
Algorithm Performance Contest

Selim Aksoy, Ming Ye, Michael L. Schauf, Mingzhou Song, Yalin Wang, Robert M. Haralick

Intelligent Systems Laboratory, University of Washington, Seattle, WA, 98195-2500, USA

Jim R. Parker, Juraj Pivovarov, Dominik Royko

University of Calgary, Dept. of Computer Science, Calgary, Canada

Changming Sun

CSIRO Mathematical and Information Sciences, Locked Bag 17, North Ryde, NSW 1670, Australia

Gunnar Farnebäck

Computer Vision Lab., Dept. of Electrical Eng., Linköping University, SE-581 83 Linköping, Sweden

Abstract

This contest involved the running and evaluation of com-

puter vision and pattern recognition techniques on differ-

ent data sets with known groundtruth. The contest included

three areas; binary shape recognition, symbol recognition

and image flow estimation. A package was made available

for each area. Each package contained either real images

with manual groundtruth or programs to generate data sets

of ideal as well as noisy images with known groundtruth.

They also contained programs to evaluate the results of an

algorithm according to the given groundtruth. These eval-

uation criteria included the generation of confusion matri-

ces, computation of the misdetection and false alarm rates

and other performance measures suitable for the problems.

This paper summarizes the data generation for each area

and experimental results for a total of six participating al-

gorithms.

1. Introduction

The contest home page and the packages are available

at http://isl.ee.washington.edu/IAPR/ICPR00. All the soft-

ware was written in C and developed in the Unix environ-

ment. The participants were allowed to use any set of pa-

rameters to generate test images for algorithm development.

A specific set of parameters were supplied to generate data

for the final experiments. The experiments were run by the

participants themselves and the final results that were the

output of the evaluation algorithms were submitted to the

contest organizers.

The following sections describe the data generation and

experimental results for the binary shape recognition, sym-

bol recognition and image flow estimation areas.

2. Binary Shape Recognition

2.1. Data Generation

This package was prepared by Michael L. Schauf and

Selim Aksoy. It was intended to provide a test data set

with known groundtruth to evaluate binary shape recogni-

tion algorithms. It included code for generation of prim-

itives and shape prototypes as the groundtruth model set,

and perturbed images containing translated and scaled pro-

totypes as the test data set.

The program started with the generation of shape mod-

els. A shape model was composed of a set of primitives.

Each primitive was mildly constrained so that its digital im-

age bore a reasonable resemblance to the ideal continuous

primitive. The primitives for this data set were lines, cir-

cles, triangles, sectors, and quadrilaterals. Each primitive

had some restriction on its free parameters in order to retain

its general properties. The different primitives were ran-

domly selected, generated and combined to form the differ-

ent shape models. Each shape model was constrained so

that each primitive slightly overlapped another.

Once the shape models were generated, they were ran-

domly selected to be placed in an image. Each selected

shape model was placed in the image at a random loca-

tion with a random scale with the only constraint that its

bounding box did not overlap with any other shape model’s

bounding box that was already in the image. Since we knew

the locations and scales of the models in all images, we had

the complete groundtruth.

Testing the robustness of recognition algorithms also re-

quires the design of images containing varying levels of

noise. For the addition of noise, the Document Degrada-

tion Model by Kanungo [4] was used. This model added

pepper noise in such a way that pixels around the borders of

the shape models had a higher probability of switching to

opposite values than those pixels farther away from the bor-



der. Additional noise was added by generating non-relevant

shape models and scaling them smaller than the smallest

scale of the relevant models. Some example noisy images

are given in Figure 1. Model and image sizes, overlap be-

tween primitives in a model, range for the number of prim-

itives in a model, range for the number of models in an im-

age, range for the scales of models in an image, and noise

level were some of the parameters that were allowed to be

changed in the code.

(a) Original image (b) Noise level 2

(c) Noise level 3 (d) Noise level 5

Figure 1: Example shape images.

The package also included a program for performance

evaluation on a database of images with their groundtruth

and recognition algorithm results. The output of the pro-

gram was a confusion matrix and a success score for the

recognition algorithm. The program read the groundtruth

information for each image and compared it with the recog-

nition results. The success value was a linear combination

of the correct detection rate, incorrect detection rate, mis-

detection rate, false alarm rate, and the accuracy of the de-

tected location and scale.

2.2. Experiments

2.2.1. Schauf, Aksoy and Haralick Algorithm

The only result available for this package is the results of the

binary shape recognition algorithm by Michael L. Schauf,

Selim Aksoy and Robert M. Haralick from the Intelligent

Systems Laboratory, University of Washington, USA. The

algorithm [6] introduces a size invariant method to recog-

nize complex two-dimensional shapes using multiple gen-

eralized recursive erosion transforms. The method accom-

plishes the same kind of recognition that templates of each

shape at multiple scales would do, but the method takes

constant time per pixel regardless of the scale of the pro-

totype. The method workes on noisy images without re-

quiring noise removal as preprocessing.

Experiments were run on 100 noisy images having a to-

tal of 254 randomly translated and scaled models plus a

number of extraneous small shapes that might appear like

a model. The algorithm had 5 misdetections and 13 false

alarms. The confusion matrix is given in Table 1.

3. Symbol Recognition

3.1. Data Generation

This package was prepared by Ming Ye, Mingzhou

Song, Yalin Wang and Selim Aksoy. It was intended to

provide a test data set with known groundtruth to evalu-

ate binary symbol recognition algorithms. The symbol li-

brary consisted of electrical symbols as the model set and

noisy versions of randomly translated and scaled symbols

as the test data set. The symbol library contained 25 electri-

cal symbols where each ideal symbol image was 512x512

pixels. The symbols were all line drawings with a 30 pixel

line width.

An instantiation of a symbol was obtained by scaling the

symbol image down to a certain size between 40 and 160

pixels. Because of the high resolution of the library sym-

bols, the observed symbol had a thick enough line width

so that it was very unlikely that broken lines existed after

denoising. The observed symbols might also have a small

rotation angle.

In order to generate test data, an empty image was first

partitioned into square patches, each of which had the same

size. A randomly selected symbol was randomly scaled and

put into each of the patches, with the centroid of the sym-

bol lying at the patch center. No symbol occluded others.

Since we knew the locations and scales of the symbols in

all images, we had the complete groundtruth. It is worth

mentioning that such symbol arrangement was just for syn-

thesis convenience, but not for the ease of recognition.

There were three major types of noise perturbing the ob-

servations: quantization error, replacement noise, and salt-

and-pepper noise. Quantization error came from scaling the

library symbol, because the scaling factor could be any real

value while the pixel positions had to be integers. Salt-and-

pepper noise flipped the pixel values by a certain proba-

bility. Replacement noise flipped the pixel values as to a

more complex probability model. The chance of a pixel be-

ing flipped increased as the pixel was closer to areas of the

opposite value and as such areas increased. Replacement

noise was common to documents which have been manip-

ulated quite a few times by facsimiling, copying and so on.

Some noisy images are given in Figure 2.



Table 1: Confusionmatrix for Schauf et al.’s binary shape recognition algorithm. Rows represent correct models and columns

represent detected models. Performance measures include misdetection (MD), average location error (ALE), average scale

error (ASE) and false alarm (FA).
Assigned Models MD ALE ASE

32 0 0 0 0 0 0 0 0 0 0 2.6939 0.0109

0 28 0 0 0 0 0 0 0 0 0 2.2733 0.0081

0 0 30 0 0 0 0 0 0 0 3 3.3781 0.0124

0 0 0 30 0 0 0 0 0 0 0 3.1621 0.0120

Original 0 0 0 0 16 0 0 0 0 0 0 4.1056 0.0191

Models 0 0 0 0 0 22 0 0 0 0 0 2.7724 0.0111

0 0 0 0 0 0 20 0 0 0 0 2.1297 0.0117

0 0 0 0 0 0 0 21 0 0 0 1.4366 0.0054

0 0 0 0 0 0 0 0 27 0 1 1.9564 0.0073

0 0 0 0 0 0 0 0 0 28 1 2.5694 0.0119

FA 0 0 0 0 0 11 2 0 0 0

(a) Original image (b) Noise level 1

(c) Noise level 2 (d) Noise level 3

Figure 2: Example symbol images.

The package also included a program for performance

evaluation. The program read the groundtruth information

for each image, compared it with the recognition results and

output a confusion matrix. For convenience of comparison,

we summarized the confusionmatrices of all sizes and noise

levels by the number of wrong assignments, misdetections,

false alarms, average location errors and average scale er-

rors.

3.2. Experiments

First, 50 images that contain 25 symbols with sizes “all

75x75”, “all 50x50” and “all random” were generated. This

made up 150 images with 25 symbols in each image. Then

each image was perturbed with three levels of noise sepa-

rately. This made up an additional of 450 images.

3.2.1. Ye and Haralick Algorithm

Two algorithms were submitted to this contest. The first

one is by Ming Ye and Robert M. Haralick from the Intelli-

gent Systems Laboratory, University of Washington, USA.

This is a segmentation-free symbol recognition algorithm

[8] purely using mathematical morphology. Given a page of

symbols, the algorithm simultaneously determines the po-

sitions and scaling factors of all the symbols which come

from the given symbol library. Each symbol has a feature

set composed of the relative maxima of the recursive ero-

sion transforms from a few structural elements. The feature

set has the property that the distance between any two fea-

tures within the set is proportional to their scales. Given

an observed feature, the algorithm decides whether it has

come from a hypothesized symbol by examining if it estab-

lishes a similar proportional relationship with its neighbor-

ing observations to that of the symbol. For a given image,

the algorithm starts from the feature observation with the

largest value and works till all feature points are assigned to

certain symbols. Before extracting feature points from the

image, morphological closing and opening operations are

conducted to reduce noise impact.

A very simple version of this recognition system was im-

plemented. The overall confusion matrix is given in Table

2. The errors are mainly due to two reasons. First, as math-

ematical morphology operations are fragile to holes, this

system breaks down when the noise level is high. Second,

because only three features are used for each symbol, this

system is not discriminative enough. The first problem can

be alleviated by using non-morphological denoising meth-

ods and the second can be improved by developing more



Table 2: Confusion matrix for Ye and Haralick’s symbol recognition algorithmwhen the results for all noisy images are com-

bined. Rows represent correct models and columns represent detected models. Performance measures include misdetection

(MD), average location error (ALE), average scale error (ASE), false alarm (FA) and wrong scale detection (WSD).

Assigned Models MD ALE ASE

230 0 37 0 0 0 0 0 0 0 0 0 19 14 0 8 64 0 0 0 0 13 0 0 29 66 7.4208 2.0471

5 202 134 0 0 0 0 0 0 0 0 38 93 0 0 0 9 0 0 0 0 4 0 0 1 129 1.8423 1.0724

1 0 334 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 129 3.1368 1.3732

0 0 0 8 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 24 0 0 0 0 5 126 0.0358 0.0882

18 0 56 0 1 0 0 0 0 0 0 0 46 0 0 5 7 15 0 0 42 9 0 0 9 245 0.1633 0.0267

14 0 105 0 0 45 0 0 5 0 0 0 5 0 0 2 0 0 0 0 0 1 0 0 10 206 0.9131 0.2900

0 0 0 1 5 0 44 5 0 0 0 0 133 0 0 0 0 0 0 6 0 0 0 0 0 259 0.3733 0.2990

35 0 8 0 0 0 0 66 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 371 0.7509 0.3584

10 0 153 0 0 0 0 0 133 0 0 0 17 0 0 0 11 0 0 0 0 0 0 0 0 150 0.9366 0.4326

72 0 34 0 0 0 0 1 0 112 0 0 23 2 5 10 5 0 0 0 0 2 0 0 0 175 1.5702 0.8116

2 0 18 0 0 0 0 0 0 41 57 0 106 0 0 0 3 0 0 0 0 0 0 0 4 72 0.9324 0.1622

89 0 14 0 0 0 0 0 0 0 0 184 25 2 0 0 24 0 0 0 0 0 0 0 4 216 2.2608 0.8462

6 0 28 0 0 0 0 0 0 0 0 0 238 0 0 19 15 0 0 0 0 102 0 0 0 276 2.8707 1.3403

5 0 7 0 0 0 0 0 0 0 0 0 0 102 1 0 0 0 0 0 0 0 0 0 0 71 4.2794 1.1383

0 0 21 0 0 0 0 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 0 0 158 4.0596 1.6531

47 0 26 0 0 0 0 0 0 0 0 0 16 3 0 73 35 0 0 0 0 77 0 0 4 142 4.0397 1.5101

162 0 36 0 0 0 0 5 0 0 0 0 36 5 0 0 183 0 0 0 0 13 0 0 96 19 7.1570 2.7056

33 0 59 0 0 9 0 0 0 0 5 0 22 5 0 15 10 48 0 0 3 3 0 0 33 244 2.4146 0.7739

7 0 24 0 0 14 0 1 6 15 4 0 6 0 0 0 8 0 42 0 0 8 0 20 0 145 0.7890 0.2737

14 0 64 0 0 0 0 5 0 0 0 0 76 0 0 0 14 0 0 237 0 16 0 0 5 160 2.1797 1.1420

8 0 14 0 0 0 0 0 0 0 0 0 41 0 0 0 0 0 0 0 60 0 0 0 4 59 0.8312 0.2647

55 4 30 0 0 0 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 37 0 0 30 255 0.4408 0.0913

6 2 190 0 0 0 0 0 87 5 5 0 13 0 0 0 9 0 0 0 0 0 166 0 6 243 1.8791 1.1622

26 0 33 0 0 0 0 3 0 0 0 0 102 0 0 18 55 4 0 0 0 10 0 160 17 199 1.9390 0.8208

111 0 19 0 0 0 0 0 0 0 0 0 22 0 0 12 60 0 0 0 0 17 0 0 39 86 1.9237 0.4960

FA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WSD 20 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 14 0 0 3 0 0 0 0 0

refined features.

3.2.2. Parker, Pivovarov and Royko Algorithm

The second submission is by J. R. Parker, J. Pivovarov and

D. Royko from the Department of Computer Science, Uni-

versity of Calgary, Canada. The algorithm [5] first ex-

tracts the unknown symbol into a bilevel image which is

called image �. Then a scaled vector template is plot-

ted into a blank image with the same size bounding box

as the unknown image, which is called image �. Thick

lines are plotted in this image, based on the measured “es-

timated pen width” of image �. Next, the algorithm iter-

ates through all pixels of � and measures how far the near-

est matching pixel is in �, i.e. if ���� �� is a foreground
pixel, finds the 8-distance to the nearest foreground pixel

in �, if ���� �� is a background pixel, finds the 8-distance
to the nearest background pixel in �. This gives a dis-

tance map, � � �������� where ���� �� is the dis-
tance from pixel ���� �� to the nearest matching pixel in
�. Then, the squares of all the entries in �������� and
�������� are summed. This is the measure of goodness-
of-fit of the particular orientation of the template plotted in

image � to the object in image �. A small set of orienta-

tions, ��Æ� � � � ���Æ, are used and the one with minimum

distance is found. This is stored as the distance from �

to that particular template. This can be implemented effi-

ciently through the use of dynamic programming, and re-

quires a constant (small) number of image passes. Two

passes of noise removal consisting of an averaging filter

followed by an edge-cleaning filter are performed. A final

smoothing is performed along the bounding boxes of each

extracted symbol.

This algorithm achieved a recognition rate of 100% on

all test data with an unoptimized execution time of approx-

imately 5 symbols per second on an Intel Celeron 400MHz

PC. The confusion matrix is given in Table 3.

4. Image Flow Estimation

4.1. Data Generation

This package included synthetic and real image se-

quences and their optic flow groundtruth generation for per-

formance evaluation in terms of false alarm rate, misdetec-

tion rate and average error vector magnitude. The two syn-

thetic image sequences were rot and div. They were gen-

erated using a ray-tracing method which traced each ray

passing through the camera and an image pixel, and found

out if it touched the surface of the 3D object. If it did, the

surface intensity was recorded for that pixel, otherwise a

background value was recorded. For accuracy of the inten-



Table 3: Confusionmatrix for Parker et al.’s symbol recognition algorithmwhen the results for all noisy images are combined.
Assigned Models MD ALE ASE

480 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7248 0.7846

0 615 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0456 1.3737

0 0 489 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9917 0.6351

0 0 0 219 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8746 2.1794

0 0 0 0 453 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9401 2.0193

0 0 0 0 0 393 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9213 3.0666

0 0 0 0 0 0 453 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8852 2.5840

0 0 0 0 0 0 0 495 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0261 0.9972

0 0 0 0 0 0 0 0 474 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.9627 1.5840

0 0 0 0 0 0 0 0 0 441 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0177 1.6244

0 0 0 0 0 0 0 0 0 0 303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8461 1.1549

0 0 0 0 0 0 0 0 0 0 0 558 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8632 1.2364

0 0 0 0 0 0 0 0 0 0 0 0 684 0 0 0 0 0 0 0 0 0 0 0 0 0 0.8734 0.7166

0 0 0 0 0 0 0 0 0 0 0 0 0 186 0 0 0 0 0 0 0 0 0 0 0 0 0.8547 3.3598

0 0 0 0 0 0 0 0 0 0 0 0 0 0 264 0 0 0 0 0 0 0 0 0 0 0 0.7557 2.4719

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 423 0 0 0 0 0 0 0 0 0 0 1.2268 0.2076

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 555 0 0 0 0 0 0 0 0 0 0.6594 0.9158

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 488 0 0 0 0 0 0 0 0 1.3944 0.6332

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 0 0 0 0 0 1.1690 0.4996

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 591 0 0 0 0 0 0 0.8583 0.4768

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 186 0 0 0 0 0 1.3291 0.3490

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 474 0 0 0 0 1.0470 3.6406

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 732 0 0 0 0.9582 0.7132

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 627 0 0 0.8403 0.6434

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 366 0 0.7517 0.4322

FA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WSD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sity values, a sinusoidal function was used as the 3D surface

pattern. Example frames and flow field groundtruth for the

synthetic image sequences are given in Figure 3. Three real

image sequences, Taxi, Rubik and SRI were obtained from

Barron et al. [1]. Examples are given in Figure 4.

4.2. Experiments

4.2.1. Ye and Haralick Algorithm

Three algorithms were submitted to this contest. The first

one is by Ming Ye and Robert M. Haralick from the Intelli-

gent Systems Laboratory, University of Washington, USA.

The algorithm [9] forms a set of constraint equations from

the first and second order derivatives for each pixel, and

solves a combined set of equations from a neighborhood for

the image flow at the central pixel by assuming a constant

local motion model. The derivatives are estimated from a

3D cubic facet model. This image flow estimation scheme

has shown generally good results. Besides it provides a co-

variance matrix with each estimate as a reliable error mea-

surement, which can help subsequent applications make ju-

dicious use of the image flow estimates. The covariancema-

trix is obtained from propagating image noise through the

facet model and the image flow constraint equation, consid-

ering the correlation of the constraints. Its effectiveness has

been verified by a successful �� hypothesis testing based

selection scheme.

The false alarm rate, misdetection rate and the average

absolute error vector magnitude for the synthetic image se-

quences are given in Table 4. The optical flow fields for the

real image sequences are given in Figure 4.

4.2.2. Sun Algorithm

The second submission is by Changming Sun from CSIRO

Mathematical and Information Sciences, Australia. The al-

gorithm [7] uses fast area cross correlation and 3D shortest-

path techniques to obtain a dense optical flow field. Fast

correlation is achieved by using the box filtering technique

which is invariant to the size of the correlation window. The

motion for each scan line of the input image is obtained

from the correlation coefficient volume by finding the best

3D path using dynamic programming techniques rather than

simply choosing the position that gives the maximum cross

correlation coefficient. Sub-pixel accuracy is achieved by

fitting the local correlation coefficients to a quadratic sur-

face. Currently only two images are used for the optical

flow estimation. Typical running time for a 256x256 image

is in the order of a few seconds.

The correlation window sizes were in the range of 15x15

and 19x19. The matching search range was from -3 to +3

pixels in both the � and the 	 directions. The algorithm only

used two frames in an image sequence for the flow estima-

tion (the middle ones were used, usually frames 9 and 10).

The running time of the algorithm was 14.35s for an image

of size 316x252 on a 85MHz SUN SPARCserver1000. The

false alarm rate, misdetection rate and the average absolute



error vector magnitude for the synthetic image sequences

are given in Table 4. The optical flow fields obtained for the

real image sequences are given in Figure 4.

4.2.3. Farnebäck Algorithm

The third submission is by Gunnar Farnebäck from the

Computer Vision Laboratory, Linköping University, Swe-

den. The algorithm [2, 3] starts by computing 3D spatiotem-

poral orientation tensors from the image sequence. This is

done by a method based on carefully weighted least squares

approximations of signal neighborhoods by quadratic poly-

nomials. Then the orientation tensors are combined under

the constraints of a parametric motion model, in this case

just a translation, to produce velocity estimates. This is

done locally in each neighborhood, without regard to pos-

sible discontinuities in the velocity field, but with a Gaus-

sian weighting of the points in the neighborhood. Computa-

tionally the weighted least squares approximations are most

demanding, but since these can be computed efficiently by

a hierarchical scheme of separable convolutions, the algo-

rithm is very fast.

The algorithm used filters of effective size 9x9x9 and

the tensors were combined over local neighborhoods of size

15x15. On a Sun Ultra 30, this took 2 seconds for each se-

quence (velocities were computed only for the frame where

we had groundtruth). The algorithm was implemented as

Matlab m-files, except for the convolutions which were

computed by aMatlab mex-file implemented in C. The false

alarm rate, misdetection rate and the average absolute er-

ror vector magnitude for the synthetic image sequences are

given in Table 4. The optical flow fields obtained for the

real image sequences are given in Figure 4.

5. Conclusions
Because it takes a considerable amount of effort to pre-

pare ground truthed data sets and evaluation software for

pattern recognition processing algorithms, it was hoped that

there would be many researchers who would participate in

the contests. Unfortunately, this was not the case. We will

keep the data sets and evaluation software out on the web

so that by next ICPR more researchers will have tried their

hand at these tasks and a more comprehensive discussion

and comparison of techniques can be made.

References
[1] J. L. Barron, S. S. Beauchemin, and D. J. Fleet.

Performance of optical flow techniques. Interna-

tional Journal of Computer Vision, 12(1):43–77, 1994.

ftp://csd.uwo.ca/pub/vision/TESTDATA/.

[2] G. Farnebäck. Spatial Domain Methods for Orientation

and Velocity Estimation. Lic. Thesis LiU-Tek-Lic-1999:13,

Dept. EE, Linköping University, SE-581 83 Linköping,

Sweden, March 1999. Thesis No. 755, ISBN 91-7219-441-3,

ftp://ftp.isy.liu.se/pub/bb/Theses/LicTheses/G Farneback lic.ps.gz.

[3] G. Farnebäck. Fast and accurate motion estimation using

orientation tensors and parametric motion models. In Pro-

ceedings of 15th IAPR International Conference on Pattern

Recognition, Barcelona, Spain, September 2000.

[4] T. Kanungo, R. M. Haralick, and H. S. Baird. Power func-

tions and their use in selecting distance functions for docu-

ment degradation model validation. In Proceedings of the

Third International Conference on Document Analysis and

Recognition, volume 2, pages 734–739, 1995.

[5] J. R. Parker. Vector templates and handprinted symbol recog-

nition. Technical Report 95/559/11, University of Calgary,

Department of Computer Science, Calgary, Canada, 1995.

[6] M. Schauf, S. Aksoy, and R. M. Haralick. Model-based shape

recognition using recursive mathematical morphology. In

Proceedings of 14th IAPR International Conference on Pat-

tern Recognition, volume 1, pages 202–204, Brisbane, Aus-

tralia, August 16–20 1998.

[7] C. Sun. Fast optical flow using cross correlation and

shortest-path techniques. In Proceedings of Digi-

tal Image Computing: Techniques and Applications,

pages 143–148, Perth, Australia, December 7–8 1999.

http://extra.cmis.csiro.au/IA/changs/doc/motion dicta99.ps.gz.

[8] M. Ye and R. M. Haralick. Recognizing symbols using math-

ematical morphology. Technical report, Intelligent Systems

Laboratory, 1998.

[9] M. Ye and R. M. Haralick. Image flow estimation using facet

model and covariance propagation. In M. Cheriet and Y. H.

Yang, editors, Vision Interface: Real World Applications of

Computer Vision, volume 35 ofMPAI, pages 209–241. World

Scientific Pub Co., 2000.



Table 4: Image flow quantitative comparison on div and rot sequences. The false alarm rate (FA), misdetection rate (MD)

and the average absolute error vector magnitude (AEVM) are given for each algorithm.

Div Rot

FA MD AEVM FA MD AEVM

Ye 4.76 1.26 0.0388 3.39 0.67 0.0931

Sun 40.6 0 0.0784 31.12 0 0.1254

Farnebäck 50.66 0 0.0270 40.45 0 0.0481

(a) Div frame (b) Div flow field (c) Rot frame (d) Rot flow field

Figure 3: Central frames of both div and rot sequences, and their true flow fields.

(a) Taxi (b) Taxi – Ye (c) Taxi – Sun (d) Taxi – Farnebäck

(e) SRI (f) SRI – Ye (g) SRI – Sun (h) SRI – Farnebäck

(i) Rubik (j) Rubik – Ye (k) Rubik – Sun (l) Rubik – Farnebäck

Figure 4: Image flow test sequences and flow field results.


