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Abstract

Let E be a uniformly smooth and uniformly convex real Banach
space and E∗ be its dual space. We consider a multivalued mapping A :
E → 2E

∗
which is bounded, generalized Φ-strongly monotone and such

that for all t > 0, the range R(Jp+ tA) = E∗, where Jp (p > 1) is the
generalized duality mapping from E into 2E

∗
. Suppose A−1(0) 6= ∅, we

construct an algorithm which converges strongly to the solution of 0 ∈
Ax. The result is then applied to the generalized convex optimization
problem.
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1. Introduction

Let E be a real normed space, E∗ denotes its dual space and let Jp (p > 1)
denote the generalized duality mapping from E into 2E

∗
given by

Jp(x) =
n
f ∈ E∗ : hx, fi = kxkp, kfk = kxkp−1

o
,

where h., .i is the generalized duality pairing. For p = 2, the mapping
J2 is denoted by J and it is called the normalized duality mapping from
E into 2E

∗
. If E is smooth, then Jp is single-valued and onto if E is

reflexive. For a uniformly smooth Banach space E with Jp : E → E∗ and
J∗q : E

∗ → E being the duality mappings with gauge functions ν(t) = tp−1

and ν(s) = sq−1 respectively, J−1p = J∗q (see e.g., Alber and Ryazantseva,
p. 36 [42], Cioranescu [10], p. 25-77, Xu and Roach [40], Zǎlinescu [42]).

The problem of finding zero points for maximal monotone operators
plays an important role in optimizations because it can be reduced to a
convex minimization problem and a variational inequality problem. The
approximation of solutions of these problems has also been studied by nu-
merous authors (see for examples, [1, 22, 23, 30, 31, 41].

Let E be a real normed space and A : E → 2E
∗
a multivalued mapping.

A is called monotone if for each x, y ∈ E, the following inequality holds:

hx∗ − y∗, x− yi ≥ 0 ∀ x∗ ∈ Ax, y∗ ∈ Ay.

A is said to satisfy the range condition if in addition, R(Jp+ tA) (the range
of (Jp+ tA)) is all of E∗ for all t > 0. A is called maximal monotone if it is
monotone and its graph is not properly contained in the graph of any other
monotone mapping. A is said to be generalized Φ-strongly monotone if
there exists a strictly increasing function Φ : [0,∞)→ [0,∞) with Φ(0) = 0
such that

hx∗ − y∗, x− yi ≥ Φ(kx− yk) ∀ x∗ ∈ Ax, y∗ ∈ Ay.

The mapping A is φ-strongly monotone if there exists a strictly increasing
function φ : [0,∞)→ [0,∞) with φ(0) = 0 such that

hx∗ − y∗, x− yi ≥ kx− ykφ(kx− yk) ∀ x∗ ∈ Ax, y∗ ∈ Ay,

and it is strongly monotone if there exists a constant k ∈ (0, 1) such that

hx∗ − y∗, x− yi ≥ kkx− yk2 ∀ x∗ ∈ Ax, y∗ ∈ Ay.
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Clearly, the class of strongly monotone mappings is a subclass of φ-strongly
monotone mappings (by taking φ(t) = kt ) and the class of φ-strongly
monotone mappings is a subclass of generalized Φ-strongly monotone map-
pings (by taking Φ(t) = tφ(t)). It is well known that the class of gen-
eralized Φ-strongly monotone mappings is the largest, among the classes
of monotone-type mappings such that if a solution of the equation 0 ∈ Ax
exists, it is necessarily unique. We recall some important generalized mono-
tonicity properties which have been studied for multivalued mappings. Let
E be a real topological vector space and E∗ be the dual space. Suppose
K ⊆ E is a nonempty subset of E and A : K → 2E

∗
is a multivalued

mapping. For each x, y ∈ K, A is said to be respectively pseudomonotone
and quasimonotone (see e.g., Karamardian and Schaible [25], Karamardian
et al. [26]), if for any x∗ ∈ A(x), y∗ ∈ A(y), the following implications
hold:

hy∗, x− yi ≥ 0⇒ hx∗, x− yi ≥ 0,

and

hy∗, x− yi > 0⇒ hx∗, x− yi ≥ 0.(1.1)

Also, A is said to be quasimonotone if

min {hx∗, x− yi , hy∗, x− yi} ≤ 0.(1.2)

The two definitions of quasimonotonicity coincide (see e.g., [33]). It is
clear that a monotone mapping is pseudomonotone, while a pseudomono-
tone mapping is quasimonotone. The converse is not necessarily true. In
the case of a single-valued linear mapping A defined on E (where E := Rn),
for α ∈ E∗ \ {0}, it is known that if A + α is quasimonotone, then A is
monotone (see e.g., [26]). This result has been extended by several authors
(see, e.g., Hadjisavvas [17], He [20], Isac and Motreanu [21]). The theory
of monotone multivalued mappings is nowadays well developed. Results
on generic single-valuedness and upper semicontinuity have been settled
several decades ago.

The concept of quasimonotone multivalued mapping is younger. It
broadly generalizes monotone mappings (see e.g., Aussel and Fabian [8],
Phelps [34]). Quasimonotone mappings are closely related to the so-called
demand functions in mathematical economics (see e.g., Levin [29], Karlin
[27] for more details). Let E and F be two real topological vector spaces,
θF denotes the zero vector of F, K is a nonempty convex subset of E and
T : K → L(E,F ) is a set-valued mapping, where L(E,F ) denotes the space
of all continuous linear mappings from E into F . For x and y in K, we
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recall from [15] that S ⊆ L(E,F ) is said to have the surjective property
on [x, y] = {x+ t(y − x) : t ∈ [0, 1]} ( for short, on x and y), whenever the
following equality holds:

hS, x− yi := {hx∗, x− yi = x∗(x− y) : x∗ ∈ S} = F,

where hx∗, x− yi = x∗(x − y) denotes the value of x∗ at (x − y). Let
K ⊆ E be a nonempty set and S ⊆ L(E,F ), S is said to have the surjective
property on K, if for every x ∈ K, there exists y ∈ K such that S has the
surjective property on x and y. For x, y ∈ K, consider x − y as a linear
functional (denoted by dx− y) on L(E,F ) as follows:D dx− y, f

E
= hf, x− yi ,

where f ∈ L(E,F ). Thus, the surjective property of S ⊆ L(E,F ) on x, y
implies that the image of S under the linear functional dx− y is F. For more
details on this, (see Farajzadeh and Plubtieng [15]).

Classical examples of quasimonotone mappings are the subdifferentials
of lower semicontinuous quasiconvex functions. The interest in quasimono-
tone mapping stems mainly from the fact that the derivative and more
generally, the subdifferential of a quasiconvex function is quasimonotone.
This is similar to the link between convex functions and monotonicity of
their (generalized) derivative (see, Aussel et al. [6], [7] for more details). A
subset K of E is said to be convex if for every x, y ∈ K, and λ ∈ [0, 1], we
have

λx+ (1− λ)y ∈ K.

A function f : K → R defined on a convex subset K of E is convex if for
any x, y ∈ K and λ ∈ [0, 1], we have

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

If we have strict inequality for all x 6= y in the above definition, the function
is said to be strictly convex. The first type of generalized convex function
was considered by De Finetti [13]. However, he did not name this class
of functions. The term ”quasiconvex function” was given subsequently by
Fenchel [16] after six years. A function f : K → R is quasiconvex if

f (λx+ (1− λ)y) ≤ max {f(x), f(y)} , ∀ x, y ∈ K and λ ∈ [0, 1].
Clearly every convex function is quasiconvex but the converse is not always
true. Just consider the function f : R→ R defined by

f(x) =

(
x− 1, x ≤ 1,
lnx, x > 1.
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Then f is quasiconvex but it is not convex. In fact it is concave. A function
f : E → R∪{+∞} is convex if and only if for each α ∈ E∗ the function u 7→
f(u)+ hα, ui is quasiconvex. A classical tool to study lower semicontinuous
functions is the Clarke subdifferential. Let f : E → R ∪ {+∞} be a lower
semicontinuous function. The Clarke subdifferential of f is the operator
∂f : E → 2E

∗
defined for each u ∈ E by

∂f(u) =

( n
u∗ ∈ E∗ : hu∗, vi ≤ f↑(u; v), ∀ v ∈ E

o
, if u ∈ domf

∅, if u /∈ domf,

where

f↑(u; v) := sup
�>0

inf
γ>0

δ>0
λ>0

sup
x∈Bγ(u)

f(x)≤f(u)+δ
t∈(0,λ)

inf
y∈B�(v)

f(x+ ty)− f(x)

t

is the Rockafellar directional derivative (see e.g., Aussel et al. [7], Clarke
[11], pp. 308, Rockafellar [37]). It is known as an axiom of a subdifferential
that if f attains at u a local minimum, then 0 ∈ ∂f(u) (see e.g., J. P. Penot
[32]). A function ψ : [0,∞)→ [0,∞) such that ψ is nondecreasing, ψ(0) = 0
and ψ is continuous at 0 is called a modulus of continuity. It follows that a
mapping A : X → Y is uniformly continuous if and only if it has a modulus
of continuity, where X and Y are real normed linear spaces. Recall that
a function having a bounded set range is called a bounded function and
given a convex function f, if u ∈ int dom f then ∂f(u) is nonempty and
bounded.

For 2-uniformly convex real Banach space with uniformly Gâteaux dif-
ferentiable norm, Diop et al. [12] studied the class of strongly monotone
mappings and applied their result to the convex minimization problem.
Chidume and Idu [9] considered the class of maximal monotone mappings
in uniformly convex and uniformly smooth Banach spaces and obtained the
minimizer of a convex function defined from a Banach space E to R.

Motivated and inspired by the above results and the ongoing research
in this direction, in this paper, we consider the largest class of monotone
mappings in uniformly smooth and uniformly convex Banach spaces. We
study the class of the generalized Φ-strongly monotone mappings which is
the largest classes of monotone-type mappings such that if a solution of the
equation 0 ∈ Ax exists, it is necessarily unique. Assuming existence, we
construct an algorithm for the solution of the equation 0 ∈ Ax and apply
our result to the generalized convex optimization problem.
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2. Preliminaries

Let E be a real normed space of dimension greater or equal to 2 and let
S := {x ∈ E : kxk = 1}. E is said to have a Gâteaux differentiable norm
(or E is called smooth), if the limit

lim
t→0

kx+ tyk− kxk
t

exists for each x, y ∈ S, E is Fréchet differentiable, if it is smooth and the
limit is attained uniformly for y ∈ S. Further, E is said to be uniformly
smooth, if it is smooth and the limit is attained uniformly for each x, y ∈ S.
The modulus of smoothness of E, denoted by ρE is defined by

ρE(τ) = sup

½kx+ yk+ kx− yk
2

− 1, kxk = 1, kyk = τ

¾
, τ ≥ 0.

Clearly, ρE(τ) ≤ τ for all τ ≥ 0. E is said to be uniformly smooth if

lim
τ→0+

ρE(τ)

τ
= 0. The modulus of convexity of E, δE : (0, 2] → [0, 1] is

defined by

δE(�) = inf

½
1− kx+ yk

2
: kxk = kyk = 1, kx− yk > �

¾
.

E is uniformly convex if and only if δE(�) > 0 for every � ∈ (0, 2]. A normed
linear space E is said to be strictly convex if

kxk = kyk = 1, x 6= y ⇒ kx+ yk
2

< 1.

Every uniformly convex space is strictly convex. Typical examples of uni-
formly smooth and uniformly convex spaces are Lp, lp, W

m
p spaces for

1 < p <∞ and Hilbert spaces.

Definition 2.1. Let E be a smooth real Banach space with dual E∗.

(i) The function φ : E ×E → R is defined by

φ(x, y) = kxk2 − 2 hx, Jyi+ kyk2, for all x, y ∈ E,(2.1)

where J is the normalized duality map from E to E∗, introduced by
Alber and has been studied by Alber [4], Kamimura and Takahashi
[24], and Reich [35].
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(ii) The function φp : E ×E → R is defined by

φp(x, y) =
p

q
kxkq − p hx, Jpyi+ kykp, for all x, y ∈ E,

where Jp is the generalized duality map from E to E∗, p and q are
real numbers such that q ≥ p > 1 and 1

p +
1
q = 1.

(iii) The mapping Vp : E ×E∗ → R is defined by

Vp(x, x
∗) =

p

q
kxkq − p hx, x∗i+ kx∗kp ∀ x ∈ E, x∗ ∈ E∗ such that

q ≥ p > 1,
1

p
+
1

q
= 1.

Remark 2.2. These remarks follow from Definition 2.1:

(i) For p = 2, φ2(x, y) = φ(x, y). Also, it is obvious from the definition
of the function φp that

(kxk− kyk)p ≤ φp(x, y) ≤ (kxk+ kyk)p for all x, y ∈ E.(2.2)

(ii) It is obvious that

Vp(x, x
∗) = φp(x, J

−1
p x∗) ∀ x ∈ E, x∗ ∈ E∗.(2.3)

We need the following lemmas and theorems in the sequel.

Lemma 2.3. [3]. Let E be a smooth uniformly convex real Banach space.
For d > 0, let Bd(0) := {x ∈ E : kxk ≤ d}. Then for arbitrary x, y ∈ Bd(0),

kx− ykp ≥ φp(x, y)−
p

q
kxkq, q ≥ p > 1,

1

p
+
1

q
= 1.

Lemma 2.4. [3]. Let E be a smooth uniformly convex real Banach space
with E∗ as its dual. Then,

Vp(x, x
∗) + p

D
J−1p x∗ − x, y∗

E
≤ Vp(x, x

∗ + y∗)(2.4)

for all x ∈ E and x∗, y∗ ∈ E∗.
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Lemma 2.5. [3]. Let E be a reflexive strictly convex and smooth real
Banach space with the dual E∗. Then,

φp(y, x)−φp(y, z) ≥ p hz − y, Jpx− Jpzi = p hy − z, Jpz − Jpxi for all x, y, z ∈ E.
(2.5)

Lemma 2.6. [14]. Let E be a real topological vector space, K a nonempty
convex subset of E and A : K → 2E

∗
a multivalued mapping. Assume

S ⊆ E∗ is connected and has the surjective property on K. If A + α is
quasimonotone for all α ∈ S, then A is monotone on K.

Lemma 2.7. [42]. Let ψ : R+ → R+ be increasing with lim
t→∞

ψ(t) = ∞.

Then J−1ψ is single-valued and uniformly continuous on bounded sets if and
only if E is a uniformly convex Banach space.

Theorem 2.8. [38]. Let E be a real uniformly convex Banach space. For
arbitrary r > 0, let Br(0) := {x ∈ E : kxk ≤ r}. Then, there exists a
continuous strictly increasing convex function

g : [0,∞)→ [0,∞), g(0) = 0,

such that for every x, y ∈ Br(0), jp(x) ∈ Jp(x), jp(y) ∈ Jp(y), the following
inequalities hold:

(i) kx+ ykp ≥ kxkp + p hy, jp(x)i+ g(kyk);

(ii) hx− y, jp(x)− jp(y)i ≥ g(kx− yk).

Lemma 2.9. [39]. Let {an} be a sequence of nonnegative real numbers
satisfying the following relations:

an+1 ≤ (1− αn)an + αnσn + γn, n ∈ N,

where

(i) {α}n ⊂ (0, 1),
∞X
n=1

αn =∞;

(ii) lim sup {σ}n ≤ 0;

(iii) γn ≥ 0,
∞X
n=1

γn =∞.
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Then, an → 0 as n→∞.

Lemma 2.10. [36]. Let E be a reflexive smooth Banach space and let A
be a monotone operator from E to E∗. Then A is maximal if and only
if R(J + tA) = E∗ for all t > 0. That is, every maximal monotone map
satisfies the range condition.

Theorem 2.11. [28]. Let E∗ be a real strictly convex dual Banach space
with a Fréchet differentiable norm and let A : E → E∗ be monotone and
R(J + tA) = E∗ for some t > 0. Suppose A−10 6= ∅, then for every x ∈ E,
the lim

t→∞
Jtx := lim

t→∞
(J + tA)−1x converges strongly to Px, where P is the

nearest point retraction of E onto A−10.

Lemma 2.12. [24]. Let E be a smooth uniformly convex real Banach
space and let {xn} and {yn} be two sequences from E. If either {xn} or
{yn} is bounded and φ(xn, yn) → 0 as n → ∞, then kxn − ynk → 0 as
n→∞.

Lemma 2.13. [9]. Let E be an arbitrary real normed space and E∗ be its
dual space. Let A : E → 2E

∗
be any mapping. Then A is monotone if and

only if T := (J −A) : E → 2E
∗
is J-pseudocontractive.

Lemma 2.14. [7]. Let f : E → R ∪ {+∞} be a lower semicontinuous
functional on a Banach space E. Then, ∂f is quasimonotone if and only if
f is quasiconvex.

3. Main Results

Theorem 3.1. Let E be a uniformly smooth and uniformly convex real
Banach space and E∗ be its dual space. Let A : E → 2E

∗
be a multivalued

mapping which is bounded, generalized Φ-strongly monotone and such that
for all t > 0, the range R(Jp + tA) = E∗ and A−1(0) 6= ∅. Let {λn} and
{θn} be real sequences in (0, 1) such that,

(i) lim θn = 0 and {θn} is decreasing;

(ii)
∞X
n=1

λnθn =∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞X
n=1

λ2n <∞.



68 M. O. Aibinu and O. T. Mewomo

For arbitrary x1 ∈ E, define {xn} iteratively by:

xn+1 = J−1p (Jpxn − λn (µ
x
n + θn(Jpxn − Jpx1))) , µxn ∈ Axn n ∈ N,

(3.1)
where Jp is the generalized duality mapping from E into E∗. There exists
a real constant γ0 > 0 such that ψ∗(λnM0) ≤ γ0, n ∈ N for some constant
M0 > 0. Then the sequence {xn} converges strongly to the solution of
0 ∈ Ax.

Proof. We divide the proof into two parts.
Part 1: We prove that {xn} is bounded. Let x∗ ∈ E be a solution of
0 ∈ Ax. It suffices to show that there exists r > 0 such that φp(x

∗, xn) ≤
r,∀ n ∈ N. Let ψ∗ be the modulus of continuity of J−1p : E∗ → E on
bounded sets of E∗ and δ ∈ (0, 1) be arbitrary but fixed. Let r > 0 be such
that

r ≥ max
½
φp(x

∗, x1), δ
p +

p

q
kx∗kq

¾
.(3.2)

The proof is by induction. By construction, φp(x
∗, x1) ≤ r. Suppose

that φp(x
∗, xn) ≤ r for some n ∈ N . We show that φp(x

∗, xn+1) ≤ r. Sup-
pose this is not the case, then φp(x

∗, xn+1) > r.

From inequality (2.2), we have kxnk ≤ r
1
p + kx∗k. Let

B := {x ∈ E : φp(x
∗, x) ≤ r} and since A is bounded, we define

M0 := sup {kµx + θn(Jpx− Jpx1)k : θn ∈ (0, 1), x ∈ B,µx ∈ Ax}+ 1.
(3.3)

Let ψ∗ : [0,∞)→ [0,∞) be the modulus of continuity of J−1p . Observe
that by the uniform continuity of J−1p on bounded subsets of E∗, for all
µxn ∈ Axn, we have

kJ−1p (Jpxn)− J−1p (Jpxn − λn (µ
x
n + θn(Jpxn − Jpx1)))k ≤ ψ∗(λnM0).

(3.4)

Define

γ0 := min

(
1,
Φ( δ2)

2M0

)
where ψ∗(λnM0) ≤ γ0 and ψ∗(λnM0) ≥

δ

2
.
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Applying Lemma 2.4 with y∗ := λn (µ
x
n + θn(Jpxn − Jpx1)) and by us-

ing the definition of xn+1, we compute as follows,

φp(x
∗, xn+1) = φp

³
x∗, J−1p (Jpxn − λn (µ

x
n + θn(Jpxn − Jpx1)))

´
= Vp (x

∗, Jpxn − λn (µ
x
n + θn(Jpxn − Jpx1)))

≤ Vp(x
∗, Jpxn)

−pλn
D
J−1p (Jpxn − λn (µ

x
n + θn(Jpxn − Jpx1)))− x∗, µxn + θn(Jpxn − Jpx1)

E
= φp(x

∗, xn)− pλn hxn − x∗, µxn + θn(Jpxn − Jpx1)i
−pλn

D
J−1p (Jpxn − λn (µ

x
n + θn(Jpxn − Jpx1)))− xn, µ

x
n + θn(Jpxn − Jpx1)

E
.

By Schwartz inequality and uniform continuity property of J−1p on
bounded sets of E∗ (Lemma 2.7), we obtain

φp(x
∗, xn+1) ≤ φp(x

∗, xn)− pλn hxn − x∗, µxn + θn(Jpxn − Jpx1)i
+pλnψ∗(λnM0)M0 (By applying inequality (3.4))

≤ φp(x
∗, xn)− pλn hxn − x∗, µxn − µx∗i ( for µx∗ ∈ Ax∗

since x∗ ∈ N(A))

−pλnθn hxn − x∗, Jpxn − Jpx1i+ pλnψ∗(λnM0)M0.

By Lemma 2.5, p hx∗ − xn, Jpxn − Jpx1i ≤ φp(x
∗, xn)− φp(x

∗, x1) ≤ 0.
Also, since A is generalized Φ-strongly monotone, we have,

φp(x
∗, xn+1)

≤ φp(x
∗, xn)− pλnΦ(kxn − x∗k)− pλnθn hxn − x∗, Jpxn − Jpx1i+ pλnψ∗(λnM0)M0

= φp(x
∗, xn)− pλnΦ(kxn − x∗k) + pλnθn hx∗ − xn, Jpxn − Jpx1i+ pλnψ∗(λnM0)M0

≤ φp(x
∗, xn)− pλnΦ(kxn − x∗k) + pλnψ∗(λnM0)M0.(3.5)

By the uniform continuity property of J−1p on bounded sets of E∗, we
have

kxn+1 − xnk = kJ−1(Jxn+1)− J−1(Jxn)k ≤ ψ∗(λnM0),

such that
kxn+1 − x∗k− kxn − x∗k ≤ ψ∗(λnM0),

which gives

kxn − x∗k ≥ kxn+1 − x∗k− ψ∗(λnM0).(3.6)
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From Lemma 2.3,

kxn+1 − x∗kp ≥ φp(x
∗, xn+1)−

p

q
kx∗k

≥ r − p

q
kx∗k

≥
µ
δp +

p

q
kx∗k

¶
− p

q
kx∗k

≥ δp.

So,
kxn+1 − x∗k ≥ δ.

Therefore, the inequality (3.6) becomes,

kxn − x∗k ≥ δ − ψ∗(λnM0)

≥ δ

2
.

Thus,

Φ(kxn − x∗k) ≥ Φ(
δ

2
).(3.7)

Substituting (3.7) into (??) gives

r < φp(x
∗, xn+1) ≤ φp(x

∗, xn)− pλnΦ(
δ

2
) + pλnψ∗(λnM0)M0

≤ φp(x
∗, xn)− pλnΦ(

δ

2
) + pλnγ0M0

≤ φp(x
∗, xn)−

pλn
2
Φ(

δ

2
)

= r − pλn
2
Φ(

δ

2
) < r,

a contradiction. Hence, φp(x
∗, xn+1) ≤ r. By induction, φp(x

∗, xn) ≤
r ∀ n ∈ N. Thus, from inequality (2.2), {xn} is bounded.

Part 2: We now show that {xn} converges strongly to a solution of
0 ∈ Ax. Since A is generalized Φ-strongly monotone and the range R(Jp +
tA) = E∗, by the strict convexity of E, we obtain for every t > 0, and
x ∈ E, there exists a unique xt ∈ D(A), where D(A) is the domain of A
such that

Jpx ∈ Jpxt + tAxt.
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If Jptx = xt, then we can define a single-valued mapping Jpt : E → D(A)
by Jpt = (Jp+ tA)−1Jp. Such a Jpt is called the resolvent of A. Therefore,
by Theorem 2.11, for each n ∈ N , there exists a unique yn ∈ D(A) such
that

yn = (Jp +
1

θn
A)−1Jpx1.

Then, we have (Jp +
1
θn
A)yn = Jpx1, such that

θn(Jpyn − Jpx1) + µyn = 0, µyn ∈ Ayn.(3.8)

Observe that the sequence {yn} is bounded because it is a convergent
sequence by Theorem 2.11. Moreover, {xn} is bounded and hence {Axn}
is bounded. Following the same arguments as in part 1, we get,

φp(yn, xn+1) ≤ φp(yn, xn)−pλn hxn − yn, µ
x
n + θn(Jpxn − Jpx1)i+pλnγ0M0.

(3.9)
By the generalized Φ-strongly monotonicity of A and using Theorem

2.8 and Eq. (3.8), we obtain,

hxn − yn, µ
x
n + θn(Jpxn − Jpx1)i

= hxn − yn, µ
x
n + θn(Jpxn − Jpyn + Jpyn − Jpx1)i

= θn hxn − yn, Jpxn − Jpyni+ hxn − yn, µ
x
n + θn(Jpyn − Jpx1)i

= θn hxn − yn, Jpxn − Jpyni+ hxn − yn, µ
x
n − µyni

≥ θng(kxn − ynk) + Φ(kxn − ynk)

≥ 1
p
θnφp(yn, xn) (by Lemma 2.3 for some real constants p > 1).

Therefore, the inequality (3.9) becomes

φp(yn, xn+1) ≤ (1− λnθn)φp(yn, xn) + pλnγ0M0.(3.10)

Observe that by Lemma 2.5, we have

φp(yn, xn) ≤ φp(yn−1, xn)− p hyn − xn, Jpyn−1 − Jpyni
= φp(yn−1, xn) + p hxn − yn, Jpyn−1 − Jpyni
≤ φp(yn−1, xn) + kJpyn−1 − Jpynkkxn − ynk.(3.11)



72 M. O. Aibinu and O. T. Mewomo

Let R > 0 such that kx1k ≤ R, kynk ≤ R for all n ∈ N . We obtain from
Eq.(3.8) that

Jpyn−1 − Jpyn +
1

θn

¡
µyn−1 − µyn

¢
=

θn−1 − θn
θn

(Jpx1 − Jpyn−1) .

By taking the duality pairing of each side of this equation with respect to
yn−1 − yn and by the generalized Φ-strongly monotonicity of A, we have

hJpyn−1 − Jpyn, yn−1 − yni ≤
θn−1 − θn

θn
kJpx1 − Jpyn−1kkyn−1 − ynk,

which gives,

kJpyn−1 − Jpynk ≤
µ
θn−1
θn
− 1

¶
kJpyn−1 − Jpx1k.(3.12)

Using (3.11) and (3.12), the inequality (3.10) becomes

φp(yn, xn+1) ≤ (1− λnθn)φp(yn−1, xn) + C

µ
θn−1
θn
− 1

¶
+ pλnγ0M0,

for some constant C > 0. By Lemma 2.9, φp(yn−1, xn) → 0 as n → 0
and using Lemma 2.12, we have that xn − yn−1 → 0 as n → 0. Since by
Theorem 2.11, yn → x∗ ∈ N(A), we obtain that xn → x∗. 2

Corollary 3.2. [3]. Let E be a uniformly smooth and uniformly convex
real Banach space and E∗ be its dual space. Suppose A : E → E∗ is
bounded, η-strongly monotone and satisfies the range condition such that
A−1(0) 6= ∅. Let {λn} and {θn} be real sequences in (0, 1) such that,
(i) lim θn = 0 and {θn} is decreasing;

(ii)
∞X
n=1

λnθn =∞;

(iii) lim
n→∞

((θn−1/θn)− 1) /λnθn = 0,
∞X
n=1

λ2n <∞.

For arbitrary x1 ∈ E, define {xn} iteratively by:

xn+1 = J−1p (Jpxn − λn (Axn + θn(Jpxn − Jpx1))) , n ∈ N,(3.13)

where Jp is the generalized duality mapping from E into E∗. There exists
a real constant �0 > 0 such that ψ(λnM0) ≤ �0, n ∈ N for some constant
M0 > 0. Then, the sequence {xn} converges strongly to the solution of
Ax = 0.
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Proof. Take Φ(kx− yk) := ηkx− ykp in Theorem 3.1, then the desired
result follows. 2

Corollary 3.3. [9]. Let E be a uniformly convex and uniformly smooth
real Banach space and E∗ be its dual space. Let T : E → 2E

∗
be a J-

pseudocontractive and bounded map such that (J − T ) is maximal mono-
tone. Suppose F J

E(T )={v ∈ E : Jv ∈ Tv} 6= ∅. For arbitrary x1, u ∈ E,
define a sequence {xn} iteratively by:

xn+1 = J−1 ((1− λn)Jxn + λnηn − λnθn(Jxn − Ju)) , ηn ∈ Txn, n ∈ N,
(3.14)
where {λn} and {θn} are real sequences in (0, 1) satisfying the following
conditions:

(i)
∞X
n=1

λnθn =∞,

(i) λnM
∗
0 ≤ γ0θn; δ

−1
E (λnM

∗
0 ) ≤ γ0θn,

(iii)
δ−1E

³
θn−1−θn

θn
K

´
λnθn

→ 0;
δ−1
E∗

³
θn−1−θn

θn
K

´
λnθn

→ 0 as n→∞,

(iv) 1
2
θn−1−θn

θn
K ∈ (0, 1),

for some constants M∗
0 > 0 and γ0 > 0, where δE : (0,∞) → (0,∞) is the

modulus of convexity ofE andK := 4RL sup {kJx− Jyk : kxk ≤ R, kyk ≤ R}+
1, x, y ∈ E, R > 0. Then the sequence {xn} converges strongly to a J-
fixed point of T .

Proof. Define A := (J − T ), then by the Lemma 2.13, A is a bounded
maximal monotone map. Therefore, the iterative sequence (3.14) is equiv-
alent to

xn+1 = J−1 (Jxn − λn (Axn + θn(Jxn − Ju))) , n ∈ N,(3.15)

where J is the normalized duality mapping from E into E∗. Since the
generalized Φ-strongly monotone implies monotone, the result follows from
Lemma 2.10 and by Theorem 3.1. 2
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Corollary 3.4. [2]. Let E be a p-uniformly convex real Banach space with
uniformly Gâteaux differentiable norm such that 1p +

1
q = 1, p ≥ 2 and E∗

its dual space. Let A : E → E∗ be a bounded and η-strongly monotone
mapping such that A−10 6= ∅. For arbitrary x1 ∈ E, let {xn} be the
sequence defined iteratively by

xn+1 = J−1p (Jpxn − λnAxn), n ∈ N,(3.16)

where Jp is the generalized duality mapping from E into E∗ and {λn} ⊂
(0, γ0), γ0 ≤ 1 is a real sequence satisfying the following conditions:

(i)
∞X
n=1

λn =∞;

(ii)
∞X
n=1

λ2n <∞.

Then, the sequence {xn} converges strongly to the unique point x∗ ∈ A−10.

Proof. Observe that uniformly convex and uniformly smooth real Ba-
nach spaces are more general than the p-uniformly convex real Banach
spaces with uniformly Gâteaux differentiable norm. Also, by taking θn = 0
in Theorem 3.1, we obtain the desired result. 2

Corollary 3.5. [12]. Let E be a 2-uniformly convex real Banach space
with uniformly Gâteaux differentiable norm and E∗ its dual space. Let
A : E → E∗ be a bounded and k-strongly monotone mapping such that
A−10 6= ∅. For arbitrary x1 ∈ E, let {xn} be the sequence defined iteratively
by:

xn+1 = J−1(Jxn − αnAxn), n ∈ N,(3.17)

where J is the normalized duality mapping from E into E∗ and {an} ⊂
(0, 1) is a real sequence satisfying the following conditions:

(i)
∞X
n=1

αn =∞;

(ii)
∞X
n=1

α2n <∞.

Then, there exists γ0 > 0 such that if αn < γ0, the sequence {xn} converges
strongly to the unique solution of the equation Ax = 0.
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Proof. By taking p = 2 in Corollary 3.4, we obtain the desired result.
2

4. Application to the generalized convex optimization prob-
lem

Let E be a real Banach space with the dual E∗ and A, a multivalued
mapping from E into 2E

∗
. According to Hassouni [18], for K subset of E,

and x̄ ∈ K, A satisfies the variational inequality below if and only if

∀ x ∈ K, hµx, x− x̄i ≥ 0, ∀ µx ∈ Ax.(4.1)

Consider now the quasiconvex minimization problem

min
x∈K

f(x),(4.2)

where f : E → R∪ {+∞} is lower semicontinuous and quasiconvex. Let N
be a convex open neighborhood of x̄. The necessary and sufficient condition
to obtain a solution of 4.2 is given in the Lemma 4.1 below.

Lemma 4.1. [19]. If K = N or K = E, then following assertions are
equivalent:

(i) x̄ is an optimal solution of (4.2),

(ii) ∂f satisfies (4.1).

Remark 4.2. For any single-valued quasimonotone operator ∂f , the oper-
ator h(x) := {α∂f(x) : α ≥ 0} is also quasimonotone and Gr(∂f) ⊂ Gr(h)
provided ∂f 6= 0, where Gr(∂f) and Gr(h) denote the graph of ∂f and of
h respectively. It follows that for every non-constant smooth quasiconvex
function f, the single-valued quasimonotone operator ∂f is not maximal
(see e.g., Levin [29]).

Next, we give a useful definition and establish a lemma which is necessary
in establishing our main result in this section. Let E be a real topological
vector space, K a nonempty convex subset of E, A : K → L(E,R) = 2E

∗

a multivalued mapping and S ⊆ 2E∗ .

Definition 4.3. A multivalued mapping A : K → 2E
∗
is said to have

the surjective property if the range of A excluding the zero vector (i.e
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R(A)\ {0}) has the surjective property. Indeed, suppose S has the sur-
jective property on K and f ∈ R(A)\ {0} , then a multivalued mapping
foS ⊂ L(E,R) = 2E

∗
is said to have the surjective property on K pro-

vided
hfoS, x− yi := {hfox∗, x− yi : x∗ ∈ S} = R.

Lemma 4.4. Let E be a uniformly smooth and uniformly convex real Ba-
nach space, K a nonempty convex subset of E and A : K → 2E

∗
a mul-

tivalued mapping. Suppose S ⊆ 2E∗ is connected and has the surjective
property on K. Then A satisfies the range condition if and only if for each
α ∈ S, A+ α is quasimonotone and has the surjective property on K.

Proof. ” ⇒ ” Suppose A satisfies the range condition. That is, A is
monotone and R(Jp + tA) = E∗ for all t > 0. Therefore for each α ∈ X∗,
the operator u 7→ A(u) + α is obviously monotone, hence quasimonotone.
Next, suppose for contradiction that A+α has no surjective property, that
is ∃ x ∈ K, a convex subset of E such that ∀ y ∈ K

hA+ α, x− yi = {hfou∗ + α, x− yi , u∗, α ∈ S} 6= R.

It follows that for each u∗ ∈ S, the range of

g(t) := −t hfou∗, x− yi− hu∗, x− yi

is not equal to R. Recall that monotonicity of A gives that

hx∗ − y∗, x− yi ≥ 0⇒ hx∗, x− yi ≥ hy∗, x− yi ∀ x∗ ∈ Ax, y∗ ∈ Ay.

Therefore, there exists t0 ∈ R such that

hx∗, x− yi ≥ −t0 hfou∗, x− yi− hu∗, x− yi ≥ hy∗, x− yi .

Setting α := t0fou
∗ + u∗, we deduce that

hx∗ + α, x− yi ≥ 0,

while
hy∗ + α, x− yi ≤ 0.

Thus contradicting the pseudomonotonicity and hence quasimonotonicity
of the map A+ α.
”⇐ ” Suppose that A+α is quasimonotone and has the surjective property.
We show thatA satisfies the range condition. By Lemma 2.6, A is monotone



Algorithm for the generalized Φ-strongly monotone mappings and ... 77

since A + α is quasimonotone. Next is to show that R(Jp + tA) = E∗

for all t > 0. Since A + α has the surjective property on K, for every
u∗ ∈ R(Jp+tA), the line L = {u∗ + tfou∗ : t ∈ R+} has surjective property
on K. But L ⊂ E∗, therefore

R(Jp + tA) ⊆ E∗.

Also, for a given u∗ ∈ S and each v∗ ∈ E∗, define

hv∗, x− yi = hu∗ + tfou∗, y − xi

for every x, y ∈ K. Therefore, v∗ := u∗ + tfou∗ ∈ R(Jp + tA). Hence
R(Jp + tA) = E∗ 2

Theorem 4.5. Let E be a uniformly smooth and uniformly convex real
Banach space with dual space E∗ and S ⊆ 2E∗ is connected and has the
surjective property. Let f : E → R∪{+∞} be a bounded lower semicontin-
uous quasiconvex function with nonempty interior. Suppose for each α ∈ S,
∂f +α is quasimontone and has the surjective property with (∂f)−1 0 6= ∅.
Then, for arbitrary x1 ∈ E, the iteration {xn} defined by

xn+1 = J−1p (Jpxn − λn ((∂f)xn + θn(Jpxn − Jpx1))) , n ∈ N.(4.3)

converges strongly to some x∗ ∈ (∂f)−1 0.

Proof. f is a bounded quasiconvex function with nonempty interior,
therefore by Lemma 2.14, ∂f is a bounded quasimonotone operator. Also,
0 ∈ ∂f(u) if and only if f attains at u a local minimum. By Lemma 4.4, ∂f
satisfies the range condition. Thus, the result follows from Theorem 3.1.
2

Remark 4.6. Prototype for our iteration parameters in Theorem 3.1 are,
λn =

1
(n+1)a and θn =

1
(n+1)b

, where 0 < b < a and a+ b < 1.

Conclusion 4.7. Most of the existing results on the approximation of so-
lutions of monotone-type mappings have been proved in Hilbert spaces or
they are for accretive-type mappings in Banach spaces. Unfortunately, as
has been rightly observed, many and probably most mathematical objects
and models do not naturally live in Hilbert spaces. We have considered the
class of generalized Φ-strongly monotone mappings in Banach spaces, the
class of monotone-type mappings such that if a solution of the equation
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0 ∈ Ax exists, it is necessarily unique. Therefore, our results have general-
ized the recent and important results of Aibinu and Mewomo [3], Chidume
and Idu [9] and Diop et al. [12]. Moreover, our techniques of proofs are of
independent interest.
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