
Algorithm Performance and Problem Structure
for Flow-shop Scheduling

Jean-Paul Watson, Laura Barbulescu, Adele E. Howe, and L. Darrell Whitley
Computer Science Department

Colorado State University
Fort Collins, CO 80523

e-mail: {watsonj, laura, howe, whitley}@cs.colostate.edu

Abstract

Test suites for many domains often fail to model
features present in real-world problems. For
the permutation flow-shop sequencing problem
(PFSP), the most popular test suite consists of
problems whose features are generated from a sin-
gle uniform random distribution. Synthetic gener-
ation of problems with characteristics present in
real-world problems is a viable alternative. We
compare the performance of several competitive
algorithms on problems produced with such a gen-
erator. We find that, as more realistic character-
istics are introduced, the performance of a state-
of-the-art algorithm degrades rapidly: faster and
less complex stochastic algorithms provide supe-
rior performance. Our empirical results show that
small changes in problem structure or problem
size can influence algorithm performance. We hy-
pothesize that these performance differences may
be partially due to differences in search space
topologies; we show that structured problems pro-
duce topologies with performance plateaus. Algo-
rithm sensitivity to problem characteristics sug-
gests the need to construct test suites more rep-
resentative of real-world applications.

Introduction and Motivation
Algorithms for the permutation flow-shop sequencing
problem (PFSP) are typically compared using prob-
lems from benchmark test suites available in the OR
library (Beasley 1998). Most often, the problems in
these test suites are generated by selecting job process-
ing times from a single uniform distribution; the prob-
lems are then submitted to a search algorithm for solu-
tion. Problems are accepted as “difficult” if the search
algorithm has trouble consistently finding a good solu-
tion, as measured relative either to the lower bound or
to a best known solution.

An underlying assumption of these performance stud-
ies is that if an algorithm performs well on difficult
synthetic problems, then it will also perform well on
scheduling applications. However, real-world problems

Copyright c©1999, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

are not random — they typically are characterized by
some amount of structure, though it is rarely quanti-
fied and categorized. Our research addresses the is-
sue of whether state-of-the-art algorithm performance
will hold up on PFSPs that have structural features
representative of those found in some real-world prob-
lems. For example, consider a circuit board manufac-
turing line, a real-world problem naturally expressed
as a PFSP. Larger circuit boards tend to have more
components, and may require longer processing times
at each machine on the line. Such jobs have correlated
processing times across machines. In contrast, the du-
ration of a circuit board baking process is independent
of board size. In this case, the job processing times are
similar on a particular machine.

Ideally, we would like to test algorithms on real-
world problems. Yet, these are difficult to obtain, in-
cur knowledge acquisition overhead and sacrifice exper-
imental control. Because we have not yet quantified
the structure of real-world PFSP problems, we cannot
control for the effects of different types and amounts of
structure. Thus, test suite generation based on known
characteristics of some real-world problems balances ex-
perimental control and generality of results.

The No Free Lunch (NFL) theorem for search
(Wolpert & Macready 1995) informally states that the
mean performance of all search algorithms is identical,
independent of the chosen performance measure, when
all possible (discrete) objective functions are consid-
ered. The NFL theorem warns us that better-than-
random performance on a subset of problems may not
hold for a different subset of problems. By relying on
benchmark test suites to drive algorithm development,
algorithms may be over-fit to their benchmarks.

This paper presents two major results. First, we
demonstrate that superior performance on a popular
synthetic benchmark test suite fails to transfer to a
test suite containing problems with only modest lev-
els of non-random features. Second, we show that
the non-random flow-shop problems do not display a
search space topology previously associated with diffi-
cult problems, thus partially explaining why previously
successful algorithms which exploit such structure fail
on non-random problems.

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



A Structured PFSP Generator
Our domain is the well-known n bym permutation flow-
shop sequencing problem (PFSP) which Garey & John-
son (1979) showed to be NP-hard. Here, n jobs must be
processed, in the same order, on each of m machines.
Concurrency is not allowed: a machine can only process
a single job at a time, and processing must be completed
once initiated. Furthermore, machine j+1 cannot begin
processing a job until machine j has completed process-
ing of the same job. Each job i requires a processing
time of dij on the jth machine. A candidate solution
to the PFSP is simply a permutation of the n jobs, π.
Given that the first job in π on the first machine be-
gins at time step 0, the makespan of π is defined to be
the finish time of the last job in π on the last machine.
The objective is to find a permutation π such that the
makespan is minimized.

The most commonly used PFSP benchmark prob-
lems are those introduced in Taillard (1993) and avail-
able through the OR library. In fact, the performance
of many PFSP algorithms such as the Reeves/Yamada
path relinking algorithm (Reeves & Yamada 1998) are
compared strictly on these problems. Taillard gener-
ated his problems by selecting the processing times dij
uniformly from the interval [1,99] and then choosing a
subset of problems based on several criteria, including
problem difficulty as measured by a Tabu search algo-
rithm. In expectation, and in contrast to many real-
world problems, Taillard’s problems contain little or no
discernible structural features.

Kan (1976) introduced two methods of creating struc-
ture: job correlation and time gradients. In job-
correlated problems, the processing times of a given job
are ‘correlated’ in the sense that they are sampled from
a relatively tight distribution specific to that job. Time
gradients impose non-random structure by creating a
trend in job processing times as a function of machine;
processing times on early machines tend to be less than
those of later machines. We introduce a third method
to create non-random structure: machine correlation.
In machine-correlated problems, the processing times
of all jobs on a given machine are sampled from a rela-
tively tight distribution specific to that machine.

We consider only job and machine-correlated PFSPs.
Non-random structure is produced by drawing process-
ing times from a number of Gaussian distributions. For
job-correlated problems, we use n distributions, one for
each job. For machine-correlated problems, we use m
distributions, one for each machine. The generation of
the x (either x = n or x = m) distributions is a three-
step process requiring four input parameters. The pa-
rameters σlb and σub provide bounds on the distribution
standard deviations, while µlb dictates a lower bound on
the distribution means. Finally, α controls the expected
degree of distribution overlap. Low degrees of distribu-
tion overlap yield PFSPs with more structure because
processing times selected from two distributions with
little overlap are typically much different. As the de-
gree of overlap increases, the amount of structure de-

creases; in the limit, the distributions share the same
mean, albeit with different standard deviations. Given
these parameters, a PFSP is produced as follows:

Step 1: Select the Standard Deviations.
The distribution standard deviations σi, 1 ≤ i ≤ x,
are selected uniformly from the interval [σlb, σub].

Step 2: Compute the Mean Interval.
The means of the x Gaussian distributions are se-
lected uniformly from a fixed interval. The width of
this interval directly influences the degree of distri-
bution overlap. Smaller interval widths reduce the
average mean separation.

Approximately 95% of the mass of a Gaussian dis-
tribution lies within ±2σ of the mean. To produce x
distributions with little overlap, consider placing the
x Gaussian distributions side-by-side along an axis,
with overlap only in the 2.5% upper and lower tails
of neighboring distributions. The width of this con-
struction is: canonical Width=

∑x
i=1 4σi. We con-

sider a set of distributions to exhibit minimal overlap
if and only if each distribution overlaps with approx-
imately the 2.5% upper or lower tails of neighboring
distributions. Note that, in general, minimal over-
lap will not be achieved by uniform sampling of the
means: an interval of width canonical Width is the
smallest interval in which it is possible to achieve the
minimal overlap.

In expectation, selecting x distribution means uni-
formly from an interval of width less than canon-
ical Width will yield distributions with more over-
lap. In our generator, canonical Width is scaled by
α, where α is restricted to the interval [0, 1]. Lower
values of α yield larger overlap in distributions, and
therefore processing times.

The bounds on the distribution means are then
given by [µlb, µub], where

µub = µlb + α · canonical Width.

Step 3: Select the Distribution Means.
The means µi, 1 ≤ i ≤ x, of the distributions are
uniformly selected from the interval [µlb, µub].

For job-correlated PFSPs, the processing times for
each job i are selected from the Gaussian distribution
η(µi, σi). For machine-correlated PFSPs, the process-
ing times for each machine j are selected from the Gaus-
sian distribution η(µj , σj).

Finally, in contrast to Taillard (1993), we do not
filter for difficult problems. Instead, we concern our-
selves with algorithm performance on classes of prob-
lems. Taillard defines difficulty relative to a specific al-
gorithm. Thus, any comparison of different algorithms
would be biased by such filtering, as problem difficulty
can only be defined relative to an algorithm.

The Algorithms
We compared the performance of algorithms based on
three search methodologies: 1) path relinking, 2) in-
cremental construction, and 3) iterative sampling. The



path relinking algorithm by Reeves and Yamada (1998)
was selected because it has demonstrated some of the
best performance to date on the problems from Tail-
lard’s test suite. Most AI search algorithms are based
on either incremental construction or iterative sam-
pling. Incremental construction refers to algorithms
that use heuristics to build up a schedule; this class was
included because excellent heuristics are available for
the PFSP domain. Iterative sampling refers to a class
of stochastic algorithms ranging from random sampling
to random-starts local search; this class was included
primarily because of reported successes of such algo-
rithms on various scheduling applications.

Path Relinking

Path relinking is a general search strategy in which the
search space is explored by looking for additional op-
tima near two known local optima. During the process
of ‘linking’ or constructing a path between two local
optima, the algorithm can check the intervening area
for other optima. Path relinking is the basis for the
Reeves/Yamada PFSP algorithm (Reeves & Yamada
1998), which we denote by pathrelink.

The search spaces for the problems in Taillard’s test
suite exhibit a ’big-valley’ structure (Boese, Kahng, &
Muddu 1994). The big-valley structure implies that the
best local optima are near to the global optima. Poorer
optima tend to be further away from the global optima.
Path relinking has been shown to be effective on search
spaces with this structure. Iterated exploration linking
two highly fit local optima may be likely to expose other
good local optima.

At the highest level, pathrelink is a steady-state ge-
netic algorithm (Whitley 1989). A population of 15
job permutations, each representing a solution to the
PFSP, is maintained; the complexity of the crossover
operator forces the small population size. New candi-
date solutions are generated using one of two methods,
each with a fixed probability. The first method uses a
stochastic local search operator to improve upon an ex-
isting population member, with the goal of moving so-
lutions toward local optima. The second method uses a
form of path relinking to find new candidate solutions.
First, two parent solutions are selected from the popu-
lation. Starting from one parent, a path is probabilis-
tically projected toward the other parent. A limit on
the number of evaluations allocated to each projection
is imposed, and the best solution along the projected
path is retained. Due to the stochastic nature of the
projection and the limit on the number of evaluations,
complete path linking is not performed. Rather, search
progresses toward the other parent, although not nec-
essarily reaching it. Once a candidate solution is gen-
erated via either of these methods, it is placed into the
population if the resulting makespan is better than the
makespan of the worst element in the population. This
process is then repeated for some fixed number of iter-
ations.

Incremental Construction Algorithms

We studied a pure heuristic construction algorithm as
well as backtracking algorithms based on this heuristic.
The pure heuristic algorithm is NEH (Nawaz, Enscore,
& Ham 1983), which is widely regarded as the best
performing heuristic for the PFSP (Taillard 1990). The
NEH algorithm can be summarized as follows:

(1) Order the n jobs by decreasing sums of total
job processing times on the machines.

(2) Take the first two jobs and schedule them so as
to minimize the partial makespan as if there were
only two jobs.

(3) For k=3 to n do
Insert the k-th job into the location in the
partial schedule, among the k possible,
which minimizes the partial makespan.

Despite its simplicity (O(n3m)), NEH produces rea-
sonably good solutions to Taillard’s benchmark prob-
lems. However, the solutions produced by pathrelink
are either competitive with or exceed the previously
best known solutions. Yet the comparison is hardly
fair: the run-time of NEH is several orders of magni-
tude less.

The NEH algorithm can be viewed as a greedy con-
structive search method, which can be extended in sev-
eral ways. Backtracking mechanisms can be added to
recover from poor local decisions made during step (3)
of the pseudo-code. The k insertion points can be sorted
in ascending order of partial makespan to provide a rel-
ative quality measure.

We implemented several systematic backtracking al-
gorithms: Chronological Backtracking (CB), Limited
Discrepancy Search (LDS), Depth-bounded Discrep-
ancy Search (DDS), and Heuristic-Biased Stochastic
Sampling (HBSS). Chronological backtracking serves as
a baseline performer for the heuristic backtracking algo-
rithms. For LDS (Harvey & Ginsberg 1995) and DDS
(Walsh 1996), a discrepancy is defined as any point in
the search where the advice of the heuristic is not fol-
lowed. LDS iteratively increases the maximum number
of discrepancies allowed on each path from the root of
the search tree to any leaf. In contrast, DDS itera-
tively increases the depth in the search tree at which
discrepancies are allowed. Both algorithms assume the
availability of a good heuristic, such as NEH. DDS
further assumes that discrepancies required to achieve
near-optimal solutions should occur at relatively shal-
low depths in the search tree. As no agreed-upon con-
vention exists, we consider any move other than that
suggested by the heuristic as a single discrepancy. This
is unlike LePape & Baptiste (1997) , where k−1 discrep-
ancies are counted if the kth available move is chosen.

HBSS (Bresina 1996) is an incremental construc-
tion algorithm in which multiple root-to-leaf paths are
stochastically generated. Instead of randomly choos-
ing a move, an acceptance probability is associated
with each possible move. This acceptance probability is
based on the rank of the move assigned by the heuristic.



A bias function is then applied to the ranks, and the
resulting values are normalized. The choice of bias func-
tion “reflects the confidence one has in the heuristic’s
accuracy - the higher the confidence, the stronger the
bias” (Bresina, 1997:271). We used a relatively strong
quadratic bias function, due to the strength of the NEH
heuristic: bias(r) = r−2, where r is the rank of a move.

Iterative Sampling Algorithms

We also implemented several iterative sampling algo-
rithms. In random sampling, a number of random per-
mutations are generated and evaluated. Another itera-
tive sampling algorithm can be obtained by modifying
step (2) of the NEH algorithm. Instead of selecting the
two largest jobs, we instead choose two jobs at random.
Step (3) of the NEH is then followed, without back-
tracking, to produce a complete schedule. We denote
this algorithm by NEH-RS (NEH with random-starts).

Finally, we consider iterative random sampling in
which local search is applied to the randomly generated
solutions; we denote this algorithm by itsampls (iter-
ative random sampling with local search). Following
Reeves and Yamada (1998), we use a shift local search
operator coupled with a next-descent search strategy.
Let π represent a permutation and πi be the element
in the ith position of the permutation. The operation
πi 7→ πj denotes that the ith element in the original
permutation is re-mapped to the jth position. Given
two randomly selected positions i and j, i < j, the shift
operator SH(i,j) transforms π as follows:

SH(i, j) : π → π

{
πk 7→ πk+1 if i ≤ k < j
πj 7→ πi
πk 7→ πk otherwise

The operator is applied to all pairs of jobs in a random
order, with each improving or equal move accepted. Fi-
nally, we note that because of the strong stochastic com-
ponent, HBSS can be classified as either an incremental
construction or iterative sampling algorithm.

Relative Algorithm Performance:
Empirical Results

Algorithm performance was measured on six problem
classes consisting of three sizes of both job and machine-
correlated problems: 50, 100 and 200 jobs, all executed
on 20 machines. For each problem class, we generated
100 problem instances with µlb = 35 and α ranging
from 0.1 to 1.0, in increments of 0.1 The values of σlb
and σub were set to 1 and 20, respectively. Varying
the problem size allows us to assess algorithm scalabil-
ity, while varying α allows us to assess the influence of
structure on algorithm performance.

The process of placing a job into the best possible lo-
cation of a partial schedule dominates the run-time of
all NEH-based algorithms; this corresponds to the loop
body in step (3) of the NEH pseudo-code. We define
this computation as an evaluation and allocate 100K
such evaluations to all NEH-based algorithms. For

HBSS and NEH-RS, root-to-leaf paths are repeatedly
generated with the best obtained solution recorded. For
the systematic heuristic backtracking algorithms (CB,
LDS, and DDS), a target makespan must be specified.
We begin by setting the target makespan to one less
than the makespan obtained by the NEH algorithm.
Once an algorithm locates a solution with a makespan
equal to or better than the target makespan, a new tar-
get makespan is similarly defined, and the algorithm
is restarted. For random sampling, 100K solutions are
generated and evaluated, with the best retained.

For the pathrelink algorithm, either local search or
path projection is performed at each iteration. Each lo-
cal search or path projection involves 1000 steps, each
requiring an evaluation. The total number of evalua-
tions is limited to 100,000. For all itsampls trials, we
allow two ’all-pairs’ iterations and limit the total num-
ber of evaluations to 100K.

For each algorithm, we recorded the best makespan
obtained on each problem. The optimal makespans for
these problems are unknown; we measured individual
algorithm performance by computing the percent above
the best solution found by any of the search algorithms
considered. Finally, we obtained a summary measure
of algorithm performance at each level of α for each
problem class by computing the average percent above
best for the 100 problems.

Machine-Correlated Problems
Figures 1, 2, and 3 record algorithm performance on
50 by 20, 100 by 20, and 200 by 20 machine-correlated
problems. All algorithms significantly outperformed
random sampling. As a group, the stochastic algo-
rithms (itsampls, NEH-RS, and HBSS) outperform the
deterministic algorithms (NEH, LDS, and DDS). The
superior performance of HBSS and NEH-RS is both sus-
tained and magnified as problem size increases: both
algorithms scale extremely well. The performance of
itsampls fails to scale to 200 by 20 problems; for small
values of α, it is outperformed by the deterministic al-
gorithms. Interestingly, the two strongest performers,
HBSS and NEH-RS, are based on a domain-specific
heuristic (NEH), while itsampls is not.

Both LDS and DDS improve over the pure NEH
algorithm and significantly outperform chronological
backtracking. In comparison to LDS, the slight
under-performance of DDS suggests that for machine-
correlated problems it is important to consider discrep-
ancies deep in the search tree. An analysis of LDS ex-
ecution traces supports this observation and also indi-
cates that it is often necessary to consider moves that
are deemed extremely poor by the heuristic. Clearly
the degradation of the NEH heuristic is not gradual.

The most striking aspect of Figures 1 - 3 is the incon-
sistent, and often poor, performance of the pathrelink
algorithm. In Figure 1, pathrelink starts to underper-
form relative to both HBSS and NEH-RS between α
equal to 0.1 and 0.2. At larger values of α, pathrelink is
outperformed by many of the other, simpler algorithms.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

alpha

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t

DDS
HBSS
ITSAMPLS
LDS
NEH
NEHRS
PATHRELINK

Figure 1: 50x20 machine-correlated

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

alpha

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t

DDS
HBSS
ITSAMPLS
LDS
NEH
NEHRS
PATHRELINK

Figure 2: 100x20 machine-correlated

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

alpha

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t

DDS
HBSS
ITSAMPLS
LDS
NEH
NEHRS
PATHRELINK

Figure 3: 200x20 machine-correlated

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

alpha

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t

DDS
HBSS
ITSAMPLS
LDS
NEH
NEHRS
PATHRELINK

Figure 4: 50x20 job-correlated

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

alpha

A
ve

ra
ge

 %
 a

bo
ve

 b
es

t

DDS
HBSS
ITSAMPLS
LDS
NEH
NEHRS
PATHRELINK

Figure 5: 100x20 job-correlated

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

DDS
HBSS
ITSAMPLS
LDS
NEH
NEHRS
PATHRELINK

Figure 6: 200x20 job-correlated



Figures 2 and 3 show that for larger problem sizes,
pathrelink underperforms both HBSS and NEH-RS on
problems at all levels of α, including 0.1. The perfor-
mance of the pathrelink algorithm fails in that 1) it does
not scale to larger machine-correlated problems and 2)
even minor amounts of structure cause it to lag the best
iterative stochastic algorithms.

Job-Correlated Problems

Figures 4, 5, and 6 record algorithm performance
on 50 by 20, 100 by 20, and 200 by 20 job-correlated
problems. Again, all algorithms significantly outper-
formed random sampling. As was the case for machine-
correlated problems, the stochastic algorithms outper-
form the deterministic algorithms, excepting the perfor-
mance of itsampls, which fails to scale to larger prob-
lem sizes. Here, the performance degradation of itsam-
pls is even more rapid than that exhibited on machine-
correlated problems; on 100 by 20 and 200 by 20 prob-
lems, NEH obtains superior results at all values of α.

NEH-RS remains the strongest overall performer; it
only slightly underperforms pathrelink when α = 0.1.
HBSS, LDS, and DDS all improve over NEH and
chronological backtracking, but are basically indistin-
guishable for larger values of α. LDS continues to per-
form slightly better than DDS. Finally, the move from
100 by 20 to 200 by 20 problems results in greater differ-
ences in algorithm performance, although the relative
order remains stable.

The performance of pathrelink remains the most un-
expected result of these experiments. In contrast to
the machine-correlated results, pathrelink consistently
outperforms all other algorithms, on all problem sizes,
with the sole exception of NEH-RS. Even more inter-
esting is the fact the performance pathrelink appears to
be independent of α, the level of non-random problem
structure.

Assessing Problem Structure

Our study of non-random PFSPs is motivated not only
by the fact that they actually model real-world prob-
lem attributes, but also as an exploration of what it
means to be a “hard” problem and how this influences
algorithm performance. Taillard’s problems have been
filtered to be “hard.” In other areas of AI, the phase
transition regions of problems such as SAT or Hamilto-
nian circuits have been explored as a source of difficult
test instances (Cheeseman, Kanefsky, & Taylor 1991).

Reeves and Yamada (1998) show that Taillard’s dif-
ficult flow-shop problems display a big-valley problem
structure when the shift local search operator is used.
The notion of big-valley is somewhat imprecise. It sug-
gests that 1) local optima tend to be relatively close to
other local optima, 2) better local optima tend to be
closer to global optima, and 3) local optima near one
another have similar evaluations. To find the big-valley
phenomenon, however, one must pick the “correct” lo-
cal search operator. First introduced in the context of

the TSP and Graph Bipartitioning problems (Boese,
Kahng, & Muddu 1994), some recent state-of-the-art
algorithms are explicitly designed to exploit this struc-
ture.

We hypothesized that the poor performance of the
state-of-the-art pathrelink on machine correlated prob-
lems algorithm might be attributable to a lack of the
big-valley structure in our problems. Thus, we tested
the different types of PFSPs for it. In our experimen-
tal setup, the underlying distribution (Gaussian or uni-
form) and the parameters defining the type of structure
(correlation on jobs, machines, and α, or no correlation)
are the independent variables. The dependent variables
are the distance between local optima and the quality
of the solutions obtained, quantifying the presence and
extent of the big-valley structure.

For each problem, we generate 2000 local optima
by starting with random permutations and running lo-
cal search using the shift operator. The shift opera-
tor is repeatedly applied, in a next-descent strategy
for all the possible pairs of jobs in the permutation,
in a random order, until two passes through all the
pairs does not result in any improvement. Because
the global optima for our problems are unknown, we
next compute for each local optimum its average dis-
tance to all the other local optima, as was done in
the previous study (Reeves & Yamada 1998). We use
an operator-independent precedence-based measure to
compute pairwise distances. For two permutations π
and π’ of length n, the computation is:

n(n− 1)

2
−
∑
i,j,i6=j

preceeds(i, j, π) ∧ preceeds(i, j, π′)

where the function preceeds(i, j, π) returns 1 if i occurs
before j in permutation π. Finally, one deficiency of
this methodology is that it fails to distinguish cases
where multiple local optima are equivalent, i.e., they all
reside on the same plateau and can be transformed into
one another by non-degrading (in terms of makespan)
applications of the shift operator.

Taillard’s Problems

In the top graph of Figure 7, the results for a 50x20
problem (TA052) from Taillard’s test suite serve as a
prototypical example of a big-valley structure. In this
figure, the local optima tend to be clustered, with good
local optima close to each other. We used Taillard’s
problem generator included with the benchmark prob-
lems in (Beasley 1998) to produce new problems. Scat-
terplots for these problems were similar to those of the
top graph in Figure 7. Thus, all problems produced by
this generator appear to satisfy big-valley requirements,
not just the ones selected as difficult.

To determine the impact of the choice of distribution
on Taillard’s problem generator, we replaced the uni-
form distribution on the interval [1,99] with the Gaus-
sian distribution η(50, 16). The bottom graph in Figure
7 shows a typical example of the resulting scatterplots.



3750

3800

3850

3900

3950

4000

350 400 450 500 550 600

M
ak

es
pa

n

Average Distance to Other Local Optiima

"ta052.plot"

3580

3600

3620

3640

3660

3680

3700

3720

3740

320 340 360 380 400 420 440 460 480 500 520 540

M
ak

es
pa

n

Average Distance to Other Local Optima

"gauss1.plot"

Figure 7: Taillard’s TA052 50x20 Instance, uniform dis-
tribution, no correlation (top) and a Taillard-Gaussian
50x20 Instance (bottom).

The choice of distribution appears to have no significant
impact on the existence of the big-valley structure.

Correlated Problems

We next investigated the effect of correlation on the
landscape generated by the shift operator, when a
Gaussian distribution is used. We generated local op-
tima and distance measures for several 50x20 instances
of both job and machine-correlated problems, varying α
from 0.1 to 1.0 in increments of 0.1. The bottom graph
in Figure 8 shows the result for a machine-correlated
problem generated with α equal to 0.1. The results for
job-correlated problems were similar. Note that an α
of 0.1 represents a very low level of correlation. While
there is still evidence of a big-valley structure, another
dominant structural feature begins to emerge: strata of
local optima at specific makespan values. Further anal-
ysis indicates that many members of the same stratum
actually belong to the same plateau which can be par-
titioned into a small number of distinct local optima.

Although not shown, we also varied the amount of
problem structure as measured by α. The empirical
evidence suggests that the number of plateaus gradually
drops to only a few, and all local optima are gradually

4760

4770

4780

4790

4800

4810

4820

4830

4840

4850

460 480 500 520 540 560 580 600 620 640 660

M
ak

es
pa

n

Average Distance to Other Local Optima

"alpha0.1.plot"

4800

4810

4820

4830

4840

4850

4860

4870

4880

4890

380 400 420 440 460 480 500 520 540 560 580 600

M
ak

es
pa

n

Average Distance to Other Local Optima

"alpha0.1.plot"

Figure 8: Machine-correlated 50x20 Instances, α=0.1.
The top graph is a uniform distribution; the bottom
graph is a Gaussian distribution.

absorbed into some plateau.
Finally, we checked for an interaction effect of the

distribution and correlation. The question is whether
the plateaus emerged due to the combined influence
of correlation and Gaussian distribution. We therefore
generated job and machine-correlated problems using a
uniform distribution. The result from a 50x20 machine-
correlated instance (α=0.1) is shown in the top graph of
Figure 8; the results for job-correlated instances were
similar. As with non-correlated problems, the choice of
distribution appears to have little or no impact on the
results. For job and machine-correlated problems, the
big-valley structure is not the dominant structural fea-
ture of the fitness landscape. As the level of structure
is increased, the landscape is dominated by only a few
very large plateaus of local optima.

This suggests that we still do not have a clear pic-
ture of how problem structure impacts algorithm per-
formance. Pathrelink performs well on random prob-
lems and job correlated problems, but not machine cor-
related problems. Yet, both job correlated problems
and machine correlated problems are characterized by
plateaus rather than the distribution of local optima
normally associated with the big-valley phenomenon.



Implications and Conclusions

PFSP test suites are developed with little regard
to structural features present in real-world problems.
Thus, the apparent excellent performance of particu-
lar algorithms on these problems may not generalize to
superior performance on real applications.

We constructed a PFSP generator to produce prob-
lems with variable amounts of two types of structure:
job and machine correlation. We then compared the
performance of several algorithms on problems of vari-
ous sizes, with different amounts of structure.

For both job and machine-correlated problems, a sim-
ple iterative stochastic algorithm, NEH-RS, provides
the best overall performance and scalability. In com-
parison, the pathrelink algorithm, which does exception-
ally well on the random Taillard PFSP test suite, fails
to sustain this performance on problems with a mod-
est amount of machine-correlated problem structure.
Clearly, algorithms that work best on ’hard’ problems,
such as those from Taillard’s test suite, may not be the
best on more realistic classes of problems.

While interesting, the performance of individual algo-
rithms was not the primary goal of these experiments.
Rather, these experiments show that each of the follow-
ing have a potentially significant influence on individual
algorithm performance: the type of problem structure,
the amount of problem structure, and the problem size.

We also compared the structure of the search spaces
for Taillard’s problems and problems from our gener-
ator. Previously, it had been proposed that the big-
valley search space structure was characteristic of dif-
ficult flow-shop problems and that the best algorithms
were designed to exploit that structure. However, we
found the big-valley structure in both Taillard prob-
lems selected as difficult and in randomly generated
problems. Additionally, we did not find the big-valley
structure in our correlated problems; instead, we found
a plateau structure. Based on this analysis, we suggest
that some state-of-the-art algorithms may have been
optimized for a problem structure particular to the ran-
domly generated, uncorrelated problems. Thus, to bet-
ter define algorithms for structured problems, we need
measures of structure and a better understanding of the
interaction of problem structure and algorithm design.

Our results reinforce the following warning: the prob-
lems found in artificial test suites provide little indica-
tion regarding the performance of algorithms on real-
world problems. Furthermore, high levels of complex-
ity may not be required to solve real-world problems:
in our work, simple heuristic-based iterative sampling
algorithms provided the best overall performance.

Acknowledgments

This work was sponsored by the Air Force Office
of Scientific Research, Air Force Materiel Command,
USAF, under grant number F49620-97-1-0271. The
U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwith-

standing any copyright notation thereon. The authors
would also like to thank the anonymous reviewers for
their comments on an earlier version of this paper.

References
Beasley, J. E. 1998. OR-LIBRARY.
http://www.ms.ic.ac.uk/info.html.

Boese, K. D.; Kahng, A. B.; and Muddu, S. 1994.
A new adaptive multi-start technique for combinato-
rial global optimizations. Operations Research Letters
16/2:101–113.

Bresina, J. L. 1996. Heuristic-biased stochastic sam-
pling. In Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence.

Cheeseman, P.; Kanefsky, B.; and Taylor, W. 1991.
Where the really hard problems are. In Proceedings of
IJCAI-91.

Garey, M. R., and Johnson, D. S. 1979. Comput-
ers And Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freemand and Company.

Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In Proceedings of the Fourteenth In-
ternational Joint Conference on Artificial Intelligence.

Kan, A. R. 1976. Machine Scheduling Problems: Clas-
sification, complexity and computations. Martinus Ni-
jhoff, The Hague.

LePape, and Baptiste. 1997. An experimental compar-
ison of constrait-based algorithms for the preemptive
job-shop scheduling problem. In CP97 Workshop on
Industrial Constraint-Directed Scheduling.

Nawaz, M.; Enscore, E.; and Ham, I. 1983. A heuristic
algorithm for the m-machine, n-job flow-shop sequenc-
ing problem. OMEGA, The International Journal of
Management Science 11/1:91–95.

Reeves, C. R., and Yamada, T. 1998. Genetic algo-
rithms, path relinking, and the flowshop sequencing
problem. Evolutionary Computation 6:45–60.

Taillard, E. 1990. Some efficient heuristic methods for
the flow shop sequencing problem. European Journal
of Operations Research 47:65–74.

Taillard, E. 1993. Benchmarks for basic scheduling
problems. European Journal of Operations Research
64:278–285.

Walsh, T. 1996. Depth-bounded discrepancy search.
In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence.

Whitley, L. D. 1989. The GENITOR algorithm and
selective pressure: Why rank based allocation of re-
productive trials is best. In Proceedings of the Third
International Conference on Genetic Algorithms.

Wolpert, D. H., and Macready, W. G. 1995. No free
lunch theorems for search. Technical Report SFI-TR-
95-02-010, Santa Fe Institute.


