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a b s t r a c t

The rapid advance of processor architectures such as the emerged multicore architectures

and the substantially increased computing capability on chip have put more pressure on

the sluggish memory systems than ever. In the meantime, many applications become more

and more data intensive. Data-access delay, not the processor speed, becomes the leading

performance bottleneck of high-performance computing. Data prefetching is an effective

solution to accelerating applications’ data access and bridging the growing gap between

computing speed and data-access speed. Existing works of prefetching, however, are very

conservative in general, due to the computing power consumption concern of the past.

They suffer low effectiveness especially when applications’ access pattern changes. In this

study, we propose an Algorithm-level Feedback-controlled Adaptive (AFA) data prefetcher

to address these issues. The AFA prefetcher is based on the Data-Access History Cache, a

hardware structure that is specifically designed for data access acceleration. It provides

an algorithm-level adaptation and is capable of dynamically adapting to appropriate pre-

fetching algorithms at runtime. We have conducted extensive simulation testing with

the SimpleScalar simulator to validate the design and to analyze the performance gain.

The simulation results show that the AFA prefetcher is effective and achieves considerable

IPC (Instructions Per Cycle) improvement for 21 representative SPEC-CPU benchmarks.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid advance of semiconductor process technology and the evolvement of micro-architecture, the processor

cycle times have been significantly reduced in the past decades. However, compared to the processor performance improve-

ment, especially the aggregated processor performance of multicore/manycore architectures, data-access performance

(latency and bandwidth) improvement has been at snail’s pace. The memory speed has only increased by roughly 9% each

year over the past two decades, which is significantly lower than the improvement speed of nearly 50% per year for processor

performance [18]. This performance disparity between processor and memory is predicted to continually expand in next

decades [18]. The unbalanced performance improvement leads to one of the significant performance bottlenecks in

high-performance computing known as memory-wall problem [24,39]. The reason behind this huge processor-memory per-

formance disparity is several folds. First, most advanced architectural and organizational efforts are focused on processor

technology, instead of memory storage devices. Second, drastically improving semiconductor technology results in much

smaller and more transistors to be built on chip for processing units and thus can achieve a high computational capability.
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Third, the primary technology improvement for memory device focuses on higher density, which results in much larger

memory capacity, but the bandwidth and the latency are improved slowly. Multi-level cache hierarchy architectures have

been the primary solution to avoiding large performance loss due to long memory-access delays. However, cache memories

are designed based on data access locality. When applications lack data access locality due to non-contiguous data accesses,

multi-level cache memory hierarchy does not work well.

Data prefetching is a common technique to accelerate data access and reduce the processor stall time on data accesses,

and has been widely recognized as a critical companion technique of memory hierarchy solution to overcome the data access

bottleneck issue [24,39,18]. Several series of commercial high-performance processors have adopted data prefetching tech-

niques to hide long data-access latency [13,18,23]. As the term indicates, the essential idea of data prefetching is to observe

data referencing patterns, then speculate future references and fetch the predicted reference data closer to processor before

processor demands them. By overlapping computation and data accesses, data prefetching can overcome the limitations of

cache memories, reduce long memory access latency, and speed up data-access performance. Numerous studies have been

conducted and many strategies have been proposed for data prefetching [5,6,10,11,13,21,23,25,31,35,37].

Data prefetcher, as a data-access accelerator, has been adopted in production and found to be very effective for applica-

tions with regular data-access patterns, such as data streaming [23,13]. But in general, current prefetching techniques are

very limited. Software solutions are too slow for cache level prefetching; whereas hardware prefetchers are static in nature

and cannot change with the data-access patterns of the applications. Previous studies show that there is no enough effort to

support hardware dynamic adaptation among different strategies depending on the runtime application characteristics [4].

The fact is that the effectiveness of data prefetching is application and data-access pattern dependent. There is no single uni-

versal prefetching algorithm suitable for all applications at runtime. A general and effective data prefetcher and accelerator

must be dynamic in nature.

In this research, we propose an Algorithm-level Feedback-controlled Adaptive data prefetcher (AFA prefetcher in short) to

provide a dynamic and adaptive prefetching methodology based on the recently proposed generic prefetching structure,

Data-Access History Cache (DAHC) [6], and runtime feedback collected by hardware counters. DAHC is a new cache structure

designed for data prefetching and data-access acceleration. It is capable of effectively tracking data-access history and main-

taining correlations of both data-access address stream and instruction address stream. It can be used for efficient imple-

mentation of many data prefetching algorithms [6]. Hardware counters gain considerable attention in recent years and

are becoming more and more important for improving the performance of contemporary processor architectures, operating

system and applications [30,36,40]. This study explores this trend and assumes hardware counters are available within a

data prefetcher that resides at the lowest cache level. Based on DAHC and available hardware counters, the AFA data prefet-

cher is able to recognize distinct data-access patterns and adapts to the corresponding appropriate prefetching algorithms at

runtime. This adaptation methodology is significantly better than conventional static prefetching strategies. It improves the

prefetching effectiveness, which in turn improves the overall performance. The AFA prefetcher does consume some transis-

tors. However, the hardware chip space and the number of transistors integrated on chip are not limitations for current pro-

cessor architectures. Trading chip space for lower data-access latency is a current trend [24,39]. The AFA prefetcher and

DAHC follow the trend. A preliminary version of this research was published in [7], with extended background studies, de-

sign details, simulation details, evaluation tests, and related work discussions in this paper.

The contribution of this work is several folds:

First, we demonstrate that different prefetching algorithms exhibit substantial variation in performance improvement for

diverse applications. The performance variance is largely due to distinct access patterns that different applications

exhibit.

Second, we argue that the rapid advance of semiconductor technology and the trend of integrating considerable amount

of hardware counters on chip provide us an opportunity to explore dynamic and adaptive strategy that can produce better

performance improvement for various applications on average.

Third, we propose an algorithm-level adaptive prefetcher, named AFA prefetcher, that is able to dynamically adapt to

well-performing algorithms at runtime based on a three-tuple evaluation metric. These three tuples are orthogonal

and complementary to each other. We adopt innovative mechanisms to keep the hardware cost of the proposed mech-

anism low.

Fourth, we carry out extensive simulation testing to verify the proposed design and to evaluate the performance improve-

ment. We also vary different simulation configurations and conduct sensitivity analysis of the proposed AFA prefetcher.

Last, to our knowledge, this study is the first work exploring algorithm-level dynamic adaptation to accelerate data access

depending on applications’ access pattern. Such an approach is promising and has a great potential of accelerating data

accesses for high-performance processors such as multicore processors. We hope this study can bring dynamic data-

access acceleration into community’s attention and inspire more research efforts on accelerating applications’ data-

access performance.

The rest of this paper is organized as follows. Section 2 briefly reviews the DAHC structure. Section 3 presents the pro-

posed AFA prefetcher design and discusses implementation related issues. Section 4 presents the simulation environment

and simulation results. Section 5 discusses related work, and finally Section 6 concludes this study.
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2. Data-Access History Cache

To fully exploit the benefits of data prefetching and to focus on accelerating data-access performance to achieve a high

sustained performance instead of building extensive compute units to achieve a high peak performance, we proposed a generic

prefetching-dedicated cache structure, named Data-Access History Cache (DAHC) [6]. The DAHC serves as a fundamental

structure dedicated to data prefetching and data-access acceleration. The DAHC behaves as a cache for recent reference infor-

mation instead of as a traditional cache for either instructions or data. Theoretically, it is capable of supporting any history-

based prefetching algorithms.

The design rationale of DAHC is that history-based prefetching algorithmsmust rely on correlations among either instruc-

tion address stream or data address stream, or both. Thus, DAHC is designed to have three hardware tables: one data-access

history table (DAH table) and two index tables, program counter index table (PIT) and address index table (AIT). The DAH

table accommodates history details, while PIT and AIT maintain correlations from instruction and data address stream view-

points respectively. Various prefetching algorithms thus can access these two tables to obtain the required correlation as

necessary [6]. Fig. 1 illustrates the general design of DAHC and a high-level view of how it can be applied to support various

prefetching algorithms. For instance, the traditional stride prefetching [5,13] can be supported by retrieving access history

via PIT and DAH tables, while the Markov prefetching [21] can be supported by accessing AIT and DAH tables.

Fig. 2 illustrates the detailed structure of DAHC through an example. The DAH table consists of PC (program counter),

chain_PC, Addr, chain_Addr and State fields. PC and Addr fields store the instruction address and data address separately.

The chain_PC and chain_Addr point to an entry where the last access from the same instruction or the last access of the same

address is located. Therefore, chain_PC and chain_Addr connect all accesses from the instruction stream and data stream per-

spectives. This design offers the fundamental mechanism to detect potential correlations and access patterns. The State field

maintains state machine status used in prefetching algorithms. The PIT table has two fields, PC and Index. The PC field rep-

resents the instruction address, which is a unique index in this table. The Index field records the entry of the latest data ac-

cess in the DAH table from the instruction stored in the correspondent PC field. It is the connection between the PIT and the

DAH tables. The address index table is similarly defined. For instance, in Fig. 2, the DAH table captures four data accesses,

Fig. 1. DAHC general design and a high-level view. DAHC is designed to have three hardware tables: one data-access history table (DAH table) and two

index tables, program counter index table (PIT) and address index table (AIT). The DAH table accommodates history details, while PIT and AIT maintain

correlations from instruction and data address stream viewpoints respectively.

Fig. 2. DAHC design: PIT, AIT and DAH tables. The DAH table consists of PC (program counter), chain_PC, Addr, chain_Addr and State fields. The PIT table

consists of PC and Index fields, and the AIT table consists of Addr and Index fields.
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three of them issued by instruction 403C20 (stored in the PC field) and one by instruction 4010D8. The instruction 403C20

accesses data at addresses 7FFF8000, 7FFF8004 and 7FFF800C in sequence, which is shown through the Addr and chain_PC

fields. The instruction 403C20 and 4010D8 are also stored in the PIT table, and the corresponding index field tracks the latest

access from the DAH table, which are entry 3 and 1 respectively. The AIT table keeps each accessed address and the latest

entry, as shown in the bottom left of the figure, thus connecting all the data accesses on the basis of the address stream.

We take the well-known stride prefetching [5,13] as an example to illustrate how DAHC can support various prefetching

algorithms. Stride prefetching predicts future accesses based on strides of recent references [5]. This approach monitors data

accesses and detects constant stride access patterns. It maintains a state machine with four states, initialization, transient,

prediction and no-prediction, to track the detection of stride patterns from a specific instruction address and trigger pre-

fetching when the state machine enters the prediction state. The conventional stride prefetching can be implemented with

the DAHC as follows. First, when a miss occurs, the instruction address of this miss is searched in the PIT. If this instruction

address does not match any entry in the PIT, which means it is the first time that we encounter this instruction address in

current working window, no prefetching action is triggered. If the instruction address matches one entry (and only one entry

as entries are unique), we follow the index chain to check whether a constant stride pattern is present. If such a pattern ex-

ists, one or more data blocks are prefetched depending on the configuration of prefetching degree and prefetching distance

[6]. Note that since DAHC tracks a much larger window than the conventional stride prefetching implementation Reference

Prediction Table (RPT) does, we are able to detect complex stride patterns such as structured patterns [6]. The detailed meth-

odology of supporting stride prefetching and other prefetching algorithms through DAHC can be found in [6].

The DAHC provides a prototype design of a prefetching-dedicated structure. It works as a cache for data access informa-

tion compared with conventional cache for either instructions or data. The DAHC can be placed at different memory hierar-

chy levels for various desired data prefetching. For instance, it can be used to track all accesses to first level cache and to

serve as an L1 cache prefetcher. It can also be placed at the second level cache and to serves as an L2 cache prefetcher only.

The straightforward design makes the implementation uncomplicated. The implementation of the DAHC is a specialized

physical cache, like victim cache [20] or trace cache [28]. The PIT and AIT tables can be implemented with any associativity

such as 2-way or 4-way. Since the index tables usually have less valid entries than the DAH table, it is unlikely that some

entry is replaced due to a conflict miss [6]. Even if a conflict miss occurs, it does not affect the correctness except discarding

certain access history. The DAH table can be implemented with a special structure where each entry can be located by using

its index. The logic to fill/update the DAHC comes from the cache controller. The cache controller traps data accesses at the

monitored level and keeps a copy of the access information in the DAHC. Note that DAHC design is general and it does not

imply any restriction to the system environment. It works in a Chip Multiprocessor (CMP) or simultaneous multi-threading

(SMT) environment, as well as in an environment where multiple applications are running concurrently.

3. Algorithm-level Feedback-controlled Adaptive data prefetcher

In this section, we present the design of an Algorithm-level Feedback-controlled Adaptive data prefetcher. This proposed

AFA prefetcher leverages the powerful functionality provided by DAHC, supports multiple prefetching algorithms and

dynamically adapts to those algorithms that perform well at runtime. The essential idea is using runtime feedback and eval-

uation to direct the dynamic adaptation. We first present the motivation of this work, and then discuss the evaluation met-

rics, the implementation and the methodology of directing adaptation.

3.1. Motivation

We have performed a simulation testing with five representative SPEC-CPU2000 benchmarks [42] including 179.art,

256.bzip2, 254.gap, 181.mcf and 171.swimwith four different prefetching algorithms including stream [23], strided [5], Mar-

kov [21] and MLDT prefetching [35]. The simulation details are presented in Section 4. The reported Instructions Per Cycle

(IPC) results are plotted in Fig. 3. The performance improvement of different prefetching algorithms exhibits significant var-

iation for different benchmarks/applications as the results demonstrate. For instance, the strided prefetching achieves 29.9%

IPC speedup for the art benchmark, while the Markov prefetching only achieves 0.92% improvement for the same bench-

mark. However, the Markov prefetching achieves 14.2% IPC speedup for the bzip2 benchmark, while the strided prefetching

merely achieves 8.13% in this case. For another instance, the stream prefetching achieves over 18% IPC improvement for the

gap benchmark, while the Markov prefetching even generates negative performance impact. The observations of these sim-

ulation testing clearly demonstrate that different algorithms are suitable for different workloads. There is a great need to

support algorithm-level adaptation at runtime to direct the prefetcher to choose proper algorithms. Motivated by these

observations, we propose an AFA prefetcher to adapt prefetching algorithms. The remaining subsections in this section pres-

ent the design and implementation of the AFA prefetcher based on DAHC and feedbacks collected at runtime.

3.2. Evaluation metrics

While extensive studies exist in prefetching, few studies present a formalized metric to evaluate the effectiveness of pre-

fetching algorithms. We analyze and sort out the essential and most critical criteria to model prefetching evaluation and
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present a formal definition in this study. These metrics provide a comprehensive evaluation of hardware prefetching meth-

odologies. These metrics can be independently used to evaluate a prefetcher in addition to commonly used metrics, such as

an IPC speedup metric.

3.2.1. Prefetch precision

The first and widely-adopted metric is termed prefetching precision or prefetching accuracy. This metric characterizes the

percentage of prefetches that are actually accessed by demand requests, thus reflecting how accurate the prefetch requests

and the prefetching algorithms are. We present a formal definition of prefetching precision as follows.

Definition 1. Prefetching precision is defined as the ratio between the number of distinct prefetched cache lines that are

accessed by at least one demand request after being prefetched in and before being replaced out over the number of total

prefetched cache lines.

By this definition, the prefetching precision models the accuracy of the prefetcher, i.e. the percent of useful cache lines in

the overall cache lines prefetched. Note that we define a useful prefetch as being accessed at least once when the prefetched

cache line resides in the prefetch destination. Therefore, a repeated access to that cache line in the current lifecycle does not

account into the total number of useful prefetches. However, if a cache line is prefetched again into the destination after

being displaced, and gets hit, this scenario will contribute to one useful prefetch. We refer these cache lines brought in

by prefetch and accessed by demand requests as prefetch hits, in contrast with demand hits, those lines fetched by demand

and hit again by other requests.

The prefetch precision should be considered as the most critical metric to evaluate or direct prefetch adaptation, as it de-

scribes the cost-efficiency of a prefetcher well. Taking prefetch precision into consideration, an aggressive but not accurate

enough prefetcher should be largely avoided because it might produce a large number of useless prefetches, which signif-

icantly wastes resources, such as power and cache line slots. Instead, this metric favors a prefetcher with high confidence.

The prefetch precision metric suggests that the prefetcher should focus on identifying the correct access pattern and make a

highly-accurate prediction. Such an approach maximizes the hardware investment on the prefetcher and achieves a high

cost-efficiency. An ideal prefetcher will produce a prefetching precision with value 1. In practice, the prefetching precision

has a range from 0 to 1.

Though the prefetch precision is critical and straightforward, it merely describes one aspect of the problem under study –

the prefetch precision does not quantify how effective the prefetcher is, i.e. how many misses among the overall misses are

hided. The next metric we formalize addresses this limitation.

3.2.2. Prefetch coverage

The prefetch coverage metric is introduced to complement prefetch precision and quantify the other aspect of how well a

prefetcher works. We formalize the prefetch coverage definition as follows.

Definition 2. Prefetch coverage is defined as the ratio of the number of misses reduced due to prefetches over the total

number of misses that will occur without prefetching.

As the definition states, the prefetch coverage focuses on quantifying the ratio of the misses reduced, i.e. how wide a pre-

fetcher covers the demand misses that are supposed to occur without the assistance of prefetching. A highly-accurate pre-

fetcher does not necessarily provide a wide coverage. This is because such a prefetcher could be very conservative and takes

Fig. 3. IPC results of art, bzip2, gap, mcf and swim benchmarks with data prefetching. The performance improvement of different prefetching algorithms

exhibits significant variation for different benchmarks. For instance, the strided prefetching achieves 29.9% IPC speedup for the art benchmark, while the

Markov prefetching only achieves 0.92% improvement for the same benchmark. However, the Markov prefetching achieves 14.2% IPC speedup for the bzip2

benchmark, while the strided prefetching merely achieves 8.13% in this case.
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action only when the prefetcher has a high-confidence prediction. This conservativeness results in a high precision but the

effectiveness in terms of miss reduction ratio is low. The vice versa holds as well, i.e. a prefetcher with wide coverage is not

necessarily highly accurate since the prefetcher could be very aggressive (such as with a large prefetch degree) to improve

the coverage while sacrificing the precision. In essence, the prefetch coverage and prefetch precision are complementary to

each other, and together they quantify the effectiveness of a prefetcher from two aspects.

3.2.3. Prefetch pollution

While prefetch precision and prefetch coverage can reflect the prefetch effectiveness, or the positive side, of a prefetching

algorithm well, they do not characterize the negative side of an algorithm. Cache pollution [37] is considered a critical down

side of prefetching. When a cache line that is replaced by a prefetched line is later accessed by a demand request, cache pol-

lution occurs. Such a cache miss will not happen without the interference of prefetching. This scenario, cache pollution, is

referred as a negative side-effect of prefetching. We present a formal definition to describe prefetch pollution.

Definition 3. Prefetch pollution is defined as a ratio of the number of additional demand misses caused by prefetching that

will not occur without prefetch interference over the number of misses that will occur without prefetching.

According to this definition, prefetch pollution quantifies the percent of extra demand misses due to prefetches, which

means that those demand misses will not occur if prefetching is not adopted. The occurrence of these misses is due to

the limited cache size and the replacement of useful cache lines by prefetched cache lines. Together with prefetch precision

and prefetch coverage, the prefetch pollution completes a three-tuple (precision, coverage, pollution) or PCP in short, to eval-

uate a prefetching algorithm. These three metrics are complementary to each other, and assess an algorithm from both po-

sitive and negative aspects. Some literatures separate other metrics, such as lateness [34]. We observed that these metrics

are well covered in the 3-tuple PCP metric. A separation of these additional metrics might be helpful, but might also cause

confusion. In this study, the proposed dynamic adaptation is based on the 3-tuple PCP metric.

Note that these prefetch metrics not only consider whether a prefetched cache line will be used in the future or not, but

also whether it will be used in a timely fashion or not. For instance, if a prefetched cache line is displaced before it is used

either by a demand request or a more recently prefetch request, it is not a useful prefetch and is not counted as an accurate

prefetch. The metrics introduced evaluate the effectiveness of prefetches from both important aspects, what to prefetch and

when to prefetch, for a given prefetching algorithm.

3.3. Evaluation metrics: on-the-road

We have presented the formal definitions of a PCP metric to evaluate and direct a prefetcher in the previous section. We

discuss the hardware design and realization of these metrics in the proposed AFA prefetcher in this section.

3.3.1. Realizing prefetch precision metric

To realize the prefetch precision metric, the AFA prefetcher utilizes two statistics counters for each evaluated algorithm,

one counter for the prefetch hits, and one counter for overall prefetches. We refer these two counters as prefetch_hits and

prefetch_total. In addition, to collect the statistic of prefetch hits, we need to distinguish the cache lines prefetched from de-

manded. This requirement results in a major hardware storage budget. We assume each cache line in the prefetch destina-

tion (L2 cache in this study) has one extra prefetch bit to represent whether this line is prefetched or fetched for each

evaluated algorithm. When a cache line is prefetched into destination, this prefetch bit is set. If this cache line is ever ac-

cessed during its lifetime in the cache (after being prefetched and before being displaced), the prefetch_hits counter is in-

creased and the prefetch bit is reset. By this way, the prefetched cache line is not counted as multiple hits even when it

is accessed multiple times, which is consistent with the definition. A simple reason behind this decision is that the first

hit acts like a regular demand request and fetches in data, and the future accesses will hit in cache. The actual saving of

the prefetching is the first access. If a cache line is brought in by a normal demand request, the prefetch bit is not set.

The combinatorial logic to maintain this prefetch bit, set and reset, is trivival, and the hardware implementation of this logic

is not complicated. Note that if a cache line is prefetched by multiple algorithms, the corresponding prefetch bits will be set

and a hit of this cache line will attribute to the statistics of each corresponding prefetcher.

3.3.2. Realizing prefetch coverage metric

The prefetch_hits counter discussed above can also be used in calculating the prefetch coverage. This is because that the

statistics the prefetch_hits counter collects is the number of misses reduced due to prefetches. To compute the prefetch cov-

erage, the AFA prefetcher needs another counter � the number of overall misses that will occur without prefetching. The AFA

prefetcher utilizes another acounter, demand_misses counter, to collect the number of misses that occurs even with pre-

fetching. The prefetch_hits counter represents the number of misses saved by prefetch, and the demand_misses counter rep-

resents the number of misses that still occur. The prefetch coverage is computed as:

prefetchcoverpage ¼
prefetchhits

prefetchhits þ demandmisses
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3.3.3. Realizing prefetch pollution metric

It is more challenging to collect the prefetch pollution statistics than to collect prefetch precision and coverage. The rea-

son is that we never knowwhether the replaced cache line due to a prefetch will be used in future or not. An optimal solution

to collecting the prefetch pollution metric is tracing down all these cache lines and detecting whether any future requests

will access these lines. If such a cache line is detected, which means that this cache line is replaced out due to a prefetch but

is needed by a demand request, a case of cache pollution is detected. However, such an optimal solution will require infinite-

size storage to keep all past cache lines replaced out due to prefetches. This approach is not feasible in practice. Motivated

from existing studies [1,26,34], the AFA prefetcher utilizes a Bloom filter [1] to estimate the percentage of cache pollution as

shown in Fig. 4.

Suppose the cache line size is 64 B, and a cache block address is 26 bits. The pollution filter splits 26 bits into two parts,

high-order 13 bits and low-order 13 bits. These two parts are fed into an XOR logical unit, and a filtered address, with 13 bits,

is the output. This filtered address is used to index a bit vector and set the corresponding bit in the vector. The AFA prefetcher

uses this filter to estimate the pollution. It tracks each cache line that is replaced out due to a prefetch and feeds this cache

line address into the filter. A corresponding bit of the bit vector is set. It also feeds cache miss addresses into the filter, and if

the corresponding bit is set, the AFA prefetcher estimates this cache line was in the cache but was replaced out due to a pre-

fetch. After a cache pollution is detected, the corresponding bit is reset, as the cache line is fetched back into cache. The AFA

prefetcher uses a pollution counter for each evaluated algorithm to accumulate the prefetch pollution statistics. The hard-

ware cost of Bloom filters is discussed in Section III-F.

Note that the Bloom filter based pollution estimator provides a tradeoff between the accuracy of detecting prefetch pol-

lution and the space requirement. An ideal solution of detecting every prefetch pollution will require infinite storage capac-

ity; whereas the pollution estimator only requires limited and a small amount of storage (213 bits of storage for each

supported algorithm as discussed in Section 3.6). The downside of the pollution estimator is that it does not always guaran-

tee an accurate detection. The previous studies, however, have shown that the Bloom filter based estimator provides a sat-

isfactory accuracy for estimation [26,34]. In this study, it is adopted as an important mechanism to control the hardware cost

of collecting prefetch pollution statistics. It has been verified effective through simulation tests.

3.4. Metrics collection

The AFA prefetcher periodically collects the PCP metric discussed above in order to make adaptation decision. The adap-

tive prefetching mechanism is designed to have two phases, metrics collecting phase and stably prefetching phase. In the col-

lecting phase, all supported prefetching algorithms are enabled, and the statistics of each prefetching algorithm are tracked

and collected. In the end of collecting phase, the PCP metric is computed for prefetching algorithm evaluation. In the stably

prefetching phase, only the adaptively selected algorithm will be running, and all counters and pollution estimator are

cleared and turned off. The decision to choose the working algorithm is discussed in the following subsection.

The switch between these two phases is controlled by a phase timer. There are many potential ways for measuring the

time and providing the phase timer, such as utilizing CPU cycles, issued instructions, issued load/store instructions or

load/store misses. We choose the approach that views each cache miss as one time tick and accumulates to measure the time

and provides the phase control. This is a feasible design choice to control the adaptive prefetcher behavior because the num-

ber of cache misses can fairly represent how the prefetcher should react. In addition, this design is considered better than

utilizing cycles or issued instructions, as those numbers could be huge and increase rapidly. Utilizing cache misses as time

ticks is a much simpler way for the AFA prefetcher. The AFA prefetcher is empirically configured with a collecting phase as 1/

8th of the stably prefetching phase, which means it collects statistics and makes adaptive selection decision in one unit of

time, and prefetch with selected algorithms for eight units of time.

Fig. 4. Pollution estimator. The pollution estimator splits 26 bits of cache line address into two parts, high-order 13 bits and low-order 13 bits. These two

parts are fed into an XOR logical unit, and a filtered address with 13 bits, is the output. This filtered address is used to index a bit vector and set the

corresponding bit in the vector as indicating this cache line is replaced out due to a prefetch.
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3.5. Adaptive selection

After collecting statistics and computing the metrics, the AFA prefetcher makes the decision to adaptively select the suit-

able prefetching algorithms. The decision is based on the evaluation of the performance of each prefetching algorithm, indi-

cated by the 3-tuple metric, the precision, coverage and pollution. This evaluation is not complicated – simply done by

comparing the runtime statistics against a preset threshold and classifying them as either high or low. If it is above the

threshold, the prefetcher classifies the statistics as high. In contrast, if it is below the threshold, the prefetcher classifies it

as low. In our simulation experiments, the threshold to distinguish a high/low prefetch precision, coverage and pollution

are preset as 0.7, 0.3, and 0.2 respectively based on empirical experience. In practice, these thresholds can be measured

and determined in advance for any specific architecture. It can also be tuned dynamically at runtime. Fig. 5 illustrates a table

of eight levels of prefetching algorithm performance that can be recognized by the prefetcher.

The rationale of the arrangement of different levels in the performance table is rooted from the desired effectiveness of

prefetchers, i.e. prefetching algorithms should remain low intrusion to the system, and strive for accuracy and coverage. In

other words, the placement of these different levels is essentially driven by the desired QoS (Quality-of-Service) of prefetch-

ing algorithms. When a certain level of pollution is controlled, the AFA prefetcher favors accuracy over coverage because

accurate prefetches are more effective than aggressive prefetches that provide wide coverage. Note that the thresholds that

control the selections can be dynamically tuned to provide a fine control.

Based on the prefetching algorithm evaluation performance table, the AFA prefetcher is able to identify and choose best

prefetching algorithms dynamically. In our current study, we propose and analyze two different mechanisms, best-strategy

adaptive selection and multi-strategy adaptive selection, to select the algorithms adaptively.

The best-strategy adaptive selection always outputs the one performing best in the statistics collecting phase. This deci-

sion is made based on the algorithm evaluation and the performance table – the lowest level is assigned to have the highest

priority. Within the same level, the precision is assigned to have the highest preference, while the coverage has the medium

and the pollution metric has the lowest preference. This means that if the AFA prefetcher sees multiple algorithms falling

into multiple levels, the prefetcher chooses the lowest level algorithms as the candidate. If the prefetcher detects multiple

candidates sharing the same lowest level, it favors the one with the highest precision.

The best-strategy adaptation works by choosing the best strategy according to the defined policy (performance table and

preference assignment) out of all supported algorithms. However, a potential limitation is that it only chooses one algorithm

even if multiple strategies are performing well and can sometimes complement each other. In addition, this strategy always

outputs one ‘‘relatively best’’ strategy, even though the best strategy might not work well enough at certain circumstances.

Based on these observations, we introduce another adaptation strategy, multi-strategy adaptive selection, which chooses

multiple optimal strategies according to the evaluation and performance table. This adaptation strategy uses the level as

the selection criteria. For instance, if level 0 and level 1 are configured as the adaptation criteria, then the AFA prefetcher

dynamically chooses all of these algorithms that fall into these levels, and use them in the stably prefetching phase. This

adaptive strategy can also control the quality of the selection. If none of the algorithms satisfies the specified criteria, the

prefetcher does not have any algorithm performing in the prefetching phase, until the algorithms are evaluated again in

the next collecting phase. The selection criteria are preset, for instance, as level 0, 1 and 2 in our current simulation

experiments.

3.6. Hardware cost

As discussed in previous subsections, the AFA prefetcher needs three counters for each evaluated algorithm and two

counters for all algorithms to collect the required statistics in order to direct the adaptation. Each counter can be imple-
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Fig. 5. Prefetching algorithm performance table. The AFA prefetcher compares the runtime statistics against a preset threshold and classifies each of the 3-

tuple metric, precision, coverage and pollution as either high or low. Based on the evaluation of the 3-tuple metric, each prefetching algorithm is classified

into one of eight levels defined in this table.
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mented with a 32-bit register. The overall required storage for counters would be 56 bytes, if assuming to support four dis-

tinct algorithms simultaneously. In addition to the counters, the AFA prefetcher needs one cache pollution estimator for each

supported algorithm. The pollution estimator requires 213 bits of storage for the bit vector. Therefore, the estimator con-

sumes 1 kB for each supported algorithm. The cache structure needs a slight modification to support adaptive selection of

prefetching algorithm as discussed previously. The modification is one bit for each supported algorithm. For a typical

1 MB L2 cache with 64 bytes cache line, it has 16,384 cache lines. To support one prefetching algorithm, the additional hard-

ware cost will be 16,384 bits or 2 kB. Therefore, as a normal case, to support adaptation among four algorithms, the overall

hardware cost will be around 12 kB. This hardware budget is trivial – as only around 1% compared to a regular 1 MB L2 cache.

However, as the simulation verifies, the adaptive prefetching can considerably reduce cache misses and improve the overall

system performance.

As discussed partially in the previous section, the combinatorial logic to realize the proposed adaptive prefetching is not

complicated as well. The major required combinatorial logic resides in maintaining the prefetch bits within the cache line,

maintaining statistics counters, filtering through prefetch pollution estimator, and adapting prefetching algorithms via the

performance table. Maintaining prefetch bits is straightforward because it merely requires set/unset the corresponding bit

according to whether a cache line is brought in due to a specific algorithm. Maintaining counters is a straightforward logic

too. Filtering is slightly complicated, but as we showwith the estimator, the hardware state machine can be described effort-

lessly. Adapting the algorithm mainly needs comparison logic, which can be implemented easily as well.

4. Simulation and performance analysis

We have carried out simulation experiments to study the feasibility of the proposed AFA prefetcher and analyze the po-

tential performance impact. Stream prefetching [11,23], stride prefetching [5,13], Markov prefetching [21] and MLDT pre-

fetching [35] algorithms were selected for simulation. The adaptive strategy of the AFA prefetcher is independent of the

underlying prefetching algorithms. In theory, any prefetching algorithm can be supported by the AFA prefetcher. The stream,

stride, Markov, and MLDT prefetching algorithms are chosen to evaluate the adaptive mechanism because these algorithms

are classic, well known, and also widely used. The evaluation with other algorithms such as the PC/DC prefetching algorithm

[25] and stream chaining algorithm [12] is a planned further study. This section discusses simulation details and presents the

analytical results.

4.1. Simulation methodology

We have enhanced SimpleScalar simulator [3] with the DAHC [6] and the AFA prefetcher for the simulation verification

and analysis. SimpleScalar tool set provides a detailed and high-performance simulation of modern processors. It takes bina-

ries compiled for SimpleScalar architecture as input and simulates their execution on provided processor simulators. It has

several different execution-driven processor simulators, ranging from extremely fast functional simulator to a detailed and

out-of-order issue simulator [3].

We have chosen the most detailed, sim-outorder simulator, for our experiments. Fig. 6 shows the enhanced SimpleScalar

simulator architecture. We have added two primary modules, DAHC module and AFA prefetcher module. The DAHC module

simulates the functionality of the DAHC, as explained in [6]. The AFA prefetcher module implements the adaptive prefetching

logic and four supported prefetching algorithms, stream, stride, Markov and MLDT. We have modified the cache line struc-

ture for identifying whether a cache line is brought in due to a prefetch, and which algorithm brings it in. We have created

the required counters and the pollution estimator to simulate the evaluation as well. The combinatorial logic was simulated

to compare the evaluation of each algorithm, and outputs the dynamically chosen suitable algorithms, with both best-strat-

egy and multi-strategy selections. The multi-strategy selection was configured as level 0, level 1 and level 2 algorithms.

The AFA prefetcher was simulated to have an additional prefetch queue to store the prefetch requests. When the load/

store issuing bandwidth is available after issuing demand requests, the prefetcher starts issuing the requests from the pre-

fetch queue. If a newly generated prefetch request is already in the prefetch queue, the new request is simply dropped. If the

prefetch queue is full, the new requests replace the old requests. The handling of prefetch requests is similar to the handling

of regular load requests, with a slight difference that the effective address is computed based on prefetching algorithm, and

any exceptions/faults generated by prefetches are discarded and the previous states are restored. The AFA prefetcher uses

two groups of miss status handling registers (MSHRs) to track all on-the-fly memory access requests. One of them is used

to filter the redundant misses from the stream and to hold outgoing requests issued. The other one holds outgoing requests

issued by the AFA prefetcher.

4.2. Simulation setup

We used the Alpha-ISA and configured the simulator as a 4-way issue and 256-entry RUU processor. The instruction cache

and data cache were split. L1 data cache was configured as 32 kB 2-way with 64 B cache line size. The latency was 2 cycles.

L2 data cache was configured as 1 MB 4-way with 64 B cache line size. The latency of L2 cache was 12 CPU cycles. DAHC was

configured with 1024 entries. We assume each DAHC access costs one CPU cycle. This is a reasonable assumption for a fairly
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small cache and is also commonly used in estimating the access latency of a hardware structure in existing studies [25,27].

The AFA prefetch queue was configured with 512 entries. The stream prefetching algorithm was configured to support four

streams. The prefetch degree for all prefetching algorithms was configured as eight. The prefetch distance for strided, Markov

and MLDT was configured as four. The memory access latency and bandwidth are assumed to be 120 cycles and 10 cycles/

access respectively. The metrics collecting phase was configured as 32K cycles, the stably prefetching phase was configured

as 256K cycles. Table 1 lists the configuration of the simulator in our simulation tests.

4.3. Simulation results

We have performed a series of simulation for performance evaluation with SPEC-CPU2000 benchmarks [42]. We fast for-

warded the first 100M instructions and simulated the following 200M instructions to analyze the result. This evaluation set-

ting (or a slight variation thereof) is widely used for evaluating architectural enhancements. Twenty-one out of total 26

benchmarks were tested successfully in our experiments. We have excluded the other five benchmarks (apsi, facerec, fma3d,

perlbmk and wupwise) that had problems and did not finish the test.

4.3.1. Cache miss rate reduction

We first study the cache miss rate reduction with various prefetching algorithms and the AFA prefetcher. Fig. 7 plots the

L2 cache miss rate reported by the simulator for the entire twenty-one benchmarks. This series of tests were conducted un-

der eight cases, including the base case (without data prefetching), the cases with individual stream, strided, Markov and

MLDT data prefetching, the cases with best-strategy and multi-strategy adaptation and the case with all supported prefetch-

ing algorithms running simultaneously.

As clearly shown from the results, different applications exhibit distinct access patterns, and thus the cache miss rate

reduction of various prefetching algorithms have large variations. For instance, stream prefetching significantly reduced

the misses for equake, gap, mgrid and swim benchmarks, while not for others like ammp, art, galgel and gcc. Instead, the

Fig. 6. Simulation architecture of AFA prefetcher. Two primary modules, DAHC module and AFA prefetcher module, were added into the existing

SimpleScalar simulator. The DAHC module simulates the functionality of the DAHC, and the AFA prefetcher module implements the adaptive prefetching

logic and four supported prefetching algorithms, stream, stride, Markov and MLDT.

Table 1

Simulator configuration.

Issue width 4

Load store queue 64 entries

RUU size 256 entries

L1 D-cache 32 kB, 2-way set associative, 64 byte line, 2 cycle hit time

L1 I-cache 32 kB, 2-way set associative, 64 byte line, 1 cycle hit time

L2 Unified-cache 1 MB, 4-way set associative, 64 byte line, 12 cycle hit time

Block size 64 B

DAHC 1024 entries

AFA queue 512 entries

Memory latency 120 cycles

Memory bandwidth 10 cycles/access

542 Y. Chen et al. / Parallel Computing 38 (2012) 533–551



strided prefetching performed extremely well for ammp, applu, lucas, mcf, etc., and Markov prefetching had considerable

miss reduction for bzip2, eon and vortex benchmarks. The MLDT prefetching usually achieved a better miss rate reduction

than strided prefetching, but still not for all benchmarks. These observations confirm that an adaptive prefetcher is desired to
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Fig. 7. Cache miss rate reduction of SPEC-CPU2000 benchmarks. Different applications exhibited distinct access patterns, and the cache miss rate reduction

of various prefetching algorithms have large variations. The adaptation strategy can effectively identify the suitable prefetching algorithm and achieved

better overall miss rate reduction.
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be able to adjust to different application features at runtime to achieve a better overall prefetching performance. Simply

adopting a fixed prefetching strategy cannot be the optimal solution.

The AFA prefetcher has demonstrated its strength through the simulation. From the reported miss rate results, we can tell

that the best-strategy can almost achieve the largest miss rate reduction compared with each individual supported algo-

rithm. This fact confirms that this adaptation strategy can effectively identify the suitable prefetching algorithm for current

application access pattern. The multi-strategy adaptation can sometimes achieve an even better miss rate reduction, such as

in the applu, gap, lucas, mesa and sixtrack benchmarks. The investigation shows that this further reduction is due to two or

three well-performing prefetching strategies the multi-strategy adaptation identified and selected at different stages for

these benchmarks. These optimal strategies are all able to generate effective prefetches at a specific stage. Table 2 lists

the primary prefetching algorithms identified and selected by the AFA prefetcher for different benchmarks at runtime.

The last bar within each set of tests represents the miss rate reduction with all four prefetching algorithms working con-

currently. The experimental results show that this case has achieved about the same reduction as multi-strategy adaptive

prefetching, while better than adaptive strategies sometimes. However, as shown from the reported IPC results presented

in the following subsection, the best miss reduction does not translate to best overall performance improvement because

this strategy generates extensive replacements to the prefetch destination. In addition, the all-prefetching strategy consumes

more resources than an adaptive strategy like the AFA prefetcher because the latter can identify the optimal ones and shut

off low-efficiency prefetchers.

4.3.2. IPC improvement

Fig. 8 demonstrates the performance measurement in terms of IPC reported by SimpleScalar simulator. The results shown

in the figure include twenty-one benchmarks under eight cases, similarly as discussed in the previous subsection. Fig. 9 re-

ports the performance speedup (or slowdown) with the IPC speedup under all cases. Both the IPC measurement and the IPC

speedup confirm that different prefetching algorithms benefit distinct benchmarks with different patterns. Any specific algo-

rithm did not achieve the best IPC speedup for all benchmarks. Instead, these four supported prefetching algorithms have

large variations in terms of the performance gain measured in IPC.

As shown from the reported results, the AFA prefetcher does have the capability to distinguish well-performing algo-

rithms from others and adapts to these selected algorithms to achieve an overall better performance gain. For instance,

the best-strategy adaptation has successfully identified strided prefetching suitable for ammp, applu, crafty, gcc, gzip, lucas,

mcf, parser, twolf and vpr, while stream prefetching suitable for equake, gap, mesa, mgrid and swim. Both Markov and MLDT

prefetching were also identified as better strategies at some cases, like Markov for the benchmark bzip2, eon and vortex, and

MLDT for the benchmark art, galgel and sixtrack. Notice that better cache misses rate reduction does not necessarily result in

a better IPC improvement. Take the applu benchmark as an example. The strided prefetching reduced less misses than MLDT

did, but it produced better IPC improvement. This is because that MLDT involves more prediction overhead.

It is interesting to notice that multi-strategy adaptation usually generates better performance improvement than best-

strategy does. This is because the multi-strategy adaptation is able to recognize multiple well-performing algorithms, and

can benefit and complement each other while avoiding low-effective algorithms. Adopting all supported prefetching algo-

rithms does not produce the best performance speedup. This observation reveals that adopting a low-accurate, low-coverage

or high-pollution algorithm can even substantially worsen the performance. This fact has also been confirmed from most

cases in the experiments.

The average performance improvement of all twenty-one benchmarks with each strategy is shown in Fig. 10. The best-

strategy and multi-strategy adaptation mechanisms provided by the AFA prefetcher achieved 15.14% and 17.90% average

improvement respectively, which is clearly better than all other cases. In summary, as verified from the simulation testing,

the AFA prefetcher is able to dynamically choose proper algorithms for different applications and to achieve an overall better

performance improvement of prefetching.

4.3.3. AFA behavior analysis

It is interesting to analyze the behavior of the AFA prefetcher in terms of the frequency of algorithm switches and the

distribution of algorithms selected for better understandings.

The frequency of algorithm switches of both the best-strategy adaptation and multi-strategy adaptation is shown in

Figs. 11 and 12 respectively. The frequency is counted as the ratio between the number of algorithm changes over the total

Table 2

Primary prefetching algorithms selected adaptively at runtime (B-S: best-strategy, M-S: multi-strategy; SM: stream, ST: strided, MK: Markov, MT: MLDT).

ammp applu art bzip2 crafty Eon equake galgel gap gcc

B-S ST ST MT MK ST MK SM MT SM ST

M-S ST ST, MT MT MT, MK ST, SM MK SM ST, MT SM ST

gzip lucas mcf mesa mgrid parser sixtrack swim twolf vortex vpr

ST ST ST SM SM ST MT SM ST MK ST

ST, MT SM, ST ST SM, MT SM, MT MT, ST ST, MT, MK SM MT, ST MK MT, ST
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number of metrics collection phases. For the best-strategy adaptation, if the algorithm selected for the stably prefetching

phase is different in two consecutive phases, it is counted as one algorithm change or algorithm switch. For the

0

0.5

1

1.5

2

2.5

3

3.5

ammp applu art bzip2 craf ty eon equake

IP
C

Base Case Stream Strided Markov MLDT Best-strategy Multi-strategy All

0

0.5

1

1.5

2

2.5

3

3.5

4

galgel gap gcc gzip lucas mcf mesa

IP
C

Base Case Stream Strided Markov MLDT Best-strategy Multi-strategy All

0

0.5

1

1.5

2

2.5

3

3.5

4

mgrid parser sixtrack swim twolf vortex vpr

IP
C

Base Case Stream Strided Markov MLDT Best-strategy Multi-strategy All

Fig. 8. Instructions Per Cycle (IPC) of SPEC-CPU2000 benchmarks with different data prefetching strategies. These results confirm that different applications

exhibited distinct access patterns, and the IPC improvement of various prefetching algorithms have variations. The AFA prefetcher has the capability to

distinguish well-performing algorithms from others and adapts to these selected algorithms to achieve an overall better performance gain.
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Fig. 9. IPC speedup with different data prefetching strategies. This figure combines all cases together and directly compares the performance improvement,

IPC speedup, of different prefetching strategies.

Fig. 10. Average IPC speedup. The best-strategy and multi-strategy adaptation mechanisms provided by the AFA prefetcher achieved 15.14% and 17.90%

average improvement respectively, which is clearly better than all other cases.

Fig. 11. Frequency of algorithms switches for best-strategy adaptation.
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multi-strategy adaptive selection, the algorithm change in two consecutive phases contains three scenarios: a new algorithm

selected, an old algorithm removed, or both. It can be observed that the frequency of algorithm switches varies among appli-

cations. For the best-strategy adaptation, the arithmetic mean of the frequency is 10.13%. For the multi-strategy adaptation,

the arithmetic mean is 12.68%, slightly higher than that in the best-strategy case. The driving force of the algorithm switches

is the dynamic access pattern of applications. The ability of adapting the prefetching algorithms to different access patterns

is desired for an effective prefetcher, and is a motivation of this study.

Fig. 13 shows the distribution of selected algorithms for the best-strategy adaption. This figure illustrates the detailed

analysis of the AFA prefetcher behavior. Several observations can be made from this analysis. First, the detailed frequency

distribution of selected algorithms confirms the need of adaption again. Different algorithms exhibit advantages over other

algorithms for different applications. Second, in general, the strided prefetching and stream prefetching algorithms are se-

lected most often. Third, certain algorithm such as the Markov prefetching performs weakly in general, but surprisingly well

for some applications such as vortex and bzip2. An algorithm-level adaption is essential to address this issue and to identify

the well performing algorithms depending on specific applications access features.

4.3.4. Sensitivity analysis

Cache pollution is an undesirable side effect of data prefetching techniques. In this subsection, we present an analysis of

the performance sensitivity and cache pollution of the AFA prefetcher under different cache sizes.

All the prior simulation evaluations were carried out with 1 MB L2 cache. To observe the AFA prefetcher’s sensitivity to

different cache sizes and the impact of potential cache pollution, we varied L2 cache sizes as 512 kB and 2 MB to compare its

performance with the case of 1 MB. The results show that a larger cache size helps the AFA prefetcher reduce more misses. A

larger cache size lowered the extra misses due to the cache pollution, and therefore reduced the number of misses indirectly.

Figs. 14 and 15 show the IPC speedup results of the AFA best-strategy and multi-strategy, respectively, with three differ-

ent L2 caches sizes. When the L2 cache size was increased, the IPC speedup improved for gap, lucas, mesa and sixtrack

benchmarks. These benchmarks have high miss rates. Larger cache size hides the performance loss caused by cache pollution

for these benchmarks. For the majority of benchmarks, the AFA prefetcher achieved stable IPC speedup. These simulation

results demonstrate that the AFA prefetcher can have steady performance improvement with different cache sizes and is

Fig. 12. Frequency of algorithms switches for multi-strategy adaptation.

Fig. 13. Distribution of selected algorithms.
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not highly sensitive to different cache size configurations. Although larger cache size helps reduce the cache pollution, the

AFA prefetcher’s dynamic and adaptive design makes it control the cache pollution well.

5. Related work

Data prefetching, as the name indicates, is a technique to fetch data before requested. A similar technique is instruction

prefetching, which tries to speculate the future instructions and fetch them from memory in advance [15]. Data prefetching

is usually classified as software prefetching and hardware prefetching [37]. Software prefetching is a technique to instru-

ment prefetch instructions to the source code either by a programmer or by a complier during optimization phase. Hardware

prefetching does not require modifications to binary or source code, and can benefit directly for existing executables. Exist-

ing hardware prefetching studies can be roughly classified into several categories: locality-based prefetching; correlation-

based prefetching; and context-based prefetching. After describing previous work in each of these categories, we discuss

how our AFA prefetcher is related to the existing work.

5.1. Locality-based prefetching

The locality-based prefetching category refers to a set of prefetching strategies that take advantage of data access locality

in generating prefetches. The sequential prefetching, stream prefetching, and strided prefetching are representative strate-

gies in this category.

Sequential prefetching is a basic prefetching strategy. It prefetches one or more blocks that follow the current missing

block [10,11]. This prefetching mechanism takes advantage of spatial locality and assumes the applications usually request

consecutive memory blocks. The one-block-lookahead (OBL) approach automatically prefetches the next block when an ac-

cess of a block is initiated [11]. However, the limitation of this approach is that the prefetch may not be initiated early en-

ough prior to processor’s demand for the data to avoid a processor stall. To solve this issue, a variation of OBL prefetching,

which fetches k blocks (called prefetching degree) instead of one block, is proposed [10]. Another variation is called adaptive

Fig. 14. IPC speedup of AFA best-strategy with 512 kB, 1 MB and 2 MB l2 caches. For the majority of benchmarks, the AFA prefetcher achieved stable Ipc

speedup with different cache sizes and was not highly sensitive to different cache size configurations.

Fig. 15. IPC speedup of AFA multi-strategy with 512 kB, 1 MB and 2 MB L2 caches. For the majority of benchmarks, the AFA prefetcher achieved stable IPC

speedup with different cache sizes and was not highly sensitive to different cache size configurations.
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sequential prefetching, which varies prefetching degree k based on the prefetching efficiency [10]. The prefetching efficiency

is a metric defined to characterize a program’s spatial locality at runtime. Stream prefetching is a generalized sequential pre-

fetching that supports the detection of multiple streams [23]. Strided prefetching approach [5,13] observes the pattern

among strides of past accesses and thus predicts future references. It builds a state machine to track strides of accesses

and generates prefetches when the state machine arrives at a stable state. The strided prefetching is generally implemented

with a reference prediction table [5], or the recently proposed Data-Access History Cache [6].

5.2. Correlation-based prefetching

The correlation-based prefetching category refers to a set of strategies that exploit general correlation, not necessary the

locality, among accesses. The representative strategies in this category include Markov prefetching, GHB-based correlation

prefetching, DAHC-based correlation prefetching, epoch-based correlation prefetching, etc.

Markov prefetching was proposed by Joseph and Grunwald to capture the correlation between cache misses and prefetch

data based on a state transition diagram [21]. The state transition diagram is built with states denoting an accessed data

block. Probability of each state transition is maintained, so that most probable predicted data are prefetched in advance

and the least probable predicted data references could be dropped from prefetching. Nesbit and Smith proposed the Global

History Buffer (GHB) to maintain the recent history of data access [25]. It is an efficient structure for supporting different

prefetching algorithms and has been adopted widely. Similar to GHB, Data Access History Cache (DAHC) [6] was proposed

to facilitate data prefetching with a single structure and to support various algorithms simultaneously at runtime. More re-

cently, a stream chaining method was proposed by Diaz and Cintra to link various localized streams into predictable chains

such that multiple levels of correlation can be exploited by the prefetcher [12]. Since data-access patterns may change at

runtime, adaptive mechanisms, such as feedback directed prefetching proposed by Srinath et al. [34], are often used to con-

trol the prefetch degree and the prefetcher’s aggressiveness dynamically.

In addition, an epoch-based correlation prefetching was proposed by Chou to reduce late prefetches for correlation-based

prefetching [9]. The idea is to localize misses within an to epoch (a fixed-length of time), and conduct prefetches based on

epochs to prevent late prefetches. Lai et al. proposed a dead-block predictor (DBP) to improve correlation-based prefetching

timeless by triggering prefetches and making replacement decision on time [22]. It predicts when a cache block is dead and

can be evicted by tracking the time duration between when it comes into the cache and when it is evicted. Hu et al. also

proposed time-keeping mechanisms to improve timely prefetching [19]. Bhattacharjee and Martonosi proposed two In-

ter-Core Cooperative (ICC) TLB prefetching mechanisms to exploit the correlation in TLB (Translation Lookaside Buffers) miss

patterns across cores in chip multiprocessors (CMPs), which significantly improves data TLB (D-TLB) access performance [2].

Ebrahimi et al. proposed a hierarchy of prefetcher aggressiveness control structures to control prefetcher-caused inter-core

interference by dynamically adjusting and coordinating the aggressiveness of multiple prefetchers in CMPs [14]. Their pro-

posed structures improve the system performance and reduce bus traffic considerably on a multi-core system. Somogyi et al.

proposed temporal, spatial, and spatio-temporal memory streaming to detect repeated patterns in specific memory regions

and to boost memory access performance [32,38]. These approaches achieve remarkable performance for applications with

regional repeated patterns.

5.3. Context-based prefetching

Context-based prefetching is a class of prefetching strategies thatmodel data access as context and utilizes the relationship

between current context (the miss access information) and the historical context to make predictions for data prefetching. A

context-based prefetching method builds a state transition diagram with the access address strides (deltas) as states, and

characterizes the correlation among miss address streams. Context-based data prefetching is similar to the context-based

value predictor [29], but is used as a data prefetcher on the cache level. The Finite Context Method (FCM) is a representative

context-based predictor that predicts the next value based on a finite number (order) of preceding values [29]. A variation of

FCM technique, called Differential Finite Context Method (DFCM), was proposed in [17]. In this model, the context is formed

by the differences between values instead of values themselves. DFCM can findmore repeating patterns than FCMdoes, and in

the meantime, it reduces the number of value prediction table entries needed in the original FCM [29]. P-DFCM [27] is a

recently proposed data prefetcher based onDFCM. There are twomajor differences between P-DFCMandDFCM. First, P-DFCM

prefetches on L2 load misses only, while DFCM prefetches on both load and store misses. Second, P-DFCM can prefetch when

the PC (Program Counter) is known, while DFCM prefetches when both PC and its requesting data address are known.

Recently, amulti-order context analysis approach has been proposed for context-based prefetching [8], where the order refers

the length of the context. A multi-order analysis based context prefetching can improve the prefetching coverage, and thus

improve the overall prefetching effectiveness.

5.4. Speculative-execution based prefetching

The speculative-execution based prefetching category refers a set of strategies that are completely different from the

prior three categories. This set of strategies make the prediction of future data accesses by speculatively executing a

fragment of code, whereas the prior three categories are all based on collecting the historical information and making the
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prediction based on history. The speculative-execution based prefetching can be beneficial because it can steal cycles for

speculative execution that are otherwise wasted due to data stall. It can also make use of the emerged multicore architecture

and efficiently use one core to speculatively execute and warm up data cache for the process running on another core.

The representative speculative-execution based prefetching includes Zhou’s dual-core execution (DCE) approach [41],

Ganusov et al.’s future execution (FE) approach [16], Sun et al.’s data push server architecture [35] and Solihin et al.’s mem-

ory-side prefetching [33]. DCE and FE approach target for multi-core architecture. They use idle core to pre-execute future

loop iterations to warm up cache (bring data to cache in advance). The data push server architecture utilizes a separate pro-

cessing unit such as a separate core to conduct proactive push-based prefetching. The memory-side prefetching approach

uses a memory processor residing within main memory to prefetch data proactively. The latter two approaches are also usu-

ally distinguished as push based prefetching from traditional pull based prefetching.

5.5. Relation to this work

Without the benefit of programmer or compiler hints, the effectiveness of hardware prefetching largely relies on the accu-

racy of prediction strategies. Incorrect prediction brings useless blocks into cache, consumes memory bandwidth and might

cause cache pollution. To increase prefetching accuracy and coverage, hardware prefetching strategies should be able to

make dynamic adaptation at runtime for different access patterns. This research targets to provide an algorithm-level hard-

ware adaptive data prefetching to resolve this issue. Although a large body of data access acceleration and prefetching stud-

ies exist in locality-based, correlation-based, context-based and speculative-execution based prefetching, there are very

limited studies exploiting dynamic and adaptive support for data prefetching strategies.

A few existing literature provide some form of adaptation, however [10,34], these strategies focus on adapting the pre-

fetch degree and prefetch distance only. Our idea is motivated from the fact that no single prediction algorithm can work

universally well for all applications. The adaptation at an algorithm-level is a necessity. This research provides such a solu-

tion and conducts simulation analysis with supporting four representative prefetching algorithms.

To the best of our knowledge, this research is the first work bringing algorithm-level adaptation into attention and

exploiting a feedback-controlled dynamic adaptation mechanism. Nevertheless, the existing studies on adapting prefetch de-

gree and distance are complementary to this study. They can be combined with this research to provide degree, distance and

algorithm-level adaptation.

6. Conclusion

Advances in processor architectures such as multicore architectures have put more pressure than ever on reducing data-

access latency for high-performance computing systems. Data-access latency has been recognized by many as the leading

factor preventing high-sustained performance of applications. Data prefetching is an effective solution to accelerating

data-access performance and to mitigating the fast growing processor-memory performance gap. Many hardware prefetch-

ing techniques have been widely used in contemporary processor architecture. They are successful for applications with sim-

ple data-access patterns, but notorious in certain cases for generating pollution and other overhead due to their low

effectiveness. Previous study shows this low effectiveness is due to the lack of adaptation of existing hardware prefetchers.

This study proposes an Algorithm-level Feedback-controlled Adaptive (AFA) prefetcher to support algorithm-level adapta-

tion depending on application runtime data-access behavior. While existing adaptive prefetchers only adapt within a given

prefetching algorithm, AFA can change prefetching algorithms at runtime. It provides more flexibility and, therefore, better

performance. We have conducted extensive simulations with an enhanced SimpleScalar simulator to verify and evaluate the

design. Simulation results have demonstrated a clear performance improvement over existing strategies. The AFA prefetcher

will have an impact on accelerating applications’ data-access performance.
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