
Algorithm Selection Based on Exploratory Landscape
Analysis and Cost-Sensitive Learning

Bernd Bischl
∗

TU Dortmund, Germany
bischl@statistik.tu-

dortmund.de

Olaf Mersmann
TU Dortmund, Germany
olafm@statistik.tu-

dortmund.de

Heike Trautmann
TU Dortmund, Germany

trautmann@statistik.tu-
dortmund.de

Mike Preuss
TU Dortmund, Germany

mike.preuss@tu-
dortmund.de

ABSTRACT
The steady supply of new optimization methods makes the
algorithm selection problem (ASP) an increasingly pressing
and challenging task, especially for real-world black-box op-
timization problems. The introduced approach considers the
ASP as a cost-sensitive classification task which is based on
Exploratory Landscape Analysis. Low-level features gath-
ered by systematic sampling of the function on the feasible
set are used to predict a well-performing algorithm out of a
given portfolio. Example-specific label costs are defined by
the expected runtime of each candidate algorithm. We use
one-sided support vector regression to solve this learning
problem. The approach is illustrated by means of the opti-
mization problems and algorithms of the BBOB’09/10 work-
shop.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization, Unconstrained
Optimization; G.3 [Probability and Statistics]: Statistical Com-
puting; I.2.6 [Learning]: Knowledge Acquisition

General Terms
Experimentation, Algorithms, Performance

Keywords
algorithm selection, evolutionary optimization, fitness land-
scape, exploratory landscape analysis, BBOB test set, bench-
marking, machine learning
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1. INTRODUCTION
The algorithm selection problem (ASP) (Rice, 1976) resembles

the old desire to choose the right optimization algorithm for
a not well-known optimization task without enumerating all
available techniques. Although there are algorithms coping
well with many problems, a cleverly constructed portfolio
provides better efficiency than any single algorithm even on
a small set of problems as, e.g., the BBOB test set, see the
results of the related 2009 and 2010 competitions in Hansen
et al. (2010) and Auger et al. (2010). Thus, the ASP can be
regarded as still important and largely unsolved.

We suggest to employ Exploratory Landscape Analysis (ELA)
techniques to approach this problem. The low-level features
presented in Mersmann et al. (2011) are a first step to au-
tomatically and numerically characterize the landscape of a
given fitness function. Section 2 gives an introduction into
the ELA background and describes the employed features.
The long term goal is to provide a method that is able to se-
lect a good algorithm for an arbitrary problem. As a first
approach we use the 24 BBOB functions as a representative
benchmark set.

Taking into account that some of the tested algorithms are
not really competitive on any of the BBOB functions and that
a practical portfolio should be as small as possible, we select
4 diverse optimizers from the ones that have been run in 2009
and 2010. Assuming we had an oracle, which would always
select the correct algorithm for us given a test function, the
chosen subset is optimal among all subsets of the same size.
Furthermore, its performance is not far off from the one we
would obtain by considering a selection oracle for all avail-
able algorithms.

Now a machine learning model has to be constructed that
selects a well-performing algorithm from the portfolio based
on the extracted ELA features. Usually this problem is tack-
led either by standard classification (given the features, pre-
dict the best algorithm) or regression (given the features, pre-
dict the performance measure for each algorithm, then se-
lect the algorithm with the best predicted value). But in our
opinion both approaches fail to optimally solve the problem
at hand: How do we score suboptimal selections and how
can this information best be incorporated into the model fit-
ting process? It is neither satisfying to minimize the clas-
sification error (because the penalty we incur for a wrong
selection should depend on the gap in performance to the
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optimal choice), nor do we have to accurately predict perfor-
mance values given a feature vector (this will in general be
impossible and we only care about the order of the predicted
performances). For practical applications, we need to min-
imize the loss in runtime for the predicted algorithm when
compared with the optimal available candidate. This implies
some form of cost-sensitive learning. As the costs in the dis-
cussed scenario are different for each single data point, not
many machine learning models are currently available that
can solve such tasks with example-specific costs. We propose
to use the recently published method of one-sided support
vector regression (Tu and Lin (2010)), which is discussed in
more detail in Section 3.

We are currently unaware of other work that combines au-
tomatically computed, numerical features with a selection
strategy that incorporates the relevant costs of wrong selec-
tions for optimization.

Some interesting questions can be asked concerning the
performance of our approach, and they are answered in the
experimental study presented in Section 4:
• Can we generalize over instances? Meaning, can we train

our model on only some of the BBOB function instances and
predict well-performing algorithms for the remaining ones
that we have never seen?
• Can we even generalize over functions? Not only gener-

alizing over instances but transferring knowledge to com-
pletely unseen function types would be a much stronger re-
sult than generalizing only over instances. If the former can
be done successfully but not the latter, this might indicate
that the BBOB set is too small and its test functions are too
different for effective usage in such learning problems as
considered in this study.
• Do we also need the expensive ELA features, e.g., local

searches, or can satisfying results also be achieved with only
“cheap” features?
We feel that we probably have reached the limit of what

can be achieved with the BBOB data alone with respect to al-
gorithm selection and that more extensive experimental data
is needed to move beyond the results presented here. This
and related aspects are discussed in Section 5. Further dis-
cussion and an outlook on future research are given in 6.

2. EXPLORATORY LANDSCAPE
ANALYSIS: USED FEATURES

Exploratory Landscape Analysis (ELA) aims at extracting
characteristics for a given optimization problem prior to opti-
mization which, in this work, form the basis for an algorithm
recommendation. Preliminary approaches date back to mea-
sures related to fitness distance correlation (Jones and Forrest
(1995)) but did not lead to satisfying results. The reason was
mainly that only a single feature was used, which is by far
not enough to capture and explain all possible differences in
optimization problems. Consequently, the ELA approach is
set-based and much more pragmatic: We define many fea-
tures and then experimentally determine the ones that are
actually useful for a given classification problem.

In Mersmann et al. (2010a) and Bartz-Beielstein and Preuss
(2012) high-level features specified by human experts such
as the level of modality or separability are introduced to re-
flect the problem characteristics. As these features depend on
subjective assessment, experimental low-level features which
are presented in Mersmann et al. (2011) can be automatically

extracted by using systematic sampling of the decision space
using a suitable space filling design. It was shown that these
features not only match the expert designed high-level fea-
tures but that they can be used to successfully predict the
predefined function groups of the BBOB’09/10 function set
with negligible errors.

The starting point for computing our low-level features is
a data set of s different decision variable settings Xs with
respective objective values Y s generated by a random Latin
hypercube (LH) design covering the decision space. We will
denote the combination of search points and corresponding
function values by Ds = [Xs, Y s]. The size of the LH design
increases linearly with the dimension d of the problem which
is one suitable heuristic possibility to account for the increas-
ing problem complexity, i.e., the number of initial points is
chosen as s = c · d, where c is a predefined constant.

The features can be grouped into five classes related to
characteristics of the distribution of the objective function
values (y - Distribution), the relative position of each objec-
tive value compared to the median of all values (Levelset),
meta-modeling of the initial data set (Meta-Model), the es-
timated degree of convexity of the function (Convexity) as
well as the assessment of multimodality by local searches
starting from the initial design points (Local Search). De-
tails are given in Mersmann et al. (2011). Each class con-
tains several lower level sub-features which, in each case, can
be generated using the same experimental data pool. All of
these sub-features are listed in Table 1. The first three feature
classes can be computed directly on the sample without ad-
ditional evaluations and are denoted as “cheap” features in
the following. The last two feature classes require additional
function evaluations. In order to limit the required compu-
tational effort we strive to restrict the analysis to a low-level
feature set which can be computed solely based on the ini-
tial design. However, it is currently not clear if using only
“cheap” features is feasible when tackling the algorithm se-
lection.

3. COST-SENSITIVE LEARNING AND ONE-
SIDED REGRESSION

In this section we briefly introduce a general definition
of cost-sensitive learning and present a solution based on
one-sided support vector regression proposed by Tu and Lin
(2010). The following section will show how to facilitate this
modeling technique in order to select an efficient algorithm
for continuous black-box optimization.

Supervised classification is concerned with creating pre-
dictors mapping from a feature space X (here Rp) to a set
of classes Y = {1, . . . , k}, also called labels. We usually as-
sume a stochastic data-generating process, a distribution P
on X × Y , and a data set {(xi, yi)}ni=1, whose observations
have been independently drawn from P . This data shall be
used to learn the predictor.

Given a parametrized classification model f(x,θ), where
the vector θ denotes the parameters to be determined, our
task can be described as the minimization of the expected
number of misclassifications

min
θ

∫
X×Y

[y 6= f(x,θ)] dP(x, y) . (1)

A multitude of different machine learning algorithms exists
for multiclass-classification (see Hastie et al. (2001)), and of
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Feature group and name Description

y distribution features:
4distr.skewness_y skewness of the distribution of the function values
4distr.kurtosis_y kurtosis of the distribution of the function values
4distr.n_peaks estimation of the number of peaks in the distribution of the function values

Levelset features:
5levelset.lda_mmce_{10,25,50} mean LDA misclassification error for function values split by 0.1, 0.25, 0.5 quantile (estimated by CV)
5levelset.lda_vs_qda_{10,25,50} levelset.lda_mmce_{10,25,50} divided by levelset.qda_mmce_{10,25,50}
6levelset.qda_mmce_{10,25,50} mean QDA misclassification error for function values split by 0.1, 0.25, 0.5 quantile (estimated by CV)
7levelset.mda_mmce_{10,25,50} mean MDA misclassification error for function values split by 0.1, 0.25, 0.5 quantile (estimated by CV)

Meta-model features:
1approx.{linear,lineari}_ar2 adjusted R2 of the estimated linear regression model without and with interaction
1approx.linear_{min,max}_coef minimum and maximum value of the absolute values of the linear model coefficients
2approx.{quadratic,quadratici}_ar2 adjusted R2 of the estimated quadratic regression model without or with interaction
2approx.quadratic_cond maximum absolute over minimum absolute value of the quadratic term coefficients in the quadratic model

Convexity features:
3convex.{linear,convex}_p estimated probability of linearity and convexity
3convex.linear_dev mean deviation from linearity

Local search features:
8ls.n_local_optima number of local optima estimated by the number of identified clusters
8ls.best_to_mean_contrast minimum value of cluster centers divided by the mean value of cluster centers
8ls.{best}_basin_size proportion of points in the best cluster
8ls.mean_other_basin_size mean proportion of points in all clusters but the cluster with the best cluster center
8ls.{min,lq,med,uq,max}_feval 0, 0.25, 0.5, 0.75 and 1 quantile of the distribution of #function evaluations performed during a single local search

Table 1: Low-level features; summary of sub-features within the feature classes. Leading numbers refer to the feature group
the low-level feature belongs to. LDA, QDA and MDA denote linear, quadratic resp. mixture discriminant analysis. The
two groups below the double line require additional evaluations.

course it is usually impossible to tackle (1) directly. As we do
not know P , we have to fit w.r.t. the training data; minimiz-
ing the number of misclassified examples is computationally
intractable, so we have to approximate the idea expressed in
(1) with something more efficient; and we often combine it
with regularization to restrict the complexity of the model.

A more realistic scenario – especially if we associate spe-
cific actions with our predictions – might be to assume indi-
vidual costs for a predicted class depending on the true label.
The standard examples, where this is obviously reasonable
and necessary, are labeling patients as “sick” or “healthy”
and granting / rejecting credit applications. In such a case
we assume a cost matrix G, where G(i, j) expresses the cost
of classifying an object of class i as class j. Now we naturally
try to minimize

min
θ

∫
X×Y

G(y, f(x,θ)) dP(x, y) (2)

instead of (1). Optimally solving this cost-sensitive problem
for the multiclass case k > 2 is quite hard, and although a lot
of proposed approaches exist, no consensus seems to have
been reached what works best in the general case.

A further generalization allows the costs to depend on the
example x and its features which is the scenario we are inter-
ested in. This is sometimes referred to as cost-sensitive learn-
ing with example-specific costs, see Turney (2000) for a very
extensive taxonomy of cost-sensitive problems. Here, each
observed x has an associated cost vector c, so the available
data set has the form {(xi, ci)}ni=1, where cij specifies the cost
of labeling example i as class j. Therefore, our distribution P
is now defined on X × Rk and, as our goal still is to obtain a
cost-optimal predictor, (2) changes to

min
θ

∫
X×Rk

c(f(x,θ)) dP(x, c) . (3)

Tu and Lin (2010) have proposed to solve the problem (3)

via one-sided support vector regression. They compare their
method to the most common alternatives (not that many ex-
ist) and present convincing empirical results in addition to
some theoretical guarantees. For these reasons we select it as
our method of choice in this paper. We report the main ideas
and formulas of their approach in the following paragraphs.

Construct k regression problem sets Sj = {(xi, cij)}ni=1

from the observed data where j ∈ {1, . . . , k}. Define zij =

1, if cij is the minimal entry in the vector ci, and therefore
labeling xi as class j is the best possible action, otherwise
set zij = −1. Our goal is to construct k regression models
fj , one for each Sj . Then we can estimate the cost vector
ĉ = (f1(x), . . . , fk(x))

T , given a feature vector x, and select
argminj ĉj as our predicted, hopefully not too pricey, label.

The important observation now is that we do not neces-
sarily have to minimize the difference between ĉ and c, e.g.,
by minimizing the squared loss ||c − ĉ||22 or absolute loss
||c − ĉ||1 in the regression. We only have to be concerned
with the property that the true cost of the minimal entry of
ĉ is as close as possible to the minimal entry of c, because
their difference expresses how much we score worse if we
use our predictors fj instead of directly accessing the un-
known true cost vector c to build our decision. Therefore we
choose L(cij , zij , ĉij) = max(0, zij(ĉ

i
j − cij)) as our loss func-

tion. Meaning, we do not penalize underestimating the true
cost of the optimal decision, which can never have a negative
effect on selection, and we penalize overestimation linearly.
For non-optimal labels we proceed vice versa for a similar
reason. Tu and Lin (2010) prove that the true cost of the pre-
dicted label for an example xi is always bounded from above
by

∑k
j=1 L(c

i
j , z

i
j , ĉ

i
j)+min(c), further motivating this choice

of L. As L is either 0 to the left or right of the origin of the
real line, we call a regression based on such L “one-sided”.
Note, that L is not very different from the hinge loss used in
binary support vector classification.

Let us now fix j and construct a regression model for Sj
based on the above motivated loss L. Assuming (for now) a
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linear model f(x,w) = wTx+b and thatL2-regularization of
w makes sense, we define the following primal optimization
problem:

min
w,b

n∑
i=1

L(cij , z
i
j ,w

Txi + b) +
λ

2
||w||22 (4)

Encoding the non-differentiability of L in constraints results
in: 

min
w,b

λ
2
||w||22 +

n∑
i=1

ξi

s.t. ξi ≥ zij(wTxi + b− cij)
ξ ≥ 0 .

(5)

Note that both (4) and (5) are equal to respective formula-
tions in binary support vector classification, if we use zij ∈
{+1,−1} for positive / negative labels and set all cij = 1.
Converting (5) into its dual version and employing the kernel
trick by substituting all scalar products with a kernel func-
tion k(·, ·), we finally arrive at

min
w,b

1
2
αTdiag(z)Kdiag(z)α+ zTα

s.t. zTα = 0

0 ≤ α ≤ 1
λ
.

(6)

Here, K is the kernel matrix with K(i, j) = k(xi,xj), α is
the vector of Lagrange multipliers and diag(z) is a diago-
nal matrix with entries z = (z1j , . . . , z

n
j ). Again, this is very

similar to the dual problem of the standard support vector
machine. It is a quadratic program that we can solve with
the same techniques as the “classic” Support Vector Machine
(SVM) problem. And as usual we obtain a formula for the in-
tercept b from the Karush-Kuhn-Tucker conditions. Finally, a
prediction for a new point x can be obtained by

f(x,α, b) =
∑
i∈SV

−αizijk(x,xj) + b , (7)

where the set SV indexes the support vectors, i.e., SV = {i :
αi > 0}. As always, the kernel trick allowed us to transform
an essentially linear model into a powerful non-linear one.
We use an interior point solver provided by the R package
kernlab (Karatzoglou et al. (2004)) to optimize (6).

4. ALGORITHM SELECTION FOR
BBOB FUNCTIONS

A detailed description of the BBOB setup can be found in
Hansen et al. (2009). It uses a balanced and unbiased sample
of the published set of test functions from the field of black-
box optimization. To assess the performance of an algorithm,
the BBOB team proposes the use of the so called expected run-
ning time (ERT). This measure estimates the expected num-
ber of function evaluations required to achieve an accuracy
of ε > 0. For a given ε the ERT is defined as

E {RT (ε)} := E {N succ
eval (ε)}+

1− πsucc(ε)

πsucc(ε)
E
{
N fail

eval(ε)
}
,

where N succ
eval (ε) denotes the number of function evaluations

until the algorithm reaches the desired accuracy of ε, N fail
eval(ε)

denotes the number of function evaluations until the algo-
rithm terminates without reaching the desired accuracy level
(unsuccessful run) and πsucc(ε) is the probability of a success-
ful run. Note that the maximum number of function evalua-
tions for each algorithm is set by the resp. BBOB contestant

and thus varies within the algorithm set. We will estimate
the ERT from the r runs performed by every algorithm on
each test function by plugging in the empirical equivalents
of the unknown parameters. For a thorough motivation of
the ERT see Hansen and Auger (2005).

In order to estimate the ERT, each contestant is required to
submit 15 runs of his or her algorithm for each of the 24 test
functions. It was required to submit results for 2, 3, 5, 10, 20
and optionally 40 dimensional parameter spaces. The results
of each run are automatically stored in a file by the BBOB
framework. From this file it is possible to infer the number
of function evaluations used for almost any accuracy level
ε. There is one small difference in the way the 15 runs are
composed between the 2009 and 2010 competition. In the
2009 competition the 15 runs were divided among 5 different
test function instances1 for each of which 3 runs had to be
performed. In 2010, instead of 5 instances, 15 instances with
just one run per instance were required.

4.1 Experimental Setup
The 24 BBOB test functions (Hansen et al. (2009)) are sub-

divided into four classes, basically with respect to modality,
separability and global structure. As already shown in Mers-
mann et al. (2010a) and Mersmann et al. (2011a) the algo-
rithm performance is not consistent enough within the spec-
ified function groups to justify the selection of a reduced set
of representative test problems. Therefore, we concentrate
on the individual functions rather than selecting a represen-
tative function of each algorithm group.

In order to ensure distinguishable performance results of
the algorithms the analysis focuses on a precision level of
10−3 to be reached. This coincides with the requirements of
many practical applications in which a sufficient decrease of
the fitness function is acceptable and it is not necessary to
discover the global optimum. Furthermore, problem dimen-
sionality is exemplary set to ten dimensions as a representa-
tive of the practically relevant dimensions 5-20.

The outline of the analysis is as follows: Based on the raw
data, graciously provided by BBOB team on their website2,
and the benchmarking concepts of Mersmann et al. (2010)
and Mersmann et al. (2011a), we determine the best algo-
rithm for each BBOB function w.r.t. ERT which is presented
in Table 2.

As can be seen in Table 2, there is no global “best” algo-
rithm. In fact, no algorithm is best on more than three func-
tions. In addition, the relative ERT (rel. ERT) values, i.e., the
ERT of the specific algorithm divided by the ERT of the op-
timal algorithm for the respective function, are computed.
Table 2 lists the respective median and maximum statistics,
computed across all functions. However, the computation
of the individual rel. ERT values faces some problems as al-
most none of the competing BBOB algorithms succeeded in
solving all functions for the chosen (minimal) precision level.
In many cases even half of the ERT data was missing. The
number of solved functions of the considered algorithms to-
gether with the unsolved functions are presented in Table 3.
The ERT values for a specific unsolved function are imputed
by assigning ten times the maximal ERT value of all 14 algo-

1Slight reparameterizations of the test function obtained by
rescaling, rotating or otherwise transforming the parameter
vector before applying the function.
2http://coco.gforge.inria.fr/doku.php
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Best on med max
Algorithm Function (rel. ERT) (rel. ERT)

AVGNEWUOA 8 29.67 58731.09
BFGS 1, 10 31.55 58731.09
BIPOP-CMA-ES 17 3.83 5873.11
DE-F-AUC 18 41.13 11867.07
FULLNEWUOA 6 39.36 58731.09
GLOBAL 12, 21, 22 22.60 58731.09
iAMALGAM 23 10.02 2287.43
IPOP-ACTCMA-ES 7, 11, 13 3.72 2655.55
IPOP-CMA-ES 15, 16, 19 3.40 5743.86
Line Search-fminbnd 2 172.23 58731.09
Line Search - STEP 3, 4 417.47 13494.28
MCS 5, 9 39.55 58731.09
MOS 20, 24 4.27 1186.71
NEWUOA 14 28.01 58731.09

Table 2: All BBOB algorithms which performed best on at
least one of the 24 functions w.r.t. ERT. The functions are
listed in the 2nd column. In addition, median and maxi-
mum rel. ERT values over all functions are given.

rithms listed in Table 3 on this function. The worst imputed
value equals 58731.09 for the third function.

We can observe that each algorithm performs very badly
on at least one function or is not able to solve specific func-
tions at all. This observation underscores the importance of
the ASP. However, it turns out that a smaller subset of the 14
algorithms is sufficient to ensure a very good performance of
the resulting algorithm portfolio.

We select a representative algorithm pool as follows. We
consider an oracle that always selects the optimal algorithm
out of the portfolio given a test function. This results in 24 rel.
ERT values when the portfolio is applied to all BBOB func-
tions and we use the maximum of these values to describe
the worst-case behavior of the portfolio combined with the
oracle. We then minimize this value over all possible port-
folios. For a portfolio of size four this “oracle performance”
drops down to a maximal rel. ERT of 4.169, and further in-
creasing the algorithm set only lowers it insubstantially.

Hence, we select four algorithms for our portfolio: BFGS,
BIPOP-CMA-ES, LineSearch-fminbnd and LineSearch-STEP,
which also ensure a sufficiently high variety of algorithm
concepts. The median rel. ERT value of the portfolio (com-
bined with an oracle) is 1.454, meaning that our portfolio is
in principle constructed well enough to allow for an excellent
selection strategy: If we would reach the performance of the
oracle, we would on average score only 1.5 times worse than
the best available algorithm for each function. This value
serves as a lower bound and comparison value for our learned
selection strategies.

Figure 1 visualizes the rel. ERT values of the selected al-
gorithms for each function. It becomes obvious that in most
cases at least one of the algorithms is either optimal or al-
most optimal within the BBOB algorithm set. On the other
hand considerable variance of the algorithms’ performance
becomes visible.

Two different values of baseline performance of the indi-
vidual algorithms are given in Table 3 relating to the median
rel. ERT value of an individual algorithm applied to all 24
functions. The first column only includes the rel. ERT values

Figure 1: Rel. ERT value (logscale) of the algorithms in the
portfolio for the 24 BBOB functions

of the solved functions while the second one accounts for the
whole data with imputed values. Both values are biased but
the best option is to refer to the imputed data as the bad per-
formance of an algorithm on an unsolved function has to be
taken into account as well. Therefore, the BIPOP-CMA-ES
shows the best baseline performance in the portfolio which
however is roughly twice as bad as the optimal value which
can be reached based on the whole portfolio.

In the present situation an adequate measure of classifica-
tion performance is required. Instead of the misclassification
rate often used in machine learning, a specific indicator re-
lated to the performance loss incurred by suboptimal predic-
tions should be used. In case the best performing algorithm
is not correctly identified the classifier is supposed to predict
the algorithm with minimal possible loss w.r.t. the optimal
ERT. With regard to the cost-sensitive learning approach ex-
plained in Section 3 we use the above mentioned four algo-
rithms, therefore k = 4. As each xi relates to a specific test
function, we simply define the example-specific cost value cij
as the rel. ERT value of algorithm j on this test function. On
this learning data we apply one-sided support vector regres-
sion with a radial basis function (RBF) kernel. For internal
modeling, the rel. ERT values are transformed to logarithmic
scale. As the support vector machine is sensitive w.r.t. its hy-
perparameter settings, both λ and σ (the latter belonging to
the RBF kernel) are optimized by grid search on a logarithmic
scale by using the values {2−16, 2−15, . . . , 216}.

The low-level features listed in Table 1 are repeatedly com-
puted in five runs for each of the five instances of the 24
functions using an initial budget of 5000 points for the LH
design. This results in 600 observations in the data set used
for learning the predictor. Note that the feature levels vary
for each run and instance whereas the relative ERT value is
constant over all runs and instances per function. Only one
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Unsolved Baseline Performance
Algorithm # solved Functions # solved Imputed

BFGS 13 3, 4, 7,
15-20,
23, 24

2.70 31.55

BIPOP-CMA-ES 23 4 3.81 3.83

LineSearch-fminbnd 9 3, 7,
9-11,
11, 13,
15-20, 23

51.8 172.23

LineSearch-STEP 6 6-20, 22-
24

86.4 417.47

Table 3: Summary of the algorithm portfolio. The num-
ber of solved functions, the unsolved functions as well as
the baseline performance for the solved functions and in-
cluded imputed unsolved functions performance are given.

(BBOB 2010) or three (BBOB 2009) repeated algorithm runs
on each function are available so that the estimation of the
probability of a successful run is only possible in case the in-
dividual runs are aggregated for each function. In addition
to the whole feature set a subset of the features which do
not require additional function evaluations compared to the
LH design is considered, and it will be investigated if similar
classification accuracy can be achieved.

4.2 Results
Summarizing, the task is to predict a well-performing al-

gorithm within the portfolio for each function based on the
extracted low-level features of a specific function instance.

A crucial aspect of classification tasks is the necessity to
(cross-) validate the trained model on unseen data. In the
considered setting two different options are possible. Ide-
ally, in each sequence of the cross-validation one function is
completely discarded for training, and the remaining 25 ob-
servations are only used for testing. However, as the BBOB
set is rather diverse in feature space (Mersmann et al. (2011))
the characteristics of the discarded functions might be not
sufficiently covered by the feature space of the training set.
The second option is to cross-validate on function instances,
i.e., a five-fold cross-validation is carried out where in each
sequence one of the five instances of each function is used
for model validation, i.e., in total 120 observations. In both
approaches the median of the rel. ERT values of the total 600
observations is used as the overall performance measure. In
addition, the maximum rel. ERT value is presented.

Cross-Validation Omitting Instances.
In case of an instance-based cross-validation strategy the

cost-sensitive classification approach succeeds in reaching a
very high prediction accuracy. Many combinations of λ and
σ lead to a median rel. ERT smaller than 1.6. The best clas-
sification result is generated based on the settings listed in
Table 4. Here, the median of the rel. ERT values is very close
to the optimal reference value of 1.454, even if the subset of
“cheap” features is used. In case the whole feature set is con-
sidered even the worst prediction only takes a rel. ERT value
of 86 whereas in the latter situation at least one function, in
this case the third, is assigned the worst performing algo-
rithm.

med(rel. ERT) max(rel. ERT)

optimum 1.454 4.169
all features 1.540835 86.76449
cheap features 1.606443 58731.08

Table 4: Classification results of cross-validation strategy
based on omitting instances depending on the support vec-
tor regression parameters in case all features or only the
“cheap” features are used.

med(rel. ERT) max(rel. ERT)

optimum 1.454 4.169
all features 1.901808 58731.08
cheap features 2.700301 58731.085

Table 5: Classification results of cross-validation strategy
based on omitting functions depending on the support vec-
tor regression parameters in case all features or only the
“cheap” features are used.

Cross-Validation Omitting Functions.
As already discussed before, it is of high interest if the

highly qualitative results reported in the previous subsection
can also be achieved in case whole functions, not only func-
tion instances, are omitted in the training set.

A high number of combinations of λ and σ resulted in a
better performance than the best baseline algorithm BIPOP-
CMA-ES. The best result out of the tested svm parameteriza-
tions for all features as well as the subset of “cheap” features
are listed in Table 5.

However, in spite of the different characteristics of all BBOB
functions related to the structure of the BBOB test set, the re-
sult is quite satisfying. In case all features are used, even 34
different parameterizations generate the same best result re-
ported which is quite close to the optimum achievable value
and only 1.9 times worse than the optimum ERT when all
60 BBOB algorithms are considered. The result gets worse
in case the prediction is only based on the “cheap” features
which, however, is still considerably better than the best base-
line algorithm, i.e., the BIPOP-CMA-ES with a median rel.
ERT of 3.83.

Figure 2 shows the euclidean distances between the func-
tions in feature space based on all respectively on only the
“cheap” features while the median of the scaled feature val-
ues over all runs and instances per function form the basis for
the computation. Both the median rel. ERT of the predicted
as well as the best algorithm of the portfolio for each BBOB
function are related to the distance in feature space.

It becomes obvious that the degree of classification perfor-
mance tends to correlate with the proximity in feature space
if it is based on all features which is not that straightforward
for the “cheap” features. However, this analysis might be
improved by performing feature selection and changing the
distance function with regard to the influence that the fea-
tures have on the classification boundary.

Summarizing, the presented cost-sensitive classification ap-
proach proves to be highly successful for the addressed algo-
rithm selection task despite of some limitations due to the
structure of the BBOB test set and the results data set. These
issues will be discussed in detail in the next section.
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Figure 2: Per function in leave-one-out cross-validation:
Median rel. ERT of predicted (blue) and best algorithm
(red) of the portfolio and euclidean distance to nearest
neighbor in feature space (black). Function removed in
leave-one-out is given on the left, its nearest neighbor on
the right side. Top: all features, bottom: “cheap features”.

5. COMMENTS REGARDING BBOB DATA
One of the achievements of the two BBOB workshops that

have been held so far is a wealth of data on a slew of different
optimization algorithms and their relative performance. This
data is the basis of our ERT calculations and without it, this
study would not have been possible. The experimental setup
of BBOB has been designed to be as lean as possible to reduce
the burden on individual teams. This has lead to a function
set that is very heterogeneous, i.e., each function is “very dif-
ferent” from every other function. While good in the context
of the BBOB workshop, in the scenario under consideration
it makes the machine learning task much more difficult. On
the one hand, we have a very limited number of functions
to cross-validate over, thus requiring the machine learning
algorithm to extrapolate to vastly different functions. While
we do want to see that the learning algorithm can generalize,
this may in fact be too hard a task for it, given that some func-
tions lie rather isolated in feature space. One way out would
be to cross-validate over different instances of the same func-
tion instead. The difficulty here is that for each instance we
only have three (2009) or one (2010) algorithm results and
thus no chance to calculate a decent per-instance ERT esti-
mate.

Another aspect which could be improved is the data stor-
age format. While the BBOB workshop publishes all sub-
mitted results, these are stored in either cryptic text files or
Python specific binary files. Neither solution is ideal. While
both contain all the relevant data, what is missing or hid-
den in both cases is the relevant metadata. This also includes
such simple things as a consistent naming scheme and di-
rectory structure for the result files, unique and meaningful
algorithm names and a safe way to identify different runs of
the same algorithm on the same function instance. Improv-
ing this would serve the whole community since the BBOB
datasets are also a record of the evolution of the state of the
art in our field.

Lastly, the number of algorithms will continue to grow,
and this will make it increasingly more difficult to set up
the algorithm portfolio. Which CMA-ES variant do I want?
Do we want to use FULL_NEWUOA or AVG_NEWUOA?
Is there a state of the art Nelder-Mead type algorithm in the
dataset? What would help here are two things. First, a taxon-
omy of the different algorithms as well as a machine-readable
classification for each and second, a repository of, again ma-
chine-readable, comparison results. The taxonomy would
make it much easier for a non-expert to group the different
algorithms and to pick a candidate from each group. Fur-
thermore, it would allow us to easily examine hypotheses
such as: “Similar algorithms perform similar”. The long term
goal here would be to arrive at a benchmarking framework
in the spirit of the PISA (Bleuler et al., 2003) setup for multi-
objective optimization which allows researchers to compare
combinations of building blocks of algorithms instead of mo-
nolithic algorithm designs. This would greatly aid the un-
derstanding of why some algorithms perform well on some
functions and others do not. Regarding the suggestion con-
cerning a repository of machine-readable results, this could
foster further collaboration between different groups and re-
duce redundant efforts of duplicated results.
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6. DISCUSSION AND OUTLOOK
Notwithstanding the above remarks, we have introduced

a novel solution to the ASP and shown that it works in dif-
ferent scenarios. In the first scenario, we showed that we
can generalize to new instances of the same function for all
functions in the BBOB test set. Depending on which ELA fea-
tures are used, we can predict the optimal or close to optimal
portfolio candidate (w.r.t. the median rel. ERT). It is notewor-
thy that such a portfolio would be a valid entry to the BBOB
workshop and might outperform single algorithms (but see
the remark about feature costs below). It could even trump a
perfect oracle for the two algorithms recommended in Hansen
and Ros (2010) (NEWUOA and BIPOP-CMA-ES).

On the other hand, we showed that the approach works
remarkably well if we wish to generalize to new functions.
This is astonishing given that the BBOB functions were de-
signed to be quite different and unique. The poor worst case
performance (max(rel. ERT)) of our approach does mean that
the BBOB function set is, for our purposes, too small and
would benefit from more functions. Given such a larger set
our approach will likely generalize even better and provide
further insights into how “landscape” features can be mapped
to efficient algorithms.

Of course, for a proper evaluation when comparing such
a selection procedure against single algorithms the costs for
calculating the features must now be added to the function
evaluations of the selected algorithm. For the “cheap” fea-
ture set in 10 dimensions this would result in 5000 evalua-
tions. Note that here the median ERT of all the algorithms
in the BBOB data is about 105, so the additional costs for the
feature computation might be amortized in most cases.

However, both the selection of algorithms for the portfo-
lio as well as the selection of the features used could be im-
proved. Ideally, we would like to perform both selections at
the same time. This could be done using a binary coded GA
that selects both features and algorithms while minimizing
the rel. ERT of the selection strategy. If one also considers the
additional feature costs, this feature and portfolio optimiza-
tion might be approached in a multi-criteria fashion similar
to what we have already presented in Mersmann et al. (2011).
But for all such endeavors a larger benchmark data set is re-
quired as well.

In the future we would like to explore ways to generate
more test functions in a systematic fashion. This would al-
low us to apply experimental design methodologies to the
problem to generate “unbiased” sets of test functions. For
such an analysis it would be beneficial to have a learner that
allows some more insight into the selection strategy.
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