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We propose a �nite automaton based algorithm for identi�cation of in�nite clusters in a 2D rectangular lattice with � = � × �
cells. �e algorithm counts in�nite clusters and �nds one path per in�nite cluster in a single pass of the �nite automaton. �e
�nite automaton is minimal according to the number of states among all the automata that perform such task.�e correctness and
e	ciency of the algorithm are demonstrated on a planar percolation problem. �e algorithm has a computational complexity of
O(�) and could be appropriate for e	cient data 
ow implementation.

1. Introduction

A�er the publication of Shannon’s paper in 1951 [1], many sci-
entists considered the behavior of systems of �nite automata
(FAs) in labyrinths, for example, in connected sets of cells of
a grid or lattice. An overview of the obtained results is given
in [2, 3]. Some problems of �nite automaton (FA) traversing
labyrinths can be found in [4, 5]. Many results indicate a
limited power of FA. But, by introducing a collective of FAs,
it was proved that there exists a collective of two FAs which
can traverse all planar mosaic �nite labyrinths [6]. Also, in
[7, 8], the problem of FA recognition of some in�nite classes
of labyrinths (e.g., digits and letters) is studied.

Recognizing and labeling connected regions in binary
images are important problems in image processing,machine
vision, porous matter analysis, and many other �elds of
science. Studying site and bond percolation on any lattice
is an important problem in computational physics [9–12].
Some algorithms from these studies are presented in [13–
18]. In [19–21], polymerizing systems are presented, with
branched or cross-linked polymers, which may go through
distinct gelation transitions; a formed gel is seen as a two-
dimensional lattice-percolation cluster and the authors use a
“hull-generating walk” (HGW) algorithm.

�e similarity between the papers [19–21] and the present
paper consists in the fact that here we use a similar algorithm
(in fact, HGW algorithm and the algorithm from our paper
are in the class of the so-called “maze solving algorithms”
[22]). But in contrast to papers [19–21], where HGW algo-
rithm is used for generating perimeters of clusters in a 2D
random binary grid, we use our algorithm for identifying
and counting in�nite clusters in such grid. �is is a new,
purelymathematical approach, in terms of the theory of �nite
automata, to the problem considered in our paper. It consists
in the construction of aminimal �nite automaton (FA) which
can traverse the border of any cluster on any 2D binary grid
and always stops in the planar site percolation model.

�e planar site percolation model is represented by a
2D grid of square cells and each cell can exist in two
di�erent states, white or black. Any cell is colored black
with probability � and white with probability 1 − �. �ese
probabilities are independent for each cell. We use open
boundary conditions with boundary cells on the top and
on the bottom of the grid in di�erent states, blue and red,
respectively. Cells on the le� and right boundaries are white.

We construct an initial FA A�0 which can traverse the
border of any cluster in every planar 2D grid in accordance
with the le�-hand rule (which is also a kind of a HGW
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Figure 1: Examples of percolation site models on 13 × 13 grid, generated with probability � = 0.55 without in�nite cluster (a) and generated
with probability � = 0.60 with in�nite cluster (b).

algorithm). �e automaton A�0 can be launched from any
cell of a grid. In any moment, the input ofA�0 is information
about von Neumann neighborhood of the present cell given
in the form of a 5-tuple representing the state of the central
cell and the states of its four neighbors. In the next moment,
depending on its present state and its input, the FA proceeds
from the present cell in one of the directions, de�ned by the
output symbols �, �, �, or 	 (denoting the corresponding
directions, east, north, west, or south, resp.), and moves into
a corresponding neighbor cell or stays at the same place if
output symbol is 0 (which means “no move”) and passes
into a new state. On the bases of this automaton, we give
an algorithm which can be used for �nding/identifying and
counting in�nite clusters in the given grid. Such algorithm
is simple to implement and does not need extra memory
or stacks. �e time complexity of the algorithm is linear
and not larger than the time complexity of already existing
algorithms. �e FA has only four states, including the initial
state. We have proved that this is the minimal FA according
to the number of states.

�e paper is organized as follows. In Section 2, general
grid-related de�nitions and de�nitions of the FA and its
properties are given. In Section 3, the FA-based algorithm for
counting connected paths is described and its complexity is
proved. �e main conclusions and results are summarized in
Section 4.

2. Definition

2.1. General De�nitions. �e planar site percolation model
(see Figure 1) is represented by a two-dimensional lattice
network (grid) of unit squares (cells) whose centers are in the
integer lattice with � = �×� cells,�,� ≥ 4.�e cell position
is determined by its center. Each cell can exist in two di�erent
states, 0 or 1, where state 0 is usually called “white” and state 1
is usually called “black.” �e boundary cells of the simulated
grid are in a �xed state, which remains constant throughout

the simulation.�e boundary cells on the bottom edge of the
grid are in state 2, which is called “red,” and the boundary
cells on the top edge of the grid are in state 3, which is called
“blue.” �e boundary cells on the le� and right edge of the

grid are white. State 4, which is called “orange,” is used for
the notation of labeled cells in the grid.

Two di�erent cells (�1, �1) and (�2, �2) from a grid are
adjacent (weakly adjacent) if |�1 − �2| + |�1 − �2| = 1 (max{|�1 −
�2|, |�1 − �2|} = 1). Two black (white) cells (�1, �1) and (��, ��)
are connected if there exists a sequence of black (white) cells
(��, ��), 2 ≤ � ≤ �, such that each pair (��−1, ��−1) and (��, ��)
are adjacent; such sequence is called a path. Blue-red path is
a path whose one end is adjacent to a blue and the other to a
red cell. A set of cells is connected if any two cells from the
set are connected. A maximum connected set of black cells is
called a cluster. �e in�nite cluster is a cluster that contains a
blue-red path.

Similarly, black (white) cells (�1, �1) and (��, ��) are weakly
connected if there exists a sequence of black (white) cells
(��, ��), 2 ≤ � ≤ �, such that each pair (��−1, ��−1) and (��, ��)
are weakly adjacent. A maximum weakly connected set of
white cells is called a hole.

2.2. De�nition of the Initial Finite Automaton A�0 . Let � =
(1, 0), � = (0, 1), � = (−1, 0), and 	 = (0, −1) be basic
Euclidean vectors. Denote by� the set {�, �, �, 	}. We use the
notations � = �,� = �, 	 = �, and � = 	. For a cell � = (�, �) in
a grid, its neighbors are cells � + � = (� + 1, �), � +� = (�, � + 1),
�+� = (�−1, �), and �+	 = (�, �−1). Hence, the vonNeumann
neighborhood is used in this paper (see Figure 2(a)).

Let 	� = 	(�,�) be the state of the cell � andN(�) = {� ∈ � |
	�+� = 1}.

Let � = (�, �, �, 	) be a cyclic permutation. For � ⊆
�, � ̸= 0, and � ∈ �, denote by �	(�) the element ��0(�),
where �0 = min{� ∈ N | ��(�) ∈ �}, where N is the set of
natural numbers.
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Figure 2: Von Neumann neighborhood and enumeration.

By a �nite automaton (FA) A, we mean a quintuple
(�, �, �, �, �), where the �nite nonempty sets�,�, and � are
the input alphabet, the set of states, and the output alphabet
of the automaton, respectively; � : � × � → � is its output
function; and � : �×� → � is its state-transition function. If
wemark a state �0 ∈ � as an initial state ofA, we get an initial
automatonA�0 = (�,�, �, �, �, �0) (in other words,A�0 is a
Mealy machine).

Further, we consider the initial FA A�� = (�,�, �, �,
�, �
) supposing that � = {0, 1, 2, 3, 4}5, � = {�
, ��, ��, ��},
and � = {0, �, �, �, 	}. �e starting cell of this automaton in
a grid is always the lowest right corner cell of the grid. If
the output symbol of A�� is � ∈ {�, �, �, 	}, we say that FA
proceeds in the direction �. If the output symbol is 0, the
FA stops. �is way, FA simulates movements (goes around,
traverses) through a grid.

An input symbol � = (�0, �1, �2, �3, �4) = (	(�,�), 	(�+1,�),
	(�,�+1), 	(�−1,�), 	(�,�−1)) ∈ � = {0, 1, 2, 3, 4}5 represents the
state of a cell and the states of its von Neumann neighbors,
consistent with the enumeration in Figure 2(b). For the input
symbol �, by �(�) we denote the central cell.

�e FA starts in state �
 and uses states from set � until
it �nds a boundary cell on the top of the grid (blue one). In
thismoment, the algorithm increments the counter of in�nite
clusters and starts labeling cells with an orange color. �e
algorithm labels a path, until the FA �nds a boundary cell on
the bottom edge of the grid (red one). A�er �nding the lowest
le� end of an in�nite cluster, the FA proceeds in the � (west)
direction and it is on a white cell and in state �
. A�er that,
the algorithm breaks labeling and starts with new counting of
in�nite clusters and the FA repeats the process of traversing.
�e algorithm stops when the output of the FA is 0.

�e functions � and � are de�ned in the following
way. Let � = (�, �) be a cell and let � = (	(�,�), 	(�+1,�),
	(�,�+1), 	(�−1,�), 	(�,�−1)),  ∈ {0, 1, 2, 3}, and ! ∈ {1, 4}. �en,
for � ∈ {�, �, �, 	} and input � = (!,  ,  ,  ,  ), the functions
� and � are de�ned by �(��, �) = � and �(��, �) =
", where " = �N(�(�))(�) (see Figure 3) except for some
“starting,” “ending,” or “changing” parts which are given by
the following:

(i) If � < �, then

(a) for � = (0,  ,  ,  , 2) or � = (1,  , 0,  , 2),
�(�
, �) = �
 and �(�
, �) = �;

(b) for � = (1,  , 1,  , 2),�(�
, �) = �� and�(�
, �) =
�;

(c) for � = (!,  ,  , 0, 2) and � ∈ {��, �
}, �(�, �) =
�
 and �(�, �) = �.

(ii) If � = �, then, for � = (!,  ,  ,  , 2), �(�
, �) = �
 and
�(�
, �) = 0.

Notice two properties of the FAA�� :

(1) In the initial state, the FA is on the cell that has red
cell on the south (	(�,�−1) = 2). �e FA goes in the west
direction until it �nds the black cell with black cell on
the north. If it cannot �nd it, the FA stops.

(2) �emeaning of the fact that the FA is on the cell � and
is in the state �� is that the FA has arrived on the cell
� from the direction �, � ∈ � (see Figure 3).

�e initial automaton A�� and the initial planar
site percolation model (#0, �(0)), where �(0) is the
cell on the lowest right corner of a grid #0, create the
sequence $(��� , (#0, �(0))) = ((�(0), �
, �0, %0), (�(1), �1,
�1, %1), . . . , (�(�), ��, ��, %�), (�(� + 1), ��+1, ��+1, %�+1), . . .), where
�� represents the neighborhood of the cell �(�) (�(�) = �(��)),
%� = �(��, ��), �(� + 1) = �(�) + %�, ��+1 = �(��, ��), � ≥ 0.

Let &� = {(�, �) ∈ #0 | 	(�,�) = 1, 	(�+1,�) = 0, 	(�,�−1) = 2}.
Properties of the FA A�� , which will be crucial for the

algorithm, are de�ned by the following theorem.

�eorem 1. A blue-red path exists in the planar site percola-
tion model #0 if and only if there exists a cell ��(0) ∈ &� such
that the sequence (��(0), ��(1), . . . , ��(�)), � ≥ 0, of the cells in
the sequence $(A�� , (#0, �(0))) creates a blue-red path.

Choosing the cyclic permutation� in the de�nition of the
FAA�� , we de�ne an orientation. Namely, if the FA comes on
the cell � from direction � ∈ �, then the right, ahead, le�, and
behind cell (from the cell �) are � + �(�), � + �2(�), � + �3(�),
and � + �4(�) = �, respectively.

Let ' be a blue-red path in the grid #0 and *� be the
in�nite cluster that encloses path '. Let ��� ∈ &� be the lowest
right cell in the cluster*� and-� be the subset of the in�nite
hole which is on the right side of the cluster. Right boundary
of the cluster *�, *�� = {� ∈ *� | � is weakly adjacent
to some cell from -�}, is connected and encloses a blue-red
path. Notice that ��� ∈ *�� .

It is not hard to see that the FA A�� implements
“le�-hand-on-wall” algorithm ([23]). Starting from the cell
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Figure 3: Traversing part of the FAA�� , where  ∈ {0, 1, 2, 3} before starting labeling.

���, the FA traverses *�� , and the subsequence (��(0) =
���, ��(1), . . . , ��(�)), for some � ∈ N, of the sequence
$(A�� , (#0, �(0))) creates a blue-red path.

If there is not a connected path between red and blue cells
in the grid #0, then, for all cells � ∈ &�, the sequence (� =
�0, �1, . . . , ��, . . .), � ≥ 0, will not contain a cell with blue north
neighbor. �e grid is �nite and the FA will stop on the lowest
le� cell of the grid.

�eorem 2. According to the number of states, the FA A�� is
the minimal initial �nite automaton.

In the example from Figure 1(b), notice cell �. It is in the
in�nite cluster and it is weakly adjacent by the right in�nite
hole. Traversing the cluster by the le�-hand rule, the FAA��
is four times in the cell � (from south, east, north, and west
sides). All the visits must be done in di�erent automaton

states (input is the same). Otherwise, the FA makes a cycle.
Hence, for traversing a border of a cluster, it is necessary to
have 4 states.

3. The FA Traversing Algorithm and
Its Time Complexity

�e algorithm for identi�cation of in�nite clusters is based
on the FA A�� . To ensure appropriate counting of in�nite
clusters, the algorithm uses three global variables: count,
labeling, and countingCluster.�e count counts the number of
in�nite clusters, labeling is an indicator for labeling cells, and
countingCluster is an indicator for the counting of the in�nite
cluster.

Let (#0, �(0)) be an initial grid, where#0 is a grid and �(0)
is its lowest right corner. Let �
 be the initial state of the FA
A�� . �e algorithm is presented as Algorithm 1.
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Data: Initial grid (#0, �(0))
Result: �/7�8 is number of in�nite clusters and labeled blue-red paths

�/7�8 = 0;
�799��8$8�8� = �
;
�799��8#�;; = �(0);
Labeling = false;

countingCluster = true;

� = neighbor of the �799��8#�;;;
while �(�799��8$8�8�, �) <> 0 do

if labeling == 897� then
label �799��8#�;;;

end

if north neighbor of �799��8#�;; is blue cell and countingCluster

then

�/7�8 = �/7�8 + 1;
labeling = 897�;
countingCluster = false;

end

if 	, � neighbor of currentCell is red, white, respectly, and

�799��8$8�8� ∈ {�
, ��} then
labeling = false;

countingCluster = true;

end

�799��8#�;; = �799��8#�;; + �(�799��8$8�8�, �);
�799��8$8�8� = �(�799��8$8�8�, �);
� = neighbor of the �799��8#�;;;

end

Algorithm 1: FA traversing algorithm.

�e FA starts in state �
 and uses states from set �
until it �nds a boundary cell on the top of the grid (blue

one). In this moment, the algorithm increments the counter
�/7�8 and sets the indicator labeling on true, and the variable
countingCluster is set on false. �e algorithm labels a path
until the FA �nds the lowest le� cell on the bottom edge of
the cluster. A�er �nding the lowest le� end of an in�nite
cluster, the FA goes in state �
 and sets labeling on false and
the countingCluster is set on true. A�er that, the algorithm
repeats the process of traversing.

�e algorithm stops when the FA outputs 0.

Lemma 3. �e algorithm has linear time complexity.

�e FA uses von Neumann neighborhood with four
neighbors for each grid cell. �e automaton A�� is never on
the same cell in the same state. �erefore, the FA cannot be
more than four times in a particular cell during the execution
of the algorithm.�e complexity of the algorithm is therefore
O(�), where � is the number of grid cells.

�e algorithm was simulated in NetLogo programming
environment. �e algorithm was extensively evaluated on
various test cases for di�erent sizes of grid and initial density
of black cells in initial con�guration. In Figure 4, the last states
on the initial grids from Figure 1 are shown. In Figure 5, a

grid of dimension 201 × 201 with probability 0.62, for a black
cell, is shown with two in�nity clusters, a�er termination
of the FA algorithm. By increasing the probability of black
cells, in�nite clusters more o�en appear, as predicted also by
the percolation theory. Also, the results of the algorithm are
in accordance with site percolation thresholds in the square
lattice ([16, 24]).

4. Conclusions

A FA-based algorithm for identi�cation of connected paths
between top and bottomboundary cells in an arbitrary square
grid is proposed.�e constructed FA is minimal according to
the number of states.�e algorithm is based on four essential
states: �
, ��, ��, and ��. Using these states as FA input and
assuming von Neumann neighborhood of the grid cells, we
can traverse the boundaries of clusters. Because the FA is
independent, there is a possibility of putting more than one
automaton in di�erent initial cells. Such a parallel approach
could further speed up the proposed algorithm. Combining
the property of FA, which is never on the same cell in the
same state, with labeling, there is a possibility of using the
FA in the detection of articulation cells ([25]). Finally, further
investigation can be focused on the necessary extensions of
the algorithm for 3D grids.
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Figure 4: �e FA traversing algorithm for the two examples from Figure 1.

Figure 5: �e FA traversing algorithm �nds two in�nite clusters in
a grid of dimensions 201 × 201.
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