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Abstract—This paper describes an algorithm to calculate a
large number of roots of the cross-product of Bessel functions
and of their first derivatives. The algorithm initially finds the
roots of the zeroth order using an auxiliary function that exhibits
the same roots as the original cross-products but with better
behavior for numerical root search with the Newton–Raphson
algorithm. In order to find the roots for higher orders, the algo-
rithm follows a pyramidal scheme using the interlacing property
of the cross-product of Bessel functions. The algorithm shows
globally convergent behavior for a large range of values of the
argument and of the order of the Bessel functions. The roots
can be computed to any precision, limited only by the computer
implementation, and the convergence is attained in six iterations
per root in average, showing a much better performance than
previous works for the calculation of these roots.

Index Terms—Algorithm, Bessel functions, cross-product, inter-
lacing properties, McMahon’s expansion, Newton–Raphson.

I. INTRODUCTION

T HE TWO cross-product combinations of Bessel functions

and their derivatives appear frequently in physical prob-

lems having cylindrical [1] or spherical [2] symmetry. The roots

of the cross-product of Bessel functions and their derivatives

represent the eigenvalue solutions of problems like the accurate

simulation of the behavior of discontinuities involving coaxial

geometries. This is a basic staple in modern computer-aided de-

sign (CAD) tools for designing waveguide networks [3]–[5].

The computation of the radiated field produced by an open-

ended coaxial probe, a very useful tool in electromagnetic diag-

nosis, also needs the calculation of these roots [6]–[11]. Finally,

the representation of the electromagnetic field within curved

waveguides [12], as well as the prediction of the radiated power

spectrum of charged particles within accelerating cavities [13],

also require the efficient and fast calculation of these roots.

Many studies have been realized to calculate the roots of these

functions [14]–[20], but they have not provided a globally con-

vergent algorithm or, in the best cases, they have found solutions

only valid for certain extreme values of the coaxial cable aspect

ratio , or the order of the involved Bessel functions, .

This paper refines the work presented in [21], decreasing sig-

nificantly the amount of iterations needed to find the first root

for of the TEmodewith respect to the previous algorithm.

Manuscript received June 14, 2012; revised September 19, 2012; accepted
November 09, 2012. Date of publication December 04, 2012; date of current
version April 03, 2013.
The authors are with the Laboratoire d’Electromagnétisme et d’Acoustique,

(LEMA), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland (e-mail: eden.sorolla@epfl.ch).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2012.2231929

Moreover, the new algorithm extends the range of for which

the algorithm converges by optimizing the position of the seed

in the root search within the boundaries of the search intervals

accordingly to . The bounds of that ensure the convergence

are determined by the numerical limits of floating-number im-

plementation. In the previous work, approximately 40 500 and

14 000 roots per second were calculated for the limiting values

and , respectively, whereas the new al-

gorithm finds around 65 000 and 16 000 roots per second for

the same values of . Nevertheless, the most interesting fea-

ture of the current algorithm is the capability of calculating

the roots for higher and lower values of the coaxial cable as-

pect ratio since the present work is able to find the roots of the

cross-product of Bessel function for and ,

showing a speed of 81 000 and around 16 000 roots per second,

respectively, all calculated on a current desktop computer (Intel

4-cores 2.4 GHz). Furthermore, deeper explanation of the im-

proved algorithm with the detailed steps to follow depicted in

pseudocode is also provided in this paper.

A. Outline

The motivation to look for the roots of the cross-product of

Bessel functions is shown in Section II, where the general so-

lution of the Helmholtz equation in cylindrical coordinates for

homogeneous boundary conditions and the algorithm to calcu-

late the eigenvalues that satisfy them are shown. Section II-A

explains the root search for the zero-order cross-product, which

serves as basis to calculate the roots for the remaining orders.

Section II-B shows how to calculate the roots for orders higher

than zero, and Section II-C how to calculate the roots for the

cross-product of the derivatives of Bessel function for any order.

The descriptions of the algorithms are provided in pseudocode

format. Section III shows the main results obtained for two ex-

treme values of the parameter to show the reliability and ro-

bustness of the algorithm. The convergence speed, translated

as the number of iterations needed to reach the desired conver-

gence in the search of each root, is also presented at the end of

this section. Finally, Section IV concludes the paper, analyzing

the performance of the algorithm.

II. THEORY

The solution of the Helmholtz equation in cylindrical coor-

dinates provides the electromagnetic potentials of an electro-

magnetic wave traveling within a certain medium with cylin-

drical symmetry like a coaxial waveguide [1], where is the

wavenumber of the electromagnetic wave of frequency

. The constants and are the magnetic permeability and

the electric permittivity, respectively, of the medium through

which the wave propagates.
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The electromagnetic potentials, represented by ,

where , , and define the cylindrical coordinates system, can

be found by applying the method of the separation of variables

to the Helmholtz equation, defining three ordinary differential

equations, one for each coordinate. In order to ensure that the

solution of the azimuthal equation, , is single-valued, the

separation constant , what counts for the azimuthal frequency

of the solution, must be an integer. For problems whose domain

do not include the point , the two linearly independent

solutions of the radial equation are proportional to the Bessel

functions of the first and the second kind, and ,

respectively, where is the order of the Bessel functions and

represents the radial frequency of the solution. In the

context of a coaxial waveguide, and are the diameter of the

inner and outer conductor , respectively, and rep-

resents the outer-to-inner-radius ratio, that is .

Imposing Dirichlet or Neumann boundary conditions to cal-

culate the proportionality factors of the radial solution leads to

an homogeneous system of equations whose determinant must

vanish in order to find the nontrivial results. The values of that

render the determinant zero constitute all the physically mean-

ingful values of the radial frequency that ensures that the so-

lution verifies the boundary conditions. Thus, if we make the

change of variable , and we define the ratio , the

roots of the functions

(1a)

(1b)

provide us with the general solution of the Dirichlet and the

Neumann boundary-value problem, respectively. As the general

solution is a linear combination of the particular solutions asso-

ciated to the roots of the equations above, the TM and the TE

modes of an electromagnetic wave propagating within a coaxial

waveguide are characterized by

(2)

(3)

where is the index of the root, is the solution of the lon-

gitudinal equation, and and are the

proportionality factors of the radial solution for the TM and the

TE modes, respectively. and are the first deriva-

tives of the Bessel functions with respect to . On the other

hand, the roots are normalized by defining ,

, where and are the roots of

and , respectively.

From the numerical calculation point of view, the series in (2)

and (3) must be truncated, thus a certain number of roots

for and a certain maximum index will

be needed to find to the desired accuracy. As it will

be shown later, the roots of are needed to obtain the

ones of . Therefore, the roots for are calculated

first, and the rest of roots are found in ascending order of ,

defining an inverted pyramidal scheme where the first roots are

shown on the top (the same holds for the roots of )

... . .
.

It is required that in order to calculate the

last root of the scheme. Namely, if roots are requested for

to reach the desired accuracy in the calculation of

, the expression must be satisfied.

A. Roots of Modes

To calculate the first set of roots of an auxiliary func-

tion is used following a similar approach as in [22]

(4)

since the roots of and never coincide [23].

Thus, the roots of and are the same, with

the advantage that shows a tangent-like function

behavior as it is shown next. This guarantees the success of the

Newton–Raphson (NR) algorithm [24] in the root search since

all the approximations along the iterative process will lie inside

the interval defined by the branches of the function .

Let us first calculate when

(5)

since in this case.

Let be the positive roots of i.e., the extremes of

and let us study the asymptotes of the auxiliary function

in these limits taking into account the periodic character of the

function [25]

(6)
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Fig. 1. Auxiliary function (solid line) and McMahon’s expansion formula
(dots) for the roots of (1a) for . (a) . (b) .

The limits from the other side are

(7)

Furthermore, due to the periodicity of , we know that

there is a single root in between two extrema, thus between two

roots of there is a single zero of the function .

These properties show that resembles a tangent-like

function. In Fig. 1, the auxiliary function in solid

line together with the seeds, represented by dots, used in the

root search for is shown for two extreme values of the

parameter . The seeds of the root search are chosen accord-

ingly to McMahon’s expansion formula [14]. Note that the th

seed lies within the branch corresponding to the same index of

the root, and since McMahon’s expansion formula provides a

more precise approximation, the larger the value of the root,

the consecutive seeds corresponding to larger values of are

expected to lie within the corresponding branches as well. This

guarantees the success of the root search using McMahon’s

expansion formula as seed for .

The NR iteration formula needs the calculation of the first

derivative of the auxiliary function. Therefore, recalling (4) and

(5), we can write the root search formula as

(8)

where the prime indicates derivative with respect to , with

(9)

(10)

and

(11)

The algorithm to calculate the roots of requests as input

the ratio , the desired maximum amount of roots that are

to be calculated for , and the maximum order consid-

ered for the rest of the root search, with (see

pyramidal scheme). The desired accuracy and the maximum

amount of iterations are given by and , respectively.

The algorithm to obtain the set of roots for is then sum-

marized in Algorithm 1.

Algorithm 1: Calculate

Input: , , ; Output: ; Constants: , ;

while do

for to do

;

{Seed for the th root (McMahon).}

while do

end while

end for

end while

B. Roots of Modes

It has been observed that the function presents

one and only one root in between two consecutive roots

of for any value of and [2]. These in-

terlacing properties of the roots ensure the good per-

formance of our algorithm since the roots of the set
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Fig. 2. (a) All the roots calculated by the algorithm for , ,
and . (b) Sketch showing how the interval is split into an
arbitrary number of subintervals .

are bounded by

the roots of as follows:

(12)

Thus, to find the roots for , the set is used as a

basic set from which the rest of the roots will be found using

the original function . The interlacing properties can be

observed in Fig. 2(a), where the roots of the function for

and different orders are shown. The search interval

of each root for the order is therefore well established by the

interlacing properties and defined by

which is split into subintervals [see Fig. 2(b)]. The seed is

placed slightly above the beginning of the first subinterval by ,

a quantity that is fixed by the maximum among the quantities:

“machine precision times the interval length” and “machine pre-

cision.” Therefore, the NR iteration is applied, and if some ap-

proximation to the root lies outside the interval, defined by the

interlacing properties, the seed is placed at the beginning of the

next subinterval and so on until the solution converges inside

. The quasi-periodicity of the cross-product of Bessel

functions [19] ensures that, placing the seed within some of the

subintervals, the NR algorithm will necessarily converge. The

procedure to calculate the roots for each order of the function

, until is reached, is shown in Algorithm 2.

Algorithm 2: Calculate , ,

Input: , , ; Output: ; Constants: ,

, ;

for to do

for to do

; ; ;

;

;

while do

while do

end while

end while

end for

end for

C. Roots of Modes

To calculate the set of roots of (1b) for , the property

[26] is used, where is any of the two

Bessel functions, either or . This property leads to

, , thus the set of roots of

for is already given since it is the same as the set of roots

of for , previously calculated. The interlacing

properties

(13)

are also valid for all the roots except for since it lies be-

fore [27]. This root is therefore searched inside the interval

, where is an arbitrary number smaller than the

root to be found, and has been calculated previ-

ously. In the algorithm, it has been chosen since the

smallest root that can be found by our algorithm corresponds to

and, in this case, the searched root is around .

Once this root has been found, the remaining ones are automati-

cally calculated following the same inverted pyramidal scheme

and relying on the subdivision of the intervals performed by the

roots of the previous order, as described above. Note that the

index for the roots of does not correspond to the one

of McMahon’s expansion since smaller roots than predicted for

are found [27], [28]. Thus, the index is shifted by one in

this case with respect to McMahon’s nomenclature for the roots

of this function.

The algorithm to calculate the set of roots until reaching

the order is presented in Algorithm 3.



2184 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 61, NO. 4, APRIL 2013

TABLE I
ROOTS OF FOR

TABLE II
ROOTS OF FOR

Algorithm 3: Calculate , ,

Input: , , ; Output: ; Constants: ,

, , ;

{This root is discarded later since it is only an

artificial bound to find the first root for }.

for to do

for to do

; ; ;

;

;

while do

while do

end while

end while

end for

end for

III. MAIN RESULTS

In this section, the roots of the two functions (1) are shown for

two extreme values of the parameter ( and )

in order to check the reliability of the algorithm for limiting

cases. This ensures that for ratios of as there are found in

practical applications, the algorithm will work as well. For these

two extreme values, the interlacing properties of the roots of

both the cross-product of Bessel functions and their derivatives

are verified.

As for low values of , the roots of (1) for a given lie very

close to each other as increases, and the interlacing properties

cannot be easily verified by visual inspection; we represent the

roots for in tabular format normalized by the quantity

. In Table I, the 10 first roots of (1a) for values of from 0

to 5 are shown. In Table II, the 11 first roots of (1b) for values of

from 1 to 5 for the same value of are shown. The reason why

the roots in Table II for are not shown is because they are

the same as those ones of Table I for as it has been pointed

out before. It can be seen that the values of the normalized roots

tend to multiples of , as expected when since this limit

corresponds to the solution of a parallel-plate waveguide [18].

The results certify that the interlacing properties of the roots of

both functions hold for all of them.

For large values of , the verification of the interlacing prop-

erties can be easily performed by visual inspection. The 10 first

roots of the cross-product of Bessel functions and the ones of

the cross-product of their derivatives are shown for the 10 first

values of for in Fig. 3(a) and (b), respectively. In
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Fig. 3. Roots of (1) for . (a) Roots of . (b) Roots of .

this case, it can be noticed that the roots of (1a) tend to the

ones of the Bessel function of the first kind, that is, the roots

of , while the roots of (1b) tend to the ones of the

derivative , as expected [29].

In order to show the efficiency of the roots search, the number

of iterations needed to reach machine precision for the first root

of the functions defined in (1) is represented in Fig. 4. The con-

vergence study of the first root of [Fig. 4(a)] shows that the

number of iterations needed to reach machine-precision accu-

racy increases as grows for a given , though the convergence

seems to depend more on than on the index of the Bessel func-

tions. Namely, for a given , the convergence is more quickly

attained as the ratio decreases and gets close to one. This is

due to the fact that the McMahon’s expansion provides a better

estimate of the roots as the ratio increases. Another

reason to explain why the algorithm needs less iterations for

lower values of than for larger ones is due to the fact that the

algorithm places the seed slightly above the value of to find

the root . Thus, as the root lies closer to the seed for smaller

values of than for larger ones (compare results in Table I to

those of Fig. 3), the convergence is more quickly attained for

. The fast and accurate character of the algorithm to find

all the roots of functions (1) for any is, indeed, based on the

knowledge of the set and the properties of its elements with

respect to the roots for higher orders . Nevertheless, the plot

Fig. 4. Convergence study of (a) and (b) (bottom).

shows that in the worst case, corresponding to ,

the algorithm only needs six steps to reach machine-precision

accuracy for , which reflects the fast performance of

the calculation.

It must be remarked that the occasional jump of the seed [cf.

Fig. 2(b) and Section II-B] to the beginning of the second or the

third subintervals when the approximation to the root lies out-

side the search interval has been recorded and taken into account

in the plot of Fig. 4. The convergence study of the root search

for shows the presence of the jump of the seed to the

second and the third subintervals for values of above 5 and 50,

respectively. No jump of the seed beyond the third subinterval

was observed for values of below 1000 when and range

from 0 to 100 and from 1 to 100, respectively. The appearance of

jumps in the seed to the next subintervals does not follow a clear

tendency with the parameter or the index since it depends

on the slope of the function (or ) evaluated at

(or ). If the absolute value of the slope is

very small the NR iteration will approximate the root outside

the search interval defined by , but the periodicity of the

cross-product of the Bessel functions ensures that the slope of

the function evaluated at the beginning of some subinterval will

guarantee the convergence of the root search.

For example, for , jumps to the second subinterval were

recorded for values of between 21 and 55 for a few values of
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the root index, . For the jump of the root approximation

to the second subinterval was observed only for . For

, this jump occurred only for . The behavior of

the jump of the seed to the second subinterval for intermediate

values of was different. For instance, for , this occurred

for the roots lying between and .

For , the presence of the jumps of the seed to the

next subintervals was observed for values of from 2 to 47. For

values of below 15, the jump to the third subinterval occurred

in few cases for large values of the root index, (between 70 and

90). For big values of , the jump occurred only to the second

subinterval for a few roots (typically eight for each value of ).

It has also been observed that the number of roots for which this

jump occurs decreases as the index grows, no jumps occurring

for .

Fig. 4(b) shows that the convergence of the first root of

is mainly achieved in four or less iterations for any value of

as long as is larger than one, reflecting the satisfactory opti-

mization of the method. It is worthwhile to mention that, unlike

the convergence of the search of , the number of iterations

needed to find is practically independent of , except for

the first order, showing a satisfactorily performance of the root

search for any order. The exception to the fast convergence of

the algorithm occurs for , where the algorithm needs up to

24 iterations to converge for , though it is better com-

pared to the previous algorithm [21], where 81 iterations were

required for . Although the comparison is made for

different values of it must be noted that the lower the coaxial

cable aspect ratio, the worse the convergence speed. The cur-

rent algorithm finds the first root faster than the previous one

and, moreover, for a lower value of .

The reason for the slow performance in the root search of

is twofold: The seed to calculate is placed slightly above

within the interval , and thismay lie far away from

the actual root; the second reason is that the slope of the function

is very steep close to the origin, what makes the NR al-

gorithm difficult to converge when the seed is far from the root.

Let us recall that the lower bound within the search interval was

optimized to lie close to thefirst root for [see Fig. 5(b)],

and the NR algorithm in this case needs only four steps as it is

shown in cyan in Fig. 4(b). For lower values of , the first root for

lies far above the lower bound of the search interval, what

slows down the convergence. Nevertheless, all the roots are

calculated based on the knowledge of . Therefore, the draw-

back found in the root search of the first root of almost

does not affect the whole performance of the algorithm since,

once the value of is found, the algorithm calculates the rest

of the roots very efficiently for any value of and .

The average number of iterations needed to calculate the

eigenvalues of the TM modes is around 6 per root for

and around 2 for . For the TE modes, the behavior of

the convergence is in general a bit better, apart from the fact

that for low values of , the convergence for is very slow

for the reasons mentioned above. In the end, the overall effect

is that the average number of iterations in the search of the

eigenvalues of TM and TE modes is very similar. The calcula-

tions of the roots have been carried out on a common desktop

computer (Intel 4-cores 2.4 GHz), the algorithm showing a

Fig. 5. Plot of the function . (a) . (b) .

speed of around 81 000 and around 16 000 roots per second for

and , respectively.

The previously developed algorithms that analyzed the calcu-

lation of the roots of (1) were based either on the approximation

by a series [14], [15], sometimes only valid for asymptotic values

of or [16], [18], or on the solution of an eigenvalue problem

in a fast and efficient way as most recent works have done [3],

[4], [30], [31]. These last studies showed very efficient calcu-

lation of the eigenvalues of more general structures, though the

accuracy presented for coaxial cables was lower than achieved

with the algorithm presented in this paper. Nevertheless, as the

computational cost to solve a linear eigenvalue problem grows

with the square of the amount of roots, the algorithm presented

here is much more efficient when a large number of roots is re-

quested since its computational cost grows only linearly.

IV. CONCLUSION

A globally convergent algorithm to find the roots of the cross-
product of Bessel functions and their derivatives has been devel-
oped for the first time for a large range of values of the param-
eter and the order . The algorithm initially finds the roots of
the cross-product of Bessel functions for using an auxil-
iary function with the same roots. In order to find the roots for
higher values of , the algorithm follows a pyramidal scheme
using the interlacing property of the cross-products.
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The efficiency of the method has been checked analyzing the
amount of iterations needed to reach convergence up to the 14th
digit, underlining its good performance. In average, approxi-
mately only six iterations per root are required considering two
extreme values of the parameter , with the exception of the
first root of the cross-product of derivatives of Bessel functions.
However, this isolated case only slightly affects the overall per-
formance of the algorithm.
The speed of the algorithm has been tested for two extreme

values of the parameter having been improved noticeably with
respect to previous works together with the accuracy.
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