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F. L. Berkovich
Dept. Applied Mathematics, Samara State Avia-Space University, Russia

1. Introduction
The construction of algorithms for finding formal solutions for some classes of equations

is a main purpose of any constructive theory of ordinary differential equations theory.
Explicit formulas are the most important and conclude in itself all available information.
It is necessary to have them also to convince in our physics intuition and to compare
different theories including the bounds of their applicability.

Euler, Liouville, Kummer, Jacoby and other mathematicians discovered that the ba-
sic method of integration and investigation of differential equations is an introducing the
convenient changes of variables which reduce the original equations to simpler form. How-
ever, they didn’t propose the algorithms for finding this transformations and, as a result,
search for suitable substitutions had an euristic character.

From the other hand, deep relations between linear ODE and algebraic equations have
been known for a long time and that lead to the method of factorization of differential
operators. Here many results had a non-constructive character, too.

One of the authors developed in [1] the effective method of transformation of differ-
ential equations in which there were used both change of variables and factorization of
differential operators.

There exist the different approaches for receiving the Liouvillian solutions of ODE, i.e.,
those ones that may be represented in a finite form using elementary, algebraic functions
and quadratures.

An interesting though not complete, review of different methods for receiving the
Liouvillian and other formal solutions of ODE may be found in [2].

Modem computer algebra systems are becoming the powerful means of PC implemen-
tation of the exact methods of ODE investigating and integrating. As a result, many
users are able now to use practically those methods available earlier for specialists only.

数理解析研究所講究録
第 848巻 1993年 100-108



101

In this paper we propose our algorithm for finding the general solutions of nonhomo-
geneous second order LODE

$Ly\equiv a_{2}(x)y’’+a_{1}(x)y’+a_{0}(x)y=f(x)$

where coefficients $a_{2},$ $a_{1},$ $a_{0}$ belong to some differential field $K$ and they are arbitrary
differentiable functions, possibly, containing parameters. The heart of an algorithm is a
search for variable change that reduces the correspondent homogeneous equation $Ly=0$

to one with constant coefficients.
Algorithm is implemented in computer algebra system REDUCE.

2. Method

2.1. Search for the Kummer-Liouville transformation
Let the equation

$y”+a_{1}(x)y’+a_{0}(x)y=0,$ $a_{1}\in C^{1}(I),$ $a_{0}\in C(I)$ (1)

where $I=\{x|a<x<b\}$ be given. Here for simplicity we assumed $a_{2}=1$ . Let us apply
here the Kummer-Liouville $(KL)$ transformation , i.e. the variable change:

$y=v(x)z(t),$ $dt=u(x)dx$ , $u,$ $v\in C^{2}(I),$ $uv\neq 0,\forall x\in I$ . (2)

Due to the St\"ackel-Lie theorem (2) is a most general transformation that keeps the order
and linearity of an equation (1). it is a basic part of the Kummer problem (see [3]) of
reduction of(l)to the equation ofaform

$z”(t)+b_{1}(t)z’(t)+b_{0}(t)z(t)=0$ , $b_{1}\in C^{1}(J),$ $b_{0}\in C(J)$ (3)

where $J=\{t|c<t<d\}$ .
The Kummer problem is always solvable [4] and, therefore, there always exists the

KL-transformation that reduces (1) to (3). However, the problem of reduction of (1) to
the equation with constant coefficients

$z”(t)+b_{1}z(t)+b_{0}z(t)=0,$ $b_{1},$ $b_{0}=const$ (4)

is of the most essential interest.
The KL-transformation may be found using

Lemma 1. The equation (1) may be reduced to (4) by the KL-transformation, for which
the kernel $u(x)$ satisfies to the second order Kumner-Schwarz equation

$\frac{1}{2}\frac{u’’}{u}-\frac{3}{4}(\frac{u’}{u})^{2}-\frac{1}{4}\delta u^{2}=A_{0}(x)$ , (5)

where
$A_{0}(x)=a_{0}- \frac{1}{4}a_{1}^{2}-\frac{1}{2}a_{1}’$ (6)
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is a semi-invariant of (1), $\delta=b_{1}^{2}-4k$ is a discriminant of a characteristic equation

$r^{2}+b_{1}r+b_{0}=0$ . (7)

Then, the multiplier $v(x)$ of KL-transformation satisfies to the equation resulted

$v(x)=|u|^{-1/2} \exp(-\frac{1}{2}\int a_{1}dx)\exp(\frac{1}{2}b_{1}\int udx)$ (8)

and, moreover, $v(x)$ and $u(x)$ are related by a differential equation

$v”+a_{1}(x)v’+a_{0}(x)v-b_{0}u^{2}v=0$ . (9)

Lemma 1 allows to find constructive advices on finding $u(x)$ .
Let us consider the equation

$y_{1}’’+a_{1}y_{1}’+a_{01}y_{1}=0,$ $a_{01}=a_{0}(x)-b_{0}u^{2}(x)$ (10)

resulted from (9) after the change $varrow y_{1}$ . This equation and (1) have the same kernel
$u(x)$ of the KL-transformation. Since the coefficient $a_{0}(x)$ due to the formula

$a_{0}(x)=a_{01}(x)+b_{0}u^{2}(x)$ (11)

contains $u^{2}(x)$ as an additive part (up to the multiplicative constant $b_{0}\neq 0$ ), then it is
reasonable to choose candidates for $u(x)$ among the expressions $a_{0}(x)$ or $A_{0}(x)$ or their
additive parts.

Then the function $w(x)=u^{2}(x)$ must satisfy to the equation

$\frac{1}{4}\frac{w’’}{w}-\frac{5}{16}(\frac{w’}{w})^{2}-\frac{1}{4}\delta w=A_{0}$ . (12)

Remark: in order to apply this statements, at least one of expressions $\delta$ or $b_{0}$ should
be not zero.

2.2. Factorization
Let us say that the equation (1) admits factorization if its differential operator

$L=D^{2}+a_{1}D+a_{0},$ $D=d/dx$ (13)

may be represented as a product of first order operators

$L=(D-\alpha_{2})(D-\alpha_{1}),$ $\alpha_{1}=\alpha_{1}(x),$ $\alpha_{2}=\alpha_{2}(x)$ . (14)

Here the differential analog of Viet formulas

$a_{1}=-(\alpha_{1}+\alpha_{2}),$ $a_{0}=\alpha_{1}\alpha_{2}-a_{1}’$ (15)

remains solid.
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Due to the G.Mammana’s theorem, (1) always admits fact$0$rization.

Lemma 2. The equation (1) may be reduced to (4) by the transformation (2) and admits
factorization

$L=(D- \frac{v’}{v}-\frac{u’}{u}-r_{2}u)(D-\frac{v’}{v}-r_{1}u)y=0$ (16)

where $r_{1},$ $r_{2}$ are roots of the characteristic equation (7).

Lemma 9. Zeroes (roots) of factorization may be represented in the form

$\alpha_{1}=-\frac{1}{2}\frac{u’}{u}-\frac{1}{2}a_{1}+\frac{\sqrt{\delta}}{2}u$ , $\alpha_{2}=\frac{1}{2}\frac{u’}{u}-\frac{1}{2}a_{1}-\frac{\sqrt{\delta}}{2}u$ . (17)

This formula connects “zeroes” of factorization with Kummer-Liouville transformation.
Let us now find the feedback of KL-transformation with “zeroes” of factorization.

Using the arbitrariness of determining the characteristic roots $r_{1},$ $r_{2}$ , we may require
$r_{1}=r_{2}=0$ . Then above $fo$rmula takes a form

$\alpha_{1}=\frac{v’}{v}$ , $\alpha_{2}=\frac{v’}{v}+\frac{u’}{u}$ (18)

from where
$v=e^{\int a_{1}dx}$ , $u=e^{\int(\alpha_{2}-\alpha_{1})dx}$ . (19)

So, we may formulate

Lemma 4. The equatiori (1) by transformation

$y=e^{\int\alpha_{1}dx}$ , $dt=e^{\int(\alpha_{2}-\alpha_{1})dx}dx$ (20)

may be reduced to the equation with constant coefficients

$z”(t)=0$ . (21)

Since in this case the KL-transformation is represented using the “roots” of factoriza-
tion, the elementary procedure for finding factorization may be pointed.

Let us consider the Kummer-Schwarz equation (5) that due to (15) will take a form

$A_{\{}=- \frac{1}{4}(\alpha_{2}-\alpha_{1})^{2}-\frac{1}{2}(\alpha_{2}-\alpha_{1})’$ (22)

from where
$\alpha=\alpha_{2}-\alpha_{1}$ .

So, we nay find $\alpha$ as $\alpha=-2\sqrt{w}$ , where $w$ is an a additive part of semi-invariant $A_{0}$ .
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2.3. Fundamental system of solutions of LODE
Case 1: equation (1) admits the factorization (19).

Lemma 5. Equation (1) has the following fundamental system of solutions (FSS):

$y_{1,2}=u^{-1/2} \exp(-\frac{1}{2}\int a_{1}dx)\exp(\pm\frac{\sqrt{\delta}}{2}\int udx)$ , $\delta\neq 0$ , (23)

$y_{1}=u^{-1/2} \exp(-\frac{1}{2}\int a_{1}dx),$ $y_{2}=y_{1} \int udx$ , $\delta=0$ . (24)

Case 2: $b_{1}=b_{0}=0$ .
Lemma 6. If the factorization (14) is known, then FSS as follows:

$y_{1}=e^{\int\alpha_{1}dx}$ , $y_{2}=y_{1} \int e^{\int(\alpha_{2}-\alpha_{1})dx}dx$ . (25)

2.4. Partial solution
Let the nonhomogeneous equation

$y”+a_{1}y’+a+Oy=f(x)$ (26)

be given. If the FSS $\{y_{1}, y_{2}\}$ of correspondent equation (1) is known, then the partial
solution $y^{*}$ for Lemma 6 has the form

$y^{*}=-y_{1} \int e^{\int a_{1}dx}y_{2}fdx+y_{2}\int e^{\int a_{1}dx}y_{1}fdx$ (27)

while for Lemma 5

$y^{*}= \frac{1}{2\sqrt{-b_{0}}}(y_{1}\int e^{\int a_{1}dx}y_{2}fdx-y_{2}\int e^{\int a_{1}dx}y_{1}fdx)$, $b_{0}\neq 0$ . (28)

2.5. Semi-invariants and special cases of a Kummer-Liouville transformation

2.5.1. Semi-invariant $J_{0}$ (invariant by the transformation of dependent vari-
able).

As it was already mentioned above, $J_{0}$ has a form

$J_{0}=a_{0}- \frac{1}{4}a_{1}^{2}-\frac{1}{2}a_{1}’$ .

$IfJ_{0}=const,$ $thentheKL$-transformation will takea form

$y= \exp(-\frac{1}{2}\int a_{1}dx)z,$ $dt=dx$ . (29)

Factorization of operator $L$ in this case will become commutative:

$L=(D+ \frac{1}{2}a_{1}+\sqrt{b_{0}})(D+\frac{1}{2}a_{1}-\sqrt{b_{0}})$ . (30)
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2.5.2. Semi-invariant $J_{1}$ (invariant by the transformation of independent vari-
able).

$J_{1}=a_{0}e^{2\int a_{1}dx}(b_{1} \int e^{-\int a_{1}dx}dx+c)^{2}$ . (31)

If $J_{1}=const$ , then the KL-transformation will take a form

$y=z,$ $dt=- \frac{e^{-\int a_{1}dx}}{b_{1}\int e^{-\int a_{1}dx}dx+c}dx$ . (32)

We may determine whether $J_{1}$ is a constant or not, using the formula

$\frac{a_{1}}{\sqrt{a_{0}}}+\frac{1}{2}\frac{a_{0}’}{a_{0}\sqrt{a_{0}}}=b_{1}=const$ . (33)

2.6. Equations solvable algebraically

2.6.1. Exponential solutions
Let the equation $Ly=0$ have an exponential solution $y=e^{\lambda x}$ , where $\lambda=const$ . Then

the characteristic equation
$r^{2}+a_{1}(x)r+a_{0}(x)=0$ (34)

has among its roots $r_{1},$ $r_{2}$ not a function but a number $\lambda$ :

$r_{1,2}=- \frac{a_{1}}{2}\pm\sqrt{\frac{a_{1}^{2}}{4}-a_{0}}$ . (35)

Factorization $L$ takes a form:

$L=(D+a_{1}+\lambda)(D-\lambda)$ . (36)

2.6.2. Adjoint equations
By definition, the adjoint for $Ly=0$ equation $L^{*}y=0$ is an equation

$L^{*}y\equiv y’’-a_{1}y’+(a_{0}-a_{1}’)y=0$. (37)

It admits factorization
$L^{*}=(D+\alpha_{1})(D+\alpha_{2})$ . (38)

Let us consider the characteristic equation for adjoint one:

$r^{2}-a_{1}r+a_{0}-a_{1}’=0$ . (39)

If one of its roots is a number $\lambda$ , then the factorization $L^{*}$ takes a form:

$L^{*}=(D-a_{1}+\lambda)(D-\lambda)$ . (40)

Simultaneously, the factorization $L$ is of the form

$L=(D+\lambda)(D+a_{1}-\lambda)$ . (41)
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2.6.3. Exact equation
If $\lambda=0$ , then we have an exact equation, for which the factorization $L$ has a form

$L=D(D+a_{1})$ . (42)

3. Implementation

The REDUCE program SOLDE which implements the algorithm described above, has
the following main characteristics:

INPUT: a2 al $a0,f$ $/{}_{0}Coefficients$ of given equation
OUTPUT: u.v, $\iota/.variable$ change

bl $bO$ , $’/*coefficients$ of reduced equation
alfal alfa2, $|/.coefficients$ of factorization
yl, $y2$ , $’/.FSS$

yp $’/.partial$ solution for nonhomogeneous ODE

The method is, really, an algorithm itself, so the computer program SOLDE written in
computer algebra system REDUCE, follows to the second part of this paper in detail, so
there is no need to describe it here. It should be pointed only, that for make the program
more convenient for users and faster the second author decided to include the coefficient
$a_{2}$ under consideration. It may be explained by the fact that sometimes, that was proved
theoretically, the candidate for $u(x)$ may be taken from $u(x)=1/q(x)$ , where $q(x)$ is a
$a_{2}(x)$ or its multiplicative part.

Program SOLDE was tested on hundreds of equations and it had success in 75% cases.
Failure in the left 25% are caused by two reasons: 1) the other important transformation,
of Euler-Imshenetsky-Darboux, was not included to the program yet, though there already
exist all the necessary formulas for its application here, and 2) the algorithm doesn’t work
when $b_{1}=b_{0}=0$ .

For illustrate the current possibilities of this program, let us name the equations from
the demonstration file:

$***$ I.Equations with constant coefficients $***$

$Y’ l+A*Y’+B*Y=F(X)$
$Y’ l+A*Y)+A*A/4*Y=F(X)$

$***$ II. Euler’ $s$ equations $***$

$Y^{l}$ $+A/X*Y’+B/(X*X)*Y=F(X)/(X*X)$
*** III.Equations of a form : $***$

$Y’)+A1(x)*Y^{l}=F(X)$
$***$ IY.Equations with exponential coefficients $***$

$Y’+A*Y)+B*E**(2*A*X)*Y=F(X)$
$***Y.Equations$ with trigonometrical functions $***$

$Y’$ $‘+2*A*C0T(A*X)*Y)+(B*B-A*A)*Y=0$
$Y$ ’ $‘+(M*M+A/SIN(2*M*X)**2)*Y=0$

$***YI.Equations$ with hyperbolic functions $***$
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$Y$ ‘ $’+2*TANH(X)*Y$ ’ $+B*Y=0$
Y) $‘+(-M*M+A/(SINH(M*X)**4))*Y=0$

$***YII.Equations$ with algebraic coefficients $***$

$Y^{\prime l}+8*A/(5*(A*X+B))*Y^{l}+C*(A*X+B)**(1/5)/(5*(A*X+B))*Y=0$

$***YIII.Equations$ with mixed coefficients $***$

$Y”+2*A/X*Y’+((B*B*E**(2*C*X)-1/4)*C*C+A*(A-1)/(X*X))*Y=0$
$Y))+(1/(4*X*X)+1/(X*X)/(P*LOG(X)+Q)**4))*Y=0$

$***$ IX.Equations with arbitrary functions $***$

$Y^{l}$ $+2*F(X)*Y^{l}+(F(X)*F(X)+F(X)+G)(X)/2/G(X)-3/4*G^{l}(X)*G(X)/$
$G(X)*G(X)-A*G(X)*G(X))*Y=0$

***X.Equations with rational coefficients $***$

$Y^{ll}+D/(A*X*X+B*X+C)**2*Y=0$
$Y))+(-M*(M+1)/(X*X)+(1/(-P/(2*M+1)*X**(-M)+Q*X**(M+1))**4)*Y=0$

High efficiency of this implementation is caused by the fact that entire package was
developed around the procedure SOLDE which allows to the user to investigate his ODE
from different sides, and even the program doesn’t give an answer itself, it often helps
the user in finding the approaches to his equation making more effective and faster his
operations and testing his propositions. Thus, each ODE may be investigated during the
whole session by the procedures shown in Table 1.

Table 1. Procedures in the package.

Example of this program in action is given below:
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2: $|/_{0}Specia1$ case of this equation with $a=1$ was solved by Kovacic [5]

$|/.in$ another way
solde $(x^{\sim}2,0,-a*x+3/16 , 0)$ ;
$*Summary$ of the $operations*$
$***************************************************************$

$*The$ equation was: $(X^{2})*y^{l}$
$‘+$ (0) $*y)+$

$( - ——-)*y\underline{1}\underline{6}*\underline{A}*\underline{X}-\underline{3}=0$

16
$——-\underline{1}\underline{6}*\underline{A}*\underline{X}-\underline{3}_{-}$

$*The$ semi-invariant by dependent variable: $J0=$

$16*X^{2}$

1/4 1
$*The$ transformation: $y=$ (X ) $*z$ , dt $=$ (———) dx

SQRT (X)

$*$ leads to $z’$ ) $(t)+(0)*z^{J}(t)+$ $( -A)*z(t)=0$
$*The$ factorization:

$4*SQRT(A)*X+$ SQRT(X)
$*$ $L=(D-(————————))$ $(D-($

$4*SQRT(X)*X$

$4*SQRT(A)*X+$ SQRT(X)
$———————–))$

$4*SQRT(X)*X$

$*Fundamental$ system of solutions of $Ly=0$ :
1/4 $2*SQRT(X)*SQRT(A)$

$Y1=$ X $*E$

1/4
$x$

$Y2=——————–$
$2*SQRT$ (X)*SQRT (A)

$E$

$**************************************************************$

The previous version of the program is described in [6].
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