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Abstract. Across many fields of social science, machine learning (ML) algorithms are
rapidly advancing research as tools to support traditional hypothesis testing research (e.g.,
through data reduction and automation of data coding or for improving matching on
observable features of a phenomenon or constructing instrumental variables). In this paper,
we argue that researchers are yet to recognize the value of ML techniques for theory
building from data. This may be in part because of scholars’ inherent distaste for predictions
without explanations thatML algorithms are known to produce. However, precisely because
of this property, we argue that ML techniques can be very useful in theory construction
during a key step of inductive theorizing—pattern detection. ML can facilitate algorithm
supported induction, yielding conclusions about patterns in data that are likely to be robustly
replicable by other analysts and in other samples from the same population. These patterns
can then be used as inputs to abductive reasoning for building or developing theories that
explain them. We propose that algorithm-supported induction is valuable for researchers
interested in using quantitative data to both develop and test theories in a transparent and
reproducible manner, and we illustrate our arguments using simulations.
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Introduction
Building theory from specific data involves propos-
ing general processes, features, and relationships
between means and ends around a particular phe-
nomenon. Such theory building occupies a central
role in the organizational sciences, as it does in any
science that gives the explanation of phenomena at
least asmuch importance as the testing of deductively
derived implications from axioms (Glaser and Strauss
1967, Lave and March 1993, Deetz 1996, Walsh et al.
2015, Bamberger 2018). However, explicit theory build-
ing from data in management and organization re-
search has traditionally been reserved for researchers
working with small numbers of cases rather than for
thoseworkingwith large N data.Moreover, the norms
for presenting quantitative papers often involve pro-
posing theoretically derived hypotheses and then test-
ing them, and this may sometimes obscure, de-
emphasize, and delegitimize inductive reasoning, even
if it plays an important role in generating the results
(Gelman and Loken 2014, Goldfarb and King 2016).

In this paper, we argue that machine learning (ML)
represents a useful new methodology to enable the-
ory building from data for organization scholars
working with large samples of data. ML can facilitate
algorithm-supported induction, yielding interpretable
conclusions about patterns in data that are likely to be
robustly replicable by other analysts and in other
samples from the same population. This can be ac-
complished, as we demonstrate, with well-established
ML algorithms that are neither new to the world, nor
new to the field of ML. What we consider new, and
more importantly, valuable to the field of organization
science, is our approach to using ML for the specific
purpose of algorithm supported induction as a step in
the process of building theory from data.
To fully understand the role of algorithm-supported

induction in theory building, it is useful to first review
different forms of reasoning. Deduction of theoretical
implications from known axioms is at the heart of
hypothesis testing research (Popper 1959). In contrast,
induction of a pattern from the data and abduction of
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an explanation for the pattern are core to the theory-
building process (Peirce 1878, Bamberger 2018, Behfar
andOkhuysen 2018). AlthoughML plays a key role in
induction by revealing robust patterns, it does not (yet)
offer a solution to conducting abduction. As of today,
what Henry Mintzberg stated in 1979 still holds true:
“The data do not generate the theory—only re-
searchers do that—any more than the theory can be
proved true in terms of the data” (Mintzberg 1979).

What algorithm-supported induction indeed offers
is the detection of complex but interpretable patterns
in data in a robust and replicable manner. By inter-
pretable, we mean ML algorithms can be tuned to
detect complexity in patterns that would not always
be intuitive for humans to identify but intuitive
enough to understand once found. By robust and
replicable, we mean that ML algorithms (a) incorpo-
rate procedures that avoid overfitting (i.e., avoid
producing results that are highly idiosyncratic to
the observed sample) and (b) applies procedures—
including inevitable judgement calls—that are codi-
fiable, thereby enabling replication. However, other
fundamental steps in the theory-building process that
precede and follow the generation of these robust
patterns or stylized facts (Helfat 2007), such as con-
ceptualization (defining the constructs of interest),
measurement (selecting or developing measures for
the constructs), and explanation (theorizing about the
relationships among the observed patterns), remain
largely human prerogatives.

To be sure, the applications of ML in management
and organization studies are broader than algorithm-
supported induction (Tonidandel et al. 2018, von
Krogh 2018, Shrestha et al. 2019). For instance, by
using a small amount of hand-coded data as the
training set, algorithms can learn the patterns implicit
in this coding and predict the coding for a much larger
data set (Medlock and Briscoe 2007; Crowston et al.
2010, 2012; Yan et al. 2014; Christensen et al. 2017).
ML-based data text analytic approaches such as Latent
Dirichlet Allocation (LDA) are becoming popular to
discover themes and trends in a large collection of docu-
ments (Blei 2012, Bao and Datta 2014, Puranam et al.
2017, Huang et al. 2018, Hannigan et al. 2019). In
economics, researchers have introduced ML techniques
inconjunctionwithinstrumentalvariableanalysis (which
requires prediction accuracy in stage-one models) to
improve causal inferences (Belloni et al. 2013). ML
techniquescanalsobeusedasanalternativetopropensity
score matching (Varian 2016). Another application in
economics pertains to estimating heterogeneity in causal
effects (Athey and Imbens 2016). Mullainathan and
Spiess (2017) provide an overview ofML applications
in economics (Varian 2014, Kleinberg et al. 2015).

Although the applications noted previously are all
worthy of consideration for more widespread use in

ourfield, our perspective focuses on the application of
ML techniques as a tool for building theory fromdata,
which plays a central and perhaps unique role in
management and organizations research (Leonard-
Barton 1990, March et al. 1991, Sutton 1997, Eastman
and Bailey 1998, Burton and Obel 2011).
In the rest of this paper, we propose and illustrate a

procedure to conduct algorithm-supported induc-
tion. First, we provide a concise and accessible in-
troduction to the core logic of ML principles, with
details available in Appendix A for the interested
reader. Second, we offer a perspective on how man-
agement and organization researchers can conduct
algorithm-supported induction by using ML’s core
analytical property—detecting robust and replicable
patterns of tunable complexity (i.e., researchers can
adjust the degree of acceptable complexity in the
patterns uncovered). Third, we illustrate (with a
simple example using simulated data) how a re-
searcher can apply the technique to build and test
theory in the same data, without running the risks
of overfitting and low replicability of results. Our
illustration unveils the tradeoff between compre-
hensibility and predictive accuracy that theory
building from data inevitably entails and suggests
how one might approach this tradeoff in the re-
search process.

What Do ML Algorithms Do?
In this section, we give a brief overview of the basic
features of ML methods. Readers familiar with the
techniques can skip directly to the next section that
describes how we propose to apply it to theory
building. ML is a subdomain within the field of ar-
tificial intelligence (AI). It endows computers with
“the ability to learn without being explicitly pro-
grammed” (Samuel 1959, p. 120). Mitchell (1997, p. 2)
provided the classic statement about the components
of a learning problem that ML algorithms can tackle:
“A computer program is said to learn [effectively;
author’s note] from experience E with respect to some
class of tasks T and performance measure P if its
performance at tasks in T, asmeasured by P, improves
with experience E.” Suppose that task T is that we
want to predict the profits of a firm in the current year
and future years.Wewant to do this based on the data
from past years’ experience (E). Experience may
comprise data on past profits with a set of predictors
such as price and sales changes, chief executive officer
(CEO) characteristics, organization design, planned
expenditures, demand trends, liquidity position, or
any of the factors that researchers believe are asso-
ciated with firm profitability. The performance of
the algorithm (P) is considered satisfactory if it can
predict a firm’s profits accurately. Hence, with in-
creasing data from experience, the algorithm should
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behave in such a way that the difference between the
actual and predicted profit is minimized.

Broadly, two classes of algorithms have been de-
veloped to tackle such problems involving learning
from existing data: supervised and unsupervised learn-
ing.1 Supervised learning involves learning what
associates with a given outcome. In the terms of the
learning problem discussed above, the goal of a su-
pervised learning algorithm is to make good pre-
dictions about future profits (future Ys) based on
knowing only the future Xs. This is accomplished by
fitting a model that does a good job of predicting past
Ys based on past Xs and then assuming that the same
relationship betweenXs andYswill hold in the future.
The fitted model captures this insight in the form of a
function that maps predictors to profit.

Of course, we could also obtain such a prediction
using familiar ordinary least squares (OLS) regres-
sion. Through techniques such as stepwise regres-
sion, we can also find the best fittingmodel (i.e., linear
weighted combination of Xs) that predicts Y in the
past data and then use this model to make predictions
about future Ys based on future Xs. However, ML
algorithms combine two features in a useful manner
to improve on such techniques: tunable complexity of
functional form and improved protection against
overfitting (Abu-Mostafa et al. 2012).

First, with ML, complex functional forms (e.g.,
higher-order and interaction terms among the Xs) can
be incorporated without necessarily having to be
specified in detail in advance. For instance, random
forest models allow for fitting a hierarchical inter-
action structure, and neural networks can help fit
arbitrarily complex polynomials (Breiman 2001, LeCun
et al. 2015). The resulting models can achieve higher
levels of fit in the data, which hopefully leads to better
predictions in the future. This complexity in func-
tional form may also make the models harder to in-
terpret. For this reason, a feature of ML algorithms
that may prove extremely useful to the inductive and
abductive theorist is that we can, with many model
families, tune the extent of complexity we are willing
to tolerate: second-order but not third-order poly-
nomials, or 4 versus 40 coefficients, for instance. We
can start with a model family that can accommodate
considerable complexity but then use the data to fit a
model that can be of considerably lower actual level
of complexity. This tuning is done through model
hyperparameters, and we can tune these both algo-
rithmically (for maximizing predictive accuracy given
the model family) and manually (for interpretability).
(Technical details can be found in Appendix A).

Second, ML algorithms enlarge the set of proce-
dures that we commonly use in traditional statistical
models to guard against overfitting. For example,
if we were to build a well-fitting OLS model by

selectively adding or dropping variables to find sig-
nificant effects, we would run two related risks
of overfitting: (a) excessive model complexity—the
realized R2 may be high simply because we have too
many parameters in the model, and the model must
be penalized for this to enable comparison with other
models; and (b) excessive sample dependence—
including cherry-picked variables can produce a
model that may fit the particular sample of data but
may not be generalized beyond the data at hand. Both
pose fundamental challenges to the validity of the
results for understanding future samples. ML algo-
rithms combine an automated model building pro-
cess (which allows us to find acceptably complex
functional forms) with sophisticated procedures for
mitigating both types of overfitting. The details of
these procedures, namely regularization and cross-
validation, can also be found in Appendix A.
Unsupervised learning algorithms, as the name

suggests, operate in the absence of a supervisor
variable. The data (E) lack any specific target outputs
(i.e., Y) associated with each input. These algorithms
are generally tasked with detecting patterns of as-
sociation between groups of X variables, without any
particular variable being selected as the dependent
variable. Statistical clustering is a canonical example
of unsupervised learning with which most manage-
ment scholars are already familiar. Its purpose is to
partition cases into subsets such that similar cases are
in the same cluster and dissimilar cases are in dif-
ferent clusters. In our profit prediction example, un-
supervised learning can help users find a cluster of
firms that are similar to one another on observed
dimensions such as CEO attributes, demand trends,
and profitability. Strategic group analysis (Harrigan
1985) is a well-established methodology in strategy
where studies have frequently used statistical cluster
analysis. Unsupervised ML techniques use the same
basic logic but provide more flexibility in terms of
choosing different types of algorithms to perform the
clustering, followed again by procedures such as
regularization and cross-validation to prevent over-
fitting. The relevant algorithms include K-means,
hierarchical, and spectral clustering, all of which
largely share a similar intuition. LDA is a powerful
suite of unsupervised learning algorithms that detect
clusters of topics in a corpus of text. It is already ex-
tensively in use by organizations researchers (Hannigan
et al. 2018).
It is important to highlight that often the same

models can be used either for traditional hypothesis
testing (i.e., inferential statistics) or for ML (i.e., sta-
tistical learning). For instance, OLS regression (Bishop
2006, p. 140; Robert 2014, p. 217; Shalev-Shwartz and
Ben-David 2014, p. 123) and logistic regression (Bishop
2006, p. 205; Robert 2014, p. 245; Shalev-Shwartz and
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Ben-David 2014, p. 126) can both be used for super-
vised ML, and principal component analysis is a stan-
dard tool for unsupervised ML (as well as a standard
tool in conventional multivariate analysis) (Shalev-
Shwartz and Ben-David 2014, p. 324). The differ-
ence between ML and traditional inferential statistics
is not rooted in the models per se (although ML in
general has many additional model families that al-
low for more nonlinearity), but in (1) objectives for
using them and (2) their accompanying assumptions.

First, inferential statistics are primarily used for
testing hypotheses derived from a priori theories,
whereas statistical learning, as the name suggests, is
used to learn the patterns in data. Second, in infer-
ential statistics it is necessary to assume the distri-
bution of partial density functions of data in order to
draw conclusions about statistical significance and
potential confidence intervals. In ML, that assump-
tion is not necessary because the goal is predictive
accuracy and not inference (Bzdok 2017).

In sum, it is crude but accurate to think of ML al-
gorithms (both supervised and unsupervised) as en-
abling prediction through searching in data for com-
plex, robust, and replicable associations—complex
associations between variables that are unlikely to be
the result of sample idiosyncrasy and can be redis-
covered by anybody using the same procedures. The
complexity and robustness in associations produced
by ML algorithms result from procedures that allow
(tunably) complex models to fit the data (reducing
bias in prediction) while also mitigating against over-
fitting (reducing variance in predictions). A funda-
mental theorem in machine learning research pertains
to this tradeoff between bias and variance (see Ap-
pendix A), and most ML algorithms explicitly aim to
optimize this tradeoff to maximize predictive accu-
racy given the constraints inherent in amodel family.2

Replicability, on the other hand, is a property of the
algorithmic nature of the process.

However, before we explain how ML techniques
can aid theory building from data, three caveats must
be stated. First, ML methods are not by themselves a
substitute for randomization to obtain causal infer-
ence. All ML methods are associative, although they
can play an important role in enabling causal infer-
ence under the assumption that there are no omitted
variables that can create spurious relationships (Pearl
2000; Davis and Heller 2017, p. 548; Athey et al.
2019, p. 20). Second, underlying all ML methods is
an assumption that the future can be predicted from
the past (more technically, an assumption that prob-
ability distributions for the relevant variables remain
stationary over time). Hence, current ML algorithms
work best for relatively stable phenomena (e.g., in the
example above, firm membership in strategic groups
and within-group collective behavior is likely to be

stable over some extended period of time given
strategic and organizational inertia, strategic group
mobility barriers, etc.) Third, ML techniques are not
geared toward testing an explanation through in-
ferences about the relationships between variables;
instead, they focus primarily on prediction (y hat not
beta, to use econometric terminology, as noted by
Mullainathan and Spiess 2017).

How ML Can Aid Theorizing from Data
We propose that ML algorithms can play a powerful
role in aiding theorizing from data by providing a key
ingredient necessary for it—robust patterns in data.
Such patterns form the basis for prediction by these
algorithms, but at the same time they can also be
treated as a robust stylized fact to be explained through
theorizing and in turn replicated in additional data
(Helfat 2007). This stylized fact can then become the
target of explanation by the theorist. We see three
advantages to separating the process of theorizing
into pattern detection (primarily algorithmic and aided
by ML techniques) and pattern explanation (primarily
nonalgorithmic and driven by human researchers).
First, algorithmic pattern detection has high in-

tersubject reliability. An algorithm used by different
individuals will still yield (highly) similar results.
This does not preclude the need to make judgement
calls in applying algorithms (e.g., which learning
algorithm to apply to the data to obtain high pre-
dictive accuracy while keeping results interpretable).
Our point, however, is that these can be made in a
structured, traceable manner, which enables repli-
cability and assessment of robustness. Even for al-
gorithms that involve random components, repro-
ducibility of results can be guaranteed when one
keeps track of underlying random seeds used to start
off a random number generator. Furthermore, in
conventional inductive research methods, where pat-
tern detection and interpretation may occur simulta-
neously, it is recognized that researchers’ confirmatory
biases and motivated information processing could
potentially lead to false positives or false negatives
(e.g., seeing patterns that are explainable in an in-
tuitive or interesting manner but not seeing others
that are less intuitive).3 Analytically separating these
steps and performing the first algorithmically en-
hances replicability. This is not necessarily an ad-
vantage if the goal is to enhance creative variation of
interpretation and gain novel insights, but it is an
advantage if we seek to enhance the reproducibility of
an inductive inference.
Second, pattern detection through ML algorithms

need not have default human comprehension con-
straints. For instance, we doubt that any manage-
ment theorist would hold an entrenched view about
the key relationships in their models being linear,
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although linear models tend to be our workhorse for
summarizing multivariate relationships. The advan-
tage of assuming linearity is interpretability, and we
willingly give up (some) predictive accuracy for it. If
interpretabilitywere not important, wewould simply
optimize predictive accuracy, but if the goal is to build
human comprehensible explanations (i.e., theory),
interpretability is key. An advantage with ML algo-
rithms is that the researcher can tune the complexity
of patterns the algorithms will detect, depending on
his or her goals, taking a more nuanced approach to
the tradeoff between predictive accuracy and inter-
pretability rather than just maximizing one or the
other. Suppose that a researcher’s appetite for com-
plexity is limited to no more than the second-order in-
teractions with concave functions and no more than a
fewcoefficients overall,MLalgorithms can thenbe setup
to find a predictive model that is least likely to over or
underfit the data subject to these constraints.

Third, ML algorithms offer protection against results
that are highly idiosyncratic to a sample (overfitting).
If the central problem in deductive theory testing is
spuriousness (i.e., omitted variables that provide al-
ternative explanations), the central problem in theo-
rizing from data are overfitting (i.e., patterns that do
not generalize to other samples). However, it has not
been given nearly as much attention as the problem
of spuriousness, for which we have available a suite
of statistical techniques (e.g., instrumental variables,
matching, regression discontinuity designs, and ide-
ally, of course, randomization). ML algorithms come
equipped with procedures such as regularization and
cross-validation that help mitigate the overfitting prob-
lem and aid the researcher in detecting (if they exist)
reliable associations that replicate across subsamples
of data. This is an advantage if we wish to build
generalizable theory that can predict out of sample
from our inductive and abductive efforts. It is irrele-
vant if we only seek to generalize to theory based on one
or a few cases (Yin 2009). However, to the extent
researchers want their theories to be applicable in
other samples, overfitting their original sample is
always an important concern.

In sum, our central argument is that ML algorithms
selected with interpretability in mind can play a
useful role in generating robust patterns that are an
input to theory building from data. We develop this
argument in detail by discussing the elements of al-
gorithm supported induction to aid theory building.

A Procedure to Conduct
Algorithm-Supported Induction
We propose a procedure for algorithm-supported
induction in Table 1. This procedure we propose
can be helpful in creating theory from data by estab-
lishing robust stylized facts as an input to abductive

theory creation and creating a separate hold out sam-
ple for testing the theory without running the risk of
overfitting. Although our current description relies on
ML algorithms4 in stage 2, the entire procedure itself
can be thought of as a meta-algorithm for inductive
theorizing and testing of the constructed theory with
large sample data.
In stage 1, we split the data randomly into samples I

and II. Sample I is reserved for pattern detection, and
Sample II is the hold-out sample (Goldfarb and King
2016). We use sample I to search for interpretable
robust patterns in the data (Locke 2015), which we
explain by constructing a theory and use sample II to
test the hypotheses derived from the theory. If the
original full sample is representative of the pop-
ulation, a random subsample of it also will be rep-
resentative of the population. If the original sample is
not representative of the population, any inference
procedure (including conventional hypothesis test-
ing) is futile anyway. The procedure we advocate
does not therefore raises any new constraints.
Beyond the idea of a hold-out sample, however,

algorithm-supported induction also adds some key
ingredients. The search for patterns when aided by
ML can allow for tunable complexity. Our goal is
finding robust and comprehensible associations, not
necessarily maximizing predictive accuracy (which is
the case in more typical ML applications). This is why
stage 2 has two parts. In effect we do two-stage feature
selection to generate interpretable patterns. In stage 2.1,
we find important features in a predictive model. Using
an algorithm that can capture complex functional form
without the need to be interpretable, a small set of most
important features that contribute the most to predictive
accuracy is identified. From the identified features, in
stage 2.2, we construct a predictive model from a model
family that is relatively easy to interpret.
For instance, in a supervised learning exercise, we

might use a random forest or a neural network model
in stage 2.1 to give us themost important features that
predict an outcome of interest. In stage 2.2, a low
degree polynomial (with the degree decided by the
researcher, typically of degree 1, linear, or degree 2,
two-way interactions and quadratics) constructed
from the important variables identified in stage 2.1
can then be put through a second stage of feature se-
lection using an easy to interpret model, such as LASSO
(least absolute shrinkage and selection operator) or
RIDGE regression.5 Critically, in both stages 2.1 and
2.2, we use cross-validation for hyperparameter tuning
(a process that produces a model that is optimized for
predictive accuracy given constraints of the model
family). In addition, in stage 2.2, we conduct subsample
(or bootstrap sample) replication to ensure that the
patterns (i.e., the specific associations between vari-
ables) we end with are robust to sampling error.
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This two-stage feature selection process aims to
balance predictive accuracy of the stylized patterns
obtained in the data, with interpretability, which is
critical if these patterns are to be useful as inputs to
abductive theorizing. As shown in Figure 1 (left), the
optimal complexity of a ML model estimated from
the data and to be used for prediction will optimize
the bias-variance tradeoff subject to the constraints
of themodel family. A particular model (i.e., the set of
nonzero coefficients in an OLS model if the model
family used is OLS) achieves the lowest distance
between training set error (shown by small dotted
lines) and test set error (shownby longer dotted lines),
indicating that the model does not either overfit or
underfit the data (Bishop 2006, Abu-Mostafa et al.
2012, Alpaydin 2014). Such an optimizedmodel is not

necessarily a perfect representation of the underlying
data generation process (because we have assumed a
model family, OLS with its linearity in parameters
assumption, which may or may not correspond to the
underlying data generation process of a phenome-
non) but rather one that fits the data as best as possible
(i.e., neither over- nor underfits) given the constraints
of the model family (e.g., the general functional form
of an OLS regression in this case).
In organization science, validity may be concep-

tualized in terms of correspondence to the underlying
data generation process (Shadish et al. 2002). A valid
model in this sense is one that not only optimizes
predictive accuracy (optimizes error in training
and test data) for a given model family but also has
the lowest absolute values of prediction error possible.

Table 1. Algorithm-Supported Induction: Overview

Stage Actions Procedural details Human judgment involved

Stage 1: Splitting the sample Splitting the sample into two
random subsamples

Depending on the size of the data
set, randomly subsample data
into two parts (e.g., 50/50, 80/
20) and label them as sample I
(for inductive analysis) and
sample II (for hypothesis
testing)

Choice of initial variables may be
shaped by availability, initial
unsystematic observation, weak
theoretical conjectures.

Stage 2: Detection of robust and
interpretable patterns

2.1. Identifying robust associations
within sample I

Given a set of feature X, apply a
feature selection algorithm to
obtain a smaller set of
relatively important features
X′

⊂X, without imposing an
interpretability constraint on
functional form. Use cross
validation for hyperparameter
tuning.

Selection of algorithms

2.2. Identifying interpretable and
robust associations within
sample I

Decide on the maximum
tolerable level of complexity in
terms of interpretability to
define a new set of features P.
Apply a more interpretable
feature selection algorithm
on P to obtain a smaller set of
relatively important features
P

′

⊂P. Use cross-validation for
hyperparameter tuning and
subsample (or bootstrap
sample) replication for robust
feature selection.

Selection of acceptable degree of
complexity to aid interpretation
induction supported by
algorithms: identification of a
robust and interpretable pattern:
that is, function linking variables
of interest, in the data (stylized
facts)

Stage 3: Theory formulation Construct a theory that explains p
(primary hypotheses) and derive
corollary hypotheses from this
theory

Thinking and theorizing Abductive thinking: what is a
theory, that if true, would
account for the patterns derived
from stage 2.2? Deductive
thinking: What are additional
testable
implications (hypotheses) of
such a theory?

Stage 4: Theory testing Test implications of theory
formulated in stage 3

Test the primary and corollary
hypotheses in the hold-out
(sample II) to confirm both out
of sample and out of pattern
predictions

Operationalization of hypotheses;
evaluating statistical and
economic significance of results
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Minimizing prediction error through optimizing the
bias-variance tradeoff is therefore a precondition
to having the lowest absolute prediction error. This
implies that if the prediction error is not even opti-
mized within a model family, then we know it defi-
nitely cannot be at its global minimum (i.e., the model
cannot be a valid model).

This leads to the critical interpretability/prediction
error tradeoff: as we impose tighter restrictions on
interpretability, prediction accuracy will necessarily
decline. For our purposes, we think of interpretability
simply as researcher’s ability to understand and ex-
plain the results of amodel to each other.6To illustrate
why interpretability may not come for free, we can
superimpose a difficulty of interpretation function over
the bias-variance tradeoff reported in Figure 1 (right).
Assuming that the interpretation difficulty function is
increasing more rapidly in complexity than the var-
iance in predictions it follows that (a) the best inter-
pretable model likely underfits the data—it is there-
fore likely to have lower prediction accuracy than a
model that optimizes the bias-variance tradeoff—and
(b) models optimizing the bias-variance tradeoff may
have high interpretation difficulty.

It is therefore inevitable that as we select model
families that allow for greater complexity of func-
tional form, we will at some point also sacrifice in-
terpretability. As long as the world is complex (i.e.,
the underlying data generating processes can be of
arbitrary complexity) but humans are boundedly
rational (i.e., limited in their ability to comprehend
and explain complexity to each other), researchers will
have to make their own tradeoffs between predictive
accuracy and interpretability but can do so in an explicit
and transparent manner by showing the differences in
these for varying levels of model complexity.7

Besides tunable complexity, there are two other
features of algorithm-supported induction to note.

First, we can check the robustness of patterns within
sample I by recursively applying the hold-out principle
within it (i.e., through subsample and/or bootstrap
sample replication). This means that the patterns we
obtain at the end of stage 2.2 are not only tuned to a
complexity we can interpret, but they are also robust
within subsamples of sample I, making it less likely
they are spurious and more likely they will be repli-
cated in the hold-out sample II.
Second, the procedure entails making not only out

of sample predictions, but also out of pattern pre-
dictions in stage 3, which allows for a test of the
abductively generated theory. Out-of-pattern pre-
dictions require the theory that we devise to explain
patterns found in sample I to also be able to make
predictions about new and yet to be observed asso-
ciations (Lave and March 1993). Such out-of-pattern
predictions can arise because the patterns detected
algorithmically in sample I have high predictive
power; but the additional associations that are pre-
dicted by the theory used to explain the pattern may
be valid but not have high explanatory power or were
not checkedwith the particular target variable inmind.
For instance, suppose ML produces a robust pat-

tern in sample I, showing that A always seems to
associate with C when B is high. A first step would be
to abductively generate theory of why this might be
the case (Lave and March 1993). Examining this
pattern as a hypothesis test in sample II (i.e., out-of-
sample test) is useful, but it would be even more
valuable if our theory predicts that we should also
observe that A should be correlated with D when B is
low. This is not part of the original pattern found
through ML in sample I (because these relationships
may not be the strongest or involve a different target
variable) but are an implication of the theory we
constructed that accounts for the original pattern.
This is an out-of-pattern test.

Figure 1. Interpretability and Validity Tradeoff
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In fact, one may even begin with using sample I
to test theoretical priors in a traditional hypothesis
testing manner. If the hypotheses are supported, a repli-
cation in sample II concludes the researchprocess. If they
are not, sample I can be explicitly analyzed by algorithm-
supported induction, as noted previously, to offer input
to generating abductive hypotheses, which are then
tested in sample II. The smaller sample used in sample II
may imply lower power unless the initial unpartitioned
sample was large enough. However, (a) samples I and II
need not be of identical size and (b) low power has
asymmetric effects—if no effect is detected, it may still
exist in the population. Therefore, if an effect is de-
tected and replicated within subsamples, it is very
likely present in the population. In Table 2, we show
how our procedure differs from exploratory regression.

Algorithm-Supported Induction in Action:
An Illustration
To illustrate how algorithm-supported induction can
help in constructing theory, we build a simulated data
set, so that we knowwhat the true underlying process
that generates the data—also known as the data-
generating process (DGP) is. Using the logic of algo-
rithm-supported induction, we show how a theorist
might approach the task of finding interpretable ap-
proximations to the underlying DGP even when she
starts out with no knowledge about it. The advantage
of such a synthetic exercise over application to a real
data set is that we have full knowledge of the un-
derlying DGP and can therefore assess how well
algorithm-supported induction performs in terms of
finding interpretable approximations to this process.
This would not be possible in the case of real data.
Precisely because of this knowable ground truth, it has
become standard practice in ML and statistics liter-
ature to demonstrate the advantage of any new data
analysis procedure over existing ones using simu-
lated data (see, for a recent example, Boughorbel et al.
2017). Such an approach is also increasingly used in
management research (Zelner 2009, Kalnins 2018,
Shaver 2019). We follow this practice by exploring
how our procedure fares with simulated data.

Let us suppose that a researcher has collected firm
level cross-sectional data (n = 1,000), partly based on
survey responses and partly from secondary sources
on innovation outcomes (Y) and a vector of 11 attri-
butes that might be expected to be associated with it
(X variables). The names of these 11 variables are set
out in Table 3. All the variables in X except x11 are
randomly sampled from a normal distribution with
mean 0 and standard deviation 1, and x11 is a binary
variable randomly sampled from the set {0,1}.

Unknown to the theorist at this point, let us assume
the true underlying DGP conforms to

Y �

∑

11

i�1

bixi + αx1x2 + βx2x3 + γx1x6 + error,

such that all bi coefficients are zero, except b1 � 0.4,
b2 � 0.2, b3 � 0.5, α � −0.3, β � −0.7, and γ � −0.3.

The Gaussian error term has a mean 0 and standard
deviation of 0.7. In addition, there exists a small
negative correlation (−0.3) between x1 and x6, and all
the other correlations among xs are zero. This par-
ticular set of six parameters was selected purely ar-
bitrarily to illustrate our arguments and to make the
interpretation of these coefficients reasonably intui-
tive: innovation outcomes for a firm in this sample are
greater when it inhabits a weak intellectual prop-
erty (IP) regime (x1) and its advertising (x2) and re-
search and development (R&D) intensities (x3) are high.
The weakness of the IP regime and R&D intensity are
substitutes, as are R&D intensity and advertising
intensity. The benefits of doing business in a weak IP
regime subside if the firm has a history of aggressive
litigation (x6). We assume the theorist is unaware of
these relationships when they collect the sample. The
summary statistics and the correlation among vari-
ables in the sample are presented in Tables 3 and 4,
respectively.

Stage 1: Splitting the Sample

The first step is to divide the data randomly into a
sample for algorithmically supported induction (i.e.,
for pattern detection) and hold-out sample (i.e., for
hypothesis testing) of equal size (sample I = 500,
sample II = 500). We will set aside sample II for the
next few steps in stage 2 and focus on sample I.

Stage 2: Identifying Comprehensible and Robust

Associations Within Sample I

Within sample I, we have a number of possible ap-
proaches to finding a small (to make it easy to in-
terpret) and robust (i.e., unlikely to be the result of
sampling errors) set of predictors of Y. The resulting
function linking the predictors and Y is a stylized fact
about this sample. To allow for possible nonlinearities
in functional form, but at the same time keep the
resulting patterns interpretable (because our objec-
tive is abductive theory generation from data), we
rely on a two-stage sequence of decision trees (spe-
cifically their ensemble version, random forests) to
identify key predictors and then use LASSO to narrow
down the subset of all second-order polynomials of
these key predictors. Although we pick these two
algorithms because they allow tunable complexity in
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functional form while still being interpretable, they
are not necessarily unique in these properties. Ap-
pendix D replicates our results using (1) gradient
boosted regression trees and (2) neural network-
based feature selection in stage 2.1 and ridge re-
gression in stage 2.2.

Stage 2.1. We use the random forest algorithm
to reduce the initial set of variables from 11 to 5.

We configured the random forest to ensemble exactly
35 trees, because increasing beyond this did not im-
proved the performance of the model with respect
to mean squared error (Figure 2). A plot of the re-
duction in model error as we reduce the number of
variables (Figure 3) shows that most of the accuracy
improvement occurs with the first three variables.
To be conservative (i.e., allow some false positives to
be weeded out in later stages), we take up to the first

Table 2. Comparing Algorithm-Supported Induction to Simple Exploratory Regressions

Stage Description Exploratory regressions Our procedure What is gained by our approach

1 Separate samples for pattern
detection and hypothesis
testing

Not typical among naive users,
but possible for the more
sophisticated users

Random split of data into
sample 1 (exploratory
analysis) and sample II
(hypothesis testing)

Our procedure avoids p-hacking
(and therefore improves the
chances that results will
replicate in future studies)

2.1 Identify all informationally
important variables, without
imposing strong
interpretability or functional
form restrictions at this stage

Not feasible even for the most
sophisticated users, if they are
restricted to linear regression

Use ML models in sample I that
allow for identification of
important variables with few
restrictions on functional form
complexity, and with
procedures to avoid
overfitting (we use random
forest but could also use
neural nets), and tune
hyperparameters through
cross validation

Our identification of the set of
important explanatory
variables (note, not low p
values per se) can involve
complex nonlinear functional
forms as needed and are
unlikely to be driven by
sampling error

2.2 Identify (a subset of)
interpretable variables

Start with hand coding all
possible interaction and
quadratic terms, looking for
low p values. In addition, the
more sophisticated users
would use adjusted R2 to keep
overfitting in check

Use functional forms of
predefined maximal
complexity involving
identified variables in
induction sample, with
procedures to avoid
overfitting; we use up to
degree 2 polynomials, but this
is a matter for researcher
appetite for complexity across
subsamples/boot strapping

Our identification of the subset
of important explanatory
variables (note, not low p
values per se) from among
those in stage 2.1 are unlikely
to be driven by sampling error
because of bootstrapping/
subsamples; adjustedR2 could
not achieve this.

3 Abductive theory building Same for all Same for all Not a source of difference
4 Deduction by testing theory in a

separate hold-out deduction
sample

Not typical among the naive
users, but possible for the
more sophisticated users

Testing the theory built to
explain the patterns found
in stage 3 in the hold-out
sample II

Same as stage 1: Our procedure
avoids p-hacking (and
therefore improves the
chances that results will
replicate in future studies)

Table 3. Descriptive Statistics of Variables in the Illustrative Simulation

Statistic N Mean
Standard
deviation Minimum Maximum

Innovation outcome (Y) 1,000 0.154 1.217 −4.457 4.064
Weakness of IP protection (x1) 1,000 0.097 1.019 −3.030 3.019
Advertising intensity (x2) 1,000 0.050 0.994 −3.192 3.036
R&D intensity (x3) 1,000 −0.001 0.997 −3.163 2.906
Selling, general and administrative (SGA)
expenses (x4)

1,000 0.020 1.007 −3.518 3.157

Employee satisfaction (x5) 1,000 0.022 0.978 −3.210 3.102
Litigation intensity (x6) 1,000 −0.014 0.985 −3.237 3.180
Employee diversity (x7) 1,000 −0.041 0.989 −3.052 3.373
Proportion of Top management team (TMT)
with science degrees (x8)

1,000 −0.044 0.958 −3.188 3.076

Size (employees) (x9) 1,000 0.067 0.978 −3.534 3.284
Age of company (x10) 1,000 0.034 0.976 −3.520 3.429
CEOappeared inWall Street Journal (WSJ) (x11) 1,000 0.469 0.499 0 1
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five variables. This number (i.e., 3 + 2 = 5) is arbitrary
and just for illustration here. It represents the appetite
of an inductive theorist for complexity in theorizing.
The five variables extracted from random forest analy-
sis are the ones that have the greatest explanatory
power (reduction in entropy) across all the decision
trees constructed in subsamples (within sample I).
This procedure extracts the five variables {x1, x2, x3, x6,
x7}. These five variables are a superset of the variables
that form a part of the DGP; x7 is spurious.

Stage 2.2. Let us say we are willing to theorize up to
second-order polynomial effects (i.e., two-way in-
teractions and quadratic terms) in terms of inter-
pretability. Again, this is a subjective choice by the
theorist, based on her/his appetite for complexity in
theorizing. In this case, the DGP is also of degree 2.
Based on the five variables extracted in step 2.1, we
created amodel with all possible degree 2 terms of the
five variables extracted in stage 2.1 (20 in total: 5
linear, 5 quadratic, and 10 two-way interactions).

We feed thismodel to the LASSOalgorithm in order
to reduce the number of terms in the polynomial. Just

as we use random forest algorithms to estimate models
onmany subsets of sample I to tune its hyperparameter
(i.e., tree depth), we also obtain results from LASSO
across multiple subsets of sample I using k-fold cross-
validation (Figure 4; Appendix A).8 This procedure
aids in tuning the hyperparameter for regularization.
LASSO identifies seven terms {x1, x2, x3, x1 × x3, x1 ×
x6, x2 × x3, and x6 × x7} as the most important and
robust predictors (out of 20). These seven are also
robust predictors across subsamples (Figure 5) and
bootstrap samples (Figure 6) in the data. The terms
identified by LASSO are a superset of terms that form
the DGP and the term x6 × x7 is again a false positive;
it does not exist in the DGP. The last step within
sample I is to run an OLS with these seven variables.
The results of this OLSmodel are presented in Table 5
model 1. Asonecanobserve, the results recover theDGP
quite precisely and drop the spurious x6 × x7 interac-
tion. Another OLS model is then run after dropping
this spurious term and is presented in Table 5 model 2.

Figure 2. Diminishing MSE with Increasing Number of
Trees in the Ensemble

Figure 3. Importance of Variables Identified by Random
Forest with Respect to Contribution in Reduction in MSE

Figure 4. Cross-Validation for LASSO Hyperparameter
Selection Found Best α as 0.018

Figure 5. Identified Associations in 10% Subsamples with
Random Forest + LASSO
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Because our dependent variable Innovation is con-
tinuous between 0 and 1, we are dealing with a re-
gression task. The accuracy of regression models is
commonlymeasured bymean squared errors (MSEs).
The prediction by random forest in sample I had an
MSE of 0.96, and the combination of random forest
and LASSO reduced the MSE to 0.43.

Stage 3: Building a Theoretical Explanation

At this point, the theorist must ask herself if these
robust associations make theoretical sense. This is the
abductive reasoning highlighted in stage 3. In our
example, hopefully the theorist will spot that R&D
intensity and advertising intensity could indeed be
substitutes and that R&D intensity can be less useful
if a firm operates in weak IP regimes. Less intuitively,
weak IP regimes are positively associated weak in-
novation outcomes, and this effect is diminished
when a firm engages in aggressive litigation. Should
the theorist bewell versed in the innovation literature,
this pattern might suggest a logic of mutual benefit
from spillovers among the firms within a sector. The

theorist’s engagement with the context, in the form of
literature reviews, interviews, or case analysis, may
be helpful to stimulate the abductive process that
produces a theory to account for the patterns in the
data uncovered by the previous steps.
The abductive reasoning and the iteration between

theory and data necessary at this stage require human
expertise and judgment and cannot be left to an ML
algorithm. The first output of this abductive rea-
soning is therefore a set of predictions to be tested in
sample II by simply replicating out of sample. The six
terms identified in OLS at stage 2.2, if replicated in the
hold-out sample, instantiate this.
However, a more ambitious theoretical develop-

ment is to construct out-of-pattern tests; these are
patterns that were not necessarily found in sample I
but are implied based on the explanations constructed
to account for the patterns found in sample I. Thus,
given the theory used to explain the patterns in
sample I (e.g., R&D intensity and advertising inten-
sity are substitutes and a weak IP regime lowers the
value of R&D investment but may benefit the firm as
long as it is not too litigious), what additional hy-
potheses could we make? If firms recognize some of
the benefits of a weak IP regime, then an additional
hypothesis might be that there should be a negative
correlation between litigation intensity and weak IP
regimes through some form of oligopolistic coordi-
nation. The specific theoretical explanation here is not
relevant and we do not require the reader to endorse
it; rather, the point is that such an additional out-of-
pattern hypothesis test can be made in the first place.
In sum, the resultant stage 3 is a set of hypotheses,

some of which are out of sample, whereas other are
out of pattern. These hypotheses can now be tested in
sample II (hold-out), with usual statistical signifi-
cance reported.

Stage 4: Testing Hypotheses in Sample II

We test the hypotheses with a simple OLS regression
in sample II, and the results are presented in Table 6.

Figure 6. Identified Associations in 80% Bootstrap Samples
with Random Forest + LASSO

Table 4. Correlation Table of Variables in the Illustrative Simulation

(y) (x1) (x2) (x3) (x4) (x5) (x6) (x7) (x8) (x9) (x10)

(y)
(x1) 0.29****
(x2) 0.10** −0.06*
(x3) 0.38**** 0.02 0.00
(x4) −0.01 0.00 0.01 0.02
(x5) −0.05 −0.03 −0.03 −0.03 −0.02
(x6) −0.12*** −0.33**** 0.04 −0.01 −0.01 0.02
(x7) 0.00 −0.03 0.02 0.02 0.00 0.01 0.02
(x8) 0.01 0.02 0.03 0.00 −0.03 −0.03 0.00 0.01
(x9) −0.06 −0.03 0.00 0.00 0.03 0.06 −0.01 −0.02 0.00
(x10) 0.00 −0.03 −0.04 0.03 0.03 −0.03 0.02 −0.03 0.03 0.01
(x11) −0.06 0.00 −0.01 −0.02 −0.05 0.00 0.05 0.01 −0.02 0.05 −0.06

*p < 0.1; **p < 0.01; ***p < 0.001; ****p< 0.0001.
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We add two control variables (age and size of the
firm), which the theorist might feel are critical in light
of prior studies. As one can observe in Table 6, the
model is able to correctly identify the significant
linear and interaction terms. In addition, as a test of
out of pattern prediction, a hypothesis about corre-
lation between IP regime strength and litigation in-
tensity (controlling for other variables) also receives
support (Table 7).

These results are still correlational and do not
support a causal interpretation.However, the theorist
could of course use the standard methodologies that
enable closer-to-causal inference in nonrandomized
data, such as matching instrumental variables and
fixed effects in both the theory-generating and testing
phases wherever feasible. Because those concerns are
distinct from ours (and well understood), we do not
discuss those methods here. In addition to the results
from the hold-out sample, we recommend full and
transparent reporting of the analysis within sample I
(used for pattern detection) and explicit recognition of
the assumption that the two samples can be treated as
independent samples drawn on the same DGP.

As a contrast, it is interesting to see what a simple
exploratory regression approach would produce and
how far it would get with the same data in terms of

recovering the DGP. Clearly, an ad hoc search for
significant (i.e., with p < 0.05) effects using only a
simple linearmodel or by trying pairwise interactions
or one quadratic term at a time is likely to be both time
consuming and unlikely to find the DGP. In contrast,
a brute-force approach may be to put all 11 variables,
their 55 two-way interactions, and 11 quadratic terms
(77 terms in total) into a kitchen-sink regression. In our
example, such a procedure identified all six correct
terms as being statistically significant but also iden-
tified two other terms as significant, although their
true coefficients in the DGP are zero (i.e., false posi-
tives). Finally, one could run a stepwise regression on
the 77 terms. In our example, this identified all six
terms in the DGP correctly but also produced four
additional terms (false positives) as significant, which
did not exist in the DGP. This is because the naı̈ve
exploratory approach lacks the protection against
overfitting that our procedure provides.
For this illustration, we consciously made two

important simplifications: First, we assumed a par-
ticular set of coefficients in the DGP. However, in-
dependent of the specific parameters assumed pre-
viously, our arguments can be made with any arbitrary
set of coefficients for this underlying DGP. In Appen-
dix B, we show a generalization of this analysis to a

Table 5. OLS Models on Sample I

Dependent variable: Innovation outcome

Variables (1) (2)

Weakness of IP protection 0.38*** 0.38***
(0.03) (0.03)

Advertising intensity 0.20*** 0.21***
(0.03) (0.03)

R&D intensity 0.50*** 0.50***
(0.03) (0.03)

Litigation intensity 0.02 0.02
(0.03) (0.03)

Employee diversity 0.01
(0.03)

Weakness of IP protection × R&D intensity −0.27*** −0.27***
(0.03) (0.03)

Weakness of IP protection × litigation intensity −0.43*** −0.43***
(0.03) (0.03)

Advertising intensity × R&D intensity −0.66*** −0.66***
(0.03) (0.03)

Litigation intensity × employee intensity −0.03
(0.03)

Constant −0.02 −0.02
(0.03) (0.03)

Observations 500 500
R2 0.69 0.69
Adjusted R2 0.69 0.69
Residual standard error 0.70 (df = 490) 0.70 (df = 492)

F-statistic 122.59*** (df = 9; 490) 157.95*** (df = 7; 492)

Note. df, Degrees of freedom.
*p < 0.1; **p < 0.05; ***p < 0.01.
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larger variety of data generation processes (all of
degree 2, but with randomly drawn coefficients).

We also illustrate a central tradeoff in algorithmi-
cally supported induction between interpretability
and predictive accuracy. In this exercise, we evaluate
the performance of our procedure (measured by the
difference between the estimated and true coefficients
in the DGP) while varying the number of features se-
lected in step 2.1 and the amount of noise present in
DGP.As expected from our reasoning about the tradeoff
between interpretability and prediction accuracy, the
procedure performs better as the number of features
selected in step 2.1 (ameasure of appetite for complexity
in theorizing) increases and the amount of noise in
the DGP (a measure of randomness versus pattern)
decreases. Because our procedure begins without any
knowledge of the underlying DGP, a useful benchmark
is to compare it with random selection of hypotheses
to be tested. The results show that our procedure per-
forms significantly better (Appendix B, Figure B.1).

Second, in this illustration, theDGP is designed to be a
degree 2 polynomial. In management research, surveys
of empirical papers (Hulland 1999, Haans et al. 2016)
indicate that, in our field, most hypotheses feature a
complexity up to quadratics and two-way interaction
terms. In other words, the typical theory testing paper
assumes (quite reasonably, given the importance of
interpretability) that the DGP can be approximated by a
linear functionwith one or two interaction terms atmost.
Our assumption about the DGP mirrors this. However,
this might raise a legitimate concern that, when we ap-
proximate the underlying DGP with a degree 2 polyno-
mial in stage 2.2, we (unsurprisingly) find a good fit.

In Appendix C, we therefore show what happens
when the underlying DGP is of (a) higher degree,

(b) lower degree, and (c) contains a variable not
considered in the analysis while keeping the choice
of a degree 2 polynomial in stage 2.2 of the algorithm-
supported induction procedure. These illustrations
cover the instances of oversimplification, undersim-
plification, and omitted variable bias that could occur
whileworkingwith real data sets. In each of these cases,
we evaluate our method in comparison with that of an
analyst who conducts exploratory analysis without
adopting procedures such as regularization and cross-
validation that we propose in our procedure. We con-
sider two types of exploratory analysts, namely, one
who has either oversimplified or undersimplified the
true degree of the underlyingDGP or omitted a variable
anddoes not use procedures to avoid overfitting orwho
has correctly identified the truedegree of theunderlying
DGP but does not use procedures to avoid overfitting.
We show that our method performs significantly better
at identifying the underlying patterns compared with
both these versions of exploratory analysis that differs
from our procedure.

Discussion
In management and organization research, the use of
large sample data for inductive and abductive theo-
rizing rather than the test of hypotheses is rare. We
suspect this may be partly the result of an incorrect
(but, in our experience, widely held) premise that
theorizing from data is necessarily restricted to quali-
tative data (Shah and Corley 2006, Locke 2015). As
also noted by Glaser (2008), who helped lay the
foundations for qualitative induction along with Strauss
(Glaser and Strauss 1967), quantitative analysis can
serve as a powerful stimulus to theory building. For
instance, case control designs, which are popular in

Table 6. OLS Model on Sample II for Testing Out-of-Sample Predictions

Dependent variable: Innovation outcome

OLS coefficients True coefficients

Weakness of IP protection 0.35*** (0.03) 0.40
Advertising intensity 0.14*** (0.03) 0.20
R&D intensity 0.50*** (0.03) 0.50
Litigation intensity 0.01 (0.03) 0.00
Size (employees) −0.01 (0.03) 0.00
Age of company 0.01 (0.03) 0.00
Weakness of IP protection × R&D intensity −0.27*** (0.03) −0.30
Weakness of IP protection × Litigation intensity −0.39*** (0.03) −0.30
Advertising intensity × R&D intensity −0.66*** (0.03) −0.70
Constant −0.01 (0.03)
Observation 500 500
R2 0.68 0.68
Adjusted R2 0.68 0.68
Residual standard error 0.67 (df = 490) 0.67 (df = 490)
F-statistic 117.48*** (df = 9; 490) 117.48*** (df = 9; 490)

Note. df, Degrees of freedom.
*p < 0.1; **p < 0.05; ***p < 0.01.

Shrestha et al.: Algorithm Supported Induction Through Machine Learning
Organization Science, 2021, vol. 32, no. 3, pp. 856–880, © 2020 The Author(s)868

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
0
6
.5

1
.2

2
6
.7

] 
o
n
 0

5
 A

u
g
u
st

 2
0
2
2
, 
at

 0
0
:0

3
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 
Published in Organization Science on December 09, 2020 as DOI: 10.1287/orsc.2020.1382. 

This article has not been copyedited or formatted. The final version may differ from this version.



medical research, represent quantitative induction.
In this method, a sample of cases that vary in their
outcome of interest are statistically (i.e., algorithmi-
cally) analyzed to detect the correlates of the outcome
in the data (Shadish et al. 2002, p. 128).

Building theory from data, whether with large or
small samples, requires pattern detection and pattern
explanation. The procedure for conducting algorithm
supported induction that we have outlined in this
paper can help scholars identify robust patterns in
data, which can then become inputs to abductive
theory construction (He et al. 2020). There are four key
stages in this approach (Table 1): a split of the data
into samples for pattern detection and hypothesis
testing, the use of algorithmswith tunable complexity
to strike a well-considered balance between com-
prehension and prediction, the use of subsample
replication to avoid overfitting even within the sam-
ple used for induction, and the imperative to create
out-of-pattern tests in the hold-out sample. These four
stages together constitute a new perspective on the-
ory building from large-scale data, a meta-algorithm,
none of whose components are necessarily new, but
the integrated approach, we believe, is novel.

The insights that algorithm-supported induction
produces may have long-term consequences for the
way we craft theories in organization science; in the
future, we may come to think of honest and sophis-
ticated data mining as a sign of high-quality work
(Bamberger 2018). At the very least, by complementing
traditional inductive inference by humans, ML algo-
rithms are likely to lend increasing prominence to
theorizing from large sample data, as a manner of
knowledge creation in our field. If there are concerns
about the balkanization of theory, where a patchwork
of sample specific theories emerge, it is useful to
consider what their emergence implies: perhaps the
existing more general theories are invalid or at least
incomplete. Aggregation of results through meta-
analysis of robust patterns is still the best-known
methodology for building general insights from em-
pirical research, and algorithm-supported induction
helps, in our view, to produce the robust patterns
(Hunter et al. 1982).

An instructive question to ask is whether the ben-
efits of algorithm-supported induction require ML
algorithms per se or even simpler and more famil-
iar can suffice. First, as we already noted, familiar
techniques such as OLS and logistic regression can
be used for ML if the purpose is to fit data in a
manner that optimizes the bias-variance tradeoff (Abu-
Mostafa et al. 2012). Second, how our recommended
procedure differs from the practice of a sophisti-
cated user of exploratory regressions would depend
on what that sophistication entails. If the user of
exploratory regressions does all four stages of our

procedure, then they are effectively replicating our
procedure; depending on which step they diverge
on. Table 2 shows what is lost.
As noted, most theory building from data in our

field has been based on a limited number of cases,
which may even provoke debates on replicability of
results and transparency (Aguinis and Solarino 2019,
Pratt et al. 2019). Thus, at this point, the theorist will
naturally ask about the sample size required to be able
to apply algorithm-supported induction. In principle,
it is possible to detect robust patterns through ML
with relatively small sample sizes. As we noted, in
contrast to hypothesis testing, the key concern with
induction through ML is overfitting and not statis-
tical inference. For instance, one of the most widely
known data sets for teaching ML, known as iris,
contains only 150 observations of data with five
variables. This is a data set for three species of iris
flowers and has been used extensively to test and
validate diverse ML algorithms and models in more
than 100 academic papers (Dua and Graff 2017). In
medicine, where generating cases is costly, ML
techniques to work with small data sets have been
developed through medical research (Shaikhina and
Khovanova (2017) (where n = 56). A study by Jiang
et al. (2009) is an instance of such an approach; they
proposed modifications in existing ML algorithms
for learning from samples as small as 24 cases (see
also Zhou and Jiang 2003). Specific methods for small
data sets include aggregation of regularized classi-
fiers (Lu et al. 2010), robust sparse representation
(Sami Ul Haq et al. 2012), and discriminant analysis
(Chen et al. 2000).

Table 7. OLSModel on sample II for Testing Out-of-Pattern
Prediction

Dependent variable:
Litigation Intensity

Weakness of IP protection −0.33***
(0.04)

Advertising intensity 0.02
(0.04)

R&D intensity 0.01
(0.04)

Weakness of IP protection × R&D intensity −0.02
(0.04)

Advertising intensity × R&D intensity −0.03
(0.04)

Constant −0.06
(0.04)

Observations 500
R2 0.11
Adjusted R2 0.10
Residual Std. Error 0.92 (df = 494)
F Statistic 12.17*** (df = 5; 494))

Note. df, Degrees of freedom.
*p < 0.1; **p < 0.05; ***p < 0.01.
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The implication is thatmany thingswe have argued
regarding algorithm-supported induction are in prin-
ciple relevant even for smaller N methods of inductive
and abductive theory building, such as the compar-
ative case method (Eisenhardt 1989) or qualitative
comparative analysis (Ragin 1987, 2000). The risks
arising from neglecting to separate pattern detection
and explanation in the multiple case method, and the
risk of overfitting inherent in fitting multiple inter-
actions to small samples in Boolean qualitative com-
parative analysis (QCA) are well known to its so-
phisticated practitioners, and they recommend careful
measures to mitigate these (i.e., see a thoughtful dis-
cussion on thesematters in Eisenhardt 1989, p. 545 and
Fiss 2011). Our point in this paper simply is that
where a sufficient number of cases exist relative to the
parameters in the theory to be developed, algorithm-
supported induction using ML may offer at least an
alternate path to be explored.

Challenges and Opportunities
Having illustrated the promise of ML algorithms for
inductive theorizing in organization science, it is
equally important for us to point out the caveats.
First, as we stressed at multiple points in the paper,
ML algorithms today can support but cannot re-
place human judgment entailed in theory building
through inductive and abductive reasoning. What is
measured and how, and, critically, the explanation
we propose for the observed pattern is still very
dependent on human intuition and creativity, at
least at the current state of development in the field
of AI.

Second, ML itself is no magic bullet and involves
many tradeoffs in choosing among suitable model
families and algorithms. These choices are not straight-
forward given that no one algorithm fits all prediction
tasks (there is no free lunch for optimizing loss func-
tions, asWolpert andMacready 1997 famously noted).
Balancing the tradeoffs between ML algorithms re-
quires the researcher’s ingenuity and domain knowl-
edge to carefully evaluate the performance of the
algorithm and compare this with others that are also
potentially suitable. In general, we stress the im-
portance of selecting algorithms that offer a high
degree of interpretability (given that our purpose
ultimately is the creation of theory) in stage 2.2 and
procedures (such as regularization and cross-validation)
that help mitigate overfitting in sample I. Within these
parameters, many different algorithms may be useful,
including familiar OLS and logistic regressions, and not
only those we have illustrated in this paper (random
forest and LASSO).

Third, algorithm-supported induction is not guar-
anteed to find interpretable robust patterns in the
data, and falsification of a hypothesis constructed

most carefully with algorithm-assisted induction can
(of course) occur; this indicates that despite our best
efforts, we stand defeated by sampling error or unde-
tected flaws in measuring the data used for induction.
That is also valuable learning for the theorist.9

Fourth, although ML methods rely on detecting
associations, causal interpretations and conclusions
require careful scrutiny. Although this is true for
hypothesis testing in general (stage 4), the risk of
biases in data leading to biased conclusions in the
pattern detection phase is distinctly worth high-
lighting. Studies have demonstrated that, although
ML algorithms are not inherently biased, they could
under some conditions magnify biases already pres-
ent in the training data (Kamishima et al. 2011, Zemel
et al. 2013, Shrestha and Yang 2019). Such biases may
constitute a more serious problem in ML than in
traditional statistics because many ML models re-
main difficult to interpret and thusmay have difficult-
to-spot potential biases. For example, while training a
neural network to aid a decision to award home loans,
it is thus far not entirely possible to interpret how the
weights of the network edges capture underlying
lack of fairness in the training data with respect to
the predicted decision. This is one more reason we
strongly recommend against using black-box algorithms
like deep learning for the purposes of algorithm-
supported induction in stage 2.2, as well as reiterat-
ing that a causal theory that we develop in stage 3 to
explain patterns obtained in stage 2 might nonethe-
less gain no support in stage 4 once properly tested
with the techniques of causal inference.
Fifth, the use of ML techniques is fairly easy, but

understanding the technical foundations for the ad-
vantages and disadvantages of the algorithms used is
not, nor is keeping pace with rapid advances. Like
any new tool, individual researchers should also be
careful when importing methodologies from other
fields. Organization and management researchers,
like most social scientists, typically aspire to be so-
phisticated users rather than producers of statisti-
cal methodology. Identical to the adoption of other
techniques developed by statisticians, the adoption of
ML techniques in organization and management re-
search requires not only familiarity and access to
software that embeds these procedures but also a
solid conceptual understanding of what the algorithms
do and what they assume. This is made particularly
challenging in the case of ML because of the rapid pace
of developments in the field.
For instance, in recent years, the ML community

has debated and made considerable progress in de-
veloping both fairer (Yao and Huang 2017) and more
interpretable (Rudin 2014) algorithms. The subdomain
of ML today referred to as interpretable AI is being
developed for the sole propose of interpreting parts of
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very complex but effective ML models, such as deep
neural networks (Guidotti et al. 2018, Samek et al.
2019). Interpretability is achieved in these models
by (1) explaining the prediction based on local mar-
ginal effects—changes are made to particular inputs
in either direction to observe the change in the pre-
diction (LIME by Murphy et al. 2006); (2) abstract
programmingwhere learning is combinedwith query
(Fischer and Krauss 2018); and (3) graphical plots and
visualizations (Samek et al. 2019). Most of these
methods to date focus on interpreting components
of a complex and largely uninterpretable model and
not necessarily explainability in intuitive human
terms, and therefore, we do not think they are ready
yet for use in theory generation by organizations
researchers. In our field, we generally prefer imper-
fectly predicting but wholly comprehensible theories
over perfectly predicting but only partially com-
prehensible theories. Nevertheless, given the rapid
advances in this area, we encourage researchers to
monitor progress on interpretable AI, because it may
produce the next level of sophistication in algorithm-
assisted theorizing.

Conclusion: Taming Pavlov’s Dog
ML algorithms such as supervised and unsuper-
vised learning can be considered the descendants of
Pavlov’s dogs: they are trained to develop associa-
tions between variables (e.g., establish the copresence
of bell ringing and food) and then tested in their
ability to predict the rest when presented with
only some of the variables (e.g., will the bell ringing
predict the presence of food?).10 However, these ru-
dimentary learning mechanisms found (even) in our
pets have enormous power and are at the heart of the
current explosion of interest in ML. Admittedly, re-
searchers in our field have already begun to exploit
this power for data coding, data reduction, and
support of traditional hypothesis testing by aiding
causal inference. We offered an alternative perspec-
tive: treating a validated prediction model as a styl-
ized fact opens up the path to theory development
from data followed by theory testing in a mutually
complementary manner, even possibly within the
same study. As management and organization re-
searchers, we have much to gain from understanding
these opportunities.
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Appendix A. Key Technical Concepts in ML
A.1. Loss Functions

In ML, model fitting occurs by minimizing a loss function.
A loss function penalizes the discrepancy between the pre-
dicted outcome and the actual outcome in past data. OLS
regression users will be aware that the loss function in OLS
is the sum of squared error. There are several types of
possible loss functions used in ML such as hinge loss, lo-
gistic loss, zero-one loss, and so on. A loss function can
be minimized by rules (e.g., setting the derivative equal to
zero and solving) or by search (e.g., gradient descent,
Adam algorithm, Newton–Raphson) when the former is
not feasible.

A.2. Bias-Variance Tradeoff

Statistical learning theory indicates that the complexity of a
model selected to fit data has a U-shaped relationship with
prediction error (Figure 1, left). Put differently, the pre-
diction error initially decreases on increasing the model
complexity and then increases afterward (Abu-Mostafa
et al. 2012). The model is underfitting in the region be-
fore the inflection point and overfitting in the region after
the inflection point. Underfitting produces prediction er-
rors that are systematically biased (because they represent a
systematic deviation from true model), whereas overfitting
produces more variance (because the deviation is not sys-
tematic). The goal is to find the point where the model is
sufficiently complex to accomplish the lowest prediction
error possible given the constraints of the model family.
Excessive model complexity and excessive sample depen-
dence produce high prediction errors through overfitting.

A.3. Procedures to Mitigate Overfitting

Traditional statistical models use measures such as ad-
justed R2 in OLS and Akaike information criterion and
Bayesian information criterion index in structural equa-
tion modeling to help mitigate the problem of overfitting
through excessive model complexity. Bootstrapping offers
a procedure to assess if a givenmodel (typically used to test
deductively derived hypotheses) is valid in subsamples
(i.e., to check if there is excessive sample dependence). ML
algorithms combine an automated model building process
(which allows for complex functional forms) with proce-
dures for mitigating both types of overfitting. First, regu-
larization penalizes model fit for complexity. The intuition
is similar to the use of adjusted R2 in OLS, although a wider
variety of constraints on complexity can be adopted. For
instance, LASSO, a popular ML algorithm, adds a penalty
proportional to the absolute sum of the standardized co-
efficients in a linear regressionmodel. This is comparable to
minimizing the sum of squares with the additional con-
straint that the absolute sum of the standard coefficients
should be less than or equal to a constant (e.g., 1). This type
of regularization can result in sparse models with few co-
efficients. Coefficients of some variables with small effects
can become zero and be eliminated from the model.

Second, cross-validation, which is used to solve the
problem of excessive sample dependence, is closely related
to the idea of a hold-out sample. In this method, we split the
available data on Xs and Ys into random subsamples. Some
of these subsamples are used to fit the model (or train it),

Shrestha et al.: Algorithm Supported Induction Through Machine Learning
Organization Science, 2021, vol. 32, no. 3, pp. 856–880, © 2020 The Author(s) 871

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
0
6
.5

1
.2

2
6
.7

] 
o
n
 0

5
 A

u
g
u
st

 2
0
2
2
, 
at

 0
0
:0

3
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 
Published in Organization Science on December 09, 2020 as DOI: 10.1287/orsc.2020.1382. 

This article has not been copyedited or formatted. The final version may differ from this version.



whereas others are used to evaluate or test the fitted model
for its predictive accuracy. Models that fit the training data
sets well while also achieving good predictive accuracy in
the test sets can be found by repeating this procedure a large
number of times.

Cross-validation is an effective way of tuning hyper-
parameters– a set of parameters that describe amodel family
whose value is set before the learning process begins. For
example, in the case of a random forest, hyperparameters
include the number of decision trees in the forest and the
number of features considered by each tree when splitting a
node. Hyperparameter tuning relies on trying many dif-
ferent value combinations of hyperparameters and evalu-
ating the performance of each, which can be effectively
done by cross-validation, to find the hyperparameters that
minimize the sum of prediction errors in different hold-
out samples.

With these concepts, researchers can comprehend a large
class of supervised ML models in terms of functional form
complexity, loss functions, regularization strategies, and
cross-validation techniques. One can also rely on an en-
semble of models, averaging across many different models
to improve prediction.

Appendix B. Algorithm-Supported Induction

Illustrated with a Family of DGPs
In this section, we illustrate the algorithm-supported in-
duction procedure with a more generalized DGPs than the
specific example illustrated in the paper.We continue to use
the same functional form for the DGP but allow for many
more variants on coefficients:

Y �

∑

11

i�1

bixi +
∑

11

i,j�1

bijxixj + error.

All the variables xi ∈X are continuous and are randomly
sampled from a normal distribution of mean zero and
standard deviation 1. In the set of coefficients B, where
bi, bij ∈B, exactly 10 coefficients are randomly sampled from
the set {0, 0.1, 0.2, . . ., 0.9, 1}, and the rest are set to zero.

This relates Y with at most 10 linear and quadratic terms in X
and represents an assumption about maximal complexity of
the assumed family of data generation processes. For each, the
Gaussian error is sampled from a normal distributionwith zero
mean and noise_sigma standard deviation. In our simula-
tions, we vary noise_sigma in the range {0.25, 0.5, 0.75, 1.0,
1.25, 1.5}. For each value of noise_sigma, we created 100
samples of 1,000 data points, each drawn from a different
DGP (i.e., different sets of up to 10 nonzero coefficients).

B.1. Stage 1: Splitting the Sample

The first step for each sample is to divide the data randomly
into sample I (pattern detection) and sample II (hold-out)
samples of equal size (sample I = 500, sample II = 500).

B.2. Stage 2: Identifying Robust Associations Within the

Inductive Sample

Within Sample I, we rely on a two-stage sequence of ran-
dom forest to identify key predictors and then use LASSO to
narrow down the subset of all second-order polynomials of
these key predictors.

Step 2.1: We first used random forest to reduce the set of
variables into consideration from 11 to xf_size. In our simu-
lations, we varied the xf_size in the range {1, 2, 4, 6, 8, 10}.

Step 2.2: Based on the identified xf_size variables in step 2.1,
we created a model with all possible degree 2 terms. This
model is then fed to the LASSO algorithm in order to reduce
the terms in the polynomial. We used k-fold cross-validation
in order to identify the robust regularization parameter for
LASSO in order to guard against overfitting.

Step 2.3: In the last step within Sample I, we run an OLS
on a model comprising all the significant terms with nonzero
coefficients identified in step 2.2 by the LASSO algorithms.
The results indicate the inductively derived hypotheses to be
tested in the deduction sample.

B.3. Stage 3: Testing Hypotheses in the Deduction Sample

Next,werun the sameOLSmodelused instep2.3 in sample I on
sample II. As our algorithm-supported induction procedure is

Figure B.1. Performance of the Algorithm-Supported Induction Procedure with Random Forest and LASSO (Left) and
Random Selection of Hypothesis to Be Tested (Right)

Notes. Each value corresponds to average Euclidean distance between B and B′ over 100 different DGPs. Smaller is therefore better.
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designed to identify robust associative patterns in data (instead
of predicting Y with high accuracy), we calculated the per-
formance of the procedure as the Euclidean distance between
thevector of coefficients B originally used in thedata generation
process and the vector B′ returned by the OLS on the de-
ductive sample. By design, the coefficients in B has at most
10 nonzero items. Moreover, B′ contains a nonzero coeffi-
cient if and only if a particular variable was identified as
significant by the OLS in step 3, which also returned a
nonzero coefficient. The Euclidean distance between the
two vectors B and B′ is given by

d
(

B,B′
)

�

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(

b1 − b1
′
)2
+

(

b2 − b2
′
)2
+ . . . . +

(

bn − bn
′
)2

√

,

where bi ∈B∧ bi
′

∈B′.
The performance of our procedure for various configu-

rations of noise_sigma and xf_size is presented in Fig-
ure B.1 (left). As we increase xf_size, the performance of the
algorithm-supported induction procedure improves be-
cause the acceptable complexity of the inductive theorizer
approaches true complexity.

To compare our results with the baseline, we also sim-
ulate the same procedure with a random induction pro-
cedure. In this alternative procedure, instead of using
random forest and LASSO in steps 2.1 and 2.2, a random set
of variables of equal size (that would have been selected by
random forest and LASSO) are randomly selected from all
linear and quadratic terms constructed from X. A model
comprising exactly this set of terms is then fit into OLS in
step 2.3. The performance of this procedure is displayed
in Figure B.1 (right). The Euclidean distance values with
this alternative procedure remains uniformly much higher
compared with those in Figure B.1 (left). Moreover, per-
formance fails to significantly improve as we increase
xf_size for a fixed noise_sigma.

Appendix C. Algorithm-Supported Induction with

Variations in DGP
We evaluate the performance of the algorithm-supported
induction procedure under three different variations of
DGP as follows:

Case 1: omitted variable case—where DGP contains a
variable that is omitted from the data set available for
algorithm-supported induction;

Case 2: oversimplification—where degree of polynomial
selected in stage 2.2 of algorithm-supported induction is
lower than the degree of DGP; and

Case 3: undersimplification—where the degree of poly-
nomial selected in stage 2.2 in algorithm-supported induction
is higher than the degree of DGP.

In each of these conditions, we compare the performance
of our procedure with two different versions of what an
exploratory analyst who does not use our procedure in
terms of regularization and cross-validation procedure
might do, namely (a) an exploratory analyst A who assumes
degree 2 and investigates the DGP using linear regression
with an exhaustive set of terms with at most degree 2, that
is, with exactly 77 terms; and (b) an exploratory analyst Bwho
assumes degree 1 and investigates the DGP using linear
regression with only linear terms. The performance of these
variations with respect to algorithm-supported induction
procedure is compared in terms of Hamming distance of
coefficients.

For all newDGPvariants, the value of coefficients (b
′

is,α, β
and γ) remains the same as original DGP. In the Tables C.1,
C.2, C.3 and C.4, we present the comparison in terms of
Hamming distance for significance threshold p = 0.05. In
the following, note that for original DGP, cases 1 and 2,
exploratory analyst A correctly guesses the degree of func-
tional form complexity but has no protection against over-
fitting, whereas exploratory analyst B does both oversimplify

Figure C.1. Cross-Validation for LASSO Hyperparameter for Case 1 (DGP Has Omitted Variable) Found Best α as 0.03
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Table C.1. Comparison Based on p < 0.05 for Original DGP

Hamming distance

Exploratory analyst A
(assumes degree 2)

Exploratory analyst B
(assumes degree 1)

Our approach
(random forest + LASSO) True DGP

Exploratory analyst A (assumes degree 2) 0 10 7 7
Exploratory analyst B (assumes degree 1) 0 3 3
Our approach (random forest + LASSO) 0 0
True DGP 0

Figure C.2. Identified Associations in 10% Subsamples for Case 1 (DGP Has Omitted Variable) with RF + LASSO

Table C.2. Comparison Based on p < 0.05 for Case 1 (DGP Has Omitted Variable)

Hamming distance

Exploratory analyst A
(assumes degree 2)

Exploratory analyst B
(assumes degree 1)

Our approach
(random forest + LASSO) True DGP

Exploratory analyst A (assumes degree 2) 0 5 1 2
Exploratory analyst B (assumes degree 1) 0 4 5
Our approach (random forest + LASSO) 0 1
True DGP 0
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Figure C.3. Cross-Validation for LASSO Hyperparameter for Case 2 (DGP is Degree 3) Found Best α as 0.08

Figure C.4. Identified Associations in 10% Subsamples for Case 2 (DGP is Degree 3) with RF + LASSO
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functional form complexity and has no protection against
overfitting. For case 3, however, exploratory analyst A
under simplifies functional form complexity and has no
protection against overfitting, whereas exploratory ana-
lyst B correctly estimates the degree of functional form
complexity but has no protection against overfitting. Re-
sults indicated that our procedure performs better than
both types of exploratory analysts. Tables C.1, C.2, C.3
and C.4 indicate pairwise hamming distance between re-
sults from the two procedures being compared.

C.1. Original DGP: Case 1—Omitted Variable in Data Set

Available for ASI

We try to recover the following DGPwithout specifying x12
in our induction procedure.

C.2. Original DGP: Case 2—Oversimplification

We aim to recover the following DGP with selection of only
degree 2 polynomial in step 2.2 in ASI (as in the illustration
in the paper).

C.3. Original DGP: Case 3—Undersimplification

Finally, we induce the following linear DGP with selection
of degree 2 in step 2.2 of ASI.

Appendix D. Robustness Check of Algorithmic

Induction Procedure against Different

Algorithm Combinations
To demonstrate that our algorithmic induction procedure is
not confined to a specific set of algorithms (random forest in
the step 2.1 and LASSO in the step 2.2), we run our sim-
ulation by replacing random forest with gradient boosted
regression and neural network-based feature selection in
step 2.1 and RIDGE regression as a replacement for LASSO
in step 2.2 without any changes in the underlying DGP.

Gradient boosting trains many models in a gradual,
additive, and sequential manner: converting weak learners
into strong learners. This method iteratively builds binary
trees, that is, partition the data into two samples at each split

Figure C.5. Cross-Validation for LASSO Hyperparameter
for Case 3 (Linear DGP) Found Best α as 0.01

Figure C.6. Identified Associations in 10% Subsamples for
Case 3 with RF + LASSO

Table C.3. Comparison Based on p < 0.05 for Case 2 (DGP is Degree 3)

Hamming distance

Exploratory analyst A
(assumes degree 2)

Exploratory analyst B
(assumes degree 1)

Our approach
(random forest + LASSO) True DGP

Exploratory analyst A (assumes degree 2) 0 10 8 10
Exploratory analyst B (assumes degree 1) 0 2 4
Our approach (random forest + LASSO) 0 2
True DGP 0

Table C.4. Comparison Based on p < 0.05 for Case 3 (Linear DGP)

Hamming distance

Exploratory analyst A
(assumes degree 2)

Exploratory analyst B
(assumes degree 1)

Our approach
(random forest + LASSO) True DGP

Exploratory analyst A (assumes degree 2) 0 7 7 7
Exploratory analyst B (assumes degree 1) 0 0 0
Our approach (random forest + LASSO) 0 0
True DGP 0
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Table D.2. Comparison of Various Algorithmic Combinations in Terms of Predictive Accuracy

Accuracy: MSE (MAE
for neural network)

MSE for the combination of
the models in sample I

MSE in
sample II

Gradient boosted regression and LASSO 1.41 0.43 0.56
Gradient boosted regression and RIDGE 1.41 0.43 0.54
Random forest and LASSO 0.96 0.43 0.54
Random forest and RIDGE 0.96 0.43 0.53
Permutation-based neural network feature selection

and LASSO
0.67 0.43 0.56

Permutation-based neural network feature selection
and RIDGE

0.67 0.43 0.54

Table D.1. Set of Features Identified as Important by Different Algorithms in Step 2.1

Top five selected features

Random
forest

Gradient boosting
regressor

Neural
network

Weakness of IP protection (x1) × × ×

Advertising intensity (x2) × × ×

R&D intensity (x3) × × ×

SGA expenses (x4) ×

Employee satisfaction (x5) ×

Litigation intensity (x6) × × ×

Employee diversity (x7)
Proportion of TMT with science degrees
(x8)

Size (employees) (x9)
Age of company (x10) ×

CEO appeared in WSJ (x11)

Table D.3. Set of Features Identified as Significant by Different Combinations of Algorithms in Sample I at the End of Step 2.2

Gradient boosted
regression and

LASSO

Gradient boosted
regression and

RIDGE

Random
forest and
LASSO

Random
forest and
RIDGE

Permutation-based
neural network feature
selection and LASSO

Permutation-based
neural network feature
selection and RIDGE

Weakness of IP
protection (x1)

× × × × × ×

Advertising intensity
(x2)

× × × × × ×

R&D intensity (x3) × × × × × ×

Litigation intensity (x6)
Weakness of IP

protection (x1) × R&D
intensity (x3)

× × × × × ×

Weakness of IP
protection (x1) ×
litigation intensity
(x6)

× × × × × ×

Advertising intensity
(x2) × R&D intensity
(x3)

× × × × × ×
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node and in each iterationputsmoreweight on the errors from
the earlier iteration (Breiman 2001). Neural network-based
feature selection uses permutation importance to rank
the importance of features, calculated after a model has
been fitted. In this method, each feature x_i is randomly
shuffled at a time, leaving the target and all other features in
place, and the effect this has on the final prediction per-
formance is noted (Yang et al. 2009). Such random ordering
of variables is expected to reduce the predictive perfor-
mance of the model. Worst performances result from the
shuffle of the most important variables because we are in
this case corrupting the natural structure of data. When a
strong relationship is broken with our shuffle, we com-
promise what our model has learned during training,
resulting in higher error. We illustrate the feature impor-
tance rank discovered by gradient boosting and neural
network approach in Table D.1, which is qualitatively
similar to the one discovered by random forest.

For stage 2.2 of our suggested approach, we require an
interpretablemodel; hence, the choice of RIDGE regression-
based feature selection (Marquardt and Snee 1975). RIDGE
penalizes the model for the sum of squared value of the
weights instead of sum of absolute values as in the case of
LASSO. In total, we run our procedure with five new al-
gorithmic combinations. Each of these combinations per-
form similarly in terms of predictive accuracy on sample II
as displayed in Table D.2 with an MSE around 0.55. As
shown in Table D.3, all these combinations of algorithms
are able to correctly identify the true DGP and our baseline
analysis (random forest plus LASSO).

Endnotes
1A third class of algorithms, reinforcement learning, is less relevant for
our arguments here but is central to computational modeling of
organizational adaptation by theorists; see Puranam et al. 2015
for a review.
2 For instance, OLS is a model family that assumes linearity in co-
efficients; decision trees assume a hierarchical interaction structure.
Given the choice of a model family, ML procedures try to fit a model
that optimizes the bias variance tradeoff.
3Conventional approaches to building theory through inductive
inference in small samples have corresponding ways to mitigate such
bias, including triangulation (Lewis and Grimes 1999), search for
theoretical saturation until no new insights can be gained through
collection of novel data, and other ways to interpret data in grounded
theory (Glaser and Strauss 1967).
4The algorithms used in this paper have been well established and
commonly applied in the field of ML. LASSO was developed in 1996
(Tibshirani 1996) and random forest in 2001 (Breiman 2001). The ideas
on cross-validation were first discussed as early as around the 1930s
(Larson 1931) and further advanced three decades later (Mosteller
and Wallace 1963). Despite being not new, these algorithms and
methods continue to form the core part of any ML textbook and ML
exercise (Bishop 2006, Abu-Mostafa et al. 2012, Alpaydin 2014).
5 In this procedure, stages 2.1 and 2.2 can also accommodate unsu-
pervised learning algorithms such as clustering or LDA to generate a
robust set of interpretable patterns. The key difference is that the
patterns would be identified not based on association of important
features to a dependent variable but on dimension reduction principles.
6 It is important to note that in the context of ML, explainability and
interpretability are often used interchangeably, although there is a
technical difference (Lipton 2016). Interpretability relates to the extent

to which a cause and effect can be observed within a phenomenon or
system. In otherwords, it represents the ability to predict the outcome
of a model, given a change in input or parameters. Explainability, in
contrast, represents the extent to which the internal mechanism of a
model can be explained in human terms. We use the term inter-
pretability to cover both.
7An implication is that when we apply an interpretability constraint
in stage 2.2, it is useful for the researcher to show what would be the
gain in predictive accuracy if a model with higher complexity (e.g.,
degree 3 polynomial instead of degree 2) was to be used in stage 2.2.
This gain may be significant, but we might still choose to retain the
simpler level of complexity because it is easier to interpret, but
reporting the gain with the next higher level of complexity at least
allows readers to see what is left on the table in terms of potential
explanatory power.
8 In the LASSOmodel, we implemented regularization by varying the
value of λ in the range [0.001,1] with 20-fold cross-validation (as show
in Figure 3). The best value of α according to cross-validation per-
formance was 0.0206, whose –log(α) is about 1.68. We used α of
0.0206 as our parameter. In the random forest, regularization was
implemented by varying the depth of the trees and the number of
trees that compose the random forest ensemble. In both these al-
gorithms, regularization parameterswere selected based on the cross-
validation performance of the model.
9 Indeed, the result of a cross-validation exercise may reveal
few robust patterns—a finding that is valuable in and of itself.
Mullainathan and Spiess (2017) demonstrated that it was possible to
build comparably predictive models of house prices across sub-
samples of data, but the predictors used in each sample differed
substantially. In our view, this points (a) to the need for inductive
theorists to focus on models that work reasonably well across a
range of data segments although their predictive power may be
lower and (b) to the acceptance that sometimes models that work
across all data simply may not exist. If the latter is true, then the
algorithms have saved the researcher from making an egregious
error of overfitting in their inductive theorizing, although the result
in terms of publishability may not be as uplifting.
10Reinforcement learning, in turn, is the direct descendant of
Thorndike’s cat, who learned through reinforcement (i.e., reward on
success and punishment on failure) how to escape a cage.
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