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Abstract

The process of writing large parallel programs is complicated by the need to specify both

the parallel behaviour of the program and the algorithm that is to be used to compute its

result. This paper introduces evaluation strategies, lazy higher-order functions that control

the parallel evaluation of non-strict functional languages. Using evaluation strategies, it

is possible to achieve a clean separation between algorithmic and behavioural code. The

result is enhanced clarity and shorter parallel programs.

Evaluation strategies are a very general concept: this paper shows how they can be

used to model a wide range of commonly used programming paradigms, including divide-

and-conquer, pipeline parallelism, producer/consumer parallelism, and data-oriented par-

allelism. Because they are based on unrestricted higher-order functions, they can also

capture irregular parallel structures.

Evaluation strategies are not just of theoretical interest: they have evolved out of our

experience in parallelising several large-scale parallel applications, where they have proved

invaluable in helping to manage the complexities of parallel behaviour. Some of these

applications are described in detail here. The largest application we have studied to date,

Lolita, is a 60,000 line natural language engineering system. Initial results show that

for these programs we can achieve acceptable parallel performance, for relatively little

programming e�ort.

1 Writing Parallel Programs

While it is hard to write good sequential programs, it can be considerably harder

to write good parallel ones. At Glasgow we have worked on several fairly large

parallel programming projects and have slowly, and sometimes painfully, developed

a methodology for parallelising sequential programs.

The essence of the problem facing the parallel programmer is that, in addition

to specifying what value the program should compute, explicitly parallel programs

y

This work is supported by the UK EPSRC (Engineering and Physical Science Research

Council) AQUA and Parade grants.



2 Trinder and others

must also specify how the machine should organise the computation. There are many

aspects to the parallel execution of a program: threads are created, execute on a

processor, transfer data to and from remote processors, and synchronise with other

threads. Managing all of these aspects on top of constructing a correct and e�cient

algorithm is what makes parallel programming so hard. One extreme is to rely on

the compiler and runtime system to manage the parallel execution without any

programmer input. Unfortunately, this purely implicit approach is not yet fruitful

for the large-scale functional programs we are interested in.

A promising approach that has been adopted by several researchers is to delegate

most management tasks to the runtime system, but to allow the programmer the

opportunity to give advice on a few critical aspects. This is the approach we have

adopted for Glasgow Parallel Haskell (GpH), a simple extension of the standard

non-strict functional language Haskell (Peterson et al., 1996) to support parallel

execution.

In GpH, the runtime system manages most of the parallel execution, only re-

quiring the programmer to indicate those values that might usefully be evaluated

by parallel threads and, since our basic execution model is a lazy one, perhaps also

the extent to which those values should be evaluated. We term these programmer-

speci�ed aspects the program's dynamic behaviour. Even with such a simple parallel

programmingmodel we �nd that more and more of such code is inserted in order to

obtain better parallel performance. In realistic programs the algorithm can become

entirely obscured by the dynamic-behaviour code.

1.1 Evaluation Strategies

Evaluation strategies use lazy higher-order functions to separate the two concerns

of specifying the algorithm and specifying the program's dynamic behaviour. A

function de�nition is split into two parts, the algorithm and the strategy, with

values de�ned in the former being manipulated in the latter. The algorithmic code

is consequently uncluttered by details relating only to the parallel behaviour.

The primary bene�ts of the evaluation strategy approach are similar to those

that are obtained by using laziness to separate the di�erent parts of a sequential

algorithm (Hughes, 1983): the separation of concerns makes both the algorithm and

the dynamic behaviour easier to comprehend and modify. Changing the algorithm

may entail specifying new dynamic behaviour; conversely, it is easy to modify the

strategy without changing the algorithm.

Because evaluation strategies are written using the same language as the algo-

rithm, they have several other desirable properties.

� Strategies are powerful: simpler strategies can be composed, or passed as

arguments to form more elaborate strategies.

� Strategies can be de�ned over all types in the language.

� Strategies are extensible: the user can de�ne new application-speci�c strate-

gies.

� Strategies are type safe: the normal type system applies to strategic code.
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� Strategies have a clear semantics, which is precisely that used by the algo-

rithmic language.

Evaluation strategies have been implemented in GpH and used in a number of

large-scale parallel programs, including data-parallel complex database queries, a

divide-and-conquer linear equation solver, and a pipelined natural-language proces-

sor, Lolita. Lolita is large, comprising over 60,000 lines of Haskell. Our experience

shows that strategies facilitate the top-down parallelisation of existing programs.

1.2 Structure of the Paper

The remainder of this paper is structured as follows. Section 2 describes parallel

programming in GpH. Section 3 introduces evaluation strategies. Section 4 shows

how strategies can be used to specify several common parallel paradigms including

pipelines, producer/consumer and divide-and-conquer parallelism. Section 5 dis-

cusses the use of strategies in three large-scale applications. Section 6 discusses

related work. Finally, Section 7 concludes.

2 Introducing Parallelism

GpH is available free with the Glasgow Haskell compiler and is supported by GUM,

a robust, portable runtime system (Trinder et al., 1996). GUM is message-based,

and portability is facilitated by using the PVM communications harness that is

available on many multi-processors. As a result, GUM is available for both shared-

memory (Sun SPARCserver multi-processors) and distributed-memory (networks

of workstations, and CM5) architectures. The high message-latency of distributed

machines is ameliorated by sending messages asynchronously, and by sending large

packets of related data in each message. GUM delivers wall-clock speedups relative

to the best sequential compiler technology for real programs (Trinder et al., 1996).

Most of the example programs below are run on shared-memory architectures.

Parallelism is introduced in GpH by the par combinator, which takes two ar-

guments that are to be evaluated in parallel. The expression p `par` e (here we

use Haskell's in�x operator notation) has the same value as e, and is not strict in

its �rst argument, i.e. ? `par` e has the value of e. Its dynamic behaviour is to

indicate that p could be evaluated by a new parallel thread, with the parent thread

continuing evaluation of e. We say that p has been sparked, and a thread may sub-

sequently be created to evaluate it if a processor becomes idle. There is no global

priority ordering between sparks on di�erent processors, although the sparks on a

single processor are scheduled in �rst-in �rst-out (FIFO) order. Since the thread

is not necessarily created, p is similar to a lazy future (Mohr et al., 1991). Note

that par di�ers from parallel composition in process algebras such as CSP (Hoare,

1985) or CCS (Milner, 1989) by being an asymmetric operation { at most one new

parallel task will be created.

Since control of sequencing can be important in a parallel language (Roe, 1991),

we introduce a sequential composition operator, seq. If e1 is not ?, the expression
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pfib 13 pfib 12 pfib 12 pfib 11

pfib 14 pfib 13

pfib 15

Fig. 1. p�b Divide-and-conquer Process Diagram

e1 `seq` e2 has the value of e2; otherwise it is ?. The corresponding dynamic

behaviour is to evaluate e1 to weak head normal form (WHNF) before returning

e2. Since both par and seq are projection functions, they are vulnerable to being

altered by optimising transformations, and care is taken in the compiler to protect

them. A more detailed description of the implementation of par and seq is given

in (Trinder et al., 1996).

2.1 Simple Divide-and-Conquer Functions

Let us consider the parallel behaviour of pfib, a very simple divide-and-conquer

program.

pfib :: Int -> Int

pfib n

| n <= 1 = 1

| otherwise = n1 `par` n2 `seq` n1+n2+1

where

n1 = pfib (n-1)

n2 = pfib (n-2)

If n is greater than 1, then pfib (n-1) is sparked, and the thread continues to

evaluate pfib (n-2). Figure 1 shows a process diagram of the execution of pfib

15. Each node in the diagram is a function application, and each arc carries the

data value, in this case an integer, used to communicate between the invocations.

Brackets can safely be omitted because seq has a higher precedence than par.

Parallel quicksort is a more realistic example, and we might write the following

as a �rst attempt to introduce parallelism.

quicksortN :: (Ord a) => [a] -> [a]

quicksortN [] = []

quicksortN [x] = [x]
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quicksortN (x:xs) = losort `par`

hisort `par`

losort ++ (x:hisort)

where

losort = quicksortN [y|y <- xs, y < x]

hisort = quicksortN [y|y <- xs, y >= x]

The intention is that two threads are created to sort the lower and higher halves of

the list in parallel with combining the results. Unfortunately quicksortN has almost

no parallelism because threads in GpH terminate when the sparked expression is

in WHNF. In consequence, all of the threads that are sparked to construct losort

and hisort do very little useful work, terminating after creating the �rst cons cell.

To make the threads perform useful work a \forcing" function, such as forceList

below, can be used. The resulting program has the desired parallel behaviour, and

a process network similar to pfib, except that complete lists are communicated

rather than integers.

forceList :: [a] -> ()

forceList [] = ()

forceList (x:xs) = x `seq` forceList xs

quicksortF [] = []

quicksortF [x] = [x]

quicksortF (x:xs) = (forceList losort) `par`

(forceList hisort) `par`

losort ++ (x:hisort)

where

losort = quicksortF [y|y <- xs, y < x]

hisort = quicksortF [y|y <- xs, y >= x]

2.2 Data-Oriented Parallelism

Quicksort and p�b are examples of (divide-and-conquer) control-oriented paral-

lelismwhere subexpressions of a function are identi�ed for parallel evaluation.Data-

oriented parallelism is an alternative approach where elements of a data structure

are evaluated in parallel. A parallel map is a useful example of data-oriented paral-

lelism; for example the parMap function de�ned below applies its function argument

to every element of a list in parallel.

parMap :: (a -> b) -> [a] -> [b]

parMap f [] = []

parMap f (x:xs) = fx `par` fxs `seq` (fx:fxs)

where

fx = f x

fxs = parMap f xs

The de�nition above works as follows: fx is sparked, before recursing down the list

(fxs), only returning the �rst constructor of the result list after every element has



6 Trinder and others

1xf 2xf x nf

x 1 x 2parMap f [ x n ]...

....
Fig. 2. parMap Process Diagram

been sparked. The process diagram for parMap is given in Figure 2. If the function

argument supplied to parMap constructs a data structure, it must be composed

with a forcing function in order to ensure that the data structure is constructed in

parallel.

2.3 Dynamic Behaviour

As the examples above show, a parallel function must describe not only the algo-

rithm, but also some important aspects of how the parallel machine should organise

the computation, i.e. the function's dynamic behaviour. In GpH, there are several

aspects of dynamic behaviour:

� Parallelism control, which speci�es what threads should be created, and in

what order, using par and seq.

� Evaluation degree, which speci�es how much evaluation each thread should

perform. In the examples above, forcing functions were used to describe the

evaluation degree.

� Thread granularity: it is important to spark only those expressions where the

cost of evaluation greatly exceeds the thread creation overheads.

� Locality: part of the cost of evaluating a thread is the time required to com-

municate its result and the data it requires, and in consequence it may only

be worth creating a thread if its data is local.

Evaluation degree is closely related to strictness. If the evaluation degree of a

value in a function is less than the program's strictness in that value then the

parallelism is conservative, i.e. no expression is reduced in the parallel program

that is not reduced in its lazy counterpart. In several programs we have found it

useful to evaluate some values speculatively, i.e. the evaluation-degree may usefully

be more strict than the lazy function. Section 5.5 contains a case study program

where a strategy is used to introduce speculative parallelism.
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3 Strategies Separate Algorithm from Dynamic Behaviour

3.1 Evaluation Strategies

In the examples above, the code describing the algorithm and dynamic behaviour

are intertwined, and as a consequence both have become rather opaque. In larger

programs, and with carefully-tuned parallelism, the problem is far worse. This sec-

tion describes evaluation strategies, our solution to this dilemma. The driving phi-

losophy behind evaluation strategies is that it should be possible to understand the

semantics of a function without considering its dynamic behaviour.

An evaluation strategy is a function that speci�es the dynamic behaviour re-

quired when computing a value of a given type. A strategy makes no contribution

towards the value being computed by the algorithmic component of the function:

it is evaluated purely for e�ect, and hence it returns just the nullary tuple ().

type Strategy a = a -> ()

3.2 Strategies Controlling Evaluation Degree

The simplest strategies introduce no parallelism: they specify only the evaluation

degree. The simplest strategy is termed r0 and performs no reduction at all. Perhaps

surprisingly, this strategy proves very useful, e.g. when evaluating a pair we may

want to evaluate only the �rst element but not the second.

r0 :: Strategy a

r0 _ = ()

Because reduction to WHNF is the default evaluation degree in GpH, a strategy

to reduce a value of any type to WHNF is easily de�ned:

rwhnf :: Strategy a

rwhnf x = x `seq` ()

Many expressions can also be reduced to normal form (NF), i.e. a form that

contains no redexes, by the rnf strategy. The rnf strategy can be de�ned over

built-in or datatypes, but not over function types or any type incorporating a

function type as few reduction engines support the reduction of inner redexes within

functions. Rather than de�ning a new rnfX strategy for each data type X, it is better

to have a single overloaded rnf strategy that works on any data type. The obvious

solution is to use a Haskell type class, NFData, to overload the rnf operation.

Because NF and WHNF coincide for built-in types such as integers and booleans,

the default method for rnf is rwhnf.

class NFData a where

rnf :: Strategy a

rnf = rwhnf

For each data type an instance of NFData must be declared that speci�es how to

reduce a value of that type to normal form. Such an instance relies on its element

types, if any, being in class NFData. Consider lists and pairs for example.
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instance NFData a => NFData [a] where

rnf [] = ()

rnf (x:xs) = rnf x `seq` rnf xs

instance (NFData a, NFData b) => NFData (a,b) where

rnf (x,y) = rnf x `seq` rnf y

3.3 Combining Strategies

Because evaluation strategies are just normal higher-order functions, they can be

combined using the full power of the language, e.g. passed as parameters or com-

posed using the function composition operator. Elements of a strategy are com-

bined by sequential or parallel composition (seq or par). Many useful strategies

are higher-order, for example, seqList below is a strategy that sequentially applies

a strategy to every element of a list. The strategy seqList r0 evaluates just the

spine of a list, and seqList rwhnf evaluates every element of a list to WHNF. There

are analogous functions for every datatype, indeed in later versions of Haskell (1.3

and later (Peterson et al., 1996)) constructor classes can be de�ned that work on

arbitrary datatypes. The strategic examples in this paper are presented in Haskell

1.2 for pragmatic reasons: they are extracted from programs run on our e�cient

parallel implementation of Haskell 1.2 (Trinder et al., 1996).

seqList :: Strategy a -> Strategy [a]

seqList strat [] = ()

seqList strat (x:xs) = strat x `seq` (seqList strat xs)

3.4 Data-oriented Parallelism

A strategy can specify parallelism and sequencing as well as evaluation degree.

Strategies specifying data-oriented parallelism describe the dynamic behaviour in

terms of some data structure. For example parList is similar to seqList, except

that it applies the strategy to every element of a list in parallel.

parList :: Strategy a -> Strategy [a]

parList strat [] = ()

parList strat (x:xs) = strat x `par` (parList strat xs)

Data-oriented strategies are applied by the using function which applies the

strategy to the data structure x before returning it. The expression x `using` s is

a projection on x, i.e. it is both a retraction (x `using` s is less de�ned than x) and

idempotent ((x `using` s) `using` s = x `using` s). The using function is

de�ned to have a lower precedence than any other operator because it acts as a

separator between algorithmic and behavioural code.

using :: a -> Strategy a -> a

using x s = s x `seq` x
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A strategic version of the parallel map encountered in Section 2.2 can be written

as follows. Note how the algorithmic code map f xs is cleanly separated from the

strategy. The strat parameter determines the dynamic behaviour of each element

of the result list, and hence parMap is parametric in some of its dynamic behaviour.

Such strategic functions can be viewed as a dual to the algorithmic skeleton ap-

proach (Cole, 1988), and this relationship is discussed further in Section 6.2.

parMap :: Strategy b -> (a -> b) -> [a] -> [b]

parMap strat f xs = map f xs `using` parList strat

3.5 Control-oriented parallelism

Control-oriented parallelism is typically expressed by a sequence of strategy applica-

tions composed with par and seq that speci�es which subexpressions of a function

are to be evaluated in parallel, and in what order. The sequence is loosely termed

a strategy, and is invoked by either the demanding or the sparking function. The

Haskell flip function simply reorders a binary function's parameters.

demanding, sparking :: a -> () -> a

demanding = flip seq

sparking = flip par

The control-oriented parallelism of pfib can be expressed as follows using

demanding. Sections 4.4 and 4.2 contain examples using sparking

pfib n

| n <= 1 = 1

| otherwise = (n1+n2+1) `demanding` strategy

where

n1 = pfib (n-1)

n2 = pfib (n-2)

strategy = rnf n1 `par` rnf n2

If we wish to avoid explicitly naming the result of a function, it is sometimes con-

venient to apply a control-oriented strategy with using. Quicksort is one example,

and as before the two subexpressions, losort and hisort are selected for parallel

evaluation.

quicksortS (x:xs) = losort ++ (x:hisort) `using` strategy

where

losort = quicksortS [y|y <- xs, y < x]

hisort = quicksortS [y|y <- xs, y >= x]

strategy result = rnf losort `par`

rnf hisort `par`

rnf result
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3.6 Additional Dynamic Behaviour

Strategies can control other aspects of dynamic behaviour, thereby avoiding clutter-

ing the algorithmic code with them. A simple example is a thresholding mechanism

that controls thread granularity. In pfib for example, granularity is improved for

many machines if threads are not created when the argument is small. More so-

phisticated applications of thresholding are discussed in Sections 5.3 and 6.2.

pfibT n

| n <= 1 = 1

| otherwise = (n1+n2+1) `demanding` strategy

where

n1 = pfibT (n-1)

n2 = pfibT (n-2)

strategy = if n > 10

then rnf n1 `par` rnf n2

else ()

4 Evaluation Strategies for Parallel Paradigms

This section demonstrates the 
exibility of evaluation strategies by showing how

they express some common parallel paradigms. We cover data-oriented, divide-and-

conquer, producer-consumer, and pipeline parallelism. One parallel programming

paradigm that we have not expressed here is branch-and-bound parallelism. This

cannot be expressed functionally, however, without using semantic non-determinism

of some kind. Non-determinism is not available in Haskell, though languages such

as Sisal (McGraw, 1985) provide it for precisely such a purpose, and Burton and

Jackson have shown how to encapsulate the nondeterminacy in an abstract data

type with deterministic semantics (Burton, 1991), and discussed a parallel imple-

mentation (Jackson and Burton, 1993)

4.1 Data-oriented Parallelism

In the data-oriented paradigm, elements of a data structure are evaluated in parallel.

Complex database queries are more realistic examples of data-oriented parallelism

than parMap. A classic example is drawn from the manufacturing application do-

main, and is based on a relation between parts indicating that one part is made

from zero or more others. The task is to list all component parts of a given part,

including all the sub-components of those components etc. (Date, 1976).
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Main Sub- Quantity

Component Component

P1 P2 2

P1 P4 4

P5 P3 1

P6 P7 8

P2 P5 3

A na��ve function explode lists the components of a single part, main. For ex-

ample, the result of exploding P1 in the relation above is [P2, P4, P5, P3]. The

core of the query is the function explosions which explodes a sequence of parts.

type PartId = Int

type BillofMaterial = [(PartId, PartId, Int)]

explode :: BillofMaterial -> PartId -> [PartId]

explode parts main = [p | (m,s,q) <- parts, m == main,

p <- (s:explode parts s)]

explosions :: PartId -> PartId -> BillofMaterial -> [[PartId]]

explosions lo hi bom =

map (explode bom) [lo..hi]

The explosions function is inherently data parallel because the explosion of one

part is not dependent on the explosion of any other. On the target Sun SPARCserver

architecture, an appropriate thread granularity is to compute each explosion in

parallel, but without parallelism within an explosion. This dynamic behaviour is

speci�ed by adding the following evaluation strategy which operates on the resulting

list of lists. The seqList rwhnf forces all of the explosion to be computed by

each thread. Subsequent sections include data-oriented strategies de�ned over many

types including pairs, triples and square matrices.

explosions lo hi bom =

map (explode bom) [lo..hi] `using` parList (seqList rwhnf)

4.2 Divide-and-conquer Parallelism

Divide-and-conquer is probably the best-known parallel programming paradigm.

The problem to be solved is decomposed into smaller problems that are solved in

parallel before being recombined to produce the result. Our example is taken from

a parallel linear equation solver that we wrote as a realistic medium-scale parallel

program (Loidl et al., 1995), whose overall structure is described in Section 5.4.
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The computation performed in the solve-stage of the computation is essentially

a determinant computation which can be speci�ed as follows:

� Given: a matrix (A

i;j

)

1�i;j�n

� Compute: for some 1 � i � n:

P

1�j�n

(�1)

i+j

A

i;j

det(A

0

)

where A

0

= A cancelling row i, and column j

sum l_par `demanding` parList rnf l_par

where

l_par = map determine1 [jLo..jHi]

determine1 j = (if pivot > 0 then

sign*pivot*det' `demanding` strategyD

else

0) `sparking` rnf sign

where

sign = if (even (j-jLo)) then 1 else -1

pivot = (head mat) !! (j-1)

mat' = SqMatrixC ((iLo,jLo),(iHi-1,jHi-1))

(map (newLine j) (tail mat))

det' = determinant mat'

strategyD =

parSqMatrix (parList rwhnf) mat' `seq`

(rnf det' `par` ())

In this example almost all available parallelism is exploited, and for comparison,

Appendix A contains sequential and directly parallel versions of this function. At

�rst sight, it may not be obvious that this is a divide-and-conquer program. The

crucial observation is that a determinant of a matrix (A) of size n is computed in

terms of the determinants of n matrices (A

0

) of size n� 1.

The �rst strategy, parList rnf l par speci�es that the determinant of each of

the matrices of size n� 1 should be calculated in parallel. There are two strategies

in determine1. The �rst, `sparking` rnf sign speci�es that the sign of the de-

terminant should be calculated in parallel with the conditional. Only if the pivot

is non-zero is the second strategy, strategyD used. It speci�es that the sub-matrix

(mat') is to be constructed in parallel before its determinant is computed in paral-

lel with the result. The strategyD is invoked with demanding to ensure that it is

evaluated, if sparking had been used, the �nal `par` () could be omitted, but the

strategy might never be executed. Note that some data-oriented strategies such as

parList and parSqMatrix are used within the overall control-oriented structure.

4.3 Producer/Consumer Parallelism

In another common paradigm, a process consumes some data structures produced

by another process. In a compiler, for example, an optimising phase might consume

the parse-tree produced by the parser. The data structure can be thought of as a

bu�er that the producer �lls and the consumer empties.

For simplicity, we will assume that the bu�er is represented by a list, and consider

just a bounded or n-place bu�er. There are many other possible ways to express
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map (* 2) map fac map fib

Fig. 3. Pipeline Process Diagram

producer/consumer parallelism, for example, to improve granularity the producer

could compute the next n-element \chunk" of the list rather than just a single value.

The dynamic behaviour of an n-place list bu�er is as follows. Initially, the �rst

n list elements are eagerly constructed, and then, whenever the head of the bu�er-

list is demanded, the nth element is sparked. In e�ect the producer speculatively

assumes that the next n elements in the list will be used in the computation. This

assumption introduces parallelism because, if there is a free processor, a thread can

produce the nth element, while the consumer is consuming the �rst.

Applying the following parBuffer n s function to any list converts it into an

n-place bu�er that applies strategy s to each list element. Initially start sparks

the �rst n elements and returns a (shared) list from the nth element onwards. The

value of the return function is identity on it's �rst argument, and it's dynamic

behaviour is to spark the nth element (the head of the start list) whenever the

head of the list is demanded.

parBuffer :: Int -> Strategy a -> [a] -> [a]

parBuffer n s xs =

return xs (start n xs)

where

return (x:xs) (y:ys) = (x:return xs ys) `sparking` s y

return xs [] = xs

start n [] = []

start 0 ys = ys

start n (y:ys) = start (n-1) ys `sparking` s y

4.4 Pipelines

In pipelined parallelism a sequence of stream-processing functions are composed

together, each consuming the stream of values constructed by the previous stage and

producing new values for the next stage. This kind of parallelism is easily expressed

in a non-strict language by function composition. The non-strict semantics ensures

that no barrier synchronisation is required between the di�erent stages.

The generic pipeline combinator uses strategies to describe a simple pipeline,

where every stage constructs values of the same type, and the same strategy is

applied to the result of each stage.

pipeline :: Strategy a -> a -> [a->a] -> a

pipeline s inp [] = inp

pipeline s inp (f:fs) =

pipeline s out fs `sparking` s out

where

out = f inp



14 Trinder and others

list = pipeline rnf [1..4] [map fib, map fac, map (* 2)]

A pipeline process diagram has a node for each stage, and an arc connecting one

stage with the next. Typically an arc represents a list or stream of values passing

between the stages. Figure 3 gives the process diagram for the example above.

Some of the large applications described in the next section use more elaborate

pipelines where di�erent types of values are passed between stages, and stages may

use di�erent strategies. For example, the back end in Lolita's top level pipeline is

as follows:

back_end inp opts

= r8 `demanding` strat

where

r1 = unpackTrees inp

r2 = unifySameEvents opts r1

r3 = storeCategoriseInformation r2

r4 = unifyBySurfaceString r3

r5 = addTitleTextrefs r4

r6 = traceSemWhole r5

r7 = optQueryResponse opts r6

r8 = mkWholeTextAnalysis r7

strat = (parPair rwhnf (parList rwhnf)) inp `seq`

(parPair rwhnf (parList (parPair rwhnf rwhnf))) r1 `seq`

rnf r2 `par`

rnf r3 `par`

rnf r4 `par`

rnf r5 `par`

rnf r6 `par`

(parTriple rwhnf (parList rwhnf) rwhnf) r7 `seq`

()

A disadvantage of using strategies like this over long pipelines is that every in-

termediate structure must be named (r1,: : :,r8). Because pipelines are so common

we introduce two strategic combinators to express sequential and parallel func-

tion application. Explicit function application is written $, and f $ x = f x. The

new combinators take an additional strategic parameter that speci�es the strategy

to be applied to the argument, and hence textually separate the algorithmic and

behavioural code.

The de�nition of the new combinators is as follows:

infixl 6 $||, $|

($|), ($||) :: (a -> b) -> Strategy a -> a -> b

($|) f s x = f x `demanding` s x

($||) f s x = f x `sparking` s x
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We have also de�ned similar combinators for strategic function composition,

which can be viewed as a basic pipeline combinator. Pipelines can now be expressed

more concisely, for example the pipeline above becomes:

back_end inp opts =

mkWholeTextAnalysis $| parTriple rwhnf (parList rwhnf) rwhnf $

optQueryResponse opts $|| rnf $

traceSemWhole $|| rnf $

addTitleTextrefs $|| rnf $

unifyBySurfaceString $|| rnf $

storeCategoriseInf $|| rnf $

unifySameEvents opts $| parPair rwhnf (parList (parPair rwhnf rwhnf)) $

unpackTrees $| parPair rwhnf (parList rwhnf) $

inp

5 Large Parallel Applications

5.1 General

Using evaluation strategies, we have written a number of medium-scale parallel

programs, and are currently parallelising a large-scale program, Lolita (60,000

lines). This section discusses the use of strategies in three programs, one divide-

and-conquer, one pipelined and the third data-oriented. The methodology we are

developing out of our experiences is also described. We have built on experience

gained with several realistic parallel programs in the FLARE project (Runciman,

1995). The FLARE project was the �rst attempt to write large parallel programs

in Haskell, and predated the development of strategies.

Until recently parallel programming was most successful in addressing problems

with a regular structure and large grain parallelism. However, many large scale

applications have a number of distinct stages of execution, and good speedups

can only be obtained if each stage is successfully made parallel. The resulting

parallelism is highly irregular, and understanding and explicitly controlling it is

hard. A major motivation for investigating our predominantly-implicit approach

is to address irregular parallelism. Two recent parallel programming models, Bulk

Synchronous Processing (BSP) (McColl, 1996), and Single-Program Multiple-Data

(SPMD) (Smirni et al., 1995), have gone some way towards addressing this prob-

lem by providing a framework in which some irregularity can be supported in an

otherwise regular program.

In large applications, evaluation strategies are de�ned in three kinds of modules.

Strategies over Prelude types such as lists, tuples and integers are de�ned in a

Strategies module. Strategies over application-speci�c types are de�ned in the

application modules. Currently, strategies over library types are de�ned in private

copies of the library modules. Language support for strategies which automatically

derived an NFData instance for datatypes would greatly reduce the amount of code

to be modi�ed and avoid this problem of reproducing libraries. As an interim mea-

sure we have developed a tool that, inter alia, automatically derives an NFData

instance for any datatype.
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5.2 Methodology

Our emerging methodology for parallelising large non-strict functional programs

is outlined below. The approach is top-down, starting with the top level pipeline,

and then parallelising successive components of the program. The �rst �ve stages

are machine-independent. Our approach uses several ancillary tools, including time

pro�ling (Sansom and Peyton Jones, 1995) and the GranSim simulator (Hammond

et al., 1995). Several stages use GranSim, which is fully integrated with the GUM

parallel runtime system (Trinder et al., 1996). A crucial property of GranSim is that

it can be parameterised to simulate both real architectures and an idealised machine

with, for example, zero-cost communication and an in�nite number of processors.

The stages in our methodology are as follows.

1. Sequential implementation. Start with a correct implementation of an

inherently-parallel algorithm or algorithms.

2. Parallelise Top-level Pipeline.Most non-trivial programs have a number

of stages, e.g. lex, parse and typecheck in a compiler. Pipelining the output

of each stage into the next is very easy to specify, and often gains some

parallelism for minimal change.

3. Time Pro�le the sequential application to discover the \big eaters", i.e. the

computationally intensive pipeline stages.

4. Parallelise Big Eaters using evaluation strategies. It is sometimes possible

to introduce adequate parallelism without changing the algorithm; otherwise

the algorithm may need to be revised to introduce an appropriate form of

parallelism, e.g. divide-and-conquer or data-parallelism.

5. Idealised Simulation. Simulate the parallel execution of the program on

an idealised execution model, i.e. with an in�nite number of processors, no

communication latency, no thread-creation costs etc. This is a \proving" step:

if the program isn't parallel on an idealised machine it won't be on a real

machine. We now use GranSim, but have previously used hbcpp. A simulator

is often easier to use, more heavily instrumented, and can be run in a more

convenient environment, e.g. a workstation.

6. Realistic Simulation. GranSim can be parameterised to closely resemble

the GUM runtime system for a particular machine, forming a bridge between

the idealised and real machines. A major concern at this stage is to improve

thread granularity so as to o�set communication and thread-creation costs.

7. Real Machine. The GUM runtime system supports some of the GranSim

performance visualisation tools. This seamless integration helps understand

real parallel performance.

It is more conventional to start with a sequential program and then move almost

immediately to working on the target parallel machine. This has often proved highly

frustrating: the development environments on parallel machines are usually much

worse than those available on sequential counterparts, and, although it is crucial to

achieve good speedups, detailed performance information is frequently not available.

It is also often unclear whether poor performance is due to use of algorithms that
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are inherently sequential, or simply artifacts of the communication system or other

dynamic characteristics. In its overall structure our methodology is similar to others

used for large-scale parallel functional programming (Hartel et al., 1995).

5.3 Lolita

The Lolita natural language engineering system (Morgan et al., 1994) has been

developed at Durham University. The team's interest in parallelism is partly as a

means of reducing runtime, and partly also as a means to increase functionality

within an acceptable response-time. The overall structure of the program bears

some resemblance to that of a compiler, being formed from the following large

stages:

� Morphology (combining symbols into tokens; similar to lexical analysis);

� Syntactic Parsing (similar to parsing in a compiler);

� Normalisation (to bring sentences into some kind of normal form);

� Semantic Analysis (compositional analysis of meaning);

� Pragmatic Analysis (using contextual information from previous sentences).

Depending on how Lolita is to be used, a �nal additional stage may perform a

discourse analysis, the generation of text (e.g. in a translation system), or it may

perform inference on the text to extract the required information.

Our immediate goal in parallelising this system is to expose su�cient parallelism

to fully utilise a 4-processor shared-memory Sun SPARCserver. A pipeline approach

is a promising way to achieve this relatively small degree of parallelism (Figure 4).

Each stage listed above is executed by a separate thread, which are linked to form a

pipeline. The key step in parallelising the system is to de�ne strategies on the com-

plex intermediate data structures (e.g. parse trees) which are used to communicate

between these stages. This data-oriented approach simpli�es the top-down paralleli-

sation of this very large system, since it is possible to de�ne the parts of the data

structure that should be evaluated in parallel without considering the algorithms

that produce the data structures.

Synt. ParsingMorpholgy Semantic An.Normalisation Pragmatic An. Back End

Fig. 4. Overall Pipeline Structure of Lolita

In addition to the pipeline parallelism, we introduce parallelism in the syntactic

parsing stage. The parallelism in this module has the overall structure of a parallel

tree traversal. In order to improve the granularity in this stage we apply a thresh-

olding strategy (similar to the one at the end of Section 3.1) to a system parameter,

which re
ects the depth in the tree. In fact the same polymorphic threshholding

strategy is applied to two lists of di�erent types.

Another source of parallelism can be used to improve the quality of the analysis

by applying the semantic and pragmatic analyses in a data-parallel fashion on
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di�erent possible parse trees for the same sentence. Because of the complexity of

these analyses the sequential system always picks the �rst parse tree, which may

cause the analysis to fail, although it would succeed for a di�erent parse tree. We

have included code to exploit this kind of parallelism but not yet tested its in
uence

on the quality of the result.

Figure 5 shows the parallel structure arising when all of the sources of parallelism

described above are used. Note that the analyses also produce information that is

put into a `global context' containing information about the semantics of the text.

This creates an additional dependence between di�erent instances of the analysis

(indicated as vertical arcs). Lazy evaluation ensures that this does not completely

sequentialise the analyses, however.

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

Back End

Morpholgy Synt. Parsing

Morpholgy Synt. Parsing

Semantic An. Pragmatic An.

Semantic An. Pragmatic An.Normalisation

Semantic An. Pragmatic An.Normalisation

stream

Text

SGML Tree Parse Forest Parse Tree

Normalisation

Sentence 1

Sentence 3

Sentence 2

Fig. 5. Detailed Structure of Lolita

The code of the top level function wholeTextAnalysis in Figure 6 clearly shows

how the algorithm is separated from the dynamic behaviour in each stage. The only

changes in the algorithm are

1. the use of parMap to describe the data parallelism in the parsing stage;

2. the evalScores strategy which de�nes data parallelism in the analysis stages

over possible parse trees; and

3. the use of strategic function applications to describe the overall pipeline struc-

ture.

The strategies used in parse2prag are of special interest. The parse forest

rawParseForest contains all possible parses of a sentence. The semantic and prag-

matic analyses are then applied to a prede�ned number (speci�ed in global) of

these parses. The strategy that is applied to the list of these results (parList

(parPair ...)) demands only the score of each analysis (the �rst element in the

triple), and not the complete parse. This score is used in pickBestAnalysis to

decide which of the parses to choose as the result of the whole text analysis. Since

Lolita makes heavy use of laziness it is very important that the strategies are not
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wholeTextAnalysis opts inp global =

result

where

-- (1) Morphology

(g2, sgml) = prepareSGML inp global

sentences = selectEntitiesToAnalyse global sgml

-- (2) Parsing

rawParseForest = parMap rnf (heuristic_parse global) sentences

-- (3)-(5) Analysis

anlys = stateMap_TimeOut (parse2prag opts) rawParseForest global2

-- (6) Back End

result = back_end anlys opts

-- Pick the parse tree with the best score from the results of

-- the semantic and pragmatic analysis. This is done speculatively!

parse2prag opts parse_forest global =

pickBestAnalysis global $|| evalScores $

take (getParsesToAnalyse global) $

map analyse parse_forest

where

analyse pt = mergePragSentences opts $ evalAnalysis

evalAnalysis = stateMap_TimeOut analyseSemPrag pt global

evalScores = parList (parPair rwhnf (parTriple rnf rwhnf rwhnf))

-- Pipeline the semantic and pragmatic analyses

analyseSemPrag parse global =

prag_transform $|| rnf $

pragm $|| rnf $

sem_transform $|| rnf $

sem (g,[]) $|| rnf $

addTextrefs global $| rwhnf $

subtrTrace global parse

back_end inp opts =

mkWholeTextAnalysis $| parTriple rwhnf (parList rwhnf) rwhnf $

optQueryResponse opts $|| rnf $

traceSemWhole $|| rnf $

addTitleTextrefs $|| rnf $

unifyBySurfaceString $|| rnf $

storeCategoriseInf $|| rnf $

unifySameEvents opts $| parPair rwhnf (parList (parPair rwhnf rwhnf)) $

unpackTrees $| parPair rwhnf (parList rwhnf) $

inp

Fig. 6. The Top Level Function of the Lolita Application
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too strict. Otherwise redundant computations are performed, which yield no further

improvements in runtime.

It should be emphasised that specifying the strategies that describe this parallel

behaviour entailed understanding and modifying only one of about three hundred

modules in Lolita and three of the thirty six functions in that module. So far, the

only module we have parallelised is the syntactic parsing stage. If it proves necessary

to expose more parallelism we could parallelise other sub-algorithms, which also

contain signi�cant sources of parallelism. In fact, the most tedious part of the code

changes was adding instances of NFData for intermediate data structures, which

are spread over several dozen modules. However, this process has been partially

automated, as described in Section 5.1

We are currently tuning the performance of Lolita on the Sun SPARCserver. A

realistic simulation showed an average parallelism between 2.5 and 3.1, using just

the pipeline parallelism and parallel parsing. Since Lolita was originally written

without any consideration for parallel execution and contains a sequential front end

(written in C) of about 10{15%, we are pleased with this amount of parallelism. In

particular the gain for a set of rather small changes is quite remarkable.

The wall-clock speedups obtained to date are disappointing. With two processors

and small inputs we obtain an average parallelism of 1.4. With more processors

the available physical memory is insu�cient and heavy swapping causes a drastic

degradation in performance. The reason for this is that GUM, which is designed

to support distributed-memory architectures uniformly, loads a copy of the entire

code, and a separate local heap, onto each processor. Lolita is a very large program,

incorporating large static data segments (totaling 16Mb), and requires 100Mb of

virtual memory in total in its sequential incarnation. Clearly a great deal of this

data could be shared, an opportunity we are exploring. We hope to obtain better

results soon using a machine with twice the memory capacity. We are also making

the C parsing functions re-entrant which will allow the analysis to be performed in

a data-parallel fashion over a set of input sentences.

5.4 Linsolv

Linsolv is a linear equation solver, and a typical example of a parallel symbolic

program. It uses the multiple homomorphic images approach which is often used in

computer algebra algorithms (Lauer, 1982): �rst the elements of the input matrix

and vector are mapped from Z into several images Z

p

(where each p is a prime

number); then the system is solved in each of these images, and �nally the overall

result is constructed by combining these solutions using the Chinese Remainder

Algorithm. This divide-and-conquer structure is depicted by Figure 7.

Strategic code for the matrix determinant part of the solver is given in Section 4.2

(the whole algorithm is discussed in (Loidl et al., 1995)). Precise control of the

dynamic behaviour is required at two critical places in the program. This behaviour

can be described by combining generic strategies.

� The algorithm is described in terms of an in�nite list of all solutions in the
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Fig. 7. Structure of the LinSolv algorithm

homomorphic images. An initial segment of the list is computed in paral-

lel, based on an educated guess as to how many homomorphic solutions are

needed. Depending on the solutions in the initial segment, a small number of

additional solutions are then computed.

� The algorithm only computes the solutions that can actually be used in the

combination step. This is achieved by initially only evaluating the �rst two

elements of the result list, then checking if the result is useful and if so com-

puting the remainder.

5.5 Accident Blackspots

The UK Centre for Transport Studies requires to analyse police accident records

to discover accident blackspots, i.e. places where a number of accidents occurred.

Several criteria are used to determine whether two accident reports are for the

same location. Two accidents may be at the same location if they occurred at the

same junction number, at the same pair of roads, at the same grid reference, or

within a small radius of each other. The problem amounts to partitioning a set into

equivalence classes under several equivalence relations.

The algorithm used is as follows. For each of the matching criteria an index is

constructed over the set of accidents. The indices are used to construct an indexed,

binary same-site relation that pairs accidents occurring at the same location. The
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partition is obtained by repeatedly choosing an accident and �nding all of the

accidents reachable from it in the same-site relation (Trinder et al., 1996).

Fine-grained Version The �rst parallel version uses �ne-grained parallelism, and

has four stages in the top-level pipeline: reading and parsing the �le of accidents;

constructing the criteria indices over the set of accidents; constructing the indexed

same-site relation; and forming the partition. Little parallelism is gained from this

top-level pipeline (a speedup of 1.2) because partitioning depends on the same-site

index, and constructing the same-site relation depends on the criteria indices and

the �rst value cannot be read from an index (or tree) until all of the index has been

constructed.

The individual pipeline stages are parallelised using a variety of techniques. The

�le reading and parsing stage is made data parallel by partitioning the data and

reading from n �les.

nFiles = 4

main = readn nFiles []

readn n cts | n > 0 =

readFile ("/path/accident"++show n)

(\ioerror -> complainAndDie)

(\ctsn -> readn (n-1) (ctsn:cts))

readn 0 cts =

let accidents = concat (map parse8Tuple cts `using` parList rnf)

in ...

Control parallelism is used to construct the three criteria indices.

mkAccidentIxs :: [Accident] -> AccidentIxs

mkAccidentIxs accs = (jIx,neIx,rpIx) `demanding` strategy

where

jIx = ...

neIx = ...

rpIx = ...

strategy = rnf jIx `par`

rnf neIx `par`

rnf rpIx `par` ()

The pipeline stages constructing the same-site relation and the partition both

use benign speculative parallelism. For partitioning, the equivalence classes of n, 20

say, accidents are computed in parallel. If two or more of the accidents are in the

same class, some work is duplicated. The chance of wasting work is small as the

mean class size is 4.4, and there are approximately 7,500 accidents. The speculation

is benign because the amount of work performed by a speculative task is small, and

no other threads are sparked.
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mkPartition :: Set Accident -> IxRelation2 Accident Accident ->

Set (Set Accident)

mkPartition accs ixRel =

case (length aList) of

0 -> emptySet

n -> (mkSet matchList `union` mkPartition rest ixRel)

`demanding` strategy

otherwise -> ...

where

aList = take n (setToList accs)

matchList = [mkSet (reachable [a] ixRel) | a <- aList]

rest = minusManySet accs matchList

strategy = parList rnf matchList

On four processors the �ne-grained program achieves an average parallelism of

3.5 in an idealised simulation. Unfortunately average parallelism falls to 2.3 for the

simulated target machine because thread granularity is small and data locality is

poor.

Coarse-grained Version The second version of the program partitions the data geo-

graphically into a number of tiles using the grid references. Each tile has an overlap

with its neighbours to capture multiple-accident sites that span the borders. Each

area is partitioned in parallel and duplicated border sites are eliminated. There are

currently just four tiles: top left, top right, bottom left and bottom right; and the

strategy is trivial:

strategy =

rnf tlPartition `par`

rnf trPartition `par`

rnf blPartition `par`

rnf brPartition

The advantages of this simple, coarse-grained approach are excellent thread granu-

larity and data locality. On four processors an average parallelism of 3.7 is achieved

for both idealised and realistic simulations. The program is at an early stage of

tuning on a shared-memory Sun SPARCserver with 4 Sparc 10 processors, and

is already delivering wall-clock speedups of 2.2 over the sequential version com-

piled with full optimisation. The sequential Haskell version is already an order of

magnitude faster than the interpreted PFL version constructed at the Centre for

Transport Studies (Trinder et al., 1996). Evaluation strategies facilitated experi-

ments with many di�erent types of parallelism in this application.

6 Related Work

Many di�erent mechanisms have been proposed to specify the parallelism in func-

tional languages. Space precludes describing every proposal in detail, instead this

section concentrates on the approaches that are most closely related to evaluation

strategies, covering purely-implicit approaches, algorithmic skeletons, coordination
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Transf. Meaning Strategy

E

0

No reduction r0

E

WHNF

Reduce to WHNF rwhnf

E

TS

Reduce spine of a list seqList r0

E

HTS

Reduce each list element to WHNF seqList rwhnf

Table 1. The Relationship of Evaluation Strategies and Transformers

languages, language extensions and explicit approaches. Some non-functional ap-

proaches are also covered. The approach that is most closely related to our work is

that using �rst-class schedules (Mirani and Hudak, 1995), described in Section 6.4.

6.1 Purely Implicit Approaches

Purely implicit approaches include data
ow languages like Id (Arvind et al., 1989)

or pH (Nikhil et al., 1993; Flanagan and Nikhil, 1996), and evaluation transform-

ers (Burn, 1987). Data parallel languages such as NESL (Blelloch et al., 1993)

can also be seen as implicitly parallelising certain bulk data structures. All of the

implicit approaches have some �xed underlying model of parallelism. Because eval-

uation strategies allow explicit control of some crucial aspects of parallelism, the

programmer can describe behaviours very di�erent from the �xed model, e.g. spec-

ulatively evaluating some expressions.

Evaluation Transformers Evaluation transformers exploit the results of strictness

analysis on structured data types, providing parallelism control mechanisms that

are tailored to individual strictness properties (Burn, 1987). Each evaluation trans-

former reduces its argument to the extent that is allowed by the available strictness

information. The appropriate transformer is selected at compile time, giving e�-

cient execution at the cost of some increase in code-size (Burn, 1991; Finne and

Burn, 1993).

If there are only a small number of possible transformers (as for lists using the

standard 4-point strictness domain { see Table 1), repeated work can be avoided

by recording the extent to which a data structure has already been evaluated, and

then using a specialised transformer on the unevaluated, but needed part of that

structure.

One problem with evaluation transformers is that the more sophisticated the

strictness analysis, and the more types they are de�ned on, the greater is the num-

ber of evaluation transformers that are needed, and the greater is the code-bloat.

Specialised transformers must be de�ned in the compiler for each type, complicating

the provision of transformers over programmer-de�ned types.

In contrast, since the programmer has control over which strategy is to be used in

a particular context, and since those strategies are programmable rather than �xed,

strategies are strictly more general than evaluation transformers. In particular, a
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programmer can elect to use a strategy that is more strict than the function in

order to obtain good performance or to allow speculation; to use a strategy that is

known to be safe, though stricter than the analyser can detect; or to use a strategy

that is less strict than the analyser can determine, in order to improve granular-

ity. Finally, it is not always straightforward to determine how much strictness an

analyser might detect, and small program changes may have dramatic e�ects on

strictness information.

It is possible that in the future, strictness analysis could drive the choice of

an appropriate evaluation strategy in at least some circumstances. Indeed we are

aware of a relationship between strictness domains and some strategies. Use of

strictness information in this way would make strategies more implicit than they

are at present.

Data Parallelism It has been argued that support should be provided for both task

and data parallelism (Subhlok et al., 1993). We have already shown how some kinds

of data-oriented parallelism can be expressed using evaluation strategies. Truly

data parallel approaches, however, such as NESL (Blelloch et al., 1993; Blelloch,

1996) treat higher-order functions such as scans and folds, or compound expressions

such as list- and array-comprehensions, as single \atomic" operations over entire

structures such as lists or arrays.

In e�ect, functions are applied to each element of the data simultaneously, rather

than data being supplied to the functions. This approach is more suitable than

control parallelism for massively parallel machines, such as the CM-2. Certain eval-

uation strategies can therefore be seen as control parallel implementations of data

parallel constructs, targeted more at distributed-memory or shared-memory ma-

chines than at massively parallel architectures.

Unusually for a data parallel language, NESL supports nested parallelism. This

allows more complex and more irregular computation patterns to be expressed than

with traditional data-parallel languages such as C* (Rose, et al., 1987). For example,

to compute the product of a sequence using a divide-and-conquer style algorithm,

the following code could be used:

function product(a) =

if (#a == 1) then a[0]

else let r = {product(v) : v in bottop(a)};

in r[0] * r[1]

The RHS of r is a sequence comprising two calls to product. The bottop function

is used to split the argument sequence, a, into two equal sized components.

This could then be used in an outer sequence if required, for example,

function products(m,n) =

{product(s) : s in {[p:n] : p in [m:n-1]}}

NESL has been implemented on a variety of machines including the CM-2, the

Cray Y-MP and the Encore Multimax.



26 Trinder and others

Data
ow Many recent data
ow languages are functional, e.g. Id (Arvind et al.,

1989); one of the most recent, pH (Nikhil et al., 1993), is in fact a variant of

Haskell. These languages usually introduce parallelism implicitly, for example by

using an evaluation scheme such as lenient evaluation (Traub, 1991) which generates

massive amounts of �ne-grained parallelism. Unfortunately, these threads are often

too small to be utilised e�ciently by conventional thread technology. The solutions

are to use hardware support for parallelism as with Monsoon (Papadopoulos, 1990)

or *T (Nikhil et al., 1992), or to use compiler optimisations to create larger threads

statically (Traub et al., 1992). In contrast, used with suitable performance analyses

or measurement tools, evaluation strategies provide a readily available handle that

can help to control thread size.

Sisal (McGraw, 1985) provides high-level loop-based constructs in a �rst-order

data
ow language. These constructs support implicit control parallelism over ar-

rays. The Sisal 90 language (Feo et al., 1995) adds higher-order functions, polymor-

phism and user-de�ned reductions.

6.2 Algorithmic Skeletons

As de�ned by Cole (Cole, 1988), algorithmic skeletons take the approach that imple-

menting good dynamic behaviour on a machine is hard. A skeleton is intended to be

an e�cient implementation of a commonly encountered parallel behaviour on some

speci�c machine. In e�ect a skeleton is a higher-order function that combines (se-

quential) sub-programs to construct the parallel application. The most commonly

encountered skeletons are pipelines and variants of the common list-processing func-

tions map, scan and fold. A general treatment has been provided by Rabhi, who

has related algorithmic skeletons to a number of parallel paradigms (Rabhi, 1993).

Skeletons and Strategies Since a skeleton is simply a parallel higher-order function,

it is straightforward to write skeletons using strategies. Both the parMap function

in Section 3.3 and the pipeline function in Section 4.4 are actually skeletons. A

more elaborate divide-and-conquer skeleton, based on a Concurrent Clean func-

tion (N�ocker et al., 1991) can be written as follows. All of these strategic skeletons

are much higher-level than the skeletons used in practice which have a careful im-

plementation giving good data distribution, communication and synchronisation.

divConq :: (a -> b) -> a -> (a -> Bool) ->

(b -> b -> b) -> (a -> Bool) -> (a -> (a,a)) -> b

divConq f arg threshold conquer divisible divide

| not (divisible arg) = f arg

| otherwise = conquer left right `demanding` strategy

where

(lt,rt) = divide arg

left = divConq f lt threshold conquer divisible divide

right = divConq f rt threshold conquer divisible divide

strategy = if threshold arg

then (seqPair rwhnf rwhnf) $ (left,right)

else (parPair rwhnf rwhnf) $ (left,right)
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Many strategic functions take the opposite approach to skeletons: a skeleton

parameterises the control function over the algorithm, i.e., it takes sequential sub-

programs as arguments. However, a strategic function may instead specify the algo-

rithm and parameterise the control information, i.e. take a strategy as a parameter.

Several of the functions we have already described take a strategy as a parameter,

including parBuffer.

Imperative Skeletons The algorithmic skeleton approach clearly �ts functional lan-

guages very well, and indeed much work has been done in a functional context.

However, it is also possible to combine skeletons with imperative approaches.

For example, the Skil compiler integrates algorithmic skeletons into a subset of

C (C-). Rather than using closures to represent work, as we have done for our

purely functional setting, the Skil compiler (Botorog and Kuchen, 1996) translates

polymorphic higher-order functions into monomorphic �rst-order functions. The

performance of the resulting program is close to that of a hand-crafted C- applica-

tion. While the Skil instantiation procedure is not fully general, it may be possible

to adopt similar techniques when compiling evaluation strategies, in order to reduce

overheads.

6.3 Coordination Languages

Coordination languages build parallel programs from two components: the com-

putation model and the coordination model (Gelernter and Carriero, 1992). Like

evaluation strategies, programs have both an algorithmic and a behavioural aspect.

It is not necessary for the two computation models to be the same paradigm, and

in fact the computation model is often imperative, while the coordination language

may be more declarative in nature. Programs developed in this style have a two-tier

structure, with sequential processes being written in the computation language, and

composed in the coordination language.

The best known coordination languages are PCN (Foster and Taylor, 1994) and

Linda (Gelernter and Carriero, 1992), both of which adopt a much more explicit

approach than evaluation strategies. Since both languages support fully general

programming structures and unrestricted communication, it is, of course, possible

to introduce deadlock with either of these systems, unlike evaluation strategies.

PCN composes tasks by connecting pairs of communication ports, using three

primitive composition operators: sequential composition, parallel composition and

choice composition. It is possible to construct more sophisticated parallel structures

such as divide-and-conquer, and these can be combined into libraries of reusable

templates.

Linda is built on a logically shared-memory structure. Objects (or tuples) are

held in a shared area: the Linda tuple space. Linda processes manipulate these

objects, passing values to the sequential computation language. In the most common

Linda binding, C-Linda, this is C. Sequential evaluation is therefore performed using

normal C functions.
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SCL Darlington et al. integrate the coordination language approach with the skele-

ton approach, providing a system for composing skeletons, SCL (Darlington et al.,

1995). SCL is basically a data-parallel language, with distributed arrays used to

capture not only the initial data distribution, but also subsequent dynamic redis-

tributions.

SCL introduces three kinds of skeleton: con�guration, elementary and computa-

tional skeletons. Con�guration skeletons specify data distribution characteristics,

elementary skeletons capture the basic data parallel operations as the familiar

higher-order functions map, fold, scan etc. Finally, computational skeletons add

control parallel structures such as farms, SPMD and iteration. It is possible to write

higher-order operations to transform con�gurations as well as manipulate compu-

tational structures etc. An example taken from Darlington et al., but rewritten in

Haskell-style, is the partition function, which partitions a (sequential) array into

a parallel array of p sequential subarrays.

partition :: Partition_pattern -> Array Index a ->

ParArray Index (Array Index a)

partition (Row_block p) a = mkParArray [ ii := b ii | ii <- [1..p] ]

where b l = array bounds [ (i,j) := a ! (i+(ii-1)*l/p, j)

| i <- [1..l/p], j <- [1..m] ]

bounds = ((1,l/p), (1,m))

A similar integration is provided by the P

3

L language (Danelutto et al., 1991),

which provides a set of skeletons for common classes of algorithm.

Control Abstraction Crowl and Leblanc (Crowl and Leblanc, 1994) have developed

an approach with similarities with evaluation strategies. The approach is based

on explicitly parallel imperative programs (including explicit synchronisation and

communication, as well as explicit task creation).

Like evaluation strategies, the control abstraction approach also separates par-

allel control from the algorithm. Each control abstraction comprises three parts: a

prototype specifying the types and names of the parameters to the abstraction; a

set of control dependencies that must be satis�ed by all legal implementations of

the control abstraction; and one or more implementations.

Each implementation is e�ectively a higher-order function, parameterised on one

or more closures representing units of work that could be performed in parallel.

These closures are invoked explicitly within the control abstraction. Implementa-

tions can use normal language primitives or other control abstractions.

In our purely functional context, Crowl and Leblanc's control dependencies cor-

respond precisely to the evaluation degree of a strategy. Their requirement that

implementations conform to the stated control dependencies is thus equivalent in

our setting to requiring that strictness is preserved in any source-to-source transfor-

mation involving an evaluation strategy. This is, of course, a standard requirement

for any transformation in a non-strict functional language.

Compared with the work described here, control abstractions take a more control-
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oriented approach, relying on a meta-language to capture the essential notions of

closure and control dependency that are directly encoded in our GpH-based system.

In this system, we also avoid the complications caused by explicit encoding of

synchronisation and communication, though perhaps at some cost in e�ciency.

Crowl and Leblanc have applied the technique in a prototype parallelising com-

piler. They report good performance results compared with hand-coded parallel C,

though certain optimisationsmust be applied by hand. This encourages us to believe

that evaluation strategies could also be applied to imperative parallel programs.

Finally, there is a clear relationship between control abstraction and skeleton-

based approaches. In fact, control abstractions could be seen as an e�cient imple-

mentation technique for algorithmic skeletons.

6.4 Parallel Language Extensions

Rather than providing completely separate languages for coordination and compu-

tation, several researchers have instead extended a functional language with a small,

but distinct, process control language. In its simplest form, this can be simply a set

of annotations that specify process creation etc. More sophisticated systems, such

as Caliban (Kelly, 1989), or �rst-class schedules (Mirani and Hudak, 1995) support

normal functional expressions as part of the process control language.

Annotations Several languages have been de�ned to use parallel annotations. De-

pending on the approach taken, these annotations may be either hints that the

runtime system can ignore, or directives that it must obey. In addition to speci-

fying the parallelism and evaluation degree of the parallel program (the what and

how), as for evaluation strategies, annotation-based approaches often also permit

explicit placement annotations (the where).

An early annotation approach that is similar to that used in GpH was that of

Burton (Burton, 1984), who de�ned three annotations to control the reduction order

of function arguments: strict, lazy and parallel. In his thesis (Hughes, 1983), Hughes

extends this set with a second strict annotation (qes), that reverses the conventional

evaluation order of function and argument, evaluating the function body before

the argument. Clearly all these annotations can be expressed as straightforward

evaluation strategies, or even directly in GpH.

These simple beginnings have led to the construction of quite elaborate annota-

tion schemes. One particularly rich set of annotations was de�ned for the Hope

+

implementation on ICL's Flagship machine (Glynn et al., 1988; Kewley and Glynn,

1989). This covered behavioural aspects such as data and process placement, as

well as simple partitioning and sequencing. As a compromise between simplicity

and expressibility, however, we will describe the well-known set of annotations that

have been provided for Concurrent Clean (N�ocker et al., 1991).

The basic Concurrent Clean annotation is e {P} f args, which sparks a task to

evaluate f args to WHNF on some remote processor and continues execution of

e locally. Before the task is exported its arguments, args, are reduced to NF. The

equivalent strategy is rnf args `seq` (rwhnf (f args) `par` e).
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The other Concurrent Clean annotations di�er from the {P} annotation in either

the degree of evaluation or the placement of the parallel task. Since GpH delegates

task placement to the runtime system, there is no direct strategic equivalent to the

annotations that perform explicit placement.

Other important annotations are:

� e {I} f args interleaves execution of the two tasks on the local processor.

� e {P AT location} f args executes the new task on the processor speci�ed

by location.

� e {Par} f args evaluates f args to NF rather than WHNF. The equivalent

strategy is rnf args `seq` (rnf (f args) `par` e).

� e {Self} f args is the interleaved version of {Par}.

As with evaluation strategies, Concurrent Clean annotations cleanly separate

dynamic behaviour and algorithm. However, because there is no language for com-

posing annotations, the more sophisticated behaviours that can be captured by

composing strategies cannot be described using Concurrent Clean annotations. This

is, in fact, a general problem with the annotation approach.

Caliban Caliban (Kelly, 1989) provides a separation of algorithm and parallelism

that is similar to that used for evaluation strategies. The moreover construct is used

to describe the parallel control component of a program, using higher-order func-

tions to structure the process network. Unlike evaluation strategies, the moreover

clause inhabits a distinct value space from the algorithm { in fact one which com-

prises essentially only values that can be resolved at compile-time to form a static

wiring system. Caliban does not support dynamic process networks, or control

strategies. A clean separation between algorithm and control is achieved by naming

processes. These processes are the only values which can be manipulated by the

moreover clause. This corresponds to the use of closures to capture computations

in the evaluation strategy model.

For example, the following function de�nes a pipeline. The � syntax is used to

create an anonymous process which simply applies the function it labels to some

argument. arc indicates a wiring connection between two processes. chain creates

a chain of wiring connections between elements of a list. The result of the pipeline

function for a concrete list of functions and some argument is thus the composition

of all the functions in turn to the initial value. Moreover, each function application

is created as a separate process.

pipeline fs x = result

where result = (foldr (.) id fs) x

moreover (chain arc (map (�) fs))

/\ (arc �(last fs) x)

/\ (arc �(head fs) result)

Para-Functional Programming Para-functional programming (Hudak, 1986; Hu-

dak, 1988; Hudak, 1991) extends functional programming with explicit parallel

scheduling control clauses, which can be used to express quite sophisticated place-

ment and evaluation schemes. These control clauses e�ectively form a separate
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language for process control. For ease of comparison with evaluation strategies, we

follow Hudak's syntax for para-functional programming in Haskell (Hudak, 1991).

Hudak distinguishes two kinds of control construct: schedules are used to express

sequential or parallel behaviours; while mapped expressions are used to specify pro-

cess placements. These two notions are expressed by the sched and on constructs,

respectively, which are attached directly to expressions.

Schedules In order to use functional expressions in schedules, Hudak introduces

labelled expressions: l@e labels expression e with label l (this syntax is entirely

equivalent to a let expression.

There are three primitive schedules: Dlab is the demand for the labelled expression

lab; ^lab represents the start of evaluation for lab; and lab^ represents the end of

evaluation for lab. Whereas a value may be demanded many times, it can only be

evaluated once. Schedules can be combined using either sequential composition (.)

or parallel composition (|). Since it is such a common case, the schedule lab can be

used as a shorthand for Dlab.lab^. Schedules execute in parallel with the expression

to which they are attached.

So, for example,

(l@e0 m@e1 n@e2) sched l^ . (Dm|Dn)

requires e0 to complete evaluation before either m or n are demanded.

Evaluating schedules in parallel is one major di�erence from the evaluation strat-

egy approach, where all evaluation is done under control of the strategy. A second

major di�erence is that schedules are not normal functional values, and hence are

not under control of the type system.

Mapped Expressions The second kind of para-functional construct is used to specify

static or dynamic process placement. The expression exp on pid speci�es that exp is

to be executed on the processor identi�ed by an integer pid. There is a special value

self, which indicates the processor id of the current processor, and libraries can be

constructed to build up virtual topologies such as meshes, trees etc. For example,

sort (QT q1 q2 q3 q4) =

merge (sort q1 on (left self))

(sort q2 on (right self))

(sort q3 on (up self))

(sort q4 on (down self))

would sort each sub-quadtree on a di�erent neighbouring processor, and merge

the results on the current processor. Because GpH deliberately doesn't address

the issue of thread placement, there is no equivalent to mapped expressions in

evaluation strategies.

First-Class Schedules First-Class schedules (Mirani and Hudak, 1995) combine

para-functional programming with a monadic approach. Where para-functional

schedules and mapped expressions are separate language constructs, �rst-class
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schedules are fully integrated into Haskell. This integration allows schedules to

be manipulated as normal Haskell monadic values.

The primitive schedule constructs and combining forms are similar to those pro-

vided by para-functional programming. The schedule d e demands the value of

expression e, returning immediately, while r e suspends the current schedule until

e has been evaluated. Both these constructs have type a -> OS Sched. Similarly,

both the sequential and parallel composition operations have type OS Sched ->

OS Sched -> OS Sched. The monadic type OS is used to indicate that schedules

may interact in a side-e�ecting way with the operating system. As we will see, this

causes loss of referential transparency in only one respect.

Rather than using a language construct to attach schedules to expressions, Mi-

rani and Hudak instead provide a function sched, whose type is sched :: a ->

OS Sched -> a, and which is equivalent to our using function. The sched function

takes an expression e and a schedule s, and executes the schedule. If the schedule

terminates, then the value of e is returned, otherwise the value of the sched ap-

plication is ?. There are also constructs to deal with task placement and dynamic

load information which have no equivalent strategic formulation.

In evaluation strategy terms, both the d and r schedules can be replaced by calls

to rwhnf without a�ecting the semantics of those para-functional programs that

terminate. Unlike evaluation strategies, however, with �rst-class schedules it is also

possible to suspend on a value without ever evaluating it. Thus para-functional

schedules can give rise to deadlock in situations which cannot be expressed with

evaluation strategies. A trivial example might be:

f x y = (x,y) `sched` r x . d y | r y . d x

Compared with evaluation strategies, it is not possible to take as much direct

advantage of the type system: all schedules have type OS Sched rather than being

parameterised on the type of the value(s) they are scheduling. Clearly schedules

could be used to encode strategies, thus regaining the type information.

There can also be a loss of referential transparency when using schedules, since

expressions involving sched may sometimes evaluate to ?, and other times to a

non-? value. This can happen both through careless use of demand and wait as in

the deadlock-inducing example above, and conceivably if dynamic load information

is used to demand an otherwise unneeded value. If the program terminates (yields

a non-? value), however, it will always yield the same value.

6.5 Fully-Explicit Approaches

More explicit approaches usually work at the lowest level of parallel control, pro-

viding sets of basic parallelism primitives that could then be exploited to build

more complex structures such as evaluation strategies. The approach is typi�ed by

MultiLisp (Halstead, 1985) or Mul-T (Kranz et al., 1989) which provide explicit

futures as the basic parallel control mechanism. Futures are similar to GpH pars.

At a slightly higher level, Jones and Hudak have worked on commutative Mon-

ads (Jones and Hudak, 1993), that allow operations such as process creation (called
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fork) to be captured within a standard state-transforming monad. While this ap-

proach provides the essential building blocks needed to support evaluation strate-

gies, it has the disadvantage of raising all parallel operations to the monad level,

thus preventing the clean separation of algorithm and behaviour that is observed

with either evaluation strategies or �rst-class schedules.

7 Conclusion

7.1 Summary

This paper has introduced evaluation strategies, a new mechanism for controlling

the parallel evaluation of non-strict functional languages. We have shown how lazy

evaluation can be exploited to de�ne evaluation strategies in a way that cleanly

separates algorithmic and behavioural concerns. As we have demonstrated, the re-

sult is a very general, and expressive system: many common parallel programming

paradigms can be captured. Finally, we have also outlined the use of strategies in

three large parallel applications, noting how they facilitate the top-down paralleli-

sation of existing code. Preliminary results indicate that acceptable parallelism is

attained with relatively little programming e�ort.

7.2 Discussion

Required Language Support In describing evaluation strategies, we have exploited

several aspects of the Haskell language design. Some of these are essential, whereas

others may perhaps be modelled using other mechanisms. For example, some sup-

port for higher-order functions is clearly needed: strategies are themselves higher-

order functions, and may take functional arguments.

Lazy evaluation is the fundamental mechanism that supports the separation of

algorithm from dynamic behaviour: essentially it allows us to postpone to the strat-

egy the speci�cation of which bindings, or data-structure components, are evaluated

and in what order. Operationally, laziness avoids the recomputation of values re-

ferred to in both the algorithmic code and the strategy. Although we have not yet

studied this in detail, the work on control abstraction by Crowl and Leblanc, plus

other work referred to above, does suggest that enough of the characteristics of

lazy evaluation could be captured in an imperative language to allow the use of

evaluation strategies in a wider context than that we have considered.

In de�ning evaluation strategies, we have taken advantage of Haskell's type class

overloading to de�ne general evaluation-degree strategies, such as rnf. If general ad-

hoc overloading is not available, then a number of standard alternative approaches

could be taken, including:

� de�ne a set of standard polymorphic evaluation-degree operations;

� require evaluation-degree operations to be monomorphic.

In either case, support can be provided as functions or language constructs. Nei-

ther approach is as desirable as that taken here, since they limit user 
exibility in

the �rst case, or require code duplication in the second.
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Abuse of Strategies As with any powerful language construct, evaluation strategies

can be abused. If a strategy has an evaluation degree greater than the strictness of

the function it controls, it may change the termination properties of the program

(note that unlike �rst-class schedules, however, this is still de�ned by the normal

language semantics). Similarly it is easy to construct strategies with undesirable

parallelism, e.g. a strategy that creates an unbounded number of threads. Adding

a strategy to a function can also greatly increase space consumption, e.g. where

the original function incrementally constructs and consumes a data structure, a

strategic version may construct all of the data structure before any of it is con-

sumed. Finally, strategies sometimes require additional runtime traversals of a data

structure. In pathological cases care must be taken to avoid multiple traversals, e.g.

when a small part of a large data structure has been changed, or with accumu-

lating parameters. Many unnecessary traversals could be avoided with a runtime

mechanism that tags closures to indicate their evaluation degree.

Additional Applications This paper has focussed on the use of evaluation strategies

for parallel programming, but we have also found them useful in other contexts.

Strategies have been used for example in Lolita to force the evaluation of data

structures that are transferred from Haskell to C (see Section 5.3). Furthermore,

they can cause a reduction in heap usage in cases where the strictness analysis is

overly conservative and the normal evaluation would hang on to data that can be

safely evaluated.

The separation of behavioural and algorithmic code provided by strategies sug-

gests that they can be used to model the context in which a certain function is used.

For example, in a sequential pro�ling setting strategies can de�ne the evaluation

degree of a function. The performance of the function can then be measured in the

given context. Also, when tuning parallel performance, a driver strategy can de�ne

the pattern of parallelism generated in a certain context. This facilitates the testing

of parts of the program in isolation.

7.3 Future Work

The groups at Glasgow and Durham will continue to use evaluation strategies to

write large parallel programs, and we hope to encourage others to use them too.

To date we have only demonstrated modest wall-clock speedups for real programs,

although this is partially due to the limited machine resources available to us. Sev-

eral of the parallel functional implementations outlined in Section 6 achieve rather

larger speedups. We would like to port the GUM runtime system underlying GpH

to a larger machine, with a view to obtaining larger speedups. Another plausible

target for GpH programs in the near future are modestly parallel workstations,

with 8 processors for example. Interestingly it has required remarkably little e�ort

to gain acceptable parallelism even for large, irregular programs like Lolita.

Initial performance measurements show that strategic code is as e�cient as code

with ad hoc parallelism and forcing functions, but more measurements are needed

to con�rm that this is true in general.
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A framework for reasoning about strategic functions is under development. Prov-

ing that two strategic functions are equivalent entails not only proving that they

compute the same value, but also that they have the same evaluation degree and

parallelism/sequencing. The evaluation-degree of a strategic function can be deter-

mined adding laws for par and seq to existing strictness analysis machinery, e.g.

Hughes and Wadler's projection-based analysis (Wadler and Hughes, 1987). As an

operational aspect, parallelism/sequencing are harder to reason about. At present

we have a set of laws (e.g. both par and seq are idempotent), but are uncertain of

the best framework for proving them. One possible starting point is to use partially

ordered multisets to provide a theoretical basis for de�ning evaluation order (Hudak

and Anderson, 1987).

Some support for evaluation strategies could be incorporated into the language.

If the compiler was able to automatically derive rnf from a type de�nition, the

work involved in parallelising a large application would be dramatically reduced,

and the replication of libraries could be avoided. Some form of tagging of closures

in the runtime system could reduce the execution overhead of strategies: a data

structure need not be traversed by a strategy if its evaluation degree is already at

least as great as the strategies.

We would like to investigate strategies for strict parallel languages. Many strict

functional languages provide a mechanism for postponing evaluation, e.g. delay

and force functions. The question is whether cost of introducing explicit laziness

outweighs the bene�ts gained by using strategies.

Our long term goal is to support more implicit parallelism. Strategies provide a

useful step towards this goal. We are learning a great deal by explicitly controlling

dynamic behaviour, and hope to learn su�cient to automatically generate strategies

with good dynamic behaviour for a large class of programs. One promising approach

is to use strictness analysis to indicate when it is safe to evaluate an expression

in parallel, and granularity analysis to indicate when it is worthwhile. It may be

possible to use a combined implicit/explicit approach, i.e. most of a programmay be

adequately parallelised by a compiler, but the programmer may have to parallelise

a small number of crucial components.
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A Determinant

This appendix contains two more versions of the determinant function from the

linear equation solver described in Section 4.2. The version on the left is the orig-

inal sequential version. That on the right is a slightly cleaned-up version of the

directly-parallel code originally written. Compared with the strategic version pre-

sented earlier, the directly parallel version is both lower-level and more obscure.
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Sequential Version

sum l_par where

l_par = map determine1 [jLo..jHi]

determine1 j =

(if pivot > 0 then

sign*pivot*det'

else

0)

where

sign = if (even (j-jLo))

then 1 else -1

pivot = (head mat) !! (j-1)

mat' =

SqMatrixC

((iLo,jLo),(iHi-1,jHi-1))

(map (newLine j)

(tail mat))

det' = determinant mat'

Direct Parallel Version

sum l_par where

l_par = do_it_from_to jLo

do_it_from_to j

| j>jHi = []

| otherwise = fx `par` (fx:rest)

where

sign = if (even (j-jLo))

then 1 else -1

mat' =

SqMatrixC

((iLo,jLo),(iHi-1,jHi-1))

(parMap (newLine j)

(tail mat))

pivot = (head mat) !! (j-1)

det' = mat' `seq`

determinant mat'

x = case pivot of

0 -> 0

_ -> sign*pivot*det'

fx = sign `par`

if pivot>0

then det' `par` x else x

rest = do_it_from_to (j+1)


