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Algorithmic Aspects
of Cartogram Computation

Bettina Speckmann∗

Abstract

In this note we describe some recent algorithms for the computation of rect-
angular and rectilinear cartograms.

1 Introduction

Cartograms. Cartograms are a useful and intuitive tool to visualize statistical
data about a set of regions like countries, states or counties. The size of a region in
a cartogram corresponds to a particular geographic variable. The most common
variable is population: in a population cartogram, the sizes (measured in area)
of the regions are proportional to their population. In a cartogram the sizes of
the regions are not the true sizes and hence the regions generally cannot keep
both their shape and their adjacencies. A good cartogram, however, preserves the
recognizability in some way.
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Figure 1: The provinces of the Netherlands, their adjacency graph, a popula-
tion cartogram—here additional “sea rectangles” were added to preserve the outer
shape.

Globally speaking, there are four types of cartogram. The standard type—
also referred to as contiguous area cartogram—has deformed regions so that the
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desired sizes can be obtained and the adjacencies kept. Algorithms for such car-
tograms were given, among others, by Tobler [24], Dougenik et al. [10], Kocmoud
and House [17], Edelsbrunner and Waupotitsch [11], Keim et al. [16], and Gastner
and Newman [13].

The second type of cartogram is the non-contiguous area cartogram [12, 21].
The regions have the true shape, but are scaled down and generally do not touch
anymore. Sometimes the scaled-down regions are shown on top of the original
regions for recognizability. A third type of cartogram is based on circles and was
introduced by Dorling [9]. The fourth type of cartogram is the rectangular car-
togram introduced by Raisz in 1934 [22]. Each region is represented by a single
rectangle, which has the great advantage that the sizes (area) of the regions can
be estimated much better than with the first two types. However, the rectangular
shape is less recognizable and it imposes limitations on the possible layout. Hy-
brid cartograms of the first and fourth type, so called rectilinear cartograms exist
as well. Here, regions are rectilinear polygons with a small number of vertices in-
stead of rectangles (see, for example, Fig. 10). In this note we focus on algorithms
for rectangular and rectilinear cartograms.

Quality criteria. Whether a cartogram is good is determined by several factors.
Two important criteria are the correct adjacencies of the regions of the cartogram
and the cartographic error [10]. The first criterion requires that the dual graph of
the cartogram is the same as the dual graph of the original map. Here the dual
graph of a map—also referred to as adjacency graph—is the graph that has one
node per region and connects two regions if they are adjacent, where two regions
are considered to be adjacent if they share a 1-dimensional part of their boundaries
(see Figure 1). The second criterion, the cartographic error, is defined for each
region as |Ac − As| /As, where Ac is the area of the region in the cartogram and As

is the specified area of that region, given by the geographic variable to be shown.
Other criteria include suitable relative positions of the regions and bounded aspect
ratio in the case of rectangular cartograms.

Computing cartograms. From a graph-theoretic point of view constructing
rectangular cartograms with correct adjacencies and zero cartographic error trans-
lates to the following problem. We are given a plane graph G = (V, E) (the dual
graph of the original map) and a positive weight for each vertex (the required area
of the region for that vertex). Then we want to construct a partition of a rectan-
gle into rectangular regions whose dual graph is G—such a partition is called a
rectangular dual of G—and where the area of each region is the weight of the
corresponding vertex. As usual, we assume the input graph G is plane and trian-
gulated, except possibly the outer face; this means that the original map did not
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have four or more countries whose boundaries share a common point and that G
does not have degree-2 nodes. Degree-2 nodes and four-country-points can easily
be handled using suitable pre- and postprocessing steps, see [25] for details.

Unfortunately not every vertex-weighted plane triangulated graph admits a
rectangular cartogram, even if we ignore the vertex weights and concentrate only
on the correct adjacencies. The graph in Figure 2 (left), for instance, does not have
a rectangular dual. The graph in the middle of Figure 2 does have a rectangular
dual (Figure 2 (right)) but if, for example, the weight of vertex 1 and 3 is 10 and
the weight of vertex 2 and 4 is 100, then no rectangular cartogram with correct
adjacencies and zero cartographic error exists.
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Figure 2: No rectangular dual (left); the graph in the middle does have a rect-
angular dual (right) but for certain weights no rectangular cartogram can be con-
structed.

There are several possibilities to address this problem. One is to relax the
strict requirements on the adjacencies and areas. In Section 2 we discuss several
algorithms that construct rectangular cartograms that in practice have only a small
cartographic error and mild disturbances of the adjacencies. Heilmann et al. [14]
gave an algorithm that always produces regions with the correct areas; unfortu-
nately the adjacencies can be disturbed badly. The other extreme is to ignore the
area constraints and focus only on getting the correct adjacencies—that is, to focus
on rectangular duals rather than cartograms. This setting is relevant for comput-
ing floor plans in VLSI design. As mentioned above, ignoring the area constraints
still does not guarantee that a solution exists. But, if the input graph is a trian-
gulated plane graph with four vertices on the outer face and without separating
triangles—a separating triangle is a 3-cycle with vertices both inside and outside
the cycle—then a rectangular dual always exists [2, 18] and can be computed in
linear time [15].

Another option is to use different shapes for the regions. Here we restrict our
attention to rectilinear cartograms, which use rectilinear polygons as regions—
see [8, 20] for some examples from the cartography community. If we now ignore
the area requirement then things become much better: Any plane triangulated
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graph admits a rectilinear dual. In fact, Liao et al. [19] showed that any plane trian-
gulated graph admits a rectilinear dual with regions of small complexity, namely
rectangles, L-shapes, and T-shapes. In Section 3 we discuss an algorithm that
computes a rectilinear cartogram from such a rectilinear dual. There we show that
any plane triangulated vertex-weighted graph admits a rectilinear cartogram, all
of whose regions have constant complexity, and which has zero cartographic error
and correct adjacencies.

2 Rectangular cartograms

In this section we sketch the algorithms presented in [23, 25]. They are iterative,
semi-combinatorial, and the first algorithms for rectangular cartogram construc-
tion. Assume that we are given an administrative subdivision into a set of regions,
that is, a map M. As mentioned above the adjacencies of the regions can be
represented by a graph G, which is the dual graph ofM.

1. Preprocessing: The adjacency graph G is in most cases already triangulated
(except for its outer face). In order to construct a rectangular dual of G we first
have to process internal vertices of degree less than four and then triangulate any
remaining non-triangular faces.

2. Directed edge labels: Any two nodes in the adjacency graph have at least
one direction of adjacency which follows naturally from their geographic location.
While in theory there are four different directions of adjacency any two nodes can
have, in practice only one or two directions are applicable and, in fact, there is only
a small number of adjacent regions where more than one direction is reasonable.
The algorithms go through all possible combinations of direction assignments and
determine which one gives a correct or the best result. We call a particular choice
of adjacency directions a directed edge labeling.

Observation 1. An adjacency graph G with a directed edge labeling can be rep-
resented by a rectangular dual if and only if

1. every internal region has at least one North, one South, one East, and one
West neighbor, and

2. when traversing the neighbors of a node in clockwise order starting at the
western most North neighbor we first encounter all North neighbors, then
all East neighbors, then all South neighbors and finally all West neighbors.

A realizable directed edge labeling constitutes a regular edge labeling for G
as defined in [15] which immediately implies our observation.
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Figure 3: One of 4608 possible rectangular
layouts of the US.

3. Rectangular layout: To actu-
ally represent a face graph together
with a realizable directed edge la-
beling as a rectangular dual we have
to pay special attention to the nodes
on the outer face since they may
miss neighbors in up to three direc-
tions. To compensate for that we
add four special regions NORTH,
EAST, SOUTH, and WEST, as well
as sea rectangles that help to pre-
serve the original outline of the sub-
division. Then we can employ the
algorithm by He and Kant [15] to construct a rectangular layout, i.e., the unique
rectangular dual of a realizable directed edge labeling.

4. Area assignment: For a given set of area values and a given rectangular lay-
out we would like to decide if an assignment of the area values to the regions is
possible without destroying the correct adjacencies. Should the answer be nega-
tive or should the question be undecidable, then we still want to compute a car-
togram that has a small cartographic error while maintaining reasonable aspect
ratios and relative positions.

In [25] three algorithms are described that compute a cartogram from a rect-
angular layout. This work is extended in [23] where a fourth algorithm is in-
troduced. The first algorithm presented in [25] is the simple segment moving
heuristic, which loops over all maximal segments in the layout and moves each
with a small step in the direction that decreases the maximum error of the adjacent
regions. After a number of iterations, one can expect that all maximal segments
have moved to a locally optimal position. However, there is no proof that the
method reaches the global optimum or that it even converges. Secondly, if the
rectangular layout is L-shape destructible (see [25]) then one can compute a zero-
error cartogram if one exists. The third method is based on bilinear programming
and can produce a cartogram with minimum maximal error, provided a good bilin-
ear program solver is available. Unfortunately, bilinear programs are notoriously
difficult and none of the available solvers is guaranteed to work [1].

In [23] area assignment is formulated as a linear program which takes only
the vertical or only the horizontal segments into account. The algorithm then al-
ternatingly solves a linear program for the vertical and the horizontal segments.
The segment moving heuristic and the linear programming based approach were
implemented—the latter using the well-known CPLEX program [3]. Both meth-
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Figure 4: Highway kilometers of the US; the population of Europe (country codes
according to the ISO 3166 standard).

ods can relax the adjacency constraints to compute cartograms with lower carto-
graphic error at the cost of mild disturbances in the adjacencies.

Although the segment moving heuristic often gives aesthetically pleasing car-
tograms with small error (see Fig. 4 (left)), the linear programming based ap-
proach in general produces cartograms with a lower cartographic error, a smaller
aspect ratio, and a better global shape. Furthermore, it is also able to handle
L-shaped regions in a cartogram (see Fig. 4 (right)) and to compute satisfactory
cartograms of all countries of the World (see Fig. 5).

3 Rectilinear cartograms

Rectilinear cartograms are a generalization of rectangular cartograms where re-
gions can be rectangles, or L-shapes, or any other type of rectilinear polygon.
Recall that even if a plane triangulated graph G has a rectangular dual then this
does not imply that an error free cartogram for G exists. However, if we allow
the regions to be rectilinear polygons then a cartogram with zero cartographic
error and correct adjacencies exists for any plane triangulated graph G and any
assignment of areas to regions.

More specifically, let G = (V, E) be a plane triangulated graph—the adjacency
graph of the input map—where each vertex is assigned a positive weight—the
preferred area of the region that corresponds to this vertex. A rectilinear dual of G
is a partition of a rectangle into |V | simple rectilinear regions, one for each vertex,
such that two regions are adjacent if and only if the corresponding vertices are
connected by an edge in E. A rectilinear cartogram is a rectilinear dual where
the area of each region is equal to the weight of the corresponding vertex. The
following theorem is proven in [5, 7].
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Figure 5: A population cartogram of the World .

Theorem 1. Every vertex-weighted plane triangulated graph G admits a rectilin-
ear cartogram of constant complexity, that is, a cartogram where the number of
vertices of each region is constant.

The proof of this theorem is constructive. The underlying algorithm has been
implemented and evaluated experimentally—the results can be found in [6]. We
briefly sketch the algorithm in the following paragraphs. It produces regions of
very small complexity for real world data sets—in fact, most regions are rectan-
gles (see Fig. 10). Assume again that we are given a subdivision, that is, a map
M, and its dual graph G.

1. Preprocessing: Just as in the previous section we preprocess G to ensure that
it has a rectangular dual. That is, we triangulate faces that are not triangulated
yet, we add additional NORTH, EAST, SOUTH, and WEST vertices to form the
boundary of the graph, and we split vertices to remove separating triangles. This
can be done in such a way, that the final cartogram is guaranteed to have regions
of bounded complexity.

2. Constructing a rectangular layout: As before we use the algorithm by Kant
and He [15] to construct a rectangular layout M1 for G. In fact, we again try
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all reasonable rectangular layouts, that is, those layouts that correspond to the
geographic situation as much as possible.

3. Constructing a BSP: Our algorithm works for so-called sliceable layouts,
that is, layouts which can be obtained by recursively slicing a rectangle by hor-
izontal and vertical lines. To turn the layout M1 that results from Step 2 into a
sliceable layout we compute a rectilinear binary space partition (BSP) forM1. We
would like the BSP to avoid cutting regions as much as possible, hence we use the
BSP-construction algorithm by d’Amore and Franciosa [4], which guarantees that
each rectangle inM1 is cut into at most four pieces. We use several heuristics that
subdivide the weight in a suitable manner for each region that is cut by the BSP.
This step results in a sliceable layoutM2 (see Fig. 6, for simplicity we depict a
graph G that has a sliceable layout).
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Figure 6: A graph G, the layoutM2, and the BSP tree T .

4. Getting the areas right: The input to Step 4 is a BSP tree T for the rect-
angular layout M2 (see Fig. 6). Recall that each internal node ν in a BSP tree
stores a splitting line; we denote this line by �(ν). Also recall that each leaf in the
BSP corresponds to a cell in the BSP subdivision (which in our case is contained
in one of the regions of M2). For an internal node ν we define R(ν) to be the
union of all the cells corresponding to leaves in the subtree of ν. This implies that
R(root(T )) is simply the whole map area, and that the splitting line �(ν) splits R(ν)
into R(leftchild(ν)) and R(rightchild(ν)).
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Figure 7: LayoutM3.

We traverse T top down. At each node ν the split-
ting line �(ν) is repositioned while maintaining the fol-
lowing invariant: when a node ν is handled, the cur-
rent area of R(ν) is equal to the sum of the weights
of the required areas of the leaf cells in the subtree
T (ν) rooted at ν. We start at the root and scale M2

for R to have the required area. Then for each in-
ternal node ν we position �(ν) such that Rrightchild(ν)
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and Rleftchild(ν) have correct areas. When we arrive at the leaves the corre-
sponding cells have correct areas. See, for example, Fig. 7 that shows the
layout M3 for the example in Fig. 6 and the weights [w(1), . . . ,w(10)] =
[0.15, 0.09, 0.06, 0.04, 0.06, 0.04, 0.08, 0.06, 0.18, 0.24].

The repositioning of the splitting lines may destroy some of the adjacencies.
This will be remedied in the later steps.
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Figure 8: LayoutM4.

5. Tailing: Repositioning the splitting lines during
the previous step may have caused some of the ad-
jacencies to be broken. We fix the adjacencies us-
ing so-called tails. These are very thin rectangles that
are added to a region to connect it to some other re-
gion. The region then becomes an L-shape or some-
thing more complicated if a region gets several tails
(see Fig. 8 which shows the result of Step 5 on our
running example).

Every tail introduces area errors. To prove that we can fix these errors in the
following step without destroying any adjacencies we assume that all tails are
extremely thin. However, when computing actual rectilinear cartograms we use
several heuristics to widen the tails as far as possible while still producing zero
error cartograms.
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Figure 9: LayoutM5.

6. Correcting the areas again: The errors in the ar-
eas are corrected by moving the splitting lines —which
have by now become polylines—of the BSP, similar to
Step 4. This time, however, the errors to be repaired
are so small that one can prove that the splitting lines
have to be moved only so little that no adjacencies are
destroyed. Fig. 9 shows the final rectilinear cartogram
for our example. All figures were computed by the im-
plemented algorithm and hence use heuristics to widen tails while keeping adja-
cencies and guaranteeing zero error.

4 Conclusions

The algorithms discussed in this note are the first algorithms for the computation
of rectangular and rectilinear cartograms. They do produce aesthetically pleasing
cartograms of high quality. However, some interesting open question related to
rectangular cartogram computation still remain. For example, can one determine
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Figure 10: Highway kilometers of the US; gross domestic product (GDP) of Eu-
rope.

in polynomial time if there is a rectangular cartogram with zero cartographic er-
ror and correct adjacencies for a given plane triangulated graph with arbitrary
weights? Secondly, the algorithms work particularly well for graphs that have a
sliceable rectangular dual. Is there a complete characterization of this class of
graphs?
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