science 74 (2009), pp. 291–308.

[3] Timo Bingmann, Johannes Fischer, and Vitaly Osipov. “Inducing Suffix and LCP
Arrays in External Memory”. In: Proceedings of the 15th Workshop on Algorithm
Engineering and Experiments (ALENEX’13). SIAM, 2013.

[4] Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari Sitchinava.
“Efficient Parallel and External Matching”. In: Proceedings of the Int’l Conference
on Parallel Processing (Euro-Par’13). Lecture Notes in Computer Science. to appear.
Springer, 2013.

[5] Nikolaj Leischner, Vitaly Osipov, and Peter Sanders. “GPU Sample Sort”. In: Pro-
ceedings of the 24th Int’l Parallel and Distributed Processing Symposium (IPDPS’10).
IEEE Computer Society Press, 2010.

[6] Ulrich Meyer and Vitaly Osipov. “Design and Implementation of a Practical I/O-
efficient Shortest Paths Algorithm”. In: Proceedings of the 11th Workshop on Algo-
rithm Engineering and Experiments (ALENEX’09). SIAM, 2009.

[7] Vitaly Osipov. “Parallel Suffix Array Construction for Shared Memory Architec-
tures”. In: Proceedings of the 19th Symposium on String Processing and Information
Retrieval (SPIRE’12). Vol. 7608. Lecture Notes in Computer Science. Springer, 2012.

[8] Vitaly Osipov and Peter Sanders. “n-Level Graph Partitioning”. In: Proceedings of
the 18th Annual European Symposium on Algorithms (ESA’10). Vol. 6346. Lecture
Notes in Computer Science. Springer, 2010.

154

[9] Vitaly Osipov and Peter Sanders. “The Filter-Kruskal Minimum Spanning Tree Al-
gorithm”. In: Proceedings of the 11th Workshop on Algorithm Engineering and Ex-
periments (ALENEX’09). SIAM, 2009.

[10] Vitaly Osipov, Peter Sanders, and Christian Schulz. “Engineering Graph Partition-
ing Algorithms”. In: Proceedings of the 11th Int’l Symposium on Experimental Algo-
rithms (SEA’12). Ed. by Ralf Klasing. Vol. 7276. Lecture Notes in Computer Science.
Springer, 2012.

155

ANHANG C

Zusammenfassung

Fundamentale Algorithmen umfassen Basiswissen für jeden Bachelorstudenten in Informatik
als auch für professionelle Programmierer. Das ist eine Menge von Verfahren, die in jedem
(guten) Buch über Algorithmen und Datenstrukturen beschrieben ist. Wenn man das In-
haltsverzeichnis einer dieser Bücher, zum Beispiel von Sanders und Mehlhorn [105], ließt,
sieht man, dass wir uns mit den meisten dort beschriebenen algorithmischen Problemen
beschäftigt haben. Unter anderem beschreiben wir gegenwärtige Fortschritte für solche klas-
sische Probleme wie Sortierung, Berechnung von kürzesten Wegen, minimalen Spannbäumen,
maximale Matchings in Graphen, Breitensuche in Graphen und Partitionierung von Graphen.
Man könnte behaupten, dass diese Probleme längst gelöst sind und die optimalen Schran-

ken für sie schon lang bekannt sind. Das ist soweit richtig, wenn unsere Annahmen über
das konkrete Problem und die Architektur stimmen. Im größten Teil der Kursbücher ist es
das Random Access Machine (RAM) Model. Dieses Model nimmt an, dass die Eingabe in
den Hauptspeicher passt, sowie dass die Zugriffszeit auf den Hauptspeicher gleichverteilt ist.
Leider stimmt es oft nicht für reale Architekturen, die eine Speicherhierarchie besitzen. Die
Speicherhierarchie umfasst mehrere Schichten - vom Cache bis zur Festplatte. Zum Beispiel
kann die Breitensuche in einem Graph mehrere Größenordnungen langsamer sein sobald der
Graph nicht mehr in den Hauptspeicher passt, so dass das Betriebssystem die Festplatte
benutzen muss.
In diesem Fall sagen wir, dass das Problem für die external memory Anforderungen for-

muliert ist.
Ein anderes Problem für klassische Verfahren ist der schnell wachsende Parallelismus. Die

Anzahl an Prozessoren variiert von einigen wenigen (bis acht) in einem üblichen Heimcom-
puter bis zu Hunderten in einem Grafikprozessor (GPU).
Die klassischen Verfahren sind für diese Anforderungen oft ineffizient oder sogar nicht

anwendbar.
Die worst case Schranken im RAMModel garantieren nicht, dass der Algorithmus eine bes-

sere Laufzeit für praktische Eingaben erzielt. Der Grund dafür ist, dass worst case Eingaben

157

in Praxis selten aufkommen. Deswegen sind theoretisch schlechtere Algorithmen oft besser
für praktische Anwendungen. Desweiteren können Heuristiken einen positiven Einfluss auf
die Laufzeit haben. In dieser Arbeit versuchen wir die Lücke zwischen klassischen worst case
Laufzeitschranken und den Anforderungen, die man bei praktischen Anwendungen trifft, wie
Eingabegröße, beschränkter Hauptspeicher oder Parallelismus, zu schließen.

158

	Introduction
	Our main contributions.

	Models for Algorithm Design
	Random Access Machine
	External Memory Model
	Parallel Random Access Machine
	General Purpose Computation on GPUs

	Algorithm Engineering Infrastruture
	Algorithm Engineering Methodology
	Machine Configurations
	Data Analysis

	Sorting
	Divide and Conquer Approaches
	Sorting on GPU
	GPU Sample Sort
	Algorithm Design
	Implementation Details for the Original Algorithm
	Implementation Details for the Improved Algorithm
	Special Case: 16- and 32-way Distribution
	Sorting Small Buckets.
	Tuning Architecture-Dependent Parameters
	Experimental Study of Original Algorithm on Tesla
	Experimental Study of Algorithms on Fermi and Performance Portability
	Evaluation of a Special-case Treatment for 16-and 32-way Distribution

	Conclusion

	Suffix Sorting
	Preliminaries
	Related Work
	Prefix-Doubling Algorithms
	Induced Sorting
	Parallel Suffix Array Construction for Shared Memory Architectures
	Algorithm Design
	Experimental Study
	Discussion

	Suffix Array Construction in External Memory
	Algorithm Design
	Splitting Large Tuples.
	I/O Analysis of eSAIS with Split Tuples
	Experimental Study

	Breadth First Search on Massive Graphs
	Algorithms
	Related Work
	Our Contribution
	Improvements of MR_BFS and MM_BFS_R

	Algorithm Design of MM_BFS_D
	A Heuristic for Maintaining the Pool
	Experimental Study
	Results with Heuristic.

	Conclusion
	Discussion

	Single Source Shortest Paths on Massive Graphs
	Overview
	Algorithm Design
	Experimental Study
	Early Results on Flash Memory.

	Conclusions

	Minimum Spanning Tree
	Overview
	Kruskal's Algorithm
	Algorithm Design
	Results for Random Edge Weights.
	Implementation.
	Parallelization.
	More Sophisticated Variants.
	Experiments

	Conclusions

	Graph Matching
	Global Path Algorithm
	Filter-GPA
	Analysis for Random Edge Weights

	Massively Parallel Matchings
	Local Max
	Sequential Model
	CRCW PRAM Model.
	MapReduce Model.
	External Memory Models.
	O(log2 n) work-optimal CREW solution

	Implementation and Experimental Study
	Sequential Speed and Quality
	GPU Implementation

	Conclusions And Future Work

	Graph Partitioning
	Multilevel Graph Partitioning
	n-Level Graph Partitioning
	Local Search Strategy
	Trial Trees
	Experimental Study

	Conclusion

	Discussion
	Bibliography
	Complete Data Sets
	List of Publications
	Zusammenfassung

