
Ann Math Artif Intell (2011) 61:49–86
DOI 10.1007/s10472-011-9228-z

Algorithm portfolio selection as a bandit problem
with unbounded losses

Matteo Gagliolo · Jürgen Schmidhuber

Published online: 1 April 2011
© Springer Science+Business Media B.V. 2011

Abstract We propose a method that learns to allocate computation time to a given
set of algorithms, of unknown performance, with the aim of solving a given sequence
of problem instances in a minimum time. Analogous meta-learning techniques are
typically based on models of algorithm performance, learned during a separate
of f line training sequence, which can be prohibitively expensive. We adopt instead
an online approach, named GambleTA, in which algorithm performance models
are iteratively updated, and used to guide allocation on a sequence of problem in-
stances. GambleTA is a general method for selecting among two or more alternative
algorithm portfolios. Each portfolio has its own way of allocating computation time
to the available algorithms, possibly based on performance models, in which case
its performance is expected to improve over time, as more runtime data becomes
available. The resulting exploration-exploitation trade-off is represented as a bandit
problem. In our previous work, the algorithms corresponded to the arms of the
bandit, and allocations evaluated by the different portfolios were mixed, using a
solver for the bandit problem with expert advice, but this required the setting of
an arbitrary bound on algorithm runtimes, invalidating the optimal regret of the
solver. In this paper, we propose a simpler version of GambleTA, in which the
allocators correspond to the arms, such that a single portfolio is selected for each
instance. The selection is represented as a bandit problem with partial information,
and an unknown bound on losses. We devise a solver for this game, proving a
bound on its expected regret. We present experiments based on results from several

M. Gagliolo (B)
CoMo, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
e-mail: mgagliol@vub.ac.be

J. Schmidhuber
IDSIA, Galleria 2, 6928 Manno (Lugano), Switzerland
e-mail: juergen@idsia.ch

J. Schmidhuber
Faculty of Informatics, University of Lugano, Via Buffi 13, 6904 Lugano, Switzerland

50 M. Gagliolo, J. Schmidhuber

solver competitions, in various domains, comparing GambleTA with another online
method.

Keywords Algorithm selection · Algorithm portfolios · Meta learning ·
Online learning · Multi-armed bandit problem · Survival analysis ·
Las Vegas algorithms · Computational complexity · Combinatorial optimization ·
Constraint programming · Satisfiability

Mathematics Subject Classifications (2010) 68T05 · 68T20 · 68W27 · 68Q25 ·
62N99 · 62G99

1 Introduction

Decades of research in the fields of Machine Learning and Artificial Intelligence
brought us a variety of alternative algorithms for solving many kinds of problems.
Algorithms often display variability in performance quality, and computational cost,
depending on the particular problem instance being solved: in other words, there
is no single “best” algorithm. While the “trial and error” approach is still popular,
attempts to automate algorithm selection are not new [40], and have grown to form a
consistent and dynamic area of research on Meta-Learning [43]. Algorithm portfolios
[25] are a generalization of single algorithm selection, in which computation time is
shared among the available algorithms: in this case, the result of the selection process
is a schedule [42], according to which the algorithms are executed.

The objective of selection depends on the application at hand. In this paper, we
consider the problem of allocating computation time to a set of Las Vegas algorithms
(LVA) [3], i.e., algorithms whose performance on a single instance coincides with
their runtime, which is in general a random variable. More precisely, we consider
generalized LVAs [23], which are not guaranteed to solve a given instance in a
finite time. This class includes all solvers for decision or search problems, where the
aim is to find a solution, or prove that none exist; but also solvers for optimization
problems, if the aim is to find a solution with a given quality, or to find a globally
optimal solution, and prove its optimality. In all these cases, an obvious performance
measure is runtime, especially because, in many problems of practical importance,
this quantity grows exponentially in the size of the instance. We will therefore focus
on the task of minimizing the time to solve a given set of problems.

Many selection methods follow an of f line learning scheme, in which the avail-
ability of a large training set of performance data for the different algorithms is
assumed. This data is used to learn a model that maps (problem, algorithm) pairs
to expected performance, and later used to select and run, for each new problem
instance, only the algorithm that is expected to give the best results. While this
approach is reasonable, it ignores the computational cost of the initial training
phase: collecting a representative sample of performance data has to be done via
solving a set of training problem instances, and each instance is solved repeatedly, at
least once for each of the available algorithms, possibly more if the algorithms are
randomized. Furthermore, these training instances are assumed to be representative
of future ones, as the model is not updated after training. In other words, there is an
obvious trade-off between the exploration of algorithm performances on different
problem instances, aimed at learning the model, and the exploitation of the best

Algorithm portfolio selection as a bandit problem 51

algorithm/problem combinations, based on the model’s predictions. This trade-off
is typically ignored in offline algorithm selection, and the size of the training set is
chosen heuristically. In our previous work [11, 16, 17], we have instead kept an online
view of algorithm selection, in which the only input available to the meta-learner is a
set of algorithms, of unknown performance, and a sequence of problem instances that
have to be solved. Rather than artificially subdividing the problem set into a training
and a test set, we iteratively update the model each time an instance is solved, and
use it to guide algorithm selection on the next instance.

Bandit problems [2] offer a solid theoretical framework for dealing with
exploration-exploitation trade-offs in the online setting. One important obstacle to
the straightforward application of a bandit problem solver to algorithm selection
is that most existing solvers assume a bound on losses to be available beforehand.
Setting this bound is not trivial when considering runtime as a loss, as such quantity
can easily vary across several orders of magnitude. In [17, 18] we dealt with this issue
heuristically, fixing the bound in advance. In this paper, we present a modification
of an existing bandit problem solver [6], which allows it to deal with an unknown
bound on losses, while retaining a bound on the expected regret. This allows us
to propose a simpler version of the algorithm selection framework GambleTA,
originally introduced in [17].

Instead of selecting among alternative algorithms, GambleTA chooses among
alternative time allocators (TA), i.e., methods for allocating computation time to a
set of algorithms. One of the allocators is a uniform portfolio, running all algorithms
in parallel with equal priority. The remaining ones are adaptive portfolios, where
the schedule is set based on runtimes observed on previously solved instances: the
performance of these allocators is therefore expected to improve as more runtime
data is available. Problem instances are solved sequentially. For each instance, the
bandit problem solver picks one of the allocators; once the instance is solved, the
total time spent is considered as a loss, to evaluate the performance of the TA, while
the runtimes of the single algorithms are used to update the performance models
used by the adaptive TAs. As the bandit problem solver can provide a bound on the
regret with respect to the best arm, the total runtime spent will converge to the one
of the best TA.

The rest of the paper is organized as follows. Section 2 precises some terminology
used in the rest of the paper, and discusses related work. Section 3 briefly recalls
the time allocators introduced in [17], and describes a more recent one from [47].
Section 4 presents the novel version of GambleTA. Section 5 introduces Exp3Light-
A, a bandit problem solver for unbounded loss games, along with its bound on regret.
Experiments with data from solver competitions are reported in Section 6, comparing
with results from [45]. Section 7 concludes the paper.

2 Related work

Before presenting related research, it will be useful to precise the meaning of a
few key concepts: whenever possible, the most widely used term has been adopted,
accompanied by a reference. In general terms, a time allocator (TA) can be defined
as any method which solves problem instances by allocating computation time to a
set of algorithms, on one or more processors. In other words, a time allocator does

52 M. Gagliolo, J. Schmidhuber

not solve problem instances directly, it uses available solvers to this aim. We will
often refer to a set of N algorithms A = {a1, . . . , aN}; and to a set of M problem
instances B = {b 1, . . . , bM}. To solve these, the algorithms are executed on one or
more processors, according to a schedule s ∈ S [8]. The role of the TA is precisely
that of generating1 a schedule s, which can be used to solve B using A.

Existing TAs may differ in the way the schedule s is represented, as well as in
its allowed values S. In the following, we limit the discussion to methods where the
algorithms are not modified, and cannot interact;2 however, we do not pose further
restrictions on what a TA can do with the an. If an algorithm is randomized, it may be
replicated an arbitrary number of times, each copy being initialized with a different
random seed. Note that the an may also be different parameter settings of the same
algorithm (parameter selection), or different models, to be used by a single algorithm
(model selection).

Time allocation can be performed once for a whole set of problem instances,
or repeated independently for each instance (per set and per instance allocation,
respectively [26]). Another independent classification can be made among static and
dynamic schedules [36]. Static schedules are stationary, and are set before starting
any an. Dynamic schedules can be a function of time s = s(t), i.e., they can change
while the algorithms are being executed.

Rather than being equally spread across the above categories, the literature on
time allocation is clustered around specific combinations of these ideas. A large cor-
pus of research considers the selection of a single algorithm, independently for each
instance. In these papers, selection is based on performance models, conditioned
on features of the instance, and learned offline (Section 2.1). Another set of papers
addresses the sequential allocation of multiple runs of the same algorithm, or of mul-
tiple algorithms in parallel, based on the runtime distributions of the algorithms on
the current instance, which are assumed to be available. This line of research includes
the foundational work on restart strategies and algorithm portfolios (Section 2.2).
More recently, some authors considered the optimal allocation based directly on
a runtime sample, proving that finding an optimal allocation is itself an NP-hard
problem. The runtime data is collected both offline and online (Section 2.3). Further
references can be found in [13, 44].

2.1 Model based selection, per instance

Per instance selection is usually based on a predictive model of the performance
of each algorithm, conditioned on features of the instance, a set of numerical or
categorical variables related to its difficulty. This idea was proposed already by [40],
and later adopted by several authors. Its implementation is typically based on an
of f line approach: a set of “training” problem instances is solved repeatedly with
each of the available algorithms, in order to collect a performance sample. Based

1A time allocator is itself an algorithm, but, to avoid confusion, we will use the terms algorithm or
solver to refer to the algorithms in the set A; and to the terms (time) allocator, method or technique
to refer to the upper-level TA which uses the algorithms in the set.
2Examples of time allocation which we do not consider here include continuous parameter tuning
and control [4]; and sequential composition of algorithms, as search in program space [12], and
anytime algorithm scheduling [24].

Algorithm portfolio selection as a bandit problem 53

on this sample, a predictive model of performance is learned, mapping (instance,
algorithm) pairs to the expected performance: in practice, this can be obtained using a
separate model for each algorithm, conditioned on instance features. The models can
later be used to perform per instance selection: for each new instance, the features
are evaluated, and the performance of each algorithm is predicted. Based on these
predictions, the algorithm expected to obtain the best performance is selected, and
used to solve the instance.

For LVAs, an implementation of this idea was proposed in [30], and later
improved in [35, 49]. In this case, the runtime is predicted, and minimized. For
each available algorithm, an empirical hardness model [30] is learned offline, based
on the runtimes on several training problem instances: after the initial learning
phase, the expected performance of each algorithm on a new problem instance is
predicted, based on instance features, and the best algorithm is selected accordingly.3

A particularly successful application of this approach is SATzilla [35, 48, 49], which
won several medals at the last SAT competitions (see Section 6). SATzilla is a full-
fledged algorithm selection method for SAT solvers, in which some of the design
decisions are also automated, such as the composition of the set of algorithms, as
well as the choice of which instance features to use.

2.2 Model based allocation, per instance

The selection of a single algorithm is not the most general way of exploiting the per-
formance diversity of a set of LVAs: different algorithms can be combined running
them in parallel, in an algorithm portfolio [21, 25]. Moreover, if the algorithms are
randomized, their performance may vary among different runs: in some cases, even
the performance of a single algorithm may be improved combining different runs,
in a portfolio, or periodically restarting the algorithm with a different random seed,
according to a restart strategy [32]. In this line of research, the allocation is based on
the runtime distribution (RTD) of each algorithm on the current instance, assumed
to be available. The RTD of the resulting portfolio is evaluated analytically, and
optimized according to some criterion. Time allocation can be static, e.g. represented
by a resource sharing schedule, where each algorithm uses a constant share of
computation time [21, 25]; or dynamic, e.g. according to a task switching schedule,
specifying which algorithm is active at a given time [9]. The problem of estimating
the RTDs is not tackled, so this line of work remains at a theoretical level.

While the basic idea can be traced back to the field of global optimization (see
e.g. [29], [34]), it is first applied to search algorithms by [25], who borrow the term
portfolio from finance, to point out that the method can reduce the “risk” of wasting
computation time. A theoretical and empirical validation of the portfolio approach
is provided by [21], who find its advantage to depend essentially on the RTD of the
algorithm(s) at hand, and suggest that practical approaches to algorithm portfolio
design should feature mechanisms for estimating such distributions.

The above papers consider static shares, also termed resource sharing schedules
[42]. In other work on algorithm portfolios, a different machine model is considered,

3While they actually perform single algorithm selection, the authors label their approach “portfolio”,
in the more general sense of a combination of several algorithms.

54 M. Gagliolo, J. Schmidhuber

where a single algorithm is active at a given time, and allocation consists in selecting
a dynamic schedule, termed task-switching [42, 47] or suspend-resume schedule [9],
according to which the execution of the different algorithms is interleaved. Such a
schedule can be represented as a sequence of pairs (n, τ), indicating the index n of
the algorithm, and the corresponding computation time value τ . Often, restrictions
on the possible schedules are considered, for example a finite set of possible time
values τ , allowing to represent schedule space as a tree. One such approach based
on runtime distributions is proposed in [8, 9], respectively focusing on algorithms
running on separate processors, and alternating on a single processor. Also in this
work, the RTDs are assumed to be known a priori, and the expected value of a cost
function, accounting for both wall-clock time and resources usage, is minimized. A
task switching schedule is evaluated offline, using a branch-and-bound algorithm to
find the optimal one in the tree of possible schedules. The computational complexity
of the approach is exponential in the number of algorithms, due to the tree search.

2.3 Model free allocation, per set

Recently, some authors proposed practical methods to evaluate per set portfolios,
directly based on a runtime sample, without explicitly modeling the RTDs [38, 42,
47]. Also in this case the runtime sample is collected offline, with the exception of
[47], who also consider online versions of their methods. The problem of optimizing
the share is proved to be NP-hard [38, 42]: a 4-optimal approximation, which can be
evaluated in polynomial time, is proposed in [47].

In [38], a per set, static, resource sharing schedule is evaluated, for both decision
and optimization problem solvers. For optimization, the solution quality at a preas-
signed time value is maximized, while the total runtime is minimized for decision
problems. In both cases, the schedules are evaluated based on the actual perfor-
mances of each algorithm, available beforehand, and bounds on the performance
on further instances are given based on the PAC learning framework [33], under the
assumption that the distribution generating instances remains the same. The problem
of optimizing the share is found to be NP-hard. Dynamic resource sharing schedules
are considered in [36, 37]. The schedules can change at a finite set of equally spaced
time values, and the last allocation is kept indefinitely, resulting in a total of b time
intervals. The problem of selecting the schedule is formulated as a Markov Decision
Process (MDP, [39]), and a variation of dynamic programming is used to select the
per-set optimal schedule.

Both resource sharing and task switching, among deterministic algorithms, are
considered in [42], where the time to solve a set of problem instances is minimized
with a static, per set schedule. It is proved that, given a resource sharing schedule,
it is possible to find a task switching schedule whose performance is equal or better.
After showing that even finding an ε approximation4 of the per-set-optimal resource
sharing schedule is NP-hard for some ε > 0, the authors present an algorithm for
evaluating the optimal resource sharing schedule, whose complexity is O(MN−1),
and mention another algorithm for the optimal task switching schedule, based on
dynamic programming, with complexity O(MN+1). They then propose an offline

4I.e., a share which solves B0 in at most (1 + ε) times the runtime of the optimal share.

Algorithm portfolio selection as a bandit problem 55

allocator: during an initial learning phase, the runtime of each algorithm on each
instances is observed, and an optimal schedule is evaluated. The schedule can then
be used to solve further problem instances, generated from the same distribution,
with a probabilistic bound on the regret, depending on sample size.

Based on this work, [47] propose a polynomial time method for evaluating a
“greedy” 4-optimal task switching schedule, proving that finding a better approxi-
mation is NP-hard. They also propose an online version of their allocator, in which
some of the instances are solved with all available algorithms, in order to collect
training data, based on which the greedy schedule is updated, and used to solve
other instances. The decision of whether to “explore” algorithm performance, or
“exploit” the greedy schedule, is taken independently for each instance, using a label
ef f icient forecaster5 [5], which allows to bound the regret compared to the offline
greedy strategy, and whose complexity is also exponential in N.

A different online method is proposed in [46], where a per set optimal task
switching schedule is learned while solving a sequence of instances, again with a
4-optimal performance in the limit. Recall that a task-switching schedule can be
specified with a sequence of pairs (n, τ), meaning “run an for a time τ”. In this case,
the schedule is composed of L segments of equal length, and its duration is limited
by a timeout B, so τ = B/L. For each segment, a separate copy of a bandit problem
solver (Exp3 [2]) picks one of the N algorithms, receiving a reward if the algorithm
solves the instance. In this way, each BPS learns to select a single algorithm, to be
run in the corresponding slice of the schedule.

While evaluated online, in both cases the allocation is still per set. [46] introduces
also per instance selection, limited to discrete features: for v distinct feature values,
v copies of the BPS learn separately the corresponding best choice, for each slice
of the schedule. This is equivalent to subdividing instances based on feature values,
and repeating the process independently for each set. Both approaches are validated
using runtime data from several solver competitions [45]. We compare them to our
method in Section 6, using the same data.

3 Time allocators

In this section we recall the time allocators originally introduced in [17], and describe
an alternative use of the greedy allocator from [47].

Consider a portfolio of N algorithms A = {a1, . . . , aN}, solving the same problem
instance. The an are executed in parallel, and share the computational resources of
a single machine according to a resource sharing schedule, or share, s = {s1, .., sN},
sn ≥ 0,

∑N
n=1 sn = 1, i.e., the schedule space S is the standard (N − 1) simplex �N−1.

Here and in the following we assume an “ideal” machine, with no task switching
overhead, where, for any amount δt of machine time, a portion δtn = sn(t)δt is
allocated to an. With this notation, single algorithm selection can be represented

5Label efficient forecasting is a variant of the bandit problem where the loss is a function of an
unknown outcome, related to each trial (in this case the runtimes of all algorithms on a single
instance): the gambler can decide, independently for each trial, to obtain the actual outcome, paying
an additional cost (which in this case coincides with the sum of the runtimes of all algorithms on the
current instance).

56 M. Gagliolo, J. Schmidhuber

as a share with a single sn = 1. A uniform algorithm portfolio is instead executed
according to a share sU = (1/N, ..., 1/N): note that this simple allocation solves any
problem instance in a time N minn{tn}, so it is always a factor N worse than the best
possible performance. In the following two subsections, we show how the RTD of a
portfolio can be evaluated, and used to optimize the share.

3.1 RTD of a portfolio

The runtime of each an on the current problem instance is a random variable Tn ∈
[0,∞], fully described by its RTD. A common representation6 of the RTD is the
cumulative distribution function (CDF) Fn(t), expressing the probability that an will
solve the instance by time t. In the following, where necessary, we will refer to this
function with the term instance RTD, to distinguish it from the set RTD, describing
instead the probability of solving a randomly picked instance from a given set.

The instance is solved as soon as one of the algorithms finds a solution: therefore,
also the runtime of the portfolio TA is a random variable, depending on the Tn, and
on the share s, as

TA(s) = min
n

{
Tn

sn

}

. (1)

The distribution of TA can then be calculated based on the RTDs of the single
algorithms Fn(t), and the share s: the derivation is more intuitive if we reason in terms
of the survival function S(t) = 1 − F(t). At a given time t, each an has used a share
of computation time snt. The probability SA(t; s) of not having solved the instance is
equal to the joint probability that no single algorithm has found a solution within its
time share. Assuming the runtimes Tn to be independent, this joint probability can
be evaluated as the product of the individual survival functions Sn(snt):

SA(t; s) =
N∏

n=1

Sn (snt) , (2)

which, in CDF form, corresponds to

FA(t; s) = 1 −
N∏

n=1

[1 − Fn(snt)] . (3)

Note that the assumption of independence of the Tn, which allows to express (2)
as a product, is justified by the fact that the an do not interact, and by the use of the
actual RTDs of the an on the current instance.

3.2 Static allocation

Equation (2) describes the RTD of a portfolio as a parametric function of the share
s, allowing to formulate time allocation as an optimization problem, in which some

6So common that the two terms are used interchangeably by many authors, including us.

Algorithm portfolio selection as a bandit problem 57

quantity derived from the RTD is optimized with respect to s. In [17], we proposed
three alternative allocators:

Definition 1 (Expected time allocator) TAE. The expected runtime value is mini-
mized with respect to s:

sE = arg min
s

E{TA(s)}. (4)

Definition 2 (Contract allocator) TAC(tu). If an upper bound, or contract, tu on
runtime is imposed, one can instead use (2) to select the s that maximizes the
probability of solution within the contract, minimizing SA(tu; s):

sC(tu) = arg min
s

SA(tu; s). (5)

Definition 3 (Quantile allocator) TAQ(α). In other applications, one could want to
solve the problem with probability α at least , and minimize the time spent. In this
case, a quantile tA(α; s) = F−1

A (α; s) should be minimized:

sQ(α) = arg min
s

tA(α; s). (6)

All three allocators above require optimizing a function of s ∈ �N−1. If the models
of the Sn are parametric, a gradient of the above quantities can be computed
analytically, depending on the particular parametric form: in any case, optimization
can be performed numerically. The surfaces optimized by the three methods will in
general be different, and have minima at different values of s: in the last two cases,
they will also depend on the values of tu and α respectively. Unfortunately, in no
case there is a guarantee of unimodality, so these methods are subject to a “curse
of dimensionality”, determined by the fact that the search space size is exponential
in the number of algorithms N. In practice, even for a small N, it is advisable to
repeat the optimization process multiple times, with different random initial values
for s. Examples of these surfaces for N = 2 algorithms are reported in [13, 17]. The
allocation of multiple CPUs is derived in [19].

In the literature, the instance RTDs are assumed to be available a priori. Aiming
at a practical implementation of our methods, we looked at the task of estimating
such distributions, finding a vast amount of useful research in the field of survival
analysis, a branch of statistics which studies the distribution of random events in
time [28]. Such estimation can be carried out using regression models, conditioned
on features of the instance [13, 14, 17]. This is analogous to the scalar regression
of expected runtime in single algorithm selection (Section 2.1), but here the whole
RTD is predicted. An advantage of survival analysis methods is that they allow to
take into account censored observations, as the duration of unsuccessful runs. This
allows to use the portfolio itself to sample the RTDs, avoiding the need of solving the
same instance multiple times: when an instance is solved, we obtain one uncensored
runtime observation for the successful algorithm, and one censored observation for
each of the N − 1 remaining algorithms. These observations can then be used to
update the corresponding models. Using estimates of the instance RTDs results
in suboptimal allocations, as it violates the independence assumption behind (2)

58 M. Gagliolo, J. Schmidhuber

[13, 14]; however, comparative experiments with more correct models showed that
the impact on allocation performance is small [13, Sec. 9.7].

3.3 Dynamic allocation

A dynamic schedule is more general than a static one: [42] also proved that, with
respect to total runtime, the best per set task switching allocation cannot be worse
than the best per set resource sharing allocation. Their proof is based on the runtimes
{tn(m)} of each the N deterministic algorithms on each of the M instances. Consider
a single instance b, and randomized algorithms {an}. Simply replacing the tn(m) with
the runtimes corresponding to the m-th run of an, with random seed m, we can
reformulate their theorem referring it to the runtime on a single instance, summed
for M different runs. If M is large, dividing by M we would obtain an estimate of
the expected runtime. We can therefore state that, with respect to expected runtime,
also the best per instance task switching allocation cannot be worse than the best per
instance resource sharing allocation.

A task switching schedule can be described by a sequence of pairs (n, τ), indicating
the index of the algorithm, and the corresponding computation time value. In our
notation, it can be represented as a time-varying resource sharing schedule s(t), with
the additional constraint that each sn(t) ∈ {0, 1}, such that only one an has sn(t) = 1
for any t. Removing such constraint allows to obtain more general dynamic shares
s(t). In practice, most work on task switching schedules considers a discrete, finite set
of values for τ , defining time allocation as a discrete optimization problem. In this
section we consider dynamic shares s(t) which can change their value at a discrete set
of time intervals {τ1, τ2, . . .}, but we allow such set to be infinite.

If a time allocator TA can be conditioned on the current state xn of each algorithm,
or at least on the runtime yn spent so far, such a dynamic s(t) can be obtained simply
updating a static share s at predefined time intervals {τ1, τ2, . . .}, as described in
Algorithm 1.

Algorithm 1 Dynamic Algorithm Portfolio
Problem instance b
Algorithm set A = {a1, ..., aN}
Static/dynamic features xn of an on b .
A(b ; s) solves instance b with share s
Time allocator TA(b, {xn}, {yn})
Set yn := 0, n = 1, . . . , N
while b not solved do

update τ ; s := TA(b, {xn}, {yn})
run A(b ; s) for a maximum time τ

update xn; yn := yn + snτ , n = 1, . . . , N
end while

For simplicity, in Algorithm 1 we considered a resource sharing s, but the same
approach can be applied to an arbitrary time allocator, with a different schedule
representation, provided that its allocation is a nontrivial function of {xn, yn}, or
just {yn}. If the allocator is based on performance models, this can be obtained
conditioning the models on {xn, yn}. Regarding the RTD based allocators presented

Algorithm portfolio selection as a bandit problem 59

in the previous section, each of them can be used in Algorithm 1, if the RTD models
can be conditioned on time-varying covariates xn; otherwise, each Sn(t) can simply
be updated conditioning on the time spent yn. Writing t′ = t − y, the RTD of the
portfolio after a time y = ∑

n yn is

SA(t′) =
N∏

n=1

Sn(yn) − Sn(t′ + yn)

Sn(yn)
. (7)

An additional design decision is required to set the sequence of time intervals τ .
These may be derived according to some optimality criterion, dictated by the TA
itself, or set heuristically. Regarding the latter option, using a constant τ has the
disadvantage of requiring an initial guess of the typical runtimes of the algorithms,
with the risk of updating time allocation too often, or too rarely, if the guess proves
wrong. In our experiments, we simply doubled τ at each round, starting from a small
initial value τ1: in this way, time allocation is updated O(log2 tA) times during a run of
duration tA. The infinite set of time values considered is then {τ1, 2τ1, . . . , 2iτ1, . . .}.

3.4 Greedy task-switching schedules

Another allocator which can be evaluated dynamically, as in Algorithm 1, is the
greedy task-switching schedule (8) of [47]. This method consists in concatenating a
sequence of pairs (n, τ) such that running an for a time τ maximizes the rate at which
instances are solved.

Be G(t; s) a function expressing the number of instances in B that would be solved
in a time t executing A according to a task switching schedule s. The greedy schedule
is evaluated incrementally, appending to the current sk = {(n1, τ1), . . . , (nk, τk)} the
pair (nk+1, τk+1) such that

(nk+1, τk+1) = arg max
(n,τ)

G(τ + Tk; {sk, (n, τ)}) − G(Tk; sk)

τ
, (8)

where Tk = ∑k
j=1 τj is the duration of sk. The functions G(t; s) can be evaluated given

the runtimes {tn(m)}, as G(t; s) = card({bm : tA(m; s) ≤ t}).
The expected value of G(t; s) can be estimated for an arbitrary s = {(i1, τ1),

(i2, τ2), . . .} based on the RTDs on the set of instances {Fn(t)}, as

G(t; s) = M
N∑

n=1

Fn

⎛

⎝
∑

nj==n

τj

⎞

⎠. (9)

Given (7), the rate maximized in (8) can then be written as Fn(t|t ≥ yn)/(t − yn), and
the schedule evaluated dynamically: in this case, the sequence {τ1, τ2, . . .} is set by the
TA itself. We can then define the following:

Definition 4 (Greedy allocator) TAS. Be y(k)
n = ∑

nj=n τj the time allocated so far to
an by the schedule sk = {(n1, τ1), . . . , (nk, τk)}. The next portion of the schedule is

(nk+1, τk+1) = arg max
(n,τ)

Fn(τ + y(k)
n) − Fn(y(k)

n)

[1 − Fn(y(k)
n)]τ . (10)

60 M. Gagliolo, J. Schmidhuber

Based on [47], it should be possible to prove that using the instance RTDs in (10)
would generate a per instance 4-optimal task switching schedule. An advantage of
(10) over our allocators is that it can be evaluated in a time O(N), as it requires N
line searches to find the optimal τ for each algorithm.

4 Online time allocation

In its most basic form [41], the multi-armed bandit problem is faced by a gambler,
playing a sequence of trials against an K-armed slot machine. At each trial, the
gambler chooses one of the available arms, whose losses are randomly generated
from different stationary distributions. The gambler incurs in the corresponding loss,
and, in the full information game, she can observe the losses that would have been
paid pulling any of the other arms. A more optimistic formulation can be made in
terms of positive rewards. The aim of the game is to minimize the regret, defined as
the difference between the cumulative loss of the gambler, and the one of the best
arm. A bandit problem solver (BPS) can be described as a mapping from the history
of the losses observed so far, to a probability distribution p = (p1, ..., pK) over the K
arms, which will be used to pick an arm at the subsequent trial.

More recently, the original restricting assumptions have been progressively re-
laxed, allowing for non-stationary loss distributions, partial information (only the
loss for the pulled arm is observed), and adversarial bandits that can set their
losses in order to deceive the player. In [2], a reward game is considered, where
no statistical assumptions are made about the process generating the rewards. In this
non-oblivious adversarial setting, before the player makes his choice, the losses of
each arm are set as an arbitrary function of the entire history of the game. Note that
this setting encompasses stationary and non-stationary stochastic bandits, as nothing
forbids the adversary to set the losses randomly. Notwithstanding these pessimistic
hypotheses, the authors devise probabilistic gambling strategies for the full and the
partial information games, with bounds on the expected regret.

Let us now see how to represent algorithm selection for decision problems as a
bandit problem, with the aim of minimizing solution time. Consider a sequence B =
{b 1, . . . , bM} of M instances of a decision problem, for which we want to minimize
solution time, and a set of N algorithms A = {a1, . . . , aN}, such that each bm can
be solved by each ak. It is straightforward to describe algorithm selection as a multi-
armed bandit problem, where “pick arm k” means “run algorithm ak on next problem
instance”. Runtimes tk can be viewed as losses, generated by a rather complex
mechanism, i.e., the algorithms ak themselves, running on the current problem. The
information is partial, as the runtime for other algorithms is not available, unless we
decide to solve the same problem instance again. In a worst case scenario one can
receive a ”deceptive” problem sequence, starting with problem instances on which
the performance of the algorithms is misleading, so this bandit problem should be
considered adversarial. As BPS typically minimize the regret with respect to a single
arm, this approach would allow to implement per set selection, of the overall best
algorithm. An example can be found in [18], where we presented an online method
for learning a per set estimate of an optimal restart strategy.

Unfortunately, per set selection is only profitable if one of the algorithms dom-
inates the others on all problem instances. This is usually not the case: it is often
observed in practice that different algorithms perform better on different problem

Algorithm portfolio selection as a bandit problem 61

instances. A per instance selection scheme, taking an independent decision for
each problem instance, or even a per set schedule, where multiple algorithms are
combined, can both have a great advantage.

One possible way of exploiting the nice theoretical properties of a BPS in the
context of algorithm selection, while allowing for the improvement in performance
of per instance selection, is to use the BPS at an upper level, to select among
alternative algorithm selection techniques. Consider again the algorithm selection
problem represented by B and A. Introduce a set of K arbitrary time allocators, as
defined in Section 3, T = {TA1, . . . , TAK}. At this higher level, one can use a BPS to
select among different time allocators, working on the same algorithm set A. In this
case, “pick arm k” means “use TAk to allocate time to A for solving the next problem
instance”. In the long term, the BPS would allow to select, on a per set basis, the TAk

that is best at allocating time to algorithms in A on a per instance basis. The resulting
“Gambling” Time Allocator (GambleTA) is described in Algorithm 2, where tk(m)

is the runtime of TAk on instance bm.

Algorithm 2 GambleTA (A,T, BPS) Gambling Time Allocator.
Algorithm set A with N algorithms
Problem set B with M instances
A set T = {TAk} of K time allocators
A bandit problem solver BPS

initialize BPS (K, M)

for each instance bj, j = 1, . . . , M do
pick time allocator I(j) = k with probability pk from BPS.
solve problem bj using TAI on A, in a time tI(j)
observe loss lI(j) = tI(j)(j)
update BPS

end for

If the BPS allows for non-stationary arms, it can also deal with time allocators
that are learning to allocate time. This is indeed the motivation for adopting this two-
level selection scheme, as it allows to combine in a principled way the exploration
of algorithm behavior, which can be represented by the uniform allocator, and the
exploitation of this information by a model-based allocator, whose model is being
learned online, based on results on the sequence of problems met so far. If more
time allocators are available, they can be made to compete, using the BPS to sample
their performances.

An interesting feature of this selection scheme is that the hypothesis that each
algorithm is capable of solving each problem can be relaxed, requiring instead that
at least one of the an can solve a given bm, but each TAk can solve each bj: this can
be ensured in practice by eventually7 imposing a sn > 0 for all an. This allows to use
interesting combinations of complete and incomplete solvers in A [13, 17].

7In our implementation, the time allocators are based on RTD models, updated dynamically by
conditioning on runtime spent. When the allocation cannot be evaluated (e.g. because the samples
are still empty, or there are no observations larger than the current runtime), the allocation defaults
to the uniform share. In this way, all algorithms will eventually be executed, satisfying the hypothesis.

62 M. Gagliolo, J. Schmidhuber

Note that any bound on the regret of the BPS will determine a bound on the regret
of GambleTA with respect to the best time allocator. Nothing can be said about the
performance w.r.t. the best algorithm. In a worst-case setting, if none of the time
allocator is effective, a bound can still be obtained by including the uniform share in
the set of TAs.

4.1 Time allocators as experts

The original version of GambleTA (GambleTA4 in the following) [17] was based
on a more complex alternative, inspired by the bandit problem with expert advice
[2]. In this problem, two games are going on in parallel: at a lower level, a partial
information game is played, based on the probability distribution obtained mixing
the advice of different experts, represented as probability distributions on the K
arms. The experts can be arbitrary functions of the history of observed rewards, and
give a different advice for each trial. At a higher level, a full information game is
played, with the K experts playing the roles of the different arms. The probability
distribution p at this level is not used to pick a single expert, but to mix their advises,
in order to generate the distribution for the lower level arms. In GambleTA4, the
time allocators played the role of the experts, each suggesting a different resource
sharing s, on a per instance basis; while the arms of the lower level game were the
N algorithms, to be run in parallel with the mixture share. Exp4 [2] was used as the
BPS: Unfortunately, the bounds for this solver cannot be extended to GambleTA4
in a straightforward manner, as the loss function itself is not convex. Moreover,
Exp4 cannot deal with unbounded losses, so we had to adopt an heuristic reward
attribution instead of using the plain runtimes. GambleTA4 is therefore less sound
than GambleTA: however, compared on a toy problem, the two versions displayed
a similar performance [20].

5 Unbounded losses

A common issue of the above approaches is the difficulty of setting reasonable
upper bounds on the time required by the algorithms. This renders a straightforward
application of most BPS problematic, as a known bound on losses is usually assumed,
and used to tune parameters of the solver. Underestimating this bound can invalidate
the bounds on regret, while overestimating it can produce an excessively “cautious”
algorithm, with a poor performance. Setting in advance a good bound is particularly
difficult when dealing with algorithm runtimes, which can easily exhibit variations
of several order of magnitudes among different problem instances, or even among
different runs on a same instance [22].

Some interesting results regarding games with unbounded losses have recently
been obtained. In [6, 7], the authors consider a full information game, and provide
two algorithms which can adapt to unknown bounds on signed rewards. Based on
this work, [1] provide a Hannan consistent algorithm for losses whose bound grows
in the number of trials i with a known rate iν , ν < 1/2. This latter hypothesis does
not fit well our situation, as we would like to avoid any restriction on the sequence of
problems: a very hard instance can be met first, followed by an easy one. In this sense,
the hypothesis of a constant, but unknown, bound is more suited: in GambleTA,

Algorithm portfolio selection as a bandit problem 63

this unknown bound would correspond to the worst performance of the worst
time allocator on the sequence of instances which have to be solved. In [6], Cesa-
Bianchi et al. also introduce an algorithm for loss games with partial information
(Exp3Light), which requires losses to be bound, and is particularly effective when
the cumulative loss of the best arm is small. In this subsection we introduce a
variation of this algorithm that allows it to deal with an unknown bound on losses.
Both algorithms make no statistical assumption about the losses, and can there-
fore be applied to an arbitrary game, be it stationary, nonstationary, or adversarial.

Exp3Light [6, Sec. 4] is a modified version of the weighted majority algorithm
[31], in which the cumulative losses for each arm are obtained through an unbiased
estimate.8 The game is subdivided in a sequence of epochs r = 0, 1, . . .: in each epoch,
the probability distribution over the arms is updated at every trial, proportional to
exp (−ηr L̃k), L̃k being the current unbiased estimate of the cumulative loss for arm k.
Assuming an upper bound 4r on the smallest loss estimate, mink{L̃k} ≤ 4r, ηr is set as:

ηr =
√

2(log K + K log M)

(K4r)
. (11)

When the bound 4r is trespassed, a new epoch starts, and r and ηr are updated
accordingly.

Algorithm 3 Exp3Light (K, M).
K arms, M trials;
losses lk(i) ∈ [0, 1] ∀ i = 1, ..., M, k = 1, . . . , K;
initialize epoch r := 0, LE(0) := 0, L̃k(0) := 0 for k = 1, . . . , K;
initialize ηr according to (11).
for each trial i = 1, ..., M do

set pk(i) ∝ exp(−ηr L̃k(i − 1)),
∑K

k=1 pk(i) = 1;
pick arm I(i) = k with probability pk(i);
incur loss lE(i) := lI(i)(i);
evaluate unbiased loss estimates:
l̃ I(i)(i) := lI(i)(i)/pI(i)(i), l̃k(i) := 0 for k 	= I(i);
update cumulative losses:
LE(i) := LE(i − 1) + lE(i),
L̃k(i) := L̃k(i − 1) + l̃k(i), for k = 1, . . . , K,
L̃∗(i) := mink{L̃k(i)};
if (L̃∗(i)) > 4r then

start next epoch r := �log4(L̃∗(i))�;
update ηr according to (11).

end if
end for

8For a given round, and a given arm with loss l and pull probability p, the estimated loss l̃ is l/p if
the arm is pulled, 0 otherwise. This estimate is unbiased in the sense that its expected value, with
respect to the process extracting the arm to be pulled, equals the actual value of the loss: E{l̃} =
pl/p + (1 − p)0 = l.

64 M. Gagliolo, J. Schmidhuber

Algorithm 3 describes Exp3Light in more detail. Here and in the following, we
consider a partial information game with K arms, and M trials; an index (i) labels the
value of a quantity at trial i ∈ {1, . . . , M}; k labels quantities related to the k-th arm,
k ∈ {1, . . . , K}; index E refers to the loss incurred by the bandit problem solver, and
I(i) indicates the arm chosen at trial (i), so it is a discrete random variable with value
in {1, . . . , K}; index r represents quantities related to the r-th epoch of the game,
which consists of a sequence of 0 or more consecutive trials; log with no index is the
natural logarithm.

Theorem 5 from [6] proves the following bound on the expected regret of
Exp3Light, of order O(K(

√
L∗(M) log M + log M)), which holds if ηr is updated

according to (11):

E{LE(M)} − L∗(M) ≤ 2
√

2(log K + K log M)K(1 + 3L∗(M))

+(2K + 1)(1 + log4(3M + 1)). (12)

The original algorithm assumes losses in [0, 1]. We first consider a game with a
known, finite bound L on losses, and solve it using Exp3Light, simply dividing all
losses by L. Based on (12), it is easy to prove the following:

Theorem 1 Regret of Exp3Light for bounded losses. Consider a bandit problem
with losses lk ∈ [0,L]. If L∗(M) is the actual loss of the best arm after M trials, and
LE(M) = ∑M

i=1 lI(i)(i) is the actual loss of Exp3Light (K, M), updated dividing each
observed loss by L, the expected value of the regret is bounded as:

E{LE(M)} − L∗(M) ≤ 2
√

6L(log K + K log M)KL∗(M)

+L
[
2
√

2L(log K + K log M)K

+(2K + 1)(1 + log4(3M + 1))
]
. (13)

The above bound depends on L with O(K(
√

LL∗(M) log M + L(
√

L log M +
log M))).

We now introduce a simple variation of Exp3Light, which does not require
the knowledge of the bound L on losses, and uses Exp3Light (Algorithm 3) as a
subroutine. Exp3Light-A (Algorithm 4) is based on the doubling trick used in [6] for
a different solver, playing a full information game with unknown bound on losses.
The game is organized in a sequence of epochs u = 0, 1, . . ., which are not related to
the epochs of Exp3Light. A new epoch is started with the appropriate u whenever
a loss larger than the current Lu is observed. In each epoch, Exp3Light is restarted9

using a bound Lu = 2u.

9According to Cesa-Bianchi (2008, personal communication), a bound for the original Exp3Light
can be proved for an adaptive ηr (11), replacing the total number of trials M with the current trial i.
This should allow for a potentially more efficient variation of Exp3Light-A, in which Exp3Light is
not restarted at each epoch, and can retain the information on past losses. However, in practice we
observed only a few restarts during the initial portion of the sequence: therefore, we do not expect a
dramatic performance improvement from such variation.

Algorithm portfolio selection as a bandit problem 65

Algorithm 4 Exp3Light-A (K, M) A solver for bandit problems with partial infor-
mation and an unknown (but finite) bound on losses.

K arms, M trials
losses lj(i) ∈ [0,L] ∀ i = 1, ..., M, j = 1, . . . , K
unknown L < ∞
initialize epoch u = 0, Exp3Light (K, M)

for each trial i = 1, ..., M do
pick arm I(i) = j with probability pj(i) from Exp3Light
incur loss lE(i) = lI(i)(i)
if lI(i)(i) > 2u then

start next epoch u = �log2 lI(i)(i)�
restart Exp3Light (K, M − i)

else
update Exp3Light with loss (lI(i)(i)/2u) for arm I(i)

end if
end for

A bound for Exp3Light-A can be derived from (13):

Theorem 2 Regret of Exp3Light-A. If L∗(M) is the loss of the best arm after M
trials, and L < ∞ is the actual, unknown bound on losses, the expected value of the
regret of Exp3Light-A (K, M) is bounded as:

E{LE(M)} − L∗(M) ≤ 4
√

3�log2 L�L(log K + K log M)KL∗(M)

+ 2�log2 L�L
[√

4L(log K + K log M)K

+ (2K + 1)(1 + log4(3M + 1)) + 2
]
. (14)

The proof is given in the Appendix. The regret obtained by Exp3Light-A is
O(K(

√
LL∗(M) log L log M + L log L(

√
L log M + log M))): comparing with the re-

gret of the original Exp3Light with a known maximum loss L (13), we can see that
the price of not knowing in advance the value L is a multiplicative factor log L.
Exp3Light-A can be useful when L is high, but L∗ is relatively small, as we expect in
our time allocation setting if the algorithms exhibit huge variations in runtime, but at
least one of the TAs eventually converges to a good performance. We can then use
it as a BPS for selecting among different time allocators in GambleTA.

6 Experiments

In this section we present experiments with runtime data10 from several recent solver
competitions, the same used in [45], and compare GambleTA with their offline [47]

10While all data is available online, we obtained it directly from Matt Streeter, who kindly saved us
the time consuming task of formatting it.

66 M. Gagliolo, J. Schmidhuber

and online [46] greedy allocators (Section 2.3), respectively labeled OffG-Oracle
and OnG-Exp3 in the following. The full set of results is available in [13]: here, we
limit to the most relevant competitions, in terms of number of instances.

In the actual competitions, each contestant had to solve the same sequence of
problem instances: for practical reasons, the runtime of each algorithm on each
instance was limited to a maximum “timeout” value. Following the same approach
of [45], we simulate the execution of GambleTA based on the runtime values
recorded during the competition, using the set of contestants as the algorithm set,
and discarding instances which none of the algorithms could solve before timeout;
and we evaluate the performance of an allocator reporting the number of instances
solved before timeout, the total runtime T (including timeouts), and the speed-up
over the Winner of the competition,11 defined as

SU = TW

T
, (15)

where TW is the total runtimes spent by the Winner. In addition, we also report
the performances of the Uniform time allocator sU = (1/N, ..., 1/N) alone; and the
one of an ideal Oracle, with foresight of the runtime values, which only executes,
for each problem instance, the algorithm that will be fastest, thus achieving the best
possible performance. For each allocator, we also report the overhead over the total
runtime of the oracle TO = ∑

m minn{tn(m)},

OVH = T − TO

TO
, (16)

measured regardless of the number of instances solved. This quantity is 0 for Oracle,
and up to N for Uniform, if this solves all instances. As GambleTA is randomized (in
its BPS component), and its performance may depend on the order of the instances,
we repeated each experiments 20 times, each time with a different random reordering
of the instances, and a different random seed for the BPS. We will report the results
of each run in graphical form, and 95% confidence bounds12 in tabular form. We will
also report the number of runs on which GambleTA is worse than Uniform (WTU),
and worse than OnG-Exp3 (WTG).

All experiments were performed in Matlab; the runtimes reported do not take
into account the additional computation performed by GambleTA (e.g. updating
the RTD models, evaluating the share), again for a coherent comparison with [45],
but also because our implementation is far from efficient.

GambleTA is a framework for time allocation, rather than an actual allocator.
Before presenting the results, in the next subsection we describe the precise settings
adopted in the experiments.

11As in [45], we consider as Winner the algorithm which solves most instances, breaking ties based
on time. Note that this is not necessarily the criterion that was used in the actual competition.
12Evaluated based the Z distribution. Upper confidence bounds will be reported for quantities which
we want to minimize, as the total runtime T ant the overhead ovh; lower bounds for those which
should be maximized, as the number of solved instances, and the speedup SU.

Algorithm portfolio selection as a bandit problem 67

6.1 Settings

All experiments were performed using the same settings. As BPS, we chose
Exp3Light-A (Algorithm 4). All the allocators described in Section 3 were em-
ployed, in their dynamic version (Algorithm 1). More precisely, the set of allocators
T consisted of

1. The uniform allocator TAU.
2. The expected time allocator TAEt.
3. A quantile allocator TAQ, with α = 0.25.
4. A contract allocator TAC, with a dynamic tc = τk

5. Our version (10) of the greedy task switching allocator from [47], labeled TAGr.

The uniform allocator is an obliged choice: it allows to limit the cost of the initial
instances, and guarantees that in the worst case the performance of Uniform will be
attained, which is often already good in practice, as we will see in the experiments.
The remaining allocators are all based on models of the RTDs of the algorithms.
When an instance is solved, the models of all algorithms are updated, obviously
censoring the runtimes of the unsuccessful algorithms.

While instance features could be obtained online for some competitions, they were
not available for most of them. Streeter [45] also presents experiments where the
names of directories containing the instances are used as discrete features. As it is
not always clear which directories were used, we will compare instead with the per
set version of their method, presenting experiments where no features are used: to
model the RTD, we simply used the Kaplan-Meier estimator [27].

For TAEt, TAQ, and TAC, the RTD of the portfolio was evaluated as in (2),
based on the survival functions of each algorithm, estimated by the models. The

Table 1 Summary of results: instances solved before timeout, by GambleTA and comparison terms

Competition n. algs. n. insts. Winner Uniform GambleTA OnG-Exp3

SAT ′07 crafted 9 129 98 95 97.3 92
SAT ′07 industrial 10 166 139 132 132.2 134
SAT ′07 random 14 411 257 302 309.0 294
SAT ′09 application 14 229 205 182 189.6 −
SAT ′09 crafted 10 187 156 153 155.4 −
SAT ′09 random 8 547 435 435 447.4 −
QBF ′07 formal verif. 16 728 621 641 647.0 −
QBF ′07 HC formulas 16 287 286 283 283.8 −
MaxSAT ′07 MaxSAT 13 790 788 758 773.9 −
PB ′07 opt. small ints. 16 396 270 343 349.0 −
CP ′06 binary ext. 15 1,140 1,093 1,068 1,077.6 −
Each line corresponds to a competition, where the competing algorithms had to solve a set of
instances
The performance of Oracle is omitted as, by definition, it always coincides with the number of
instances. Winner is the a-priori unknown best algorithm in the competition. Uniform is the portfolio
of all competing algorithms, sharing resources equally. OnG-Exp3 [46] is another online portfolio
approach, starting from scratch as GambleTA. See Figs. 1–11 for detailed results, including average
runtimes

68 M. Gagliolo, J. Schmidhuber

10
−2

10
0

10
2

10
4

10
−2

10
0

10
2

10
4

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]
Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
−2

10
0

10
2

10
4

10
- 2

10
0

10
2

10
4

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

90 100 110 120 130

500

1000

1500

2000

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA
OffG−Oracle
OnG−Exp3

solved avg. t SU OVH

ORACLE 129 540.7 3.42 0
WINNER 98 1847.4 1 2.42
UNIFORM 95 1855.4 1.00 2.43
GAMBLETA 97.3 1725.7 1.07 2.19
OFFG-ORACLE 110 1344 1.37 1.49
ONG-EXP3 92 2041 0.91 2.77

On 20 runs: won 10, WTU 0 WTG 0.

Fig. 1 SAT’07, Hand-crafted, 9 algorithms, 129 instances, timeout 5,000 s. Winner: minisatSAT.
Top left Log-log comparison among the runtime of Winner (vertical axis) and Oracle (horizontal
axis), on each instance (plus, circle if timeout). Top right Same plot for GambleTA (1 run). Bottom
left Average time vs. instances solved before timeout, for GambleTA (20 runs) and comparison
terms. Bottom right Numerical results (conf. bounds on 20 runs for GambleTA). OnG-Exp3 is the
only fair comparison term

share was optimized numerically.13 The allocation was updated dynamically, as in
Algorithm 1, using an exponentially spaced sequence of time intervals τi = 2iτ1, with
τ1 = 1 second.

All the allocators default to the static uniform share whenever their computation
cannot be carried out for some reason, for example when, after several dynamic up-
dates, the probability of solution is estimated to be 0 for all algorithms. Using a non-
parametric method, this is guaranteed to happen as soon as the current runtime is
larger than the maximum observation in the sample. Therefore, each TA will eventu-
ally allocate a portion of time to each algorithm, satisfying our hypothesis (see p. 13).

Using a non-parametric method, the resulting estimate can be improper, with
F(∞) < 1: in such a case, TAEt cannot be evaluated, as the expected time is infinite.
As this happened quite frequently with values of F(∞) very close to 1, we decided
to allow for a small “tolerance” ε, evaluating the expected time when 1 − F(∞) ≤ ε,
and allocating uniformly otherwise. We arbitrarily set ε = 0.01.

13Using the Matlab function fmincon.

Algorithm portfolio selection as a bandit problem 69

The quantile parameter α of TAQ was also chosen arbitrarily, based on the obser-
vation that high quantiles produce allocations similar to TAEt (see [13, Sec. 6.1.1]).
If none of the algorithms reaches the quantile, allocation is uniform.

For TAC, we wanted to avoid fixing a contract time tc, as this should depend on
the range of runtimes observed: we therefore decided to use the time of the next
update, tc = τi, i = 0, 1, In this way, each (si, τi) is such that SA(τi; si) is minimal.
If all algorithms have a Sn(τi) = 1, allocation is uniform.

In these allocators, the τi are set heuristically. In TAGr, they are instead set
optimally, based on (10). Given the actual RTDs, this allocator is guaranteed to be 4-
optimal with respect to the best per set allocation. We used estimates of the RTDs in-
stead, showing experimentally that they already allow to obtain a good performance.

6.2 Plotting results

A summary of results is provided in Table 1. Detailed graphical and numerical results
for each benchmark are reported in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, using the

10
0

10
2

10
4

10
0

10
2

10
4

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]

Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
0

10
2

10
4

10
0

10
2

10
4

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

130 140 150 160 170
500

1000

1500

2000

2500

3000

3500

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA
OffG−Oracle
OnG−Exp3

solved avg. t SU OVH

166 700.3 3.48 0
139 2438.3 1 2.48
132 3175.9 0.77 3.54

132.2 3039.1 0.80 3.34
148 2464 0.99 2.52
134 2765 0.88 2.95

On 20 runs: won 1, WTU 5 WTG 1.

ORACLE

WINNER

UNIFORM

GAMBLETA
OFFG-ORACLE

ONG-EXP3

Fig. 2 SAT’07, Industrial, 10 algorithms, 166 instances, timeout 10,000 s. Winner: Rsat. Top left
Log-log comparison among the runtime of Winner (vertical axis) and Oracle (horizontal axis),
on each instance (plus, circle if timeout). Top right Same plot for GambleTA (1 run). Bottom left
Average time vs. instances solved before timeout, for GambleTA (20 runs) and comparison terms.
Bottom right Numerical results (conf. bounds on 20 runs for GambleTA). OnG-Exp3 is the only fair
comparison term

70 M. Gagliolo, J. Schmidhuber

10
−2

10
0

10
2

10
4

10
- 2

10
0

10
2

10
4

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]
Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
−2

10
0

10
2

10
4

10
−2

10
0

10
2

10
4

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

250 300 350 400

500

1000

1500

2000

2500

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA
OffG- Oracle
OnG- Exp3

solved avg. t SU OVH

411 540.8 4.26 0
257 2305.4 1 3.26
302 1774.9 1.30 2.28

309.0 1639.6 1.41 2.03
344 1337 1.72 1.47
294 2050 1.12 2.79

On 20 runs: won 20, WTU 0 WTG 0.

ORACLE

WINNER

UNIFORM

GAMBLETA
OFFG-ORACLE

ONG-EXP3

Fig. 3 SAT’07, Random, 14 algorithms, 411 instances, timeout 5,000 s. Winner: March KS. Uni-
form would have won. Top left Log-log comparison among the runtime of Winner (vertical axis)
and Oracle (horizontal axis), on each instance (plus, circle if timeout). Top right Same plot for
GambleTA (1 run). Bottom left Average time vs. instances solved before timeout, for GambleTA
(20 runs) and comparison terms. Bottom right Numerical results (conf. bounds on 20 runs for
GambleTA). OnG-Exp3 is the only fair comparison term

same kind of plots. In the following we describe each plot in detail, giving examples
for the SAT 2007 competition, Random category, discussed in the next section.

Log-log comparison with Oracle (see e.g. Fig. 3, top). In these plots, each point
corresponds to a single problem instance. On the left one, the runtime of the Winner
on each instance (vertical axis) is compared to that of the Oracle (horizontal
axis). Points off the diagonal correspond to instances where the per set best is
outperformed by a different algorithm, while points above the line of Uniform
corresponds to instances where also a uniform portfolio of all algorithms is faster (i.e.,
Winner is WTU). Instances which the Winner could not solve before the timeout are
represented by circles, whose ordinate is the timeout.

Such plots can be used to visualize benchmark characteristics and difficulty. Plots
where all points lie on the diagonal represent benchmarks in which a single algorithm
dominates all others. The more there are points off the diagonal, and the farther
they are, the more the benchmark becomes interesting, as this means that the
performances of the algorithms are very diverse, a situation which can be exploited

Algorithm portfolio selection as a bandit problem 71

10
0

10
−2

10
0

10
2

10
4

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]
Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
−5

10
0

10
5

10
−5

10
0

10
5

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

180 190 200 210 220 230
500

1000

1500

2000

2500

3000

3500

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA solved avg. t SU OVH

ORACLE 229 669.6 2.74 0
WINNER 205 1835.6 1 1.74
UNIFORM 182 3384.2 0.54 4.05
GAMBLETA 189.6 2769.8 0.67 3.14

On 20 runs: won 0, WTU 0.

Fig. 4 SAT’09, Application, 14 algorithms, 229 instances, timeout 10,000 s. Winner: precosat. Top
left Log-log comparison among the runtime of Winner (vertical axis) and Oracle (horizontal axis),
on each instance (plus, circle if timeout). Top right Same plot for GambleTA (1 run). Bottom left
Average time vs. instances solved before timeout, for GambleTA (20 runs) and comparison terms.
Bottom right Numerical results (conf. bounds on 20 runs for GambleTA)

by a time allocator. In the case reported in Fig. 3, Uniform would have won the
competition, as one could guess looking at the many points above the Uniform line.

We will use the same kind of plots to report the performance of GambleTA on
each instance: in this case we report results from a single run (with random seed 1),
to make the plot readable, and the comparison with Winner easier. Points which are
exactly on the line of Uniform are likely to correspond to instances for which the
BPS picked the uniform allocator. Note that information about the order with which
instances are solved is lost in this kind of plots.

Overall performance (see e.g. Fig. 3, bottom left). The average time T /M vs. the
number of instances solved, for each run of GambleTA, and for the comparison
terms. In these plots, each point corresponds to the whole sequence of instances.
The star14 corresponds to OffG-Oracle (8). Note that this method is based on the

14For other competitions, only the speedup was reported in [45], therefore we could only recover the
average time: in those cases, we represent its performance with an horizontal line.

72 M. Gagliolo, J. Schmidhuber

10
- 2

10
0

10
2

10
4

10
−2

10
0

10
2

10
4

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]
Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
−5

10
0

10
5

10
−5

10
0

10
5

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

150 160 170 180 190
200

400

600

800

1000

1200

1400

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA solved avg. t SU OVH

187 338.5 3.86 0
156 1305.9 1 2.86
153 1372.0 0.95 3.05

155.4 1270.9 1.03 2.75

On 20 runs: won 10, WTU 1.

ORACLE

WINNER

UNIFORM

GAMBLETA

Fig. 5 SAT’09, Crafted, 10 algorithms, 187 instances, timeout 5,000 s. Winner: clasp. Top left Log-
log comparison among the runtime of Winner (vertical axis) and Oracle (horizontal axis), on each
instance (plus, circle if timeout). Top right Same plot for GambleTA (1 run). Bottom left Average
time vs. instances solved before timeout, for GambleTA (20 runs) and comparison terms. Bottom
right Numerical results (conf. bounds on 20 runs for GambleTA)

a priori knowledge of algorithm runtimes, so it should rather be seen as the ideal
performance of a per set allocator: more precisely, it is proved to be at most 4 times
worse than the per set optimal task switching schedule. As the best per instance
schedule is always Oracle, it also gives an idea of the potential gap among per set and
per instance allocation, which is more pronounced in benchmarks where algorithm
performances vary a lot across instances.

Regarding the competition, these plots allow to appreciate the gap among Winner
and Oracle, which is often important, as in this case. The relative positions of
Uniform and Winner allows to see whether an uniform portfolio of all contestants
would have solved more instances than the winner, as in this case.

6.3 SAT solvers competitions

Three of the competitions at the SAT 2007 conference were among SAT solvers,
on different categories of instances, both SAT and UNSAT: hand-crafted, indus-
trial, random. For these, we can also compare with the results of another online
allocator, OnG-Exp3 [46]. While SATzilla took part to these competitions, we

Algorithm portfolio selection as a bandit problem 73

10
- 2

10
0

10
2

10
4

10
- 2

10
0

10
2

10
4

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]
Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
- 2

10
0

10
2

10
4

10
- 2

10
0

10
2

10
4

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

450 500 550
400

600

800

1000

1200

1400

1600

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA solved avg. t SU OVH

ORACLE 547 480.1 3.01 0
WINNER 435 1446.2 1 2.01
UNIFORM 435 1511.8 0.96 2.15
GAMBLETA 447.4 1383.6 1.05 1.88

On 20 runs: won 19, WTU 0.

Fig. 6 SAT’09, Random, 8 algorithms, 547 instances, timeout 5,000 s. Winner: SATzilla. Top left
Log-log comparison among the runtime of Winner (vertical axis) and Oracle (horizontal axis),
on each instance (plus, circle if timeout). Top right Same plot for GambleTA (1 run). Bottom left
Average time vs. instances solved before timeout, for GambleTA (20 runs) and comparison terms.
Bottom right Numerical results (conf. bounds on 20 runs for GambleTA)

cannot compare this method to GambleTA or OnG-Exp3 in terms of algorithm
selection performance, as SATzilla used a different set of algorithms, and it is an
offline method. To compare fairly with it, we should use the same algorithm set, and
preliminarily solve the same set of training instances.15

The results for both GambleTA and OnG-Exp3 are obtained on the same data,
and both algorithms start from scratch, so in this case the comparison is fair. We also
report the results of OffG-Oracle [46]: in this case a comparison is obviously not

15Moreover, for these and other competitions, we rank solvers based only on the number of instances
solved, breaking ties according to the time spent, as in [45]. The actual scoring system used in the
2007 edition was more complex, as it accounted also for which instances were solved: for example it
attributed more points for instances which were solved by less contestants. Ours is an obliged choice
as it is the way in which the results for our comparison terms were presented, and we do not know
their performance on each instance. According to the actual scoring system, in 2007 SATzilla won
the gold medal in both crafted and random categories. The ranking we use corresponds to the one
presented here: http://www.cril.univ-artois.fr/SAT07/results/ranking.php?idev=11. The actual scores
are available here: http://www.satcompetition.org/.

http://www.cril.univ-artois.fr/SAT07/results/ranking.php?idev=11
http://www.satcompetition.org/

74 M. Gagliolo, J. Schmidhuber

10
- 2

10
0

10
2

10
- 2

10
0

10
2

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]
Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
- 2

10
0

10
2

10
- 2

10
0

10
2

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

620 640 660 680 700 720 740
20

40

60

80

100

120

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA
OffG- Oracle

solved avg. t SU OVH

728 22.1 5.20 0
621 114.9 1 4.20
641 112.4 1.02 4.09

GAMBLETA 647.0 97.8 1.18 3.43
OFFG-ORACLE − 76 1.52 2.42

On 20 runs: won 20, WTU 0.

ORACLE

WINNER

UNIFORM

Fig. 7 QBF’07, Formal verification, 16 algorithms, 728 instances, timeout 600 s. Winner:
AQME-C4.5. Uniform would have won. Top left Log-log comparison among the runtime of Winner
(vertical axis) and Oracle (horizontal axis), on each instance (plus, circle if timeout). Top right
Same plot for GambleTA (1 run). Bottom left Average time vs. instances solved before timeout,
for GambleTA (20 runs) and comparison terms. Bottom right Numerical results (conf. bounds on 20
runs for GambleTA)

fair, as this allocator is based on prior knowledge of all runtimes. The performance
of this allocator may be seen as a 4-approximation of the optimal per set allocation,
which is the ideal lower bound also for GambleTA, as in this case we did not use any
features, so we are also performing per set allocation.

Figure 1 reports results for the hand-crafted category. The problem sequence
consisted of artificially created SAT and UNSAT instances, 129 of which could be
solved during the competition, with number of variables ranging from 45 to 19,000,
and clause-to-variable ratio between 2.67 (underconstrained) and 89 (heavily over-
constrained). The winner in this category, minisatSAT, could solve 98 instances:
its performance is compared to Oracle in the top-left plot of Fig. 1. This algorithm
timed out on 31 instances (represented by the red circles): apart these and a few
others instances on which it is WTU, its performance is otherwise similar to Oracle.
This algorithm more or less dominates the scene, together with SATzilla, which
ranked second in this case. The other contestants lag far behind.

A similar situation can be observed in the industrial category (Fig. 2), consisting
of 166 hard instances from real industrial applications, mostly hardware verification,

Algorithm portfolio selection as a bandit problem 75

10
- 2

10
0

10
2

10
- 2

10
- 1

10
0

10
1

10
2

10
3

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]
Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
- 2

10
0

10
2

10
- 2

10
- 1

10
0

10
1

10
2

10
3

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

282 283 284 285 286 287 288
0

5

10

15

20

25

30

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA
OffG- Oracle

solved avg. t SU OVH

287 2.6 2.14 0
286 5.6 1 1.14
283 29.5 0.19 10.31

283.8 13.6 0.41 4.21
− 5 1.06 1.02

On 20 runs: won 0, WTU 0.

GAMBLETA
OFFG-ORACLE

ORACLE

WINNER

UNIFORM

Fig. 8 QBF’07, Horn clause forms., 16 algorithms, 287 instances, timeout 600 s. Winner:
ncQuBE1.1. Top left Log-log comparison among the runtime of Winner (vertical axis) and Oracle
(horizontal axis), on each instance (plus, circle if timeout). Top right Same plot for GambleTA (1
run). Bottom left Average time vs. instances solved before timeout, for GambleTA (20 runs) and
comparison terms. Bottom right Numerical results (conf. bounds on 20 runs for GambleTA)

ranging from 505 to more than 2 millions variables, with ratios between 2.58 and
163. In this case the dominating algorithms are picosat and Rsat: both solve 139
instances, but the latter is faster. Apart one exception, all instances where the winner
times out are hard also for other algorithms who can solve them (see the red circles
at the top-right in the plot for Winner, top left in Fig. 2).

In both categories, the performances of Winner, Uniform, GambleTA and OnG-
Exp3 are similar. Out of 20 runs, GambleTA wins the hand-crafted category 10 times,
and it always improves over Uniform and OnG-Exp3. The situation is slightly worse
in the industrial category: here GambleTA wins only on 1 run, which is clearly an
outlier (see Fig. 2, bottom-right plot), and it is outperformed by Uniform (WTU)
and OnG-Exp3 (WTG) on 5 and 16 runs respectively. In both cases, GambleTA
and Winner obtain a comparable performance: with such short instance sequences,
further improvements are arguably difficult. The situation changes in the random
category (Fig. 3), which consists of 411 randomly generated instances, with a number
of variables between 45 and 19,000, and ratio between 2.67 and 89. The winner,
March KS, can only solve 257 instances, and is WTU on many of them (the points
above the continuous line in the top-left plot). The improvement obtained by

76 M. Gagliolo, J. Schmidhuber

10
- 2

10
0

10
2

10
4

10
- 2

10
0

10
2

10
4

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]
Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
- 2

10
0

10
2

10
4

10
- 2

10
0

10
2

10
4

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

760 770 780 790
20

40

60

80

100

120

140

160

180

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA
OffG- Oracle

solved avg. t SU OVH

790 27.4 1.26 0
788 34.4 1 0.26
758 167.3 0.21 5.10

773.9 68.9 0.50 1.51
− 35 0.98 0.28

On 20 runs: won 0, WTU 0.

GAMBLETA
OFFG-ORACLE

ORACLE

WINNER

UNIFORM

Fig. 9 Max-SAT’07, Max-SAT, 13 algorithms, 790 instances, timeout 1,800 s. Winner: maxsatz.
Top left Log-log comparison among the runtime of Winner (vertical axis) and Oracle (horizontal
axis), on each instance (plus, circle if timeout). Top right Same plot for GambleTA (1 run). Bottom
left Average time vs. instances solved before timeout, for GambleTA (20 runs and comparison terms.
Bottom right Numerical results (conf. bounds on 20 runs for GambleTA)

GambleTA can be seen already in the log-log comparison with the Oracle (top-
right) where only a few points are WTU. In this case both OnG-Exp3 and Uniform
would have won the competition, and GambleTA manages to do better, solving
between 302 and 319 instances.

Figures 4–6 report instead results of the three categories of the 2009 edition16

of the competition. In that occasion, Uniform would not have won in any of the
category. On 20 runs, GambleTA wins 10 and 19 times in the crafted and random
categories, respectively.

6.4 Other competitions

Another competition was held at the SAT 2007 conference among quantified
Boolean formulas (QBF) solvers. This problem is a generalization of the SAT

16In this edition, the scoring system was simplified to the same criterion we use here, such that the
winner was the algorithm which solved the most instances, in the least time.

Algorithm portfolio selection as a bandit problem 77

10
- 2

10
0

10
2

10
4

10
- 2

10
0

10
2

10
4

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]
Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
- 2

10
0

10
2

10
4

10
- 2

10
0

10
2

10
4

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

300 350 400
0

100

200

300

400

500

600

700

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA
OffG- Oracle

solved avg. t SU OVH

396 85.0 7.40 0
270 629.3 1 6.40
343 381.5 1.65 3.49

349.0 327.3 1.93 2.85
− 232 2.71 1.73

On 20 runs: won 20, WTU 1.

GAMBLETA
OFFG-ORACLE

ORACLE

WINNER

UNIFORM

Fig. 10 PB’07, Opt. small ints., 16 algorithms, 396 instances, timeout 1,800 s. Winner: bsolo3..
Uniform would have won. Top left Log-log comparison among the runtime of Winner (vertical axis)
and Oracle (horizontal axis), on each instance (plus, circle if timeout). Top right Same plot for
GambleTA (1 run). Bottom left Average time vs. instances solved before timeout, for GambleTA
(20 runs) and comparison terms. Bottom right Numerical results (conf. bounds on 20 runs for
GambleTA)

problem, where clauses can be formed using also the operators ∃ and ∀, in addition
to the negation. In Figs. 7 and 8 we present results for the two categories of formal
verification (728 solved instances) and Horn clause formulas (287 solved instances),
respectively: the remaining categories consisted of less than 100 instances.

On the formal verification benchmark (Fig. 7), GambleTA improves sensibly on
the performance of the winner, which does not clearly dominate, and can only solve
621 instances: also Uniform would have won in this case, but GambleTA is always
better. The weighted overhead on the whole sequence is about 0.23.

The Max-SAT’07 competition was also held at the SAT 2007 conference. In this
case, the contestants were solving optimization problems: the runtimes reported are
the times to find the global optimum, and prove its optimality. Figure 9 reports results
for the Max-SAT category of the competition, the one with the most instances. The
performance of Winner is closer to Oracle, its overhead being 0.25. GambleTA has
a relatively poor performance, with an overhead of 1.51, but it improves a lot over
Uniform.

The pseudo-Boolean optimization problem (or zero-one integer programming)
consists in minimizing a function of Boolean variables, subject to algebraic

78 M. Gagliolo, J. Schmidhuber

10
- 2

10
0

10
2

10
4

10
- 2

10
0

10
2

10
4

Oracle (single best per instance) [s]

W
in

ne
r

(s
in

gl
e

be
st

 p
er

 s
et

)
[s

]
Runtime of Winner, on each instance

Solved
Timeout
Uniform
Oracle

10
- 2

10
0

10
2

10
4

10
- 2

10
0

10
2

10
4

Oracle (single best per instance) [s]

G
am

bl
eT

A
 [s

]

Runtime of GambleTA, on each instance (1 run)

Solved
Timeout
Uniform
Oracle

1060 1080 1100 1120 1140

50

100

150

200

Number of instances solved

A
ve

ra
ge

 ti
m

e
pe

r
in

st
an

ce
 [s

]

Competition results (20 runs)

Oracle
Winner
Uniform
GambleTA
OffG- Oracle

solved avg. t SU OVH

1140 39.2 3.23 0
1093 126.4 1 2.23
1068 187.5 0.67 3.78

1077.6 141.9 0.89 2.62
− 92 1.37 1.35

On 20 runs: won 0, WTU 0.

GAMBLETA
OFFG-ORACLE

ORACLE

WINNER

UNIFORM

Fig. 11 CPAI’06, Binary ext., 15 algorithms, 1,140 instances, timeout 1,800 s. Winner: VALCSP3..
Top left Log-log comparison among the runtime of Winner (vertical axis) and Oracle (horizontal
axis), on each instance (plus, circle if timeout). Top right Same plot for GambleTA (1 run). Bottom
left Average time vs. instances solved before timeout, for GambleTA (20 runs) and comparison
terms. Bottom right Numerical results (conf. bounds on 20 runs for GambleTA)

constraints. The PB’07 track at SAT 2007 consisted of five categories. In Fig. 10 we
present results for the largest one, (optimization, small integers, linear constraints).
GambleTA wins all 20 runs, and also Uniform would have won.

The CPAI’06 competition was held at the 2006 conference on Constraint Pro-
gramming (CP 2006). Figure 11 present results for one of the categories for the
Constraint Satisfaction problem. Also in this case, as in Max-SAT, GambleTA
improves over Uniform, but not over Winner.

6.5 Bandit problem solver performance

In this section we study the behavior of the BPS on some of the competitions.
Figure 12 reports the total number of pulls for each arm, i.e., the number of

instances solved by each allocator. As expected, the Uniform allocator is used less
times, which indicates that the remaining model-based allocators eventually obtain
a better performance. Their use varies greatly among different runs, and different
benchmarks, but the expected time allocator (Et) is used less often.

Algorithm portfolio selection as a bandit problem 79

U Q Et Gr C
0

50

100

150

200

T
im

es
 p

ic
ke

d

Time allocator

SAT’07, Random

U Q Et Gr C
0

100

200

300

400

500

600

700

800

T
im

es
 p

ic
ke

d

Time allocator

CPAI’06, Binary ext.

U Q Et Gr C
0

100

200

300

400

500

600

700

T
im

es
 p

ic
ke

d

Time allocator

Max- SAT’07, Max- SAT

U Q Et Gr C
0

100

200

300

400

500

T
im

es
 p

ic
ke

d

Time allocator

QBF’07, Formal verification

Fig. 12 BPS: Number of pulls for each arm (number of instances solved with each TA, on 20 runs).
In this and the following box-plot graphs, the central (red) line represents the median, while box
ends correspond to the upper and lower quartiles. The whiskers extend to a maximum of 1.5 times
the interquantile range, and points exceeding this interval are marked as outliers (red plus signs).
Notches on the sides of the box correspond to a 95% confidence interval on the median

To further investigate the impact of each allocator, in Figs. 13 and 14 we report
the performance of GambleTA, in terms of cumulative time, obtained with different
TA sets. The label “All” refers to the baseline GambleTA with all 5 allocators
(Section 6.1). The following four labels refer to the deletion of a single allocator:
“WoQ” stands for “Without Quantile”, and so on for Expected Time (Et), Greedy
(Gr), Contract (C). The remaining four labels refer to sets of two allocators, where
Uniform is combined with a single model-based allocator. The random reordering of
the instances was the same for each benchmark. While the performance of the single
allocators varies on the different benchmarks, “All” is always competitive with the
best single allocator, which confirms that the BPS follows the performance of the
best arm.17

17The fact that sets with more allocators seem to be consistently better is counter-intuitive: it can be
understood considering what happens when the BPS selects a suboptimal arm. If there are only two
allocators, the suboptimal one will be Uniform; if there are several allocators, as in All, WoQ, etc.,
it will likely be another model-based allocator, with a better performance.

80 M. Gagliolo, J. Schmidhuber

Fig. 13 BPS: Deletion
experiments with different TA
sets (20 runs). All GambleTA
with 5 allocators. WoQ
Without the quantile allocator.
Q Only with Uniform and
quantile allocators. Analogous
for expected time (Et), greedy
(Gr) and contract (C)
allocators

All WoQ WoEt WoGr WoC Q Et Gr C

6

6.2

6.4

6.6

6.8

7

7.2

x 105

T
ot

al
 ti

m
e

TA Set

SAT’07, Random, GambleTA, TA Deletion

All WoQ WoEt WoGr WoC Q Et Gr C

4

6

8

10

12

x 10
4

T
ot

al
 ti

m
e

TA Set

Max−SAT’07, Max−SAT, GambleTA, TA Deletion

6.6 Discussion

Table 1 summarizes the results of all reported experiments. A first surprising
outcome is that Uniform is already competitive with Winner, even better in several
cases. This may seem counter-intuitive, as the performance of this trivial portfolio
is always N times slower than Oracle: but we have seen that Winner can be
several orders of magnitude worse than Oracle on some of the instances, and the
competitions where Uniform would have won are indeed those where the variations
in performance are more pronounced.

To analyze the results for GambleTA, we can roughly classify these scenarios
in two categories, based on whether there is or not a single algorithm whose
performance is good enough to almost dominate the others. When this is the
case (as with, e.g., the Horn Clause formulas of QBFEVAL’07, Fig. 8, Max-SAT,
Fig. 9), the performance of the best per set algorithm, Winner, is close to the
performance of the best per instance, Oracle, and there is not much margin for
improvement: in these cases GambleTA is worse than Winner, but still comparable.
When instead Winner has a poor performance compared to Oracle, there is a great
potential performance improvement: this situation is met, for example, in SAT’07
Random (Fig. 3), QBFEVAL’07 Formal Verification (Fig. 7), PB’07 Optimization,
small integer constraints (Fig. 10). In these cases, GambleTA improves greatly over
Winner.

Moreover, the performance of GambleTA is consistently better than Uniform:
GambleTA wins all the competitions where Uniform would have won, and some

Algorithm portfolio selection as a bandit problem 81

Fig. 14 BPS: Deletion
experiments with different TA
sets (20 runs). All GambleTA
with 5 allocators. WoQ
without the quantile allocator.
Q only with Uniform and
quantile allocators. Analogous
for expected time (Et), greedy
(Gr) and contract (C)
allocators

All WoQ WoEt WoGr WoC Q Et Gr C
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

x 10

T
ot

al
 ti

m
e

TA Set

CPAI’06, Binary ext., GambleTA, TA Deletion

All WoQ WoEt WoGr WoC Q Et Gr C

6.5

7

7.5

8

x 104

5

T
ot

al
 ti

m
e

TA Set

QBF’07, Formal verification, GambleTA, TA Deletion

more. This was expected, as Uniform is one of the arms of the BPS in GambleTA, so
the performance of GambleTA cannot be much worse: the fact that it is consistently
better is an indirect sign that the model based allocators are improving over Uniform.
This improvement was often observed to be surprisingly fast: usually already after 50
instances or so the performance converges to the one observed at the end of the
sequence. This seems to suggest that a rough RTD model already allows to allocate
time efficiently.

Regarding the single allocators, it seems that none is irreplaceable: their per-
formance varies on the different benchmarks, and GambleTA is quite successful
in exploiting the best one, thanks to the bandit problem solver (Section 6.5). The
systematic disadvantage of the expected time allocator, visible on most benchmarks,
may be due to the use of a non-parametric estimator, which often results in improper
RTDs. The greedy allocator, based on [47], has the advantage of being faster to
evaluate, as its complexity is O(N), and easier to implement, as it keeps a single
algorithm active.

7 Conclusions

We introduced Exp3Light-A, a bandit problem solver for loss games with partial
information and an unknown bound on losses, extending the work of [6]. Based
on this, we proposed a simpler version of GambleTA [17], a framework for online
algorithm portfolio selection.

82 M. Gagliolo, J. Schmidhuber

The problems which we consider are all those problems for which the only
performance criterion is solution time, such as decision or search problems (find a
solution, or prove that none exists), decision versions of optimization problems (find
a solution of given quality), combinatorial optimization (find a solution and prove
its optimality). The algorithms can be generalized Las Vegas Algorithms (gLVA)
[23], meaning that their runtime is a random variable, possibly infinite. This includes
complete algorithms, based on exhaustive search, and incomplete algorithms, based
on local search. The requirements for using GambleTA are trivial: that each instance
can be solved by at least one of the algorithms, and by all allocators. The latter
condition can be easily satisfied when the former holds.

The idea behind GambleTA is to alternate a “default” way of allocating time, not
requiring any prior knowledge on algorithm performance, (the Uniform portfolio)
with one or more methods which learn to allocate time, based on runtimes observed
so far. The ratio behind this idea is to exploit predictable regularities in algorithm
performance, while reducing the cost of its exploration. The idea is implemented us-
ing a bandit problem solver (BPS): the alternative allocators correspond to different
arms of the bandit, each instance constitutes a trial, and the time spent solving it
represents the loss. Compared to related work, GambleTA can be seen as a practical
implementation of model-based portfolios (Section 2.2), where the performance
models are learned online, starting from scratch, instead of being available a priori.
In the terminology used in Section 2, it is therefore an online method, while other
properties (static vs. dynamic, per set vs. per instance) depend on the time allocators
used.

The BPS used should be able to deal with unbounded losses, as it is difficult
to predict a maximum runtime. The use of Exp3Light-A avoids the setting of any
additional parameter, and provides a bound on regret with respect to the best time
allocator. The choices of the algorithm set, and of the time allocators, are still left to
the user. Any existing allocator, model-based or not, can be employed, including
alternative algorithm portfolio techniques (Section 2.2, 2.3), or single algorithm
selection methods (Section 2.1). In this paper, we used the RTD-based allocators
introduced in [17], in their dynamic, per set version, and a simple variation, also based
on estimated RTDs, of the greedy allocator from [47].

Several experiments were performed in a variety of hard practical settings, using
data from solver competitions in different fields. The performance was quite robust:
our method obtains competitive results while starting from scratch. often improving
over the best algorithm. We compared our results with those of OffG-Oracle [46],
an offline method based on a priori knowledge of the runtimes. For three of the
competitions, we could also compare our results with those of another online method,
OnG-Exp3 [46], obtaining similar or better results.

The most promising and challenging direction for future research is that of an
extension to optimization problems. The most general performance model for opti-
mization algorithms is a bivariate distribution, relating runtime to solution quality.
Such distribution can be analyzed considering runtime as a dependent variable, and
modeling the solution quality distribution (SQD) for an arbitrary runtime value
[23]. In statistical terminology, this is an example of longitudinal data, which can
be described using mixed ef fects models [10]. In [15] we presented preliminary
experiments, showing that nonlinear mixed-effects models can be used to predict
the performance of optimization algorithms. The issue with such models is their

Algorithm portfolio selection as a bandit problem 83

computational complexity, which scales badly with the size of the sample, rendering
their use in time allocation problematic.

Acknowledgements We would like to thank Nicolò Cesa-Bianchi, and Matt Streeter, for useful
remarks on their respective work. This research was supported by the Hasler foundation with grant
n. 2244, and by the Swiss National Science Foundation (SNF), with grant for prospective researchers
n. PBTI22 − 118573.

Appendix: Bound on the regret of Exp3Light-A

In this appendix we prove Theorem 2, following the proof technique employed in [6,
Theorem 4]. Be iu the last trial of epoch u, i. e. the first trial at which a loss lI(i)(i) > 2u

is observed. Write cumulative losses during an epoch u, excluding the last trial iu, as
L(u) = ∑iu−1

i=iu−1+1 l(i), and let L∗(u) = minj
∑iu−1

i=iu−1+1 lj(i) indicate the optimal loss for
this subset of trials. Be U = u(M) the a priori unknown epoch at the last trial. In
each epoch u, the bound (13) holds with Lu = 2u for all trials except the last one iu,
so noting that log(M − i) ≤ log(M) we can write:

E{L(u)

E } − L∗(u) ≤ 2
√

6Lu(log K + K log M)KL∗(u)

+Lu

[
2
√

2Lu(log K + K log M)K

+(2K + 1)(1 + log4(3M + 1))
]
. (17)

The loss for trial iu can only be bound by the next value of Lu, evaluated a
posteriori:

E{lE(iu)} − l∗(iu) ≤ Lu+1, (18)

where l∗(i) = minj lj(i) indicates the optimal loss at trial i.
Combining (17,18), and writing i−1 = 0, iU = M, we obtain the regret for the whole

game:18

E{LE(M)} −
U∑

u=0

L∗(u) −
U∑

u=0

l∗(iu) ≤
U∑

u=0

{

2
√

6Lu(log K + K log M)KL∗(u)

+ Lu

[
2
√

2Lu(log K + K log M)K

+(2K + 1)(1 + log4(3M + 1))
] }

+
U∑

u=0

Lu+1. (19)

18Note that all cumulative losses are counted from trial iu−1 + 1 to trial iu − 1. If an epoch ends
on its first trial, (17) is zero, and (18) holds. Writing iU = M implies the worst case hypothesis that
the bound LU is exceeded on the last trial. Epoch numbers u are increasing, but not necessarily
consecutive: in this case the terms related to the missing epochs are 0.

84 M. Gagliolo, J. Schmidhuber

The first term on the right hand side of (19) can be bounded using Jensen’s inequality

U∑

u=0

√
au ≤

√
√
√
√(U + 1)

U∑

u=0

au,

with

au = 24Lu(log K + K log M)KL∗(u)

≤ 24LU+1(log K + K log M)KL∗(u). (20)

The other terms do not depend on the optimal losses L∗(u), and can also be bounded
noting that Lu ≤ LU+1.

We now have to bound the number of epochs U . This can be done noting that the
maximum observed loss cannot be larger than the unknown, but finite, bound L, and
that

U + 1 = �log2 maxilI(i)(i)� ≤ �log2 L�, (21)

which implies

LU+1 = 2U+1 ≤ 2L. (22)

In this way we can bound the sum

U∑

u=0

Lu+1 ≤
�log2 L�∑

u=0

2u ≤ 21+�log2 L� ≤ 4L. (23)

We conclude by noting that

L∗(M) = minjLj(M)

≥
U∑

u=0

L∗(u) +
U∑

u=0

l∗(iu) ≥
U∑

u=0

L∗(u). (24)

Inequality (19) then becomes:

E{LE(M)} − L∗(M) ≤ 2
√

6(U + 1)LU+1(log K + K log M)KL∗(M)

+(U + 1)LU+1

[
2
√

2LU+1(log K + K log M)K

+(2K + 1)(1 + log4(3M + 1))
]

+ 4L.

(25)

Plugging in (21, 22) and rearranging, we obtain (14).

References

1. Allenberg, C., Auer, P., Györfi, L., Ottucsák, G.: Hannan consistency in on-line learning in case
of unbounded losses under partial monitoring. In: Balcázar, J.L., Long, P.M., Stephan, F. (eds.)
Algorithmic Learning Theory—ALT. LNCS, vol. 4264, pp. 229–243. Springer (2006)

Algorithm portfolio selection as a bandit problem 85

2. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit
problem. SIAM J. Comput. 32(1), 48–77 (2002)

3. Babai, L.: Monte-Carlo Algorithms in Graph Isomorphism Testing. Technical Report 79-10,
Univ. de Montréal, Dép. de mathématiques et de statistique (1979)

4. Battiti, R., Brunato, M., Mascia, F.: Reactive search and intelligent optimization. In: Operations
Research/Computer Science Interfaces, vol. 45. Springer Verlag, Berlin (2008)

5. Cesa-Bianchi, N., Lugosi, G., Stoltz, G.: Minimizing regret with label efficient prediction. IEEE
Trans. Inf. Theory 51(6), 2152–2162 (2005)

6. Cesa-Bianchi, N., Mansour, Y., Stoltz, G.: Improved second-order bounds for prediction with
expert advice. In: Auer, P., Meir, R. (eds.) 18th Annual Conference on Learning Theory—
COLT. LNCS, vol. 3559, pp. 217–232. Springer (2005)

7. Cesa-Bianchi, N., Mansour, Y., Stoltz, G.: Improved second-order bounds for prediction with
expert advice. Mach. Learn. 66(2–3), 321–352 (2007)

8. Finkelstein, L., Markovitch, S., Rivlin, E.: Optimal schedules for parallelizing anytime algo-
rithms: the case of independent processes. In: Eighteenth National Conference on Artificial
Intelligence—AAAI, pp. 719–724. AAAI Press (2002)

9. Finkelstein, L., Markovitch, S., Rivlin, E.: Optimal schedules for parallelizing anytime algo-
rithms: the case of shared resources. J. Artif. Intell. Res. 19, 73–138 (2003)

10. Fitzmaurice, G., Davidian, M., Verbeke, G., Molenberghs, G.: Longitudinal Data Analysis.
Chapman & Hall/CRC Press (2008)

11. Gagliolo, M., Zhumatiy, V., and Schmidhuber, J.: Adaptive online time allocation to search
algorithms. In: Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) Machine Learn-
ing: ECML 2004. Proceedings of the 15th European Conference on Machine Learning. LNCS,
vol. 3201, pp. 134–143. Springer (2004)

12. Gagliolo, M.: Universal search. Scholarpedia 2(11), 2575 (2007)
13. Gagliolo, M.: Online dynamic algorithm portfolios. PhD thesis, IDSIA/University of Lugano,

Lugano, Switzerland (2010)
14. Gagliolo, M., Legrand, C.: Algorithm survival analysis. In: Bartz-Beielstein, T., Chiarandini,

M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization
Algorithms, pp. 161–184. Springer, Berlin, Heidelberg (2010)

15. Gagliolo, M., Legrand, C., Birattari, M.: Mixed-effects modeling of optimisation algorithm per-
formance. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) Engineering Stochastic Local Search
Algorithms—SLS. LNCS, vol. 5752, pp. 150–154. Springer (2009)

16. Gagliolo, M., Schmidhuber, J.: A neural network model for inter-problem adaptive online time
allocation. In: Duch, W., et al. (eds.) Artificial Neural Networks: Formal Models and Their
Applications—ICANN, Proceedings, Part 2. LNCS, vol. 3697, pp. 7–12. Springer, Berlin (2005)

17. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell.
47(3–4), 295–328 (2006)

18. Gagliolo, M., Schmidhuber, J.: Learning restart strategies. In: Veloso, M.M. (ed.) Twentieth
International Joint Conference on Artificial Intelligence—IJCAI, vol. 1, pp. 792–797. AAAI
Press (2007)

19. Gagliolo, M., Schmidhuber, J.: Towards distributed algorithm portfolios. In: Corchado, J.M.,
et al. (eds.) International Symposium on Distributed Computing and Artificial Intelligence—
DCAI. Advances in Soft Computing, vol. 50, pp. 634–643. Springer (2008)

20. Gagliolo, M., Schmidhuber, J.: Algorithm selection as a bandit problem with unbounded losses.
In: Blum, C., Battiti, R. (eds.) Learning and Intelligent Optimization. 4th International Confer-
ence, LION 4, Venice, Italy, January 18–22 (2010) Selected Papers, Lecture Notes in Computer
Science, vol. 6073, pp. 82–96. Springer, Berlin, Heidelberg (2010)

21. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)
22. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and

constraint satisfaction problems. J. Autom. Reason. 24(1–2), 67–100 (2000)
23. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Morgan

Kaufmann (2004)
24. Horvitz, E.J., Zilberstein, S.: Computational tradeoffs under bounded resources (editorial).

Artif. Intell. 126(1–2), 1–4 (2001)
25. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational prob-

lems. Science 27, 51–53 (1997)
26. Hutter, F., Hamadi, Y.: Parameter Adjustment Based on Performance Prediction: Towards

an Instance-aware Problem Solver. Technical Report MSR-TR-2005-125, Microsoft Research,
Cambridge, UK, (2005)

86 M. Gagliolo, J. Schmidhuber

27. Kaplan, E.L., Meyer, P.: Nonparametric estimation from incomplete samples. J. Am. Stat. Assoc.
73, 457–481 (1958)

28. Klein, J.P., Moeschberger, M.L.: Survival Analysis: Techniques for Censored and Truncated
Data, 2nd edn. Springer, Berlin (2003)

29. Kolen, J.F.: Faster learning through a probabilistic approximation algorithm. In: IEEE Interna-
tional Conference on Neural Networks, vol. 1, pp. 449–454 (1988)

30. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of optimization
problems: the case of combinatorial auctions. In: Van Hentenryck, P. (ed.) ICCP: International
Conference on Constraint Programming (CP). LNCS, vol. 2470, pp. 556–572. Springer (2002)

31. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput. 108(2), 212–261
(1994)

32. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Inf. Process.
Lett. 47(4), 173–180 (1993)

33. Mitchell, T.M.: Machine Learning. McGraw-Hill Science/Engineering/Math (1997)
34. Muselli, M., Rabbia, M.: Parallel trials versus single search in supervised learning. In: Simula,

O. (ed.) Second International Conference on Artificial Neural Networks—ICANN, pp. 24–28.
Elsevier (1991)

35. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Understanding random
SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) Principles and Practice of
Constraint Programming—CP. LNCS, vol. 3258, pp. 438–452. Springer (2004)

36. Petrik, M.: Learning Parallel Portfolios of Algorithms. Master’s thesis, Comenius University
(2005)

37. Petrik, M.: Statistically Optimal Combination of Algorithms. Presented at SOFSEM (2005)
38. Petrik, M., Zilberstein, S.: Learning parallel portfolios of algorithms. Ann. Math. Artif. Intell.

48(1–2), 85–106 (2006)
39. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley-

Interscience, New York (1994)
40. Rice, J.R.: The algorithm selection problem. In: Rubinoff, M., Yovits, M.C. (eds.) Advances in

Computers, vol. 15, pp. 65–118. Academic Press (1976)
41. Robbins, H.: Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc. 58,

527–535 (1952)
42. Sayag, T., Fine, S., Mansour, Y.: Combining multiple heuristics. In: STACS, pp. 242–253 (2006)
43. Schaul, T., Schmidhuber, J.: Metalearning. Scholarpedia 5(6), 4650 (2010)
44. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection.

ACM Comput. Surv. 41(1), 1–25 (2008)
45. Streeter, M.: Using Online Algorithms to Solve NP-hard Problems more Efficiently in Practice.

PhD thesis, Carnegie Mellon University (2007)
46. Streeter, M., Smith, S.F.: New techniques for algorithm portfolio design. In: McAllester, D.A.,

Myllymäki, P. (eds.) 24th Conference on Uncertainty in Artificial Intelligence—UAI, pp. 519–
527. AUAI Press (2008)

47. Streeter, M.J., Golovin, D., Smith, S.F.: Combining multiple heuristics online. In: Holte, R.C.,
Howe, A. (eds.) Twenty-second AAAI Conference on Artificial Intelligence, pp. 1197–1203.
AAAI Press (2007)

48. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: the design and analysis of
an algorithm portfolio for SAT. In: Bessiere, C. (ed.) Principles and Practice of Constraint
Programming—CP. LNCS, vol. 4741, pp. 712–727. Springer (2007)

49. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection
for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

	Algorithm portfolio selection as a bandit problem with unbounded losses
	Abstract
	Introduction
	Related work
	Model based selection, per instance
	Model based allocation, per instance
	Model free allocation, per set

	Time allocators
	RTD of a portfolio
	Static allocation
	Dynamic allocation
	Greedy task-switching schedules

	Online time allocation
	Time allocators as experts

	Unbounded losses
	Experiments
	Settings
	Plotting results
	SAT solvers competitions
	Other competitions
	Bandit problem solver performance
	Discussion

	Conclusions
	Appendix: Bound on the regret of Exp3Light-A
	References

