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Abstract— This paper introduces an algorithm for reducing
the number of temperature constraints of a POD-based predic-
tive controller for a non-isothermal tubular reactor. Apart from
keeping the process operating around some nominal conditions,
the control system has to maintain the temperature inside the
reactor below a certain limit in order to avoid undesirable side
reactions. The controller uses a reduced order model of the
process, which is derived by means of the Proper Orthogonal
Decomposition (POD) and Galerkin projection techniques. The
use of a reduced order model is necessary due to the high
dimensionality of the discretized system used to approximate the
Partial Differential Equations (PDEs) that model the reactor.
Although a big order reduction can be obtained with the
POD technique, this technique does not reduce the number
of temperature constraints which is typically very large. The
algorithm proposed in this paper reduces dramatically the num-
ber of temperature constraints, and consequently the memory
needed for storing them and the time required for solving the
optimization of the predictive controller.

I. INTRODUCTION

Proper Orthogonal Decomposition (POD) is a technique
that has been applied in many physical systems modeled by
Partial Differential Equations (PDEs) for deriving reduced
order models, making possible the design and implementa-
tion of controllers for these systems. The advantage of apply-
ing POD is the incorporation of simulation or experimental
data as well as the existing physical relationships from the
original model [1].

In [2], a POD-based predictive controller is proposed for
controlling the temperature and concentration profiles of a
non-isothermal tubular chemical reactor. The control goal is
to reject the disturbances that affect the process, that is, the
changes in the temperature and concentration of the feed
flow. One important constraint of the system is that the
temperature inside the reactor must be below 400 K in order
to prevent undesirable side reactions. Since this constraint
is not incorporated in the formulation of the predictive
controller, temporary violations of the temperature constraint
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can be observed when large disturbances are applied. In
[3], an extension of such control system is presented, which
takes into account the temperature constraint of the reactor
and uses a slack variable approach with �∞-norm and time-
dependent weights for handling the infeasibilities that can
emerge [4]. Although POD can find a reduced order model
for the reactor, it does not reduce the number of temperature
constraints, and therefore the controller has to deal with a
very large number of them. In [3] a method for approximat-
ing the temperature constraints by means of the theory of
positive polynomials is proposed. This approximation leads
to a reduction in the number of constraints by replacing many
inequalities by few Linear Matrix Inequalities (LMIs). In
this approach the MPC optimization problem is written as
a Semidefinite Program.

In this paper we propose an alternative way of reducing
the number of temperature constraints which leads to a
significant reduction of the memory requirements and com-
puting time of the predictive controller. The method exploits
the similarities between the coefficients of consecutive con-
straints and unlike other approaches, the MPC optimization
problem is written as a Quadratic Program. This is the main
contribution of this paper.

The paper is organized as follows. Section II presents a
description of the tubular reactor. In Section III, the deriva-
tion of a reduced order model for the process using POD
is discussed. Section IV shows a POD-based MPC control
scheme that deals with a very large number of temperature
constraints. In Section V, we present our algorithm for
reducing the number of temperature constraints. Section VI
shows some simulation results and finally Section VII draws
the main conclusions.

II. TUBULAR REACTOR

The process to be controlled is a non-isothermal tubular
reactor where a single, first order, irreversible, exothermic
reaction takes place (A → B). The reactor is surrounded
by 3 cooling/heating jackets as shown in Figure 1. The
temperature of the jacket fluids (TJ1, TJ2 and TJ3) can be
manipulated independently in order to control the concen-
tration and temperature profiles in the reactor. If a plug-flow
behavior is assumed in the system, the mathematical model
of the reactor is given by the following non-linear PDEs:

∂C

∂t
= −v

∂C

∂z
− k0Ce−

E

RT

∂T

∂t
= −v

∂T

∂z
+ GrCe−

E

RT + Hr(Tw − T ) (1)
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Fig. 1. Tubular Reactor with 3 cooling/heating jackets.

Gr =
−ΔHk0

ρCp

, Hr =
4h

2rρCp

with the following boundary conditions:

C = Cin at z = 0 and T = Tin at z = 0,

where C(z, t) is the reactant concentration in [mol/L],
T (z, t) is the reactant temperature in [K], v is the fluid
superficial velocity in [m/s], (−ΔH) is the heat of the
reaction in [cal/mol], ρ and Cp are the density in [kg/L]
and the specific heat in [cal/kg/K] of the mix respectively,
k0 is the kinetic constant in [1/s], E is the activation energy
in [cal/mol], R is the ideal gas constant in [cal/mol/K], h is
the heat transfer coefficient in [cal/s/m2/K], r is the reactor
radius in [m], L is the reactor length in [m], Cin and Tin are
the concentration in [mol/L] and the temperature in [K] of the
feed flow, z is the axial coordinate in [m], t is the time in [s]
and Tw(z, t) is the reactor wall temperature in [K] defined as
follows (see Figure 1): Tw = TJ1 for 0 ≤ z < P1, Tw = TJ2

for P1 ≤ z < P2 and Tw = TJ3 for P2 ≤ z ≤ L.
The parameters of the reactor model are taken from [5],

which were inspired by the values given in [6]. These values
are: v = 0.1 m·s−1, L = 1 m, k0 = 106·s−1, E = 11250
cal·mol−1, R = 1.986 cal·mol−1·K−1, Cin = 0.02 mol·L−1,
Tin = 340 K, Gr = 4.25 ·109 L·K·mol−1·s−1, and Hr = 0.2
s−1.

The temperature of the jacket sections TJ1, TJ2 and TJ3

must be between 280 K and 400 K. In addition, the tem-
perature inside the reactor must be below 400 K in order to
avoid the formation of side products. The sort of disturbances
that affects the reactor are mainly the variations in the
temperature and concentration of the feed flow. Typically,
such variations are in the range of ±10 K for the temperature
and ±5% of the nominal value for the concentration. In this
system, only the temperature of the feed flow is measured
directly. Additionally, the reactor has a temperature sensor
at the output and 3 temperature sensors (s1, s2 and s3)
distributed in its interior as shown in Figure 1.

A. Operating Profiles

In [2], an optimization algorithm (a kind of SQP) is
proposed for deriving the optimal operating profiles of the
tubular reactor described by (1). The algorithm minimizes a
given cost function subject to the steady-state equations of
the reactor and the input and temperature constraints of the
system. The operating profiles found in [2] are the profiles
used in this paper, and they are shown in Figure 2 together
with the jacket temperatures. Notice that the maximum
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Fig. 2. Steady-State profiles (operating profiles) when TJ1 = 374.6 K,
TJ2 = 310.1 K and TJ3 = 325.2 K.

temperature along the reactor is 390 K. In the steady-state
optimization algorithm, the maximum temperature allowed
inside the reactor was set 10 degrees below the actual limit
(400 K) in order to give to the predictive controller enough
room of maneuverability.

B. Linear Model

As it was done in [2], the linear model of the tubular
reactor is obtained by linearizing (1) around the jacket
temperatures and the operating profiles presented in Figure
2. Subsequently, the infinite dimensionality of the resulting
linear PDEs is reduced by replacing the partial derivatives
with respect to space by backward finite difference approx-
imations, giving as result the following system of Ordinary
Differential Equations (ODEs):

ẋ(t) = Ax(t) + Bu(t) + Fd(t) (2)

x(t) = (C̄Δ
1 , C̄Δ

2 , ..., C̄Δ
N , T̄Δ

1 , T̄Δ
2 , ..., T̄Δ

N )T

d(t) = (C̄Δ
in , T̄Δ

in )T , u(t) = (T̄Δ
J1, T̄

Δ
J2, T̄

Δ
J3)

T

where C∗

i , T ∗

i are the steady state concentration and tem-
perature of the ith section, C∗

in and T ∗

in, are the steady
state concentration and temperature of the feed flow, T ∗

J1,
T ∗

J2, T ∗

J3 are the steady state jacket temperatures, Tf and
Cf are normalization factors, C̄Δ

i = (Ci − C∗

i )/Cf , T̄Δ
i =

(Ti − T ∗

i )/Tf are the normalized deviations from steady
state of the concentration and temperature of the ith section,
C̄Δ

in = (Cin − C∗

in)/Cf and T̄Δ
in = (Tin − T ∗

in)/Tf are the
normalized deviations from steady state of the concentration
and temperature of the feed flow, T̄Δ

J1 = (TJ1 − T ∗

J1) /Tf ,
T̄Δ

J2 = (TJ2 − T ∗

J2) /Tf and T̄Δ
J3 = (TJ3 − T ∗

J3) /Tf are the
normalized deviations of the jacket temperatures, N is the
number of sections in which the reactor is divided, A, B and
F are the matrices describing the system, x(t) is the state
vector, u(t) is the vector of the inputs, and d(t) is the vector
of the disturbances.

Since the spatial domain of the reactor is divided into
N = 300 sections, the number of states of (2) is equal
to 600. This large number of states makes the design and
implementation of feedback controllers for the reactor diffi-
cult. Hence it is necessary to find a reduced order model. In
this study such a reduced order model is found using Proper
Orthogonal Decomposition (POD) and Galerkin projection
[7]. A detailed explanation of the procedure is given in [2].
However, in order to make this paper self contained, this
procedure is presented briefly in the following section.
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III. MODEL REDUCTION USING POD

In proper orthogonal decomposition (POD), we start by
observing that x(t) ∈ � 2N can be expanded as a sum of
orthonormal basis vectors:

x(t) =
2N∑
j=1

aj(t)ϕj (3)

where ϕj ∈ � 2N ∀j = 1, . . . , 2N is a set of orthonormal
basis vectors (POD basis vectors or POD basis functions)
in the discretized spatial domain, and aj(t) ∈ � ∀j =
1, . . . , 2N are the time-varying coefficients, or POD coef-
ficients, associated to each basis vector. These POD basis
vectors are ordered according to their relevance to x(t).

The main dynamics of the system can be represented using
the first n most relevant basis vectors, since ϕ1,ϕ2, . . . ,ϕn

condensates the main spatial correlations. An nth order
approximation of (3) is then given by means of the truncated
sequence

xn(t) =

n∑
j=1

aj(t)ϕj , n � 2N. (4)

An approximate (reduced order) model of x(t) can be
derived by building a model for the first n POD coefficients.
This is the essence of model reduction by POD.

The POD basis vectors are determined from simulation or
experimental data of the process. The dynamic model for the
first n POD coefficients can be found by means of Galerkin
projection [7]. In the following subsections, we describe the
steps followed for deriving the reduced order model of (2).

A. Generation of the snapshot Matrix

We have constructed the snapshot matrix Xsnap ∈
� 600×1500 from the system response when independent step
changes were made in the input u(t) and perturbation d(t)
signals of the linear model (2).

Xsnap = (x(t = Δt), . . . ,x(t = 1500Δt))

Along the simulations, 1500 samples were collected using a
sampling time (Δt) of 0.05 s.

B. Derivation of the POD basis Vectors

The POD basis vectors were derived by calculating the
singular value decomposition (SVD) of Xsnap,

Xsnap = ΦΣΨT

where Φ ∈ � 600×600 and Ψ ∈ � 1500×1500 are unitary
matrices, and Σ ∈ � 600×1500 is a matrix that contains the
singular values of Xsnap in a decreasing order on its main
diagonal. The columns of Φ are the POD basis vectors.

Φ ∈ � 600×600 = (ϕ1,ϕ2, . . . ,ϕ600)

C. Selection of the most relevant POD basis vectors
We have made the selection by checking the singular

values of Xsnap, the larger the singular value the more
relevant the basis vector is. In this problem, the first 20 basis

vectors were selected. The 20th order approximation of x(t)
is given by

x20(t) =
20∑

j=1

aj(t)ϕj = Φ20a(t), (5)

where Φ20 = (ϕ1, . . . ϕ20) and a(t) = (a1(t), . . . , a20(t))
T .

D. Construction of the model for the POD coefficients

In order to derive a dynamic model for the POD coeffi-
cients, we have used the Galerkin projection. If we define a
residual function R(x, ẋ) for equation (2) as follows:

R(x, ẋ) = ẋ(t) − Ax(t) − Bu(t) − Fd(t) (6)

and we replace x(t) by its nth order approximation xn(t)
in (6), the projection of R(xn, ẋn) on the space spanned by
the basis vectors Φn shall vanish. That is,〈

R(xn, ẋn),ϕj

〉
= 0; j = 1, . . . , n (7)

where 〈. , .〉 denotes the Euclidean inner product. Replacing
x(t) by its nth order approximation xn(t) = Φna(t) in
equation (2), and applying the inner product criterion (7)
to the resulting equation we have:

ΦT
nΦnȧ(t) = ΦT

nAΦna(t) + ΦT
nBu(t) + ΦT

nFd(t)

ȧ(t) = ΦT
nAΦna(t) + ΦT

nBu(t) + ΦT
nFd(t).

The reduced order model of the reactor is then given by

ȧ(t) = Ara(t) + Bru(t) + Frd(t) (8)

xn(t) = Φna(t)

where Ar = ΦT
nAΦn, Br = ΦT

nB and Fr = ΦT
nF.

Finally, the discrete-time version of (8) that is used by
the predictive controllers, was obtained using the bilinear
transformation with a sampling time of 0.2 s,

a(k + 1) = Ãa(k) + B̃u(k) + F̃d(k) (9)

xn(k) = Φna(k),

where Ã, B̃ and F̃ are the matrices describing the new
system. The sampling time was chosen by dividing the
smallest time constant of the system (8) by 10.

IV. PREDICTIVE CONTROL SCHEME

The control goal is to reject the disturbances that affect
the reactor, that is the changes in the temperature and
concentration of the feed flow. In addition, the control system
must satisfy the input constraints of the process and it should
keep the temperature inside the reactor below 400 K.

In [2], a POD-based MPC control scheme is proposed for
controlling the reactor. Nevertheless this control scheme does
not incorporate the temperature constraint of the system in
its formulation. In [3], an extension of such control system is
presented that takes into account the temperature constraint
of the reactor and incorporates a mechanism for handling
infeasibilities. This extension is described along this section.
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Fig. 3. Feasible region delimited by the temperature constraints of a 2nd
order POD model. Dashed Line - Full set of constraints. Solid Line - 7
constraints chosen by the algorithm (Sel = 0.08 and γ = 0.01 (0.8K)).

The control of the temperature and concentration profiles
is achieved indirectly by controlling the POD coefficients.
The references (aref ) of these POD coefficients can be
calculated by

aref = ΦT
nxref (10)

where xref is the reference of the vector x(t) and is equal to
0 since the control system has to keep the reactor operating
around the profiles shown in Figure 2.

In order to handle the infeasibilities that can emerge, the
MPC control scheme treats the temperature constraint as a
soft constraint by using a slack variable approach with �∞-
norm and time-dependent weights [4]. The MPC controller
is formulated as follows:

min
a,Δu,ε

J =

Np∑
k=1

‖aref − a(k)‖
2

Q +

Nc−1∑
k=0

‖Δu(k)‖
2

R+ (11a)

+PQε2 + PLε

subject to

a(k + 1) = Ãa(k) + B̃u(k) + F̃d(k)

d(k + 1) = d(k), umin ≤ u(k) ≤ umax

T̄Δ(k) = ΦTa(k) ≤ T̄Δmax + 1 · η(k)ε (11b)

ε ≥ 0 (11c)

where Q and R are weighting matrices (Q � 0,R � 0),
‖v‖

2

Q denotes vT Qv, Np is the prediction horizon, Nc is
the control horizon, umin and umax are the lower and upper
bounds (hard constraints) of u(k), T̄Δ(k) = ΦTa(k) is
a vector which contains the normalized deviations of the
temperature profile, ΦT is the lower part (the last N = 300

rows) of the matrix Φn =
(
ΦT

C,ΦT
T

)T
that is associated

to the temperature profile, T̄Δmax = (400K · 1 − T∗)/Tf

is a vector that contains the maximal allowed temperature
for each point of the reactor, ε is the slack variable (a
scalar quantity), PQ and PL are weighting factors (PQ > 0,
PL > 0), 1 ∈ �300 is a vector of 1’s and η(k) = 1

/
rk−1 is

a time-dependent weight (r > 1).

Since the state vector a(k) is unknown and the changes
in the concentration of the feed flow d1(k) = C̄Δ

in(k) are
not measured directly, they are estimated by means of an
observer with the following formulation:
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Fig. 4. Feasible region delimited by the temperature constraints of a 2nd
order POD model. Dashed Line - Full set of constraints. Solid Line - 21
constraints chosen by the algorithm (Sel = 0.022 and γ = 0.01 (0.8K)).

(
â(k + 1)

d̂1(k + 1)

)
=

(
Ã F̃C

0 1

) (
â(k)

d̂1(k)

)
+

(
B̃

0

)
u(k)

+

(
F̃T

0

)
d2(k) +

(
La

Ld

)
(y(k) − ŷ(k)) (12a)

ŷ(k) = Csx̂n(k) = CsΦnâ(k) (12b)

where â(k) is the estimated vector of the POD coefficients,
d̂1(k) is the estimation of C̄Δ

in(k), d2(k) is the normalized
temperature deviation of the feed flow T̄Δ

in (k), y(k) ∈ �4 is
a vector which contains the four temperature measurements
(normalized deviations) along the reactor, ŷ(k) is the esti-
mate of y(k), La and Ld are the submatrices of the observer
gain, F̃C and F̃T are the column vectors of F̃ = (F̃C, F̃T)
and Cs is a selection matrix which selects the measured
temperatures from the vector xn(k).

The control horizon Nc was set to 10 samples and the pre-
diction horizon Np was selected according to the following
criterion: “Prediction Horizon = Control Horizon + Largest
Settling Time = 80 samples”. umin and umax were selected
according to the input constraints of the process and the
operating temperatures of the jackets. The other parameters
were selected as follows: r = 1.2, PL = 104, PQ = 104,
Q = I20×20 and R = 110 · I3×3.

The MPC controller has to deal with N×Np = 300×80 =
24 000 temperature constraints, which demand a considerable
amount of memory, and computing power. Although the
POD technique has reduced the number of state variables of
(2), it is clear that the number of temperature constraints is
still very large. In the next section an algorithm for reducing
the number of temperature constraints is described.

V. REDUCTION OF THE NUMBER OF TEMPERATURE

CONSTRAINTS

It has been observed that the coefficients of consecutive
temperature constraints are quite similar. This is a conse-
quence of the fact that the most relevant columns of ΦT

(the part of the POD basis vectors that is associated to
the temperature profile) are smooth. By taking into account
these observations, we propose an algorithm for selecting
a reduced set of constraints from the full set. The output
of the algorithm would be a matrix ΦR ∈ �sc×n and a
vector TR ∈ �sc which define the new set of temperature
constraints,

ΦRa(k) ≤ TR. (13)
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Fig. 5. Steady-State profiles after the test. Dotted line - reference. Solid
Line - MPC-FC. Dashed line - MPC-RC. Dashdot line - MPC-NTC.

Here Sc is the number of selected constraints and n is the
order of the POD model. In the description of the algorithm,
the following notation is used: the ith row of the matrix ΦT

and the ith entry of the vector T̄Δmax are denoted by ΦT(i, :)
and T̄Δmax(i) respectively, the entry of the matrix ΦT that
lies in the ith row and the jth column is written as ΦT(i, j),
ΦR = [ΦR;ΦT(i, :)] indicates that ith row of ΦT is added
at the bottom of the matrix ΦR and TR = [TR; T̄Δmax(i)]
denotes that the ith entry of the vector T̄Δmax is added at
the bottom of the vector TR. The proposed algorithm is the
following one:

1) Set p = 1, and select the first constraint: TR =
T̄Δmax(1), ΦR = ΦT(1, :).

2) For all i = 2, . . . , N − 1, perform:

a) Calculate the difference between the pth and ith
constraints using this formula:

d =
1

n + 1

⎛
⎝ n∑

j=1

|ΦT(p, j) − ΦT(i, j)|+

+
∣∣T̄Δmax(p) − T̄Δmax(i)

∣∣ )

b) if d ≥ Sel then select the ith constraint:

• ΦR = [ΦR;ΦT(i, :)].
• if (i− p) > 1 then TR = [TR; T̄Δmax(i)− γ] else

TR = [TR; T̄Δmax(i)].
• Set p = i.

3) Select the last constraint: TR = [TR; T̄Δmax(N)], ΦR =
[ΦT(1, :)].

where N is the number of sections in which the reactor is
divided and therefore the number of temperature constraints,
d is the mean absolute error between the coefficients of 2
constraints, Sel is the minimum value of d that is required
for selecting a constraint, and γ is a parameter that is used
to tighten non consecutive constraints ((i − p) > 1). The
function of γ is to shrink a little bit the feasible region
delimited by the reduced set of constraints, in such a way
that by choosing an appropriated value of γ, no part of this
feasible region is outside the region delimited by the full set
of constraints. This is of course a conservative measure.

Although the POD model of the reactor has 20 states,
in this section a 2nd order POD model is used in order to
visualize the feasible regions delimited by the temperature
constraints. Figures 3 and 4 show the feasible regions de-
limited by the constraints selected by the algorithm when
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Fig. 6. Maximal peak of the temperature profile during the test. Solid Line
- MPC-FC. Dashed line - MPC-RC. Dashdot line - MPC-NTC.

different values of Sel and γ were used. For Sel = 0.08 and
γ = 0.01 = 0.8K/Tf (Tf = 80K), the algorithm selected
7 constraints (see Figure 3) from 300. These 7 constraints
provide a fair approximation of the feasible region of the
original problem. For Sel = 0.022 and γ = 0.01 (0.8 K), the
algorithm chose 21 constraints (see Figure 4). From Figure
4, it is remarkable how the feasible region delimited by 300
temperature constraints can be approximated accurately by
only 21 constraints. It is important to remark that the algo-
rithm does not guarantee that the selected set of constraints is
the optimal one, in the sense that it minimizes the difference
between the feasible regions delimited by the full and the
reduced set of constraints.

The formulation of the new MPC controller based on
a reduced set of temperature constraints would be given
by (11), but substituting ΦT and T̄Δmax by ΦR and TR

respectively in (11b), and by resizing properly the vector of
1’s. This new MPC has the same tuning parameters as the
MPC presented in Section V and it uses the same observer.
We have set Sel = 0.03 and γ = 0.00625 (0.5 K) in the
algorithm, and it has selected Sc = 20 constraints.

Unlike the MPC presented in Section V which deals with
24 000 temperature constraints, this MPC has only Sc×Np =
20 × 80 = 1600 constraints. Hence, a large reduction in
the number of temperature constraints has been achieved by
means of the algorithm proposed in this paper. This reduction
leads to a big saving of memory, since the reduced set of
constraints (0.402 MB) require 14.7 times less memory than
the complete set (5.91 MB).

VI. SIMULATION RESULTS

In order to perform the closed-loop simulations of the con-
trol systems described in the previous sections, the nonlinear
model of the process given in (1) was discretized in space
by replacing the partial derivatives with respect to space by
backward difference approximations [5][8]. From now on,
the MPC controller (11) will be referred to as MPC-FC and
the MPC with a reduced set of temperature constraints to as
MPC-RC.

Initially, in order to compare and evaluate the performance
of the MPC controllers, we carried out the tests proposed
in [2]. In these tests the temperature and the concentration
of the feed flow are increased and decreased by 10 K and
10−3 mol/L respectively. The simulation results of MPC-
FC and MPC-RC were quite similar to the ones shown in
[2], where a POD-based MPC controller without temperature
constraints is presented. The formulation of this controller is
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Fig. 7. Predictions of the maximal peak of the temperature profile at
t = 1.2 s. Solid Line - MPC-FC. Dashed line - MPC-RC. Dashdot line -
MPC-NTC.

given by (11) after eliminating the equations (11b), (11c) and
the term PQε2 + PLε in the cost function. This controller
with No Temperature Constraints will be referred to as
MPC-NTC. Along the tests, the MPC-FC, MPC-RC and
MPC-NTC controllers kept the reactor working around the
nominal operating profiles, there were no violations of the
temperature constraint, the concentration in steady state at
the reactor outlet was kept quite close to its nominal value,
and the control actions were all the time within the allowed
bounds.

The similarities in the results are because of the fact
that the control systems were not operating close to the
temperature constraints, and therefore during the tests, these
constraints were not active in the MPC-FC and MPC-RC
controllers. Therefore, in order to evaluate the ability of
MPC-FC and MPC-RC to deal with the temperature con-
straints, we use the test proposed in [3]:

• Test: the temperature and concentration of the feed flow
are increased by 24 K and 3 · 10−3 mol/l respectively.
These disturbances are large in comparison with the
typical ones.

Notice that under this test, the tubular reactor operates far
from the operating profiles shown in Figure 2, and therefore
the differences between the nonlinear model of the process
and the linear POD model used by the controllers are
considerable. Figures 5 and 6 present the simulation results.
From Figure 5 we can observe that for all the controllers,
the steady state profiles of the reactor are overlapping. In
Figure 6 we can see that for the case of the MPC-NTC
controller, the temperature constraint is temporarily violated
during 1.49 s with a maximal peak of 405.1 K. On the
other hand, the MPC-FC and MPC-RC controllers keep the
temperature profile below 400 K, and it is really hard to
see any difference in their responses. Concerning the control
actions of the MPC controllers, they were all the time within
the allowed limits.

Figure 7 shows the controllers’ predictions of the maximal
peak of the temperature profile at t = 1.2 s. From Figure 7
it is clear that the temperature constraints of MPC-FC and
MPC-RC are active. Both controllers keep the temperature
below and on 400 K along the prediction horizon, and the
difference between their predictions are practically negligi-
ble. Observe that in this test, the closed-loop response of the
controlled system is different than the predicted one. This
is mainly due to considerable differences between the linear
POD model used by the controllers and the observer, and the

nonlinear model of the process.
The average times for solving the optimization problem

(in a PC with a Pentium D of 3 Ghz and a RAM memory of
2 GB) were 0.53 s and 0.037 s for the MPC-FC and MPC-
RC controllers respectively. The MPC-RC controller requires
14.32 times less time than the MPC-FC controller for solving
the optimization. To sum up, the reduction in the number of
temperature constraints by means of the algorithm proposed
in this paper, has led to a big reduction in the computational
time.

VII. CONCLUSIONS

In this paper, an algorithm for reducing the number of
temperature constraints of a POD-based predictive controller
for a tubular reactor has been presented. The algorithm
leads to a significant reduction in the number of constraints,
which conduces to a considerable saving of memory, and
a substantial reduction in the computational time required
for solving the optimization of the MPC controller. The
predictive controller based on the reduced set of constraints
presented a good behavior and it was able to deal with the
temperature constraints quite well. Additionally, its behavior
was practically identical to the behavior of the predictive
controller based on the complete set of constraints.
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