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Abstract: An algorithm for calculating the effective ratio of the transverse bending rigidity is es-
tablished based on the segment longitudinal joint bending stiffness. With the knowledge of this
effective ratio, the bending rigidity of a modified uniform rigidity ring is fully defined. To verify this
developed algorithm, the effective ratios and convergence deformations of the modified uniform
rigidity rings obtained with different methods are compared. Moreover, the responses of the modified
uniform rigidity ring model under loading obtained from this algorithm are compared to those
obtained with the existing generally accepted beam-spring model. The results show that although
the bending moments obtained from these two models are different, the axial forces, horizontal con-
vergent deformations, and vertical convergent deformations are quite consistent with each other. The
modified uniform rigidity ring model built on the developed effective ratio algorithm is applicable for
the analysis of the tunnel convergence deformation and the interaction between the tunnel structure
and the ground during operation. This modified uniform rigidity ring model is simpler and easier to
use than the beam-spring model; thus, the significance of the developed algorithm for the effective
ratio of the transverse bending rigidity is demonstrated.

Keywords: shield tunnel; beam-spring model; joint bending stiffness; transverse bending rigidity;
modified uniform rigidity ring model

1. Introduction

Many segment ring models, such as the uniform rigidity ring model [1], modified
uniform rigidity ring model [2], multi-hinge ring model [3,4], beam-spring model [5–7],
beam-discontinuous joint model [8], and shell-spring model [9], are used for the transverse
analysis of the internal force and deformation of shield-driven tunnels. The main difference
between all these models is the way that the flexural behavior of the longitudinal joints
is considered. Indeed, the way to address the segment longitudinal joint is critical for the
analysis of the shield tunnel structure [10–13].

At present, the more popular methods for the analysis of the tunnel structure are the
beam-spring model and modified uniform rigidity ring model. The beam-spring model,
which involves the longitudinal joint bending stiffness as the key parameter, behaves close
to the actual state of the installed segment ring [14,15]. The existing research regarding
the beam-spring model mainly concentrates on the factors affecting the longitudinal joint
bending stiffness and how the longitudinal joint bending stiffness affects the internal force
and deformation [3,16–19]. Because of the limitations of all these methods, deviations
among these studies are expected.
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Moreover, it is difficult to establish the beam-spring model in the numerical simulation,
and the application of the beam-spring model is relatively complex. For the beam-spring
model, longitudinal joints are treated as three-dimensional springs with flexural stiffness,
axial stiffness, and shearing stiffness. In contrast, for the modified uniform rigidity ring
model, the longitudinal joints of the installed segment ring are neglected. However, the
effect of the longitudinal joints is still considered in the modified uniform rigidity ring
model by reducing the transverse bending rigidity of a uniform rigidity ring. Thus, the
bending rigidity of the modified uniform rigidity ring model can be obtained by multiplying
the bending rigidity of the transverse section of the segment by the effective ratio of the
transverse bending rigidity η. Compared to the generally accepted but more comprehensive
beam-spring model, the modified uniform rigidity ring model is simpler and easier to use.
However, as the key parameter of the modified uniform rigidity ring model, the value of η
is difficult to determine [2,20,21].

Many studies have focused on the methods of how to obtain the value of η [20,22–25],
and the factors influencing η [4,24–26] have been reported. The existing methods to
determine η are often too complex or lack a theoretical basis, and empirical equations based
on model tests [27] are unable to correctly characterize the correlation between η and its
influencing factors, such as the longitudinal joint bending stiffness, the diameter of the
segment ring, the thickness of the segment, and the number of joints [28].

In this article, the correlation between the longitudinal joint bending stiffness of
an installed segment ring and the effective ratio of the transverse bending rigidity of a
modified uniform rigidity ring is investigated. Then, formulas that express the correlation
between the effective ratio of the transverse bending rigidity and its influencing factors
are derived according to the longitudinal joint bending stiffness. With the knowledge of
this effective ratio, the bending rigidity of a modified uniform rigidity ring is fully defined.
Finally, the validity of the established algorithm for calculating the effective ratio of the
transverse bending rigidity is verified by comparing the responses of the tunnel rings using
the modified uniform rigidity ring models, which are established according to the effective
ratio obtained by different methods, with those obtained with the generally accepted but
more complex beam-spring model.

2. Algorithm of the Effective Ratio of the Transverse Bending Rigidity
2.1. Equivalent Equation of Transverse Bending Rigidity

Because the bending rigidity of each section of the modified uniform rigidity ring
is the same, reducing the transverse bending rigidity of a uniform rigidity ring with the
same geometric dimensions of the installed segment ring can be accomplished by evenly
allocating the weakness caused by longitudinal joints of the installed segment ring to all of
the sections of the modified uniform rigidity ring. Thus, the equivalence of the transverse
bending performance between the modified uniform rigidity ring and the installed segment
ring is often a necessity. To calculate the effective ratio of the transverse bending rigidity
based on the longitudinal joint bending stiffness of the installed segment ring, several
assumptions are made as follows: (1) the installed segment ring and modified uniform
rigidity ring are spread into straight beams by cutting them apart at the bottom position
(at the position of 180◦), as shown in Figure 1; (2) the condition that the end sections of
both straight beams have the same relative rotation angle under the same pure bending
moment is regarded as the equivalent condition of the transverse bending rigidity for both
rings; and (3) when the equivalent condition of the transverse bending rigidity is satisfied,
the ratio that the bending rigidity of the transverse section of a modified uniform rigidity
ring to that of the corresponding installed segment ring is termed the effective ratio of
the transverse bending rigidity η. Spread straight beams from the installed segment ring
and the modified uniform rigidity ring and their corresponding geometric dimensions are
shown in Figure 1. The installed segment ring shown in Figure 1 is the tunnel lining of a
shield-driven tunnel with non-staggered installation, which is widely used in Shanghai’s
single-line metro.
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installed segment ring; (d) straight beam spread from the modified uniform rigidity ring.

The mean value of the outer and inner circumferences of the installed segment ring is
taken as the length of its spread straight beam. It can be calculated using Equation (1):

L =
(D1 + D2)

2
π (1)

where L is the length of the straight beam spread from the installed segment ring, D1 is the
outer diameter of the installed segment ring, and D2 is the inner diameter of the installed
segment ring.

According to Hooke’s law, the elastic flexural strain of a straight beam is given by
Equation (2), when subjected to the pure bending moment M:

κ =
M
EI

(2)

where κ is the flexural strain, which is defined as the rotation angle developed per unit
length; M is the pure bending moment acting on the ends of the spread straight beam; EI
is the bending rigidity of the transverse section of the segment; E is the elastic modulus of
the segment; and I is the moment of inertia for the transverse section of the segment.

Without considering the rotation angles of all joints, the relative rotation angle for the
end sections of the straight beam spread from the installed segment ring may be expressed
as Equation (3), when subjected to the pure bending moment M:

θ1 =
LM
EI

(3)
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where θ1 is the relative rotation angle for the end sections of the straight beam spread from
the installed segment ring, which is caused by the bend of the beam.

However, the bending rigidity of the spread straight beam is weakened by the existence
of segment longitudinal joints. When the joint is subjected to the pure bending moment,
the rotation angle of the joint can be expressed as Equation (4):

∆θ =
M
k

(4)

where ∆θ is the rotation angle of the joint and k is the bending stiffness of the segment
longitudinal joint.

For the installed segment ring used in the Shanghai metro (as shown in Figure 1), there
are six joints on its straight beam: the number of joints with a bending stiffness of k1, k2, or
k3 is two. The summation of the rotation angles of all the joints on the spread straight beam
under the pure bending moment M can be expressed as Equation (5). Accordingly, under
the pure bending moment M, the relative rotation angle for the end sections of the straight
beam spread from the installed segment ring can be calculated by Equation (6):

θ2 = 2(
M
k1

+
M
k2

+
M
k3

) (5)

θ = θ1 + θ2 =
LM
EI

+ 2(
M
k1

+
M
k2

+
M
k3

) (6)

where θ2 is the summation of the rotation angles of all the joints on the straight beam, which
is spread from the installed segment ring; ki is the longitudinal joint bending stiffness for
joint i; and θ is the relative rotation angle for the end sections of the straight beam, which is
spread from the installed segment ring.

The bending rigidity of the transverse section of the modified uniform rigidity ring
is assumed to be E′ I′. Under the pure bending moment, the relative rotation angle of the
end sections of the straight beam spread from the modified uniform rigidity ring can be
expressed as Equation (7):

θ′ =
L′M
E′ I′

(7)

where θ′ is the relative rotation angle of the end sections of the straight beam, which is
spread from the modified uniform rigidity ring; L′ is the length of the straight beam spread
from the modified uniform rigidity ring; E′ I′ is the bending rigidity of the transverse
section of the modified uniform rigidity ring; E′ is the elastic modulus of the modified
uniform rigidity ring; and I′ is the moment of inertia for the transverse section of the
modified uniform rigidity ring.

According to the equivalent condition of the transverse bending rigidity, Equation (8)
can be derived and simplified into Equation (9), which is denoted as the equivalent equation
of the transverse bending rigidity:

L′M
E′ I′

=
LM
EI

+ 2(
M
k1

+
M
k2

+
M
k3

) (8)

L′

E′ I′
=

L
EI

+
2
k1

+
2
k2

+
2
k3

(9)

2.2. Reduction of Bending Rigidity by Reducing the Elastic Modulus

To satisfy the equivalent condition of the transverse bending rigidity between an
installed segment ring and a modified uniform rigidity ring, the elastic modulus E or the
moment of inertia I should be reduced accordingly [29]. When E is reduced, the geometric
dimensions of the modified uniform rigidity ring and the installed segment ring are the
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same, namely, I′ = I, L′ = L. Thus, Equation (10) can be obtained from Equation (9), and
E′ can be expressed as Equation (11):

L
E′ I

=
L

EI
+

2
k1

+
2
k2

+
2
k3

(10)

E′ =
EL

L + 2EI( 1
k1
+ 1

k2
+ 1

k3
)

(11)

According to the definition of the effective ratio of the transverse bending rigidity η for
the modified uniform rigidity ring (i.e., η = E′ I′/EI), η can be expressed as Equation (12):

η =
E′

E
=

L
L + 2EI( 1

k1
+ 1

k2
+ 1

k3
)

(12)

where η is the effective ratio of the transverse bending rigidity for the modified uniform
rigidity ring.

2.3. Reduction of Bending Rigidity by Reducing the Moment of Inertia

There are two methods to reduce the moment of inertia; both achieve this goal by
reducing the thickness based on a uniform rigidity ring with the same geometric dimensions
of the installed segment ring. The first method is to increase the inner diameter and to
decrease the outer diameter of the uniform rigidity ring simultaneously (the amount of
increase is set to be equal to the amount of decrease). The second method is to increase only
the inner diameter of the uniform rigidity ring, causing the outer diameter of the modified
uniform rigidity ring and that of the installed segment ring to be the same.

(1) The first method of reducing the moment of inertia.

For the first method of reducing the moment of inertia, the length of the straight
beams spread from the modified uniform rigidity ring and the installed segment ring is
set to be equal (i.e., L′ = L). According to Equation (9), the moment of inertia for the
modified uniform rigidity ring can be expressed as Equation (13), and the effective ratio of
the transverse bending rigidity can be expressed as Equation (14):

I′ =
EL

L
I +

2E
k1

+ 2E
k2

+ 2E
k3

(13)

η =
I′

I
=

L
L + 2EI( 1

k1
+ 1

k2
+ 1

k3
)

(14)

It is noted that Equations (12) and (14) are the same.
If the number of joints for the installed segment ring is n, then the effective ratio of the

transverse bending rigidity for the corresponding modified uniform rigidity ring can be
expressed as Equation (15):

η =
L

L + EI ∑n
i=1

1
ki

=
(D1 + D2)π

(D1 + D2)π + 2EI ∑n
i=1

1
ki

(15)

where n is the number of joints for the installed segment ring and
n
∑

i=1

1
ki

is the summa-

tion of all the rotation angles of the joint on the installed segment ring under a unit
bending moment.

If the other parameters in Equation (15) are kept constant, more joints on the installed
segment ring and a larger section bending stiffness will lead to a smaller effective ratio of
the transverse bending rigidity while a larger diameter of the segment ring and a larger joint
bending stiffness correspond to a larger effective ratio of the transverse bending rigidity.
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To reduce I, the thickness of the uniform rigidity ring is reduced, and the longitudinal
width of the uniform rigidity ring is kept unchanged (i.e., b′ = b). According to the equation
that E′ I′ = ηEI, Equation (16) can be derived, and the thickness of the modified uniform
rigidity ring can be calculated by using Equation (17), because E′ = E:

E′
b′h′3

12
= ηE

bh3

12
(16)

h′ = 3
√

ηh (17)

where b′ is the longitudinal width of the modified uniform rigidity ring, h′ is the thickness
of the modified uniform rigidity ring, b is the longitudinal width of the installed segment
ring, h is the thickness of the segment, and 3

√
η is the thickness reduction coefficient for a

modified uniform rigidity ring.
If the installed segment ring shown in Figure 1 is converted into a corresponding

modified uniform rigidity ring, the thickness reduction coefficient can be expressed as
Equation (18) based on Equation (14):

α = 3
√

η = 3

√
L

L + 2EI( 1
k1
+ 1

k2
+ 1

k3
)
= 3

√
(D1 + D2)π

(D1 + D2)π + 2EI ∑n
i=1

1
ki

(18)

where α is the thickness reduction coefficient for the modified uniform rigidity ring con-
verted from the installed segment ring.

(2) The second method of reducing the moment of inertia.

For the second method of reducing the moment of inertia, the length of the straight
beam spread from the modified uniform rigidity ring can be calculated using Equation (19):

L′ = (
D′1 + D′2

2
)π (19)

If Equation (19) is substituted into Equation (9), Equation (20) can be derived:

L
EI

+
2
k1

+
2
k2

+
2
k3

=
(D + D′)π

2E′ I′
(20)

Because E′ = E, Equation (21) can be obtained from Equation (20):

b
12

(
L
I
+ 2E(

1
k1

+
1
k2

+
1
k3
))h′3 + πh′ − πD = 0 (21)

As a cubic equation about the thickness of a modified uniform rigidity ring, Equation (21)
has no quadratic term and has only one real root.

3. Verification of the Algorithm
3.1. Verification Sample

The sample of the installed segment ring used for the verification study is the tunnel
lining of shield tunnels with non-staggered installation, which is widely used in Shanghai’s
single-line metro. The outer diameter of the segment ring is 6.2 m, and the thickness and
width of the segment are 0.35 and 1.2 m, respectively. The segment is precasted using
high-strength concrete (C55 grade) of which the Poisson’s ratio and elastic modulus are
0.18 and 35.5 GPa, respectively. The segment ring is composed of six segments, which is
shown in Figure 2. Straight bolts with a mechanical property grade of 5.8 are adopted for
the circumferential and longitudinal connection of the segment rings.
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To obtain the longitudinal joint bending stiffness of the installed segment ring, a
back analysis of a full-scale test simulating the interaction between the load and structure
was conducted [30]. To simulate the surrounding earth pressure, there are 24 loading
points spaced evenly around the segment ring. All the loads are divided into 3 groups: P1
(6 loading points), P2 (10 loading points), and P3 (8 loading points), which are also shown
in Figure 2. Deformations measured in the full-scale test under four different loading
conditions are used as a basis for the back analysis and are listed in Table 1. It is noted that
the sign conventions adopted herein are positive for the outward deformations.

Table 1. Deformations measured in the full-scale test.

Loading
Conditions

Actual Load
P1/kN

Actual Load
P2/kN

Actual Load
P3/kN

Deformation Results of Different Testing Point/mm

0◦ 74◦ 105◦ 180◦ 255◦ 286◦

1st 95.32 45.98 71.49 −6.44 6.45 3.93 −2.48 2.03 4.78
2nd 163.15 76.83 122.36 −22.18 21.51 12.48 −7.3 8.66 18.54
3rd 213.02 99.97 159.76 −63.09 55.66 32.18 −18.79 28.72 55.21
4th 248.92 119.24 186.69 −107.89 94.36 55.21 −31.54 48.01 92.55

The beam-spring model [14,15], well recognized for its ability to simulate an installed
segment ring accurately, is established here in a cylindrical coordinate system using ANSYS.
A typical configuration includes 366 node elements, 360 curved beam elements, and 6 spring
elements. Because of the symmetrical conditions, the bending stiffness of the segment
longitudinal joints are k1 at the positions of 8◦ and 352◦, k2 at the positions of 73◦ and 287◦,
and k3 at the positions of 138◦ and 222◦. Additionally, the horizontal and vertical restraints
are applied at the 0◦ and 180◦ positions and at the 90◦ and 270◦ positions, respectively,
which are shown in Figure 3. Values for the longitudinal joint bending stiffness obtained
from the back analysis under different loading conditions are listed in Table 2.
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Table 2. Joints’ bending stiffness obtained through back analysis.

Loading Conditions k1/106 N·m/rad k2/106 N·m/rad k3/106 N·m/rad

1st 34 28 50
2nd 13 10 21
3rd 6 4 9
4th 4.2 2.5 7

3.2. Values of the Effective Ratio for the Transverse Bending Rigidity Based on the Full-Scale Test

As shown in Table 3, under the condition that L′ = L, including cases for reducing the
bending rigidity by the reduction of E and reducing I by the first method of thickness reduc-
tion, the effective ratios of the transverse bending rigidity for a modified uniform rigidity
ring can be calculated using Equation (12) or (14). Using the first method of thickness
reduction, the thickness reduction coefficients can be calculated with Equation (18).

Table 3. Effective ratios of the transverse bending rigidity and thickness reduction coefficients under
different loading conditions.

Loading
Conditions

L
′
=L L

′
>L

η α η α

1st 0.4149 0.7459 0.4212 0.7496
2nd 0.2119 0.5962 0.217 0.6009
3rd 0.1026 0.4682 0.1059 0.4731
4th 0.0718 0.4156 0.0742 0.4203

Under the condition that L′ > L, which represents the second method of thickness
reduction, the thickness of a modified uniform rigidity ring can be obtained by solving
Equation (21). As listed in Table 3, the thickness reduction coefficients and the correspond-
ing effective ratios of the transverse bending rigidity for the modified uniform rigidity
rings under different loading conditions can be obtained according to Equation (17). It is
noted that the effective ratios and thickness reduction coefficients under the condition of
L′ > L are slightly larger than those under the condition of L′ = L.
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However, Yukinori [20] and Ye [24] proposed other methods to calculate the effective
ratio of the transverse bending rigidity for the modified uniform rigidity ring, which can
be expressed as Equations (22) and (23), respectively:

η1 =
D1 + ∆Dhu
D1 + ∆Dhi

(22)

η2 =
∆Dhu
∆Dhi

(23)

where η1 is the algorithm of Yukinori about the effective ratio of the transverse bending
rigidity for the modified uniform rigidity ring, ∆Dhu is the horizontal convergence de-
formation of the uniform rigidity ring, ∆Dhi is the horizontal convergence deformation
of the installed segment ring, and η2 is the algorithm of Ye about the effective ratio of the
transverse bending rigidity for the modified uniform rigidity ring.

In order to use the method proposed by Yukinori and Ye to calculate the effective ratio,
the convergence-confinement method is used to obtain the convergence deformation of the
uniform stiffness ring and installed segment ring under different load conditions [31], which
are represented by the uniform stiffness ring model and beam-spring model, respectively.
These deformations are listed in Table 4. In engineering practice, the relative deformation
at the positions of 90◦ and 270◦ is regarded as the horizontal convergence deformation
while the deformation at 0◦ and 180◦ is regarded as the vertical convergence deformation.
Therefore, effective ratios calculated with Equations (22) and (23) are obtained, which
are listed in Table 5. It is noted that the effective ratios in Table 3 under the condition of
L′ = L and those in Table 5, which are calculated with Equation (22), are extremely similar.
However, the effective ratios in Table 5, which are calculated with Equation (23), are larger
than those calculated with Equation (22) and those listed in Table 3.

Table 4. Convergence deformations for the uniform rigidity ring and installed segment ring under
different loading conditions (unit: mm).

Loading
Conditions

Uniform Rigidity Ring Installed Segment Ring

∆Dhu ∆Dvu ∆Dhi ∆Dvi

1st 3.61 −3.86 9.08 −9.76
2nd 6.34 −6.76 31.52 −33.17
3rd 8.31 −8.85 84.94 −87.71
4th 9.5 −10.14 139.18 −143.01

∆Dvu is the vertical convergence deformation of the uniform rigidity ring, ∆Dvi is the vertical convergence
deformation of the installed segment ring.

Table 5. Effective ratios of the transverse bending rigidity calculated using different methods.

Loading Conditions η1= D1+∆Dhu
D1+∆Dhi

η2= ∆Dhu
∆Dhi

1st 0.9991 0.3976
2nd 0.996 0.2013
3rd 0.9878 0.0979
4th 0.9795 0.0683

3.3. Verification Analysis

To verify the algorithm proposed in this article, the modified uniform rigidity ring
models are established according to the effective ratios of the transverse bending rigidity
obtained by the methods proposed in this article (i.e., E′ < E and I′ = I), by Yukinori and
Ye, and simulated in a way similar to that of the beam-spring model established in the
back analysis. Under the loads (at the 1st, 2nd, 3rd, and 4th loading conditions) applied
in the full-scale test, the convergence deformations of the modified uniform rigidity rings
are listed in Table 6. It is noted that under different loading conditions, the convergence
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deformations of the uniform rigidity rings obtained using the methods proposed in this
article are extremely similar to those of the uniform rigidity rings obtained using Ye’s
method [24] and are also similar to those of the installed segment rings shown in Table 4.
On the other hand, the convergence deformations of the modified uniform rigidity rings
established using the method proposed by Yukinori [20] are visibly different from other
modified uniform rigidity rings.

Table 6. Convergence deformations for the modified uniform rigidity rings with effective ratios of
the transverse bending rigidity calculated using different methods (unit: mm).

Loading
Conditions

(D1+D2)π
(D1+D2)π+2EI∑n

i=1
1
ki

∆Dhu
∆Dhi

D1+∆Dhu
D1+∆Dhi

Horizontal Vertical Horizontal Vertical Horizontal Vertical

1st 8.8 −9.18 9.08 −9.7 3.61 −3.86
2nd 30.44 −31.34 31.52 −33.57 6.37 −6.78
3rd 82.6 −84.48 84.94 −90.44 8.42 −8.96
4th 135.28 −138.14 139.18 −148.5 9.7 −10.35

Under the same loading condition, the interactions between the tunnel rings em-
bedded in the ground and the surrounding earth can be similar only if the convergence
deformations of a modified uniform rigidity ring are similar to those of an installed segment
ring. Thus, the extent of the closeness between the convergence deformations of a modified
uniform rigidity ring and those of the corresponding installed segment ring can be used
to decide whether the effective ratio of the transverse bending rigidity is appropriate.
Based on that decision, the methods for calculating the effective ratios proposed by Ye and
developed in this article are feasible. Compared to the existing methods for obtaining the
effective ratio of the transverse bending rigidity, the algorithm proposed in this article is
simpler and more conceptually elegant. Moreover, the algorithm proposed in this article
has established the correlation between the longitudinal joint bending stiffness (i.e., the
key parameter of the installed segment ring) and the effective ratio (i.e., the decisive pa-
rameter of the modified uniform rigidity ring). Additionally, the algorithm can express the
correlation between the effective ratio and other influencing factors, such as the diameter
of the tunnel ring [32], thickness of the segment [33], and number of joints [34], and this
algorithm is easier to use than the existing methods.

To discuss the difference between the beam-spring model and the modified uniform
rigidity ring model developed in this article, the deformations, bending moments, and inter-
nal forces of both models under different loading conditions are compared in Figures 4–6.
The simulated results under different loading conditions are shown in Tables 7–9.

Table 7. Simulated deformations under different loading conditions (unit: mm).

Loading
Conditions

Deformations of Beam-Spring Model/mm Deformations of Modified
Uniform Rigidity Ring Model/mm

0◦ 90◦ 180◦ 270◦ 0◦ 90◦ 180◦ 270◦

1st −6.37 4.54 −3.39 4.54 −4.59 4.4 −4.59 4.4
2nd −23.5 15.76 −9.67 15.76 −15.67 15.22 −15.67 15.22
3rd −65.13 42.47 −22.58 42.47 −42.24 41.3 −42.24 41.3
4th −107.57 69.59 −35.44 69.59 −69.07 67.64 −69.07 67.64
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Figure 4. Simulated deformations under different loading conditions (unit: mm): (a) Beam-spring
model; (b) modified uniform rigidity ring model; (c) deformation’s comparison of the beam-spring
model; (d) deformation’s comparison of the modified uniform rigidity ring model (in order to better
reflect the deformation of (a,b), the different segment ring model’s deformation are amplified 15 times
in (c,d)).
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Figure 6. Simulated axial forces under different loading conditions (unit: kN): (a) Beam-spring model;
(b) modified uniform rigidity ring model.

Table 8. Simulated bending moments under different loading conditions (unit: kN·m).

Loading
Conditions

Bending Moments of Beam-Spring Model/kN·m Bending Moments of Modified
Uniform Rigidity Ring Model/kN·m

0◦ 90◦ 180◦ 270◦ 0◦ 90◦ 180◦ 270◦

1st 86.3 −89.4 137.9 −89.4 108.3 −93.2 108.3 −93.2
2nd 141.9 −145.7 273.8 −145.7 189.4 −164.1 189.4 −164.1
3rd 190.2 −176.2 383.8 −176.2 248.1 −215.1 248.1 −215.1
4th 222.6 −182.4 472.8 −182.4 284.7 −245.4 284.7 −245.4
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Table 9. Simulated axial forces under different loading conditions (unit: kN).

Loading
Conditions

Axial Forces of Beam-Spring Model/kN Axial Forces of Modified
Uniform Rigidity Ring Model/kN

0◦ 90◦ 180◦ 270◦ 0◦ 90◦ 180◦ 270◦

1st −227.4 −287.4 −209.8 −287.4 −218.6 −287.3 −218.6 −287.3
2nd −392.3 −490.5 −347.2 −490.5 −369.8 −490.3 −369.8 −490.3
3rd −515.1 −640.2 −448.9 −640.2 −482 −639.9 −482 −639.9
4th −611.7 −749.9 −526.2 −749.9 −568.9 −749.6 −568.9 −749.6

The sign conventions are adopted such that the deformations are positive when the
deformations of the segment are far away from the center of the model, the bending
moments are positive when the internal surface of the segment is subjected to tension, and
the compressive axial forces are negative.

The deformations of the beam-spring model and the modified uniform rigidity ring
model, which are determined using the effective ratio obtained by the algorithm developed
in this article, are shown in Figure 4. Note that to clearly distinguish the deformation shapes
of the segment ring models, as shown in Figure 4c,d, the deformations of all the nodes
are magnified 15 times. For the vertical and horizontal restraints applied in the numerical
models, the reference points of the vertical deformations are at the positions of 90◦ and
270◦, and those of the horizontal deformations are at the positions of 0◦ and 180◦. The
simulated results under different loading conditions are shown in Table 7. Figure 4 shows
that even though the convergence deformations are similar to each other, the deformation
shapes of both models are different from each other. The largest horizontal deformations
for the beam-spring model are located at the positions of 73◦ and 287◦ compared with the
positions of 90◦ and 270◦ for the modified uniform rigidity ring model.

As indicated in Figure 5 and Table 8, under the same loading condition, the distribution
forms of the bending moment for both models are visibly different. For the beam-spring
model, the bending moment at the top position (At the position of 0◦) is less than that at the
bottom position (At the position of 180◦). However, for the modified uniform rigidity ring
model, the bending moments at the top and bottom positions are the same but are larger
than that at the top position and less than that at the bottom position of the beam-spring
model. As shown in Table 8, the absolute values of the bending moments for the modified
uniform rigidity ring model at the positions of 90◦ and 270◦ are larger than those of the
beam-spring model. However, the results show that the summation of the absolute values
for the bending moments at the positions of 0◦, 90◦, 180◦, and 270◦ for the beam-spring
model and the corresponding modified uniform rigidity ring model are the same.

Both the beam-spring model and the modified uniform rigidity ring model are hy-
perstatic structures; therefore, the distribution of the bending moments is affected by the
distribution of the bending rigidity around the structure [35]. Generally, under the same
loading condition, a greater bending rigidity corresponds to a larger bending moment. For
the installed segment ring, the central angle of the bottom segment is 84◦, and the bending
stiffness of the longitudinal joints adjacent to the bottom segment (k3) is the largest under
any loading condition; therefore, the bending rigidity in the bottom zone of the beam-
spring model is the largest. Thus, under the same loading condition, the bending moments
of the beam-spring model in the bottom zone are larger than those of the corresponding
modified uniform rigidity ring model. In contrast, the central angle of the top segment
is 16◦, and the bending stiffness of the longitudinal joints adjacent to the top segment
(k1) is less than k3 under any loading condition. Accordingly, the bending rigidity in the
top zone of the beam-spring model is less than that of the modified uniform rigidity ring
model. Thus, under the same loading condition, the bending moments in the top zone of
the beam-spring model are less than those of the corresponding modified uniform rigidity
ring model. Furthermore, in the haunch zone of the installed segment ring, the minimum
bending stiffness of any loading conditions for the longitudinal joints occurs at positions of
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73◦ and 287◦ (k2). Therefore, the bending stiffness in the haunch zone of the beam-spring
model is lower than that of the corresponding modified uniform rigidity ring model. Thus,
the absolute values of the bending moments in the haunch zone of the beam-spring model
are less than those of the corresponding uniform rigidity model.

As analyzed above, it is noted that the joint bending stiffness, joint number, and joint
distribution of an installed segment ring greatly influence the distribution of the bending
moments of the beam-spring model. All these factors should be taken into consideration in
the shield tunnel design. Because the distribution of the bending rigidity for a modified
uniform rigidity ring model is completely different than that of the beam-spring model, the
modified uniform rigidity ring model is not applied to the design of the shield tunnel.

The axial forces of the beam-spring model and the modified uniform rigidity ring
model are compared in Figure 6. As shown in Figure 6 and Table 9, the axial forces of both
segment ring models are approximately equivalent, and both models have high accuracy,
which indicates that the distribution of the bending rigidity has little effect on the axial force.

4. Conclusions

In this study, an algorithm for calculating the effective ratio of the transverse bending
rigidity was established, and the responses of the modified uniform rigidity ring model
under loading obtained from this algorithm were compared to those obtained with the
existing beam-spring model. The following conclusions are drawn:

(1) Based on the assumption of the equivalence for transverse bending rigidity between
the installed segment ring and the modified uniform rigidity ring, an algorithm to de-
termine the effective ratio of the transverse bending rigidity was obtained. Compared
with the traditional methods for determining the effective ratio, the algorithm pro-
posed in this article is simpler and more elegant conceptually. Moreover, the algorithm
can express the correlation between the effective ratio and its influencing factors, such
as the longitudinal joint bending stiffness, diameter of the segment ring, thickness
of the segment, and number of joints. From the process of deriving the algorithm,
it is noted that the essence of converting an installed segment ring into a modified
uniform rigidity ring is to evenly allocate the weakness of the bending rigidity caused
by longitudinal joints to all the sections of the modified uniform rigidity ring.

(2) Through the comparison of the values for the effective ratio of the transverse bending
rigidity, which are calculated with different methods, it is noted that the effective ratios
calculated using the algorithm proposed in this article are similar to those calculated
by the method proposed by Ye but are visibly different from those calculated by the
method proposed by Yukinori. Because the convergence deformations of a modified
uniform rigidity ring are similar to those of an installed segment ring under the same
loading condition, it is verified that the algorithm for determining the effective ratio
of the transverse bending rigidity proposed in this article is valid.

(3) The analysis shows that the distribution modes for the bending rigidity for the two
models, the beam-spring model and the modified uniform rigidity ring model, are dif-
ferent, which leads to a significant difference in the distribution of bending moments.
Therefore, the modified uniform rigidity ring model is not applicable for the bending
moment design of a tunnel structure.

(4) Under the same loading condition, the axial forces, horizontal convergence defor-
mations, and vertical convergence deformations for both models (the beam-spring
model and the modified uniform rigidity ring model) are similar. Thus, the modified
uniform rigidity ring model is applicable for the analysis of the structure conver-
gence deformation and the interaction between the tunnel structure and the ground
during operation.
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