
PREPRINT

國立臺灣大學 數學系 預印本 Department of Mathematics, National Taiwan University

w
w
w
.
m
a
t
h
.
n
t
u
.
e
d
u
.
t
w
/
~
m
a
t
h
l
i
b
/
p
r
e
p
r
i
n
t
/
2
0
1
1
-
0
1
.
p
d
f

Algorithmic Aspects of Domination in
Graphs

Gerard Jennhwa Chang

October 6, 2011

Algorithmic Aspects of Domination in Graphs

Gerard Jennhwa Chang

Department of Mathematics

National Taiwan University

Taipei 10617, Taiwan

gjchang@math.ntu.edu.tw

Abstract

Domination in graph theory has many applications in the real world
such as location problems. A dominating set of a graph G = (V,E) is
a subset D of V such that every vertex not in D is adjacent to at least
one vertex in D. The domination problem is to determine the domination
number γ(G) of a graph G that is the minimum size of a dominating set
of G. Although many theoretic theorems for domination and its varia-
tions have been established for a long time, the first algorithmic result
on this topic was given by Cockayne, Goodman and Hedetniemi in 1975.
They gave a linear-time algorithm for the domination problem in trees
by using a labeling method. On the other hand, at about the same time,
Garey and John constructed the first (unpublished) proof that the dom-
ination problem is NP-complete. Since then, many algorithmic results
are studied for variations of the domination problem in different classes
of graphs. This chapter is to survey the development on this line during
the past 36 years. Polynomial-time algorithms using labeling method,
dynamic programming method and primal-dual method are surveyed on
trees, interval graphs, strongly chordal graphs, permutation graphs, co-
comparability graphs and distance-hereditary graphs. NP-completeness
results on domination are also discussed.

1 Introduction

Graph theory was founded by Euler [90] in 1736 as a generalization of the
solution to the famous problem of the Königsberg bridges. From 1736 to 1936,
the same concept as graph, but under different names, was used in various
scientific fields as models of real world problems, see the historic book by Biggs,
Lloyd and Wilson [23]. This chapter intents to survey the domination problem
in graph theory from an algorithmic point of view.

1

Domination in graph theory is a natural model for many location problems in
operations research. As an example, consider the following fire station problem.
Suppose a county has decided to build some fire stations, which must serve all
of the towns in the county. The fire stations are to be located in some towns so
that every town either has a fire station or is a neighbor of a town which has a
fire station. To save money, the county wants to build the minimum number of
fire stations satisfying the above requirements.

Domination has many other applications in the real world. The recent book
by Haynes, Hedetniemi and Slater [114] illustrates many interesting examples,
including dominating queens, sets of representatives, school bus routing, com-
puter communication networks, (r, d)-configurations, radio stations, social net-
work theory, land surveying, kernels of games, etc.

Among them, the classical problems of covering chessboards by the minimum
number of chess pieces are important in stimulating the study of domination,
which commenced in the early 1970’s. These problems certainly date back to
De Jaenisch [85] and have been mentioned in the literature frequently since that
time.

A simple example is to determine the minimum number of kings dominating
the entire chessboard. The answer to an m × n chessboard is ⌈m3 ⌉⌈

n
3 ⌉. In the

Chinese chess game, a king only dominates the four neighbor cells which have
common sides with the cell the king lies in. In this case, the Chinese king
domination problem for an m×n chessboard is harder. Figure 1 shows optimal
solutions to both cases for a 3× 5 board.

K

K

K

KKK

(a) chessboard (b) Chinese chessboard

Figure 1: King domination on a 3× 5 chessboard.

The above problems can be abstracted into the concept of domination in
terms of graphs as follows. A dominating set of a graph G = (V,E) is a subset
D of V such that every vertex not in D is adjacent to at least one vertex in D.
The domination number γ(G) of a graph G is the minimum size of a dominating
set of G.

For the fire station problem, consider the graph G having all towns of the
county as its vertices and a town is adjacent to its neighbor towns. The fire
station problem is just the domination problem, as γ(G) is the minimum number
of fire stations needed.

2

For the king domination problem on an m×n chessboard, consider the king’s
graph G whose vertices correspond to the mn squares in the chessboard and two
vertices are adjacent if and only if their corresponding squares have a common
point. For the Chinese king domination problem, the vertex set is the same
but two vertices are adjacent if and only if their corresponding squares have a
common side. Figure 2 shows the corresponding graphs for the king and the
Chinese king domination problems on a 3× 5 chessboard. The king domination
problem is just the domination problem, as γ(G) is the minimum number of
kings needed. Black vertices in the graph form a minimum dominating set.

e e e e e

e e e e e
e e e uu �

��
@
@@�

��
@

@@�
��
@
@@�

��
@

@@

(a) for chess

e e
e
ee

e e
e

e e

e
u

u

u
u

(b) for Chinese chess

�
��

@
@@ �

��
@

@@ �
��
@
@@ �

��
@

@@

Figure 2: King’s graphs for the chess and the Chinese chess.

Although many theoretic theorems for the domination problem have been
established for a long time, the first algorithmic result on this topic was given
by Cockayne, Goodman and Hedetniemi [58] in 1975. They gave a linear-time
algorithm for the domination problem in trees by using a labeling method.
On the other hand, at about the same time Garey and Johnson (see [101])
constructed the first (unpublished) proof that the domination problem is NP-
complete for general graphs. Since then, many algorithmic results are studied
for variations of the domination problem in different classes of graphs. The
purpose of this chapter is to survey these results.

This chapter is organized as follows. Section 2 gives basic definitions and
notation. In particular, the classes of graphs surveyed in this chapter are intro-
duced. Among them, trees and interval graphs are two basic classes in the study
of domination. While a tree can be viewed as many paths starting from a center
with different branches, an interval graph is a “thick path” in the sense that a
vertex of a path is replaced by a group of vertices tied together. Section 3 inves-
tigates different approaches for domination in trees, including labeling method,
dynamic programming method, primal-dual approach and others. These tech-
niques are used not only for trees, but also for many other classes of graphs in
the study of domination as well as many other optimization problems. Section
4 is for domination in interval graphs. It is in general not clear to which classes
of graphs the results in trees and interval graphs can be extended. For some
classes of graphs the domination problem becomes NP-complete, while for some
classes it is polynomially solvable. Section 5 surveys NP-completeness results
on domination, for which chordal graphs play an important role. The remaining

3

sections are for classes of graphs in which the domination problem is solvable,
including strongly chordal graphs, permutation graphs, cocomparability graphs
and distance-hereditary graphs.

2 Definitions and notation

2.1 Graph terminology

A graph is an ordered pair G = (V,E) consisting of a finite nonempty set V
of vertices and a set E of 2-subsets of V , whose elements are called edges.
Sometimes V (G) is used for the vertex set and E(G) for the edge set of a graph
G. A graph is trivial if it contains only one vertex. For any edge e = {u, v}, it is
said that vertices u and v are adjacent, and that vertex u (respectively, v) and
edge e are incident. Two distinct edges are adjacent if they contain a common
vertex. It is convenient to henceforth denote an edge by uv rather than {u, v}.
Notice that uv and vu represent the same edge in a graph.

Two graphs G = (V,E) and H = (U, F) are isomorphic if there exists a
bijection f from V to U such that uv ∈ E if and only if f(u)f(v) ∈ F . Two
isomorphic graphs are essentially the same as one can be obtained from the
other by renaming vertices.

It is often useful to express a graph G diagrammatically. To do this, each
vertex is represented by a point (or a small circle) in the plane and each edge
by a curve joining the points (or small circles) corresponding to the two vertices
incident to the edge. It is convenient to refer to such diagram of a graph as the
graph itself. In Figure 3, a graph G with vertex set V = {u, v, w, x, y, z} and
edge set E = {uw, ux, vw, wx, xy, wz, xz} is shown.

f f f f
f

f
�
�
� A

A
A

�
�
�

A
A
A

v w x y

z

u

Figure 3: A graph G with 6 vertices and 7 edges.

Suppose A and B are two sets of vertices. The neighborhood NA(B) of B in
A is the set of vertices in A that are adjacent to some vertex in B, i.e.,

NA(B) = {u ∈ A : uv ∈ E for some v ∈ B}.

The closed neighborhood NA[B] of B in A is NA(B) ∪B. For simplicity, NA(v)
stands for NA({v}), NA[v] for NA[{v}], N(B) for NV (B), N [B] for NV [B], N(v)
for NV ({v}) and N [v] for NV [{v}]. The notion u ∼ v stands for u ∈ N [v].

4

The degree deg(v) of a vertex v is the size of N(v), or equivalently, the
number of edges incident to v. An isolated vertex is a vertex of degree zero. A
leaf (or end vertex) is a vertex of degree one. The minimum degree of a graph G
is denoted by δ(G) and the maximum degree by ∆(G). A graph G is r-regular
if δ(G) = ∆(G) = r. A 3-regular graph is also called a cubic graph.

A graph G′ = (V ′, E′) is a subgraph of another graph G = (V,E) if V ′ ⊆ V
and E′ ⊆ E. In the case of V ′ = V , G′ is called a spanning subgraph of G. For
any nonempty subset S of V , the (vertex) induced subgraph G[S] is the graph
with vertex set S and edge set

E[S] = {uv ∈ E : u ∈ S and v ∈ S}.

A graph is H-free if it does not contain H as an induced subgraph. The deletion
of S from G = (V,E), denoted by G−S, is the graph G[V \S]. G− v is a short
notation for G− {v} when v is a vertex in G. The deletion of a subset F of E
from G = (V,E) is the graph G − F = (V,E \ F). G − e is a short notation
for G − {e} if e is an edge of G. The complement of a graph G = (V,E) is the
graph G = (V,E), where

E = {uv 6∈ E : u, v ∈ V and u 6= v}.

Suppose G1 = (V1, E1) and G2 = (V2, E2) are two graphs with V1∩V2 = ∅. The
union of G1 and G2 is the graph G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2). The join of G1

and G2 is the graph G1 +G2 = (V1 ∪ V2, E+), where

E+ = E1 ∪ E2 ∪ {uv : u ∈ V1 and v ∈ V2}.

The Cartesian product of G1 and G2 is the graph G12G2 = (V1×V2, E2), where

V1 × V2 = {(v1, v2) : v1 ∈ V1 and v2 ∈ V2},

E2 = {(u1, u2)(v1, v2) : (u1 = v1, u2v2 ∈ E2) or (u1v1 ∈ E1, u2 = v2)}.

In a graph G = (V,E), a clique is a set of pairwise adjacent vertices in V .
An i-clique is a clique of size i. A 2-clique is just an edge. A 3-clique is called a
triangle. A stable (or independent) set is a set of pairwise nonadjacent vertices
in V .

For two vertices x and y of a graph, an x-y walk is a sequence x = x0, x1,
. . ., xn = y such that xi−1xi ∈ E for 1 ≤ i ≤ n, where n is called the length of
the walk. In a walk x0, x1, . . ., xn, a chord is an edge xixj with |i − j| ≥ 2. A
trail (path) is a walk in which all edges (vertices) are distinct. A cycle is an x-x
walk in which all vertices are distinct except the first vertex is equal to the last.
A graph is acyclic if it does not contain any cycle.

A graph is connected if for any two vertices x and y, there exists an x-y walk.
A graph is disconnected if it is not connected. A (connected) component of a
graph is a maximal subgraph which is connected. A cut-vertex is a vertex whose

5

deletion from the graph results in a disconnected graph. A block of a graph is a
maximal connected graph which has no cut-vertices.

The distance d(x, y) from a vertex x to another vertex y is the minimum
length of an x-y path; and d(x, y) =∞ when there is no x-y path.

Digraphs or directed graphs can be defined similar to graphs except that an
edge (u, v) is now an ordered pair rather than a 2-subset. All terms in graphs
can be defined for digraphs with suitable modifications by taking into account
the directions of edges.

An orientation of a graph G = (V,E) is a digraph (V,E′) such that for each
edge {u, v} of E exactly one of (u, v) and (v, u) is in E′ and the edges in E′ all
come from this way.

2.2 Variations of domination

Due to different requirements in the applications, people have studied many
variations of the domination problem. For instance, in the queen’s domination
problem, one may ask the additional property that two queens don’t dominate
each other, or any two queens must dominate each other. The following are
most commonly studied variants of domination.

Recall that a dominating set of a graph G = (V,E) is a subset D of V such
that every vertex not in D is adjacent to at least one vertex in D. This is
equivalent to that N [x] ∩D 6= ∅ for all x ∈ V or ∪y∈DN [y] = V .

A dominating set D of a graph G = (V,E) is independent, connected, total
or perfect (efficient) if G[D] has no edge, G[D] is connected, G[D] has no iso-
lated vertex or |N [v]∩D| = 1 for any v ∈ V \D. An independent (respectively,
connected or total) perfect dominating set is a perfect dominating set which is
also independent (respectively, connected or total). A dominating clique (re-
spectively, cycle) is a dominating set which is also a clique (respectively, cycle).
For a fixed positive integer k, a k-dominating set of G is a subset D of V such
that for every vertex v in V there exists some vertex u in D with d(u, v) ≤ k.
An edge dominating set of G = (V,E) is a subset F of E such that every edge in
E \F is adjacent to some edge in F . For the above variations of domination, the
corresponding independent, connected, total, perfect, independent perfect, con-
nected perfect, total perfect, clique, cycle, k- and edge domination numbers are
denoted by γi(G), γc(G), γt(G), γper(G), γiper(G), γcper(G), γtper(G), γcl(G),
γcy(G), γk(G) and γe(G), respectively.

A dominating set D of a graph G = (V,E) corresponds to a dominating
function which is a function f : V → {0, 1} such that

∑
u∈N [v] f(u) ≥ 1 for

any v ∈ V . The weight of f is w(f) =
∑

v∈V f(v). Then γ(G) is equal to the
minimum weight of a dominating function ofG. Several variations of domination
are defined in terms of functions as follows. A signed dominating function is a
function f : V → {+1,−1} such that

∑
u∈N [v] f(u) ≥ 1. The signed domination

number γs(G) of G is the minimum weight of a signed dominating function.

6

A Roman dominating function is a function f : V → {0, 1, 2} such that any
vertex v with f(v) = 0 is adjacent to some vertex u with f(u) = 2. The
Roman domination number γRom(G) of G is the minimum weight of a Roman
dominating function.

A set-valued variation of domination is as follows. For a fixed positive integer
k, a k-rainbow dominating function is a function f : V → 2{1,2,...,k} such that
f(v) = ∅ implies ∪u∈N(v)f(u) = {1, 2, . . . , k}. The weight of f is w(f) =∑

v∈V |f(v)|. The k-rainbow domination number γkrain(G) of G is the minimum
weight of a k-rainbow dominating function. Notice that 1-rainbow domination
is the same as the ordinary domination.

A quite different variation motivated from the power system monitoring is
as follows. For a positive integer k, suppose D is a vertex subset of a graph
G = (V,E). The following two observation rules are applied iteratively.

• Observation Rule 1 (OR1) A vertex in D observes itself and all of its
neighbors.

• Observation Rule 2 (OR2) If an observed vertex is adjacent to at most
k unobserved vertices, then these vertices become observed as well.

The set D is a k-power dominating set of G if all vertices of the graph are ob-
served after repeatedly applying the above two observation rules. Alternatively,
let S0(D) = N [D] and

Si+1(D) = ∪{N [v] : v ∈ Si(D), |N(v)\Si(D)| ≤ k}

for i ≥ 0. Notice that S0(D) ⊆ S1(D) ⊆ S2(D) ⊆ . . . and there is a t such that
Si(D) = St(D) for i ≥ t. Using this notation, D is a k-power dominating set
if and only if St(D) = V . The k-power domination number γkpow(G) of G is
the minimum size of a k-power dominating set. For the case of k = 1, 1-power
domination is called power domination.

Figure 4 shows a graph G of 13 vertices and 19 edges, whose values of γπ(G)
for variations of domination and the corresponding optimal sets/functions are
given below.

e
e

e e e e
e e e e

e ee
�
�� @

@@

v1

v2

v3

v4 v6 v9 v11

v5

v7

v10
v12

v13v8

Figure 4: A graph G of 13 vertices and 19 edges.

7

γ(G) = 3, D∗ = {v2, v8, v9};
γi(G) = 3, D∗ = {v2, v8, v9};
γc(G) = 6, D∗ = {v2, v4, v5, v7, v10, v12};
γt(G) = 5, D∗ = {v2, v4, v7, v10, v12};
γper(G) = 4, D∗ = {v2, v3, v8, v9};
γiper(G) =∞, infeasible;
γcper(G) = 10, D∗ = {v1, v2, v4, v5, v6, v7, v9, v10, v11, v12};
γtper(G) = 6, D∗ = {v1, v2, v4, v5, v12, v13};
γcl(G) =∞, infeasible;
γcy(G) = 8, D∗ = {v2, v4, v6, v9, v12, v10, v7, v5};
γ2(G) = 2, D∗ = {v6, v7};
γk(G) = 1, D∗ = {v7} for k ≥ 3;
γe(G) = 3, D∗ = {v2v4, v9v12, v7v8};
γs(G) = 5, f∗(vi) = −1 for i = 1, 6, 8, 11 and f∗(vi) = +1 for other i;
γRom(G) = 6, f∗(vi) = 2 for i = 2, 8, 9 and f∗(vi) = 0 for other i;
γ1rain(G) = 3, f∗(vi) = {1} for i = 2, 8, 9 and f∗(vi) = ∅ for other i;
γ2rain(G) = 6, f∗(vi) = {1, 2} for i = 2, 8, 9 and f∗(vi) = ∅ for other i;
γ3rain(G) = 8, f∗(vi) = {1} for i = 3, 6, 8, 13, f∗(v1) = f∗(v10) = {2},

f∗(v5) = f∗(v11) = {3} and f∗(vi) = ∅ for other i;
γ4rain(G) = 10, f∗(vi) = {1} for i = 3, 6, 8, 13, f∗(v1) = {2}, f∗(v10) = {2, 4},

f∗(v5) = {3, 4}, f∗(v11) = {3} and f∗(vi) = ∅ for other i;
γ5rain(G) = 12, f∗(vi) = {1} for i = 3, 6, 8, 13, f∗(v1) = {2}, f

∗(v10) = {2, 4, 5},
f∗(v5) = {3, 4, 5}, f∗(v11) = {3} and f∗(vi) = ∅ for other i;

γkrain(G) = 13, f∗(vi) = {1} for all i for k ≥ 6;
γkpow(G)= 1, D∗ = {v2} for k ≥ 1.

The (vertex-)weighted versions of all of the above vertex-subset variations of
domination can also be considered. Now, every vertex v has a weight w(v) of
real number. The problem is to find a dominating set D in a suitable variation
such that

w(D) =
∑

v∈D
w(v)

is as small as possible. Denote this minimum value by γπ(G,w), where π stands
for a variation of the domination problem. When w(v) = 1 for all vertices v,
the weighted cases become the cardinality cases.

For some variations of domination, the vertex weights may assume to be
non-negative as the following lemma shows.

Lemma 2.1 Suppose G = (V,E) is a graph in which every vertex is associated
with a weight w(v) of real number. If w′(v) = max{w(v), 0} for all vertices
v ∈ V , then for any π ∈ {∅, c, t, k, kpow} we have

γπ(G,w) = γπ(G,w′) +
∑

w(v)<0
w(v).

8

Proof. Denote by A the set of all vertices v with w(v) < 0. Suppose D is a
π-dominating set of G with

∑
v∈D w(v) = γπ(G,w). Then

γπ(G,w′) ≤
∑

v∈D
w′(v)

=
∑

v∈D
w(v) −

∑
v∈D∩A

w(v)

≤ γπ(G,w) −
∑

w(v)<0
w(v).

On the other hand, for any π-dominating set D of G with
∑

v∈D w′(v) =
γπ(G,w′), D ∪ A is also a π-dominating set of G and so

γπ(G,w) ≤
∑

v∈D∪A
w(v)

=
∑

v∈D
w′(v) +

∑
v∈A

w(v)

= γπ(G,w′) +
∑

w(v)<0
w(v).

The lemma then follows.

More generally, one may consider vertex-edge-weighted cases of the domina-
tion problems as follows. Now, besides the weights of vertices, each edge e has
a weight w(e). The object is then to find a dominating set D in a suitable
variation such that

w(D) =
∑

v∈D
w(v) +

∑
u∈V \D

w(uu′)

is as small as possible, where u′ is a vertex in D that is adjacent to u. Note
that there are many choices of u′ except for the perfect domination and its
three variations. Denote this minimum value by γπ(G,w,w), where π stands
for a variation of domination. When w(e) = 0 for all edges e, the vertex-edge-
weighted cases become the vertex-weighted cases.

Another parameter related to domination is as follows. The domatic number
d(G) of a graph G is the maximum number r such that G has r pairwise disjoint
dominating setsD1, D2, . . . , Dr. One can also define independent, connected, to-
tal, perfect, independent perfect, connected perfect, total perfect, clique, cycle, k-,
edge, k-power domatic numbers di(G), dc(G), dt(G), dper(G), diper(G), dcper(G),
dtper(G), dcl(G), dcy(G), dk(G), de(G), dkpow(G), respectively, according to above
variations of domination in similar ways.

2.3 Special classes of graphs

In this subsection, special classes of graphs are introduced. They are not only
important in the study of domination, but also fundamental in graph theory.

9

A complete graph is a graph whose vertex set is a clique. The complete graph
with n vertices is denoted by Kn. The complement Kn of the complete graph
Kn is then a graph with no edge.

The n-path, denoted by Pn, is a graph with n vertices that contains a chord-
less path of length n. The n-cycle, denoted by Cn, is a graph with n vertices
that contains a chordless cycle of length n.

An r-partite graph is a graph whose vertex set can be partitioned into r
stable sets, which are called its partite sets. A 2-partite graph is usually called a
bipartite graph. A complete r-partite graph is a r-partite graph in which vertices
in different partite sets are adjacent. A complete r-partite graph with partite
sets having n1, n2, . . . , nr vertices, respectively, is denoted by Kn1,n2,...,nr

.
A tree is a connected graph without any cycle. A directed tree is an orienta-

tion of a tree. A rooted tree is a directed tree in which there is a special vertex
r, called the root, such that for every vertex v there is a directed r-v path. Trees
are probably the simplest structures in graph theory. Problems looking hard in
general graphs are often investigated in trees first as a warm up. Domination
in trees is introduced in Section 3. Many ideas for domination in trees are then
generalized to other classes of graphs.

Suppose F is a family of sets. The intersection graph of F is the graph
obtained by representing each set in F as a vertex and joining two distinct
vertices with an edge if their corresponding sets intersect. It is well-known
that any graph is the intersection graph of some family F . The problem of
characterizing the intersection graphs of families of sets having some specific
topological or other pattern is often interesting and frequently has applications
in the real world. A typical example is the class of interval graphs. An interval
graph is the intersection graph of intervals in the real line. They play important
roles in many applications. Domination in interval graphs is investigated in
Section 4.

A graph is chordal (or triangulated) if every cycle of length greater than
three has a chord. The class of chordal graphs is one of the classical classes in
the perfect graph theory, see the book by Golumbic [103]. It turns out to be
also very important in the domination theory. It is well-known that a graph is
chordal if and only if it is the intersection graph of some subtrees of a certain
tree. If these subtrees are paths, this chordal graph is called an undirected path
graph. If these subtrees are directed paths of a rooted tree, the graph is called
a directed path graph. If these subtrees are paths in some n-path, the graph is
just an interval graph.

Most variations of the domination problem are NP-complete even for chordal
graphs, see Section 5. As an important subclass of chordal graphs, the class of
strongly chordal graphs is a star of the domination theory. Strongly chordal
graphs include directed path graphs, which in turn include trees and interval
graphs. Domination in strongly chordal graphs is studied in Section 6.

A permutation diagram consists of n points on each of two parallel lines and
n straight line segments matching the points. The intersection graph of the line

10

segments is called a permutation graph. Domination in permutation graphs is
introduced in Section 7.

A comparability graph is a graph G = (V,E) that has a transitive orientation
G′ = (V,E′), i.e., uv ∈ E′ and vw ∈ E′ imply uw ∈ E′. A cocomparabil-
ity graph is the complement of a comparability graph. Cocomparabity graphs
are generalizations of permutation graphs and intervals graphs. Domination in
cocomparability graphs is investigated in Section 8.

A graph is distance-hereditary if the distance between any two vertices is
the same in any connected induced subgraph containing them. Domination in
distance-hereditary graphs is studied in Section 9.

For more detailed discussions of these classes of graphs, see the remaining
sections of this chapter.

3 Trees

3.1 Basic properties of trees

Recall that a tree is an acyclic connected graph. The following characterizations
are well-known, see the textbook by West [194].

Theorem 3.1 The following statements are equivalent for any graph G = (V,E).
(1) G is a tree.
(2) G is connected and |V | = |E|+ 1.
(3) G is acyclic and |V | = |E|+ 1.
(4) For any two vertices u and v, there is a unique u-v path.
(5) The vertices of G have an ordering [v1, v2, . . . , vn] such that vi is a leaf

of Gi = G[{vi, vi+1, . . . , vn}] for 1 ≤ i ≤ n− 1, or equivalently

for each 1 ≤ i ≤ n− 1, vi is adjacent to exactly one vj with j > i. (TO)

The ordering in Theorem 3.1 (5) is called a tree ordering of the tree, where
the only neighbor vj of vi with j > i is called the parent of vi and vi is a child of
vj . The tree ordering plays an important role in many algorithms dealing with
trees. Many algorithms on trees process from leaves by passing information
to their parents iteratively, or equivalently, doing a loop according to a tree
ordering. From an algorithmic point of view, the testing of a tree and finding
a tree ordering can be done in linear time. Figure 5 shows a tree of 11 vertices
and a tree ordering.

For some algorithms in trees, it is necessary to process simultaneously a
group of leaves which is adjacent to a vertex with only one non-leaf neighbor.
This corresponds to a tree ordering, which is called a strong tree ordering, with
the property that all children of a vertex are consecutive in the ordering. The
tree order [v2, v3, v1, v4, v6, v7, v5, v8, v9, v11, v12, v10, v13, v14, v15] is strong for the
tree in Figure 5.

11

e e e e e e
e e e e e e

eee

v1 v5 v9 v10 v14 v15

v12v13v7v8v4v2

v3 v6 v11

Figure 5: An example of the tree ordering.

3.2 Labeling algorithm for trees

Cockayne, Goodman and Hedetniemi [58] gave the first linear-time algorithm
for the domination problem in trees by a labeling method, which is a naive but
useful approach.

The algorithm starts processing a leaf v of a tree T , which is adjacent to
a unique vertex u. To dominate v, a minimum dominating set D of T must
contain u or v. However, since N [v] ⊆ N [u], it is better to have u in D rather
than v in D. So one can keep an information “required” in u and delete v from
T . At some iteration, if a “required” leaf v adjacent to u which is not labeled
by “required” is processed, it is necessary to put v into D and delete it from T .
But now, there is a vertex in D that dominates u, so u is labeled by “free”. For
convenience, all vertices are labeled by “bound” initially.

More precisely, suppose the vertex set of a graph G = (V,E) is partitioned
into three sets F,B and R, where F consists of free vertices, B consists of bound
vertices and R consists of required vertices. A mixed dominating set of G (with
respect to F,B,R) is a subset D ⊆ V such that

R ⊆ D and every vertex in B \D is adjacent to some vertex in D.

Free vertices need not be dominated by D but may be included in D in order to
dominate bound vertices. Themixed domination number γm(G) is the minimum
size of a mixed dominating set in G, such a set is called an md-set of G. Note
that mixed domination is the ordinary domination when B = V and F = R = ∅.

The construction and correctness of the algorithm is based on the following
theorem.

Theorem 3.2 Suppose T is a tree having free, bound and required vertices F ,
B and R, respectively. Let v be a leaf of T , which is adjacent to u. Then the
following statements hold.

(1) If v ∈ F , then γm(T) = γm(T − v).
(2) If v ∈ B and T ′ is the tree which results from T by deleting v and

relabeling u as “required”, then γm(T) = γm(T ′).
(3) If v ∈ R and u ∈ R, then γm(T) = γm(T − v) + 1.

12

(4) If v ∈ R, u /∈ R and T ′ is the tree which results from T by deleting v and
relabeling u as “free”, then γm(T) = γm(T ′) + 1.

Proof. (1) Since v is free, any md-set D′ of T − v is also a mixed dominating
set of T . Thus, γm(T) ≤ |D′| = γm(T − v). On the other hand, suppose D is
an md-set of T . If v /∈ D, then D is also a mixed dominating set of T − v. If
v ∈ D, then (D \ {v}) ∪ {u} is a mixed dominating set of T − v, whose size is
at most |D|. Thus, in either case, γm(T − v) ≤ |D| = γm(T).

(2) Since u is required in T ′, any md-set D′ of T ′ always contains u and
hence is also a mixed dominating set of T . Thus, γm(T) ≤ |D′| = γm(T ′). On
the other hand, suppose D is an md-set of T . Since v is bound in T , either u or
v is in D. In any case, D′ = (D \ {v})∪ {u} is a mixed dominating set of T ′, in
which u is considered as a required vertex. So, γm(T ′) ≤ |D′| ≤ |D| = γm(T).

(3) If D′ is an md-set of T ′, then D′ ∪ {v} is a mixed dominating set of T .
Thus, γm(T) ≤ |D′ ∪ {v}| = γm(T ′) + 1. On the other hand, any md-set D of
T contains both u and v. Then D \ {v} is a mixed dominating set of T ′. So,
γm(T ′) ≤ |D \ {v}| = γm(T)− 1.

(4) If D′ is an md-set of T ′, then D′ ∪ {v} is a mixed dominating set of T .
Thus, γ(T) ≤ |D′ ∪ {v}| = γm(T ′) + 1. On the other hand, any md-set D of T
contains v. Since u is free in T ′, D \ {v} is a mixed dominating set in T ′. So,
γm(T ′) ≤ |D \ {v}| = γm(T)− 1.

The above theorem then gives the following algorithm for the mixed domi-
nation problem in trees.

Algorithm DomTreeL. Find a minimum mixed dominating set of a tree.
Input. A tree T whose vertices are labeled by free, bound or required. A tree
ordering [v1, v2, . . ., vn] of T .
Output. A minimum mixed dominating set D of T .
Method.

D ← φ;
for i = 1 to n− 1 do

let vj be the parent of vi;
if (vi is bound) then

relabel vj as required;
else if (vi is required) then

D ← D ∪ {vi};
if vj is bound then relabel vj as free;
end if;

end for;
if vn is not free then D ← D ∪ {vn}.

Slater [184] generalized the above idea to solve the k-domination problem in
trees. In fact he solved a slightly more general problem called R-domination.

13

Now, each vertex v is associated with an ordered pair Rv = (av, bv), where av is
a nonnegative integer and bv a positive integer. The dominating set D is chosen
so that each vertex v is within distance av from some vertex in D. The integer
bv indicates that there is a vertex in the current D that is at distance bv from
v. More precisely, an R-dominating set of G = (V,E) is a vertex subset D such
that for any vertex v in G either there is some u ∈ D with d(u, v) ≤ av or else
there is some u ∈ V with bu + d(u, v) ≤ av. The R-domination number γR(G)
of G is the minimum size of an R-dominating set. Notice that R-domination
with each Rv = (k, k + 1) is the same as the k-domination.

The construction and correctness of Slater’s algorithm is based on the fol-
lowing theorem whose proof is omitted here.

Theorem 3.3 Suppose T is a tree in which each vertex v has a label Rv =
(av, bv), where av is a nonnegative integer and bv a positive integer. Let v be a
leaf of T , which is adjacent to u. Then the following statements hold.

(1) If av ≥ bv and T ′ is the tree which results from T by deleting v and
resetting bu by min{bu, bv + 1}, then γR(T) = γR(T ′).

(2) If av = 0 and T ′ is the tree which results from T by deleting v and
resetting bu by 1, then γR(T) = γR(T ′) + 1.

(3) If 0 < av < bv and T ′ is the tree which results from T by deleting v and
resetting au by max{au, av−1} and bu by min{bu, bv+1}, then γR(T) = γR(T ′).

This then gives the following algorithm for R-domination in trees.

Algorithm RDomTreeL. Find a minimum R-dominating set of a tree.
Input. A tree T with a tree ordering [v1, v2, . . . , vn], in which each vertex v has
a label Rv = (av, bv), where av ≥ 0 and bv > 0 are integers.
Output. A minimum R-dominating set D of T .
Method.

D ← φ;
for i = 1 to n− 1 do

let vj be the parent of vi;
if (avi ≥ bvi) then

bvj ← min{bvj , bvi + 1};
else if (avi = 0) then

D ← D ∪ {vi};
bvj ← 1;
end if;

else if (0 < avi < bvi) then
avj ← max{avj , avi − 1};
bvj ← min{bvj , bvi + 1};
end if;

end for;
if (avn < bvn) then D ← D ∪ {vn}.

14

The labeling algorithm is also used for many variations of domination. For
instance, Mitchell and Hedetniemi [163] and Yannakakis and Gavril [198] gave
labeling algorithms for the edge domination problem in trees. Laskar, Pfaff,
Hedetniemi and Hedetniemi [150] gave a labeling algorithm for the total domi-
nation problem in trees.

Next, an example of labeling algorithm using strong tree orderings is demon-
strated. Chang, Wu and Zhu [49] investigated the k-rainbow domination prob-
lem on trees. For technical reasons, they in fact dealed with a more general
problem. A k-rainbow assignment is a mapping L that assigns each vertex v
a label L(v) = (av, bv) with av, bv ∈ {0, 1, . . . , k}. A k-L-rainbow dominating
function is a function f : V (G) → 2{1,2,...,k} such that for every vertex v in G
the following conditions hold.

(L1) |f(v)| ≥ av.
(L2) | ∪u∈N(v) f(u)| ≥ bv whenever f(v) = ∅.

The k-L-rainbow domination number γkLrain(G) of G is the minimum weight of
a k-L-rainbow dominating function. A k-L-rainbow dominating function f of G
is optimal if w(f) = γkLrain(G). Notice that k-rainbow domination is the same
as k-L-rainbow domination if L(v) = (0, k) for each v ∈ V (G).

Theorem 3.4 Suppose v is a leaf adjacent to u in a graph G with a k-rainbow
assignment L. Let G′ = G − v and L′ be the restriction of L on V (G′), except
that when av > 0 we let b′u = max{0, bu − av}. Then the following hold.

(1) If av > 0, then γkLrain(G) = γkL′rain(G
′) + av.

(2) If av = 0 and au ≥ bv, then γkLrain(G) = γkL′rain(G
′).

Theorem 3.5 Suppose N(u) = {z, v1, v2, . . . , vs} such that v1, v2, . . . , vs are
leaves in a graph G with a k-rainbow assignment L. Assume avi = 0 for 1 ≤
i ≤ s and bv1 ≥ bv2 ≥ . . . ≥ bvs > au. Let b∗ = min{bvi + i − 1 : 1 ≤
i ≤ s + 1} = bvi∗ + i∗ − 1, where bvs+1

= au and i∗ is chosen as small as
possible. If G′ = G − {v1, v2, . . . , vs} and L′ is the restriction of L on V (G′)
with modifications that a′u = bvi∗ and b′u = max{0, bu−i∗+1}, then γkLrain(G) =
γkL′rain(G

′) + i∗ − 1.

Remark that for the case when the component of G containing u is a star,
the vertex z does not exist. There is in fact no vertex vs+1. The assignment of
bvs+1

= au is for the purpose of convenience. In the case of i∗ = s + 1, it just
means that a′u is the same as au.

The theorems above then give the following linear-time algorithm for the
k-L-rainbow domination problem in trees.

Algorithm RainbowDomTreeL. Find the k-L-domination number of a tree.
Input. A tree T = (V,E) in which each vertex v is labeled by L(v) = (av, bv).
Output. The minimum k-L-rainbow dominating number r of T .
Method.

15

r ← 0;
get a Breadth First Search ordering x1, x2, . . . , xn for the tree T rooted at x1;
for j = 1 to n do sj ← 0; {number of children xi with axi

= 0 and bxi
> axj

}
for j = n to 2 step by −1 do

s← sj ;
v ← xj ;
if s > 0 then {apply Theorem 3.5}

let u = v and z, v1, v2, . . . , vs, b
∗, i∗ be as described in Theorem 3.5;

r ← r + i∗ − 1;
au ← bvi∗ ;
bu ← max{0, bu − i∗ + 1};
end if;

else {apply Theorem 3.4}
let u = xj′ be the parent of v;
if av > 0 then { bu ← max{0, bu − av}; r ← r + av };
else if au < bv then sj′ ← sj′ + 1;
end else;

end do;
if ax1

> 0 then r ← r + ax1
; else if bx1

> 0 then r ← r + 1.

As these algorithms suggest, the labeling algorithm may only work for prob-
lems whose solutions have “local property”. For an example of problem without
local property, the independent domination problem in the tree T of Figure 6 is
considered. The only minimum independent dominating set of T is {v1, v3}. If
the tree ordering [v1, v2, v4, v3, v5] is given, the algorithm must be clever enough
to put the leaf v1 into the solution at the first iteration. If another tree ordering
[v5, v4, v3, v2, v1] is given, the algorithm must be clever enough not to put the
leaf v5 at the first iteration. So, the algorithm must be one that not only looks
at a leaf and its only neighbor, but also has some idea about the whole struc-
ture of the tree. This is the meaning that the solution does not have a “local
property”.

e e e e
e

v1 v2 v3 v4

v5

Figure 6: A tree T with a unique minimum independent dominating set.

16

3.3 Dynamic programming for trees

Dynamic programming is a powerful method for solving many discrete opti-
mization problems; see the books by Bellman and Dreyfus [15], Dreyfus and
Law [87] and Nemhauser [168]. The main idea of the dynamic programming
approach for domination is to turn the “bottom-up” labeling method into “top-
down”. Now a specific vertex u is chosen from G. A minimum dominating set
D of G either contains or does not contain u. So it is useful to consider the
following two domination problems which are the ordinary domination problem
with boundary conditions.

γ1(G, u) = min{|D| : D is a dominating set of G and u ∈ D}.

γ0(G, u) = min{|D| : D is a dominating set of G and u /∈ D}.

Lemma 3.6 γ(G) = min{γ1(G, u), γ0(G, u)} for any graph G with a specific
vertex u.

Suppose H is another graph with a specific vertex v. Let I be the graph
with the specific vertex u, which is obtained from the disjoint union of G and
H by joining a new edge uv; see Figure 7.

d
daaaaaaa

�
�
�
�
�
�� B

B
B
B
B
BB

�
�
�
�
�
�� B

B
B
B
B
BB

v

u

G

H

Figure 7: The composition of two trees G and H .

The aim is to use γ1(G, u), γ0(G, u), γ1(H, v) and γ0(H, v) to find γ1(I, u)
and γ0(I, u). Suppose D is a dominating set of I with u ∈ I. Then D = D′∪D′′,
where D′ is a dominating set of G with v ∈ D′ and D′′ is a subset of V (H)
which dominates V (H)−{v}. There are two cases. In the case of v ∈ D′′, D′′ is
a dominating set of H . On the other hand, if v /∈ D′′ then D′′ is a dominating
set of H − v. In order to cover the latter case, the following new problem is
introduced.

γ00(G, u) = min{|D| : D is a dominating set of G− u}.

Note that γ00(G, u) ≤ γ0(G, u), since a dominating set D of G with u 6∈ D
is also a dominating set of G− u.

17

Theorem 3.7 Suppose G and H are graphs with specific vertices u and v, re-
spectively. Let I be the graph with the specific vertex u, which is obtained from
the disjoint union of G and H by joining a new edge uv. Then the following
statements hold.

(1) γ1(I, u) = γ1(G, u) + min{γ1(H, v), γ00(H, v)}.
(2) γ0(I, u) = min{γ0(G, u) + γ0(H, v), γ00(G, u) + γ1(H, v)}.
(3) γ00(I, u) = γ00(G, u) + γ(H) = γ00(G, u) + min{γ1(H, v), γ0(H, v)}.

Proof. (1) This follows from the fact that D is a dominating set of I with
u ∈ D if and only if D = D′ ∪ D′′, where D′ is a dominating set of G with
u ∈ D′ and D′′ is a dominating set of H with v ∈ D′′ or a dominating set of
H − v.

(2) This follows from the fact that D is a dominating set of I with u /∈ D if
and only if D = D′ ∪D′′, where either D′ is a dominating set of G with u /∈ D′

and D′′ is a dominating set of H with v 6∈ D′′, or D′ is a dominating set of
G− u and D′′ is a dominating set of H with v ∈ D′′.

(3) This follows from the fact that D is a dominating set of I−u if and only
if D = D′ ∪D′′, where D′ is a dominating set of G− u and D′′ is a dominating
set of H .

The lemma and the theorem above then give the following dynamic pro-
gramming algorithm for the domination problem in trees.

Algorithm DomTreeD. Determine the domination number of a tree.
Input. A tree T with a tree ordering [v1, v2, . . . , vn].
Output. The domination number γ(T) of T .
Method.

for i = 1 to n do
γ1(vi)← 1;
γ0(vi)←∞;
γ00(v)← 0;
end do;

for i = 1 to n− 1 do
let vj be the parent of vi;
γ1(vj)← γ1(vj) + min{γ1(vi), γ

00(vi)};
γ0(vj)← min{γ0(vj) + γ0(vi), γ

00(vj) + γ1(vi)};
γ00(vj)← γ00(vj) + min{γ1(vi), γ

0(vi)};
end do;

γ(T)← min{γ1(vn), γ
0(vn)}.

The advantage of the dynamic programming method is that it also works
for problems whose solutions have no local property. As an example, Beyer,
Proskurowski, Hedetniemi and Mitchell [22] solved the independent domina-
tion problem by this method. Moreover, the method can be used to solve

18

the vertex-edge-weighted cases. The following derivation for the vertex-edge-
weighted domination in trees is slightly different from that given by Natarajan
and White [167].

Define γ1(G, u,w,w), γ0(G, u,w,w) and γ00(G, u,w,w) in the same way as
γ1(G, u), γ0(G, u) and γ00(G, u), except that |D| is replaced by w(D).

Lemma 3.8 γ(G,w,w) = min{γ1(G, u,w,w), γ0(G, u,w,w)} for any graph G
with a specific vertex u.

Theorem 3.9 Suppose G and H are graphs with specific vertices u and v, re-
spectively. Let I be the graph with the specific vertex u, which is obtained from
the disjoint union of G and H by joining a new edge uv. The following state-
ments hold.

(1) γ1(I, u, w, w) = γ1(G, u,w,w)+min{γ(H, v, w,w), w(uv)+γ00(H, v, w,w)}.
(2) γ0(I, u, w, w) = min{γ0(G, u,w,w)+γ(H,w,w), γ00(G, u,w,w)+w(uv)+

γ1(H, v, w,w)}.
(3) γ00(I, u, w,w) = γ00(G, u,w,w) + γ(H,w,w).

The lemma and the theorem above then give the following algorithm for the
vertex-edge-weighted domination problem in trees.

Algorithm VEWDomTreeD. Determine the vertex-edge-weighted domina-
tion number of a tree.
Input. A tree T with a tree ordering [v1, v2, . . . , vn], and each vertex v has a
weight w(v) and each edge e has a weight w(e).
Output. The vertex-edge-weighted domination number γ(T,w,w) of T .
Method.

for i = 1 to n do
γ(vi)← γ1(vi)← w(vi);
γ0(vi)←∞;
γ00(vi)← 0;
end do;

for i = 1 to n− 1 do
let vj be the parent of vi;
γ1(vj)← γ1(vj)+ min{γ(vi), w(uv) + γ00(vi)};
γ0(vj)← min{γ0(vj) + γ(vi), γ

00(vj) + w(uv) + γ1(vi)};
γ00(vj)← γ00(vj) + γ(vi);
γ(vj)← min{γ1(vj), γ

0(vj)};
end do;

γ(T,w,w)← γ(vn).

The dynamic programming method is also used in several papers for solving
variations of the domination problems in trees, see [13, 98, 116, 124, 185, 203].

19

3.4 Primal-dual approach for trees

The most beautiful method used in domination may be the primal-dual ap-
proach. In this method, besides the original domination problem, the following
dual problem is also considered. In a graph G = (V,E), a 2-stable set is a subset
S ⊆ V in which every two distinct vertices u and v have distance d(u, v) > 2.
The 2-stability number α2(G) of G is the maximum size of a 2-stable set in G.
It is easy to see the following inequality.

Weak Duality Inequality: α2(G) ≤ γ(G) for any graph G.

Note that the above inequality can be strict, as shown by the n-cycle Cn that
α2(Cn) = ⌊

n
3 ⌋ but γ(Cn) = ⌈

n
3 ⌉.

For a tree T , an algorithm which outputs a dominating set D∗ and a 2-stable
set S∗ with |D∗| ≤ |S∗| is designed. Then

|S∗| ≤ α2(T) ≤ γ(T) ≤ |D∗| ≤ |S∗|,

which imply that all inequalities are equalities. Consequently, D∗ is a mini-
mum dominating set, S∗ is a maximum 2-stable and the strong duality equality
α2(T) = γ(T) holds.

The algorithm starts from a leaf v adjacent to u. It also uses the idea as
in the labeling algorithm that u is more powerful than v since N [v] ⊆ N [u].
Instead of choosing v, u is put into D∗. Besides, v is also put into S∗. More
precisely, the algorithm is as follows.

Algorithm DomTreePD. Find a minimum dominating set and a maximum
2-stable set of a tree.
Input. A tree T with a tree ordering [v1, v2, . . . , vn].
Output. A minimum dominating set D∗ and a maximum 2-stable set S∗ of T.
Method.

D∗ ← φ;
S∗ ← φ;
for i = 1 to n do

let vj be the parent of vi;
(assume vj = vn for vi = vn)
if (N [vi] ∩D∗ = φ) then

D∗ ← D∗ ∪ {vj};
S∗ ← S∗ ∪ {vi};
end if:

end do.

To verify the algorithm, it is sufficient to prove that D∗ is a dominating set,
S∗ is a 2-stable set and |D∗| ≤ |S∗|.

D∗ is clearly a dominating set as the if-then statement does.
Suppose S∗ is not a 2-stable set, i.e., there exist vi and vi′ in S∗ such that

i < i′ but dT (vi, vi′) ≤ 2. Let Ti = T [{vi, vi+1, . . . , vn}]. Then Ti contains vi,

20

vj and vi′ . Since d(vi, vi′) ≤ 2, the unique vi-vi′ path in T (and also in T ′) is
either vi, vi′ or vi, vj , vi′ . In any case, vj ∈ N [vi′]. Thus, at the end of iteration
i, D∗ contains vj . When the algorithm processes vi′ , N [vi′] ∩ D∗ 6= φ which
causes that S∗ does not contain vi′ , a contradiction.
|D∗| ≤ |S∗| follows from that when vj is added into D∗, which may or may

not already be in D∗, a new vertex vi is always added into S∗.

Theorem 3.10 Algorithm DomTreePD gives a minimum dominating set D∗

and a maximum 2-stable set S∗ of a tree T with |D∗| = |S∗| in linear time.

Theorem 3.11 (Strong Duality) α2(T) = γ(T) for any tree T .

The primal-dual approach was in fact used by Farber [92] and Kolen [144] for
the weighted domination problem in strongly chordal graphs. It was also used
by Cheston, Fricke, Hedetniemi and Jacobs [57] for upper fraction domination
in trees.

3.5 Power domination in trees

Power domination is a most different variation of domination. The observation
rules make it so different from the ordinary domination as well as other vari-
ations. Haynes, Hedetniemi, Hedetniemi and Henning [113] gave a linear-time
algorithm for the power domination problem in trees. This subsection demon-
strates a neat linear-time algorithm offered by Guo, Niedermeier and Raible
[105].

Algorithm PowerDomTree. Find a minimum power dominating set of a
tree.
Input. A tree T rooted at vertex r.
Output. A minimum power dominating set D of T.
Method.

sort the non-leaf vertices of T in a list L according to a post-order traversal of T ;
D ← ∅;
while L 6= {r} do

v ← the first vertex in L;
L← L \ {v};
if v has at least two unobserved children then

D ← D ∪ {v};
exhaustively apply the two observation rules to T ;
end if;

end while;
if r is unobserved then D ← D ∪ {r}.

Theorem 3.12 Algorithm PowerDomTree gives a minimum power dominating
set of a tree in linear time.

21

Proof. First is to prove that the output D of the algorithm is a power dom-
inating set. The proof is based on an induction on the depth of the vertices u
in T , denoted by depth(u). Note that the proof works top-down whereas the
algorithm works bottom-up. For depth(u) = 0, it is clear that u, which is r,
is observed due to the second “if”-condition of the algorithm. Suppose that
all vertices u with depth(u) < k with k > 0 are observed. Consider a vertex
u with depth(u) = k, which is a child of the vertex v. If v ∈ D, then u is
observed; otherwise, due to the induction hypothesis, v is observed. Moreover,
if depth(v) ≥ 1, then the parent of v is observed as well. Because of the first
“if”-condition of the algorithm, v is not in D only if v has at most one unob-
served child during the “while”-loop of the algorithm processing v. If vertex
u is this only unobserved child, then it gets observed by applying OR2 to v,
because v itself and all its neighbors (including the parent of v and its children)
with the only exception of u are observed by the vertices in D. In summary, it
is concluded that all vertices in T are observed by D.

Next is to prove the optimality of D by showing a more general statement:

Claim. Given a tree T = (V,E) rooted at r, Algorithm PowerDomTree outputs
a power dominating set D such that |D∩Vu| ≤ |D′∩Vu| for any minimum power
dominating set D′ of T and any tree vertex u, where Vu denotes the vertex set
of the subtree of T rooted at u.

Proof of the Claim. Let Tu = (Vu, Eu) denote the subtree of T rooted at vertex
u. Let ℓ denote the depth of T , that is, ℓ := maxv∈V depth(v). For each vertex
u ∈ V , define du := |D ∩ Vu| and d′u := |D′ ∩ Vu|. The claim is to be proved by
an induction on the depth of tree vertices, starting with the maximum depth ℓ
and proceeding to 0.

Since vertices u with depth(u) = ℓ are leaves and the algorithm adds no leaf
to D, it is the case that du = 0 and so du ≤ d′u for all u with depth(u) = ℓ.

Suppose that du ≤ d′u holds for all u with depth(u) > k with k < ℓ. Consider
a vertex u with depth(u) = k. Let Cu denote the set of children of u. Then, for
all v ∈ Cu, by the induction hypothesis, dv ≤ d′v. In order to show du ≤ d′u, one
only has to consider the case that

(a) u ∈ D, (b) u /∈ D′, and (c)
∑

v∈Cu
dv =

∑
v∈Cu

d′v. (1)

In all other cases, du ≤ d′u always holds. In the following, it will be shown that
this case does not apply. Assume that u 6= r. The argument works also for
u = r.

From (c) and that dv ≤ d′v for all v ∈ Cu (induction hypothesis), dv = d′v
for all v ∈ Cu. Moreover, (a) is true only if u has two unobserved children v1
and v2 during the “while”-loop of the algorithm processing u (the first “if”-
condition). In other words, this means that vertices v1 and v2 are not observed
by the vertices in (D ∩ Vu) \ {u}. In the following, it is shown that u has to be
included in D′ in order for D′ to be a valid power dominating set. To this end,

22

the following statement is needed:

for all x ∈ D′ ∩ Vvi with 1 ≤ i ≤ 2 there is some x′ ∈W(vi,x) ∩D, (2)

where W(vi,x) denotes the path between vi and x (including vi and x).
Without loss of generality, consider only i = 1. Assume that statement (2)

is not true for a vertex x ∈ D′ ∩ Vv1 . Since x /∈ D, one can infer that dx < d′x.
Since no vertex from W(v1,x) is in D and, by induction hypothesis, dy ≤ d′y for
all y ∈ Vv1 , it follows that dx′ < d′x′ for all vertices x′ ∈ W(v1,x), in particular,
dv1 < d′v1 . This contradicts the fact that dvi = d′vi for all children vi of u. Thus,
statement (2) is true.

By statement (2), for each vertex x ∈ D′ ∩ Vvi (i ∈ {1, 2}), there exists a
vertex x′ ∈ D on the path W(vi,x). Thus, if vertex vi is observed by a vertex
x ∈ D′ ∩ Vvi , then there is a vertex x′ ∈ D ∩W(vi,x) that observes vi. However,
(a) in (1) is true only if v1 and v2 are unobserved by the vertices in D ∩ Vv1

and D ∩ Vv2 . Altogether, this implies that v1 and v2 cannot be observed by
the vertices in D′ ∩ Vv1 and D′ ∩ Vv2 . Since D′ is a power dominating set of
T , vertex u is taken into D′; otherwise, u has two unobserved neighbors v1 and
v2. OR2 can never be applied to u whatever vertices from V \ Vu are in D′. It
concludes that the case that u ∈ D, u /∈ D′, and

∑
v∈Cu

dv =
∑

v∈Cu
d′v does

not apply. This completes the proof of the claim. 2
Concerning the running time, the following explains how to implement the

exhaustive applications of OR1 and OR2. Observe that, if OR2 is applicable to
a vertex u during the bottom-up process, then all vertices in Tu can be observed
at the current stage of the bottom-up process. In particular, after adding vertex
u to D, all vertices in Tu can be observed. Thus, exhaustive applications of OR1
and OR2 to the vertices of Tu can be implemented as pruning Tu from T which
can be done in constant time. Next, consider the vertices in V \Vu. After adding
u to D, the only possible application of OR1 is that u observes its parent v.
Moreover, the applicability of OR2 to the vertices x lying on the path from u
to r is checked, in the order of their appearance, the first v, and the last r. As
long as OR2 is applicable to a vertex x on this path, x is deleted from the list
L that is defined in the first line of the algorithm, and prune Tx from T .

The linear running time of the algorithm is then easy to see: The vertices
to which OR2 is applied are removed from the list L immediately after the
application of OR2 and are never processed by the instruction in the first line
inside the “while”-loop of the algorithm. With proper data structures such
as integer counters storing the number of observed neighbors of a vertex, the
applications of the observation rules to a single vertex can be done in constant
time. Post-order traversal of a rooted tree is clearly doable in linear time.

3.6 Tree related classes

Besides the methods demonstrated in the previous subsections, the “transfor-
mation method” sometimes is also used in the study of domination. Roughly

23

speaking, the method transforms the domination problem in certain graphs to
another well-known problem, which is solvable. As this method depends on the
variation of domination and the type of graphs, it will be mentioned only when
it is used in the problem surveyed in this chapter.

There are some classes of graphs which have tree-like structures, including
block graphs, (partial) k-trees and cacti.

A block graph is a graph whose blocks are complete graphs. For results on
variations of domination in block graphs, see [41, 45, 128, 132, 204].

A cactus is a graph whose blocks are cycles. Hedetniemi [120] gave a linear-
time algorithm for the domination problem in cacti.

For a positive integer k, k-trees are defined recursively as follows: (i) a
complete graph of k + 1 vertices is a k-tree; (ii) the graph obtained from a
k-tree by adding a new vertex adjacent to a clique of k vertices is a k-tree.
Partial k-trees are subgraphs of k-trees. For results on variations of domination
in k-trees and partial k-trees, see [3, 68, 97, 173, 181, 190, 191].

4 Interval graphs

4.1 Interval orderings of interval graphs

Recall that an interval graph is the intersection graph of a family of intervals in
the real line.

In many papers, people design algorithms or prove theorems for interval
graphs by using the interval models directly. This very often is accomplished
by ordering the intervals according to some nondecreasing order of their right
(or left) endpoints.

For instance, suppose G = (V,E) is an interval graph with an interval model

{Ii = [ai, bi] : 1 ≤ i ≤ n},

where b1 ≤ b2 ≤ . . . ≤ bn. One can solve the domination problem for G by using
exactly the same primal-dual algorithm for trees except replacing the 4th line
of Algorithm DomTreePD by

let j be the largest index such that vj ∈ N [vi];

In order to prove that the revised algorithm works for interval graphs, it is only
necessary to show that S∗ is a 2-stable set. Suppose to the contrary that S∗

contains two vertices vi and vi′ with i < i′ and d(vi, vi′) ≤ 2, say there is a
vertex vk ∈ N [vi] ∩ N [vi′]. Consider the largest indexed vertex vj of N [vi] as
chosen in iteration i of the algorithm. Since vk ∈ N [vi], k ≤ j. Consider two
cases.

Case 1. j ≤ i′. In this case, k ≤ j ≤ i′. Then bk ≤ bj ≤ bi′ . Since
vk ∈ N [vi′], Ik intersects Ii′ and so ai′ ≤ bk. Therefore, ai′ ≤ bj ≤ bi′ and so Ij
intersects Ii′ .

24

Case 2. i′ < j. In this case, i < i′ < j. Then bi ≤ bi′ ≤ bj. Since vj ∈ N [vi],
Ii intersects Ij and so aj ≤ bi. Therefore, aj ≤ bi′ ≤ bj and so Ij intersects Ii′ .

In any case, vj ∈ N [vi′]. As vj is put into D∗ in iteration i, when the
algorithm processes vi′ , N [vi′] ∩ D∗ 6= ∅ so that S∗ does not contain vi′ , a
contradiction. Therefore, S∗ is a 2-stable set.

As one can see, the arguments in Cases 1 and 2 are quite similar. This is also
true in many other proofs for interval graphs. One may expect that a unified
property can be applied. This is in fact the so called interval ordering in the
following theorem (see [176]). Notice that once property (IO) below holds, the
conclusion vj ∈ N [vi′] above follows immediately.

Theorem 4.1 G = (V,E) is an interval graph if and only if G has an interval
ordering which is an ordering [v1, v2, . . . , vn] of V satisfying

i < j < k and vivk ∈ E imply vjvk ∈ E. (IO)

Proof. (⇒) Suppose G is the intersection graph of

{Ii = [ai, bi] : 1 ≤ i ≤ n}.

Without loss of generality, assume that b1 ≤ b2 ≤ . . . ≤ bn. Suppose i < j < k
and vivk ∈ E. Then bi ≤ bj ≤ bk. Since vivk ∈ E, it is the case that Ii ∩ Ik 6= ∅
which implies that ak ≤ bi. Thus, ak ≤ bj ≤ bk and so Ij∩Ik 6= ∅, i.e., vjvk ∈ E.

(⇐) On the other hand, suppose (IO) holds. For any vi ∈ V , let i∗ be the
minimum index such that vi∗ ∈ N [vi] and let interval Ii = [i∗, i]. If vivk ∈ E
with i < k, then k∗ ≤ i < k and so Ii ∩ Ik 6= ∅. If Ii ∩ Ik 6= ∅ with i < k, say
j ∈ Ii∩Ik, then k∗ ≤ j ≤ i < k. Since vk∗vk ∈ E, by (IO), vivk ∈ E. Therefore,
G is an interval graph with

{Ii = [i∗, i] : 1 ≤ i ≤ n}

as an interval model.

The problem of recognizing interval graphs and giving their interval ordering
is a fundamental problem. Several linear-time recognition algorithms for interval
graphs have been developed in the literature, see Booth and Leuker [27], Korte
and Mohring [145], Hsu and his coauthors [125, 126, 127, 182], Habib et al.
[106] among many others. Note that a linear time algorithm may not be easily
implementable and so there are still some efforts to search for new (simple)
interval graph recognition algorithms and new ways to reconstruct an interval
representation or just the interval ordering of a given interval graph. The 6-
sweep LBFS algorithm by Corneil, Olariu and Stewart [72] is a such one. It is
believed that a 3-sweep LBFS algorithm is possible.

25

4.2 Domatic numbers of interval graphs

Another interesting usage of the interval ordering is the following rewriting for
the result on the domatic numbers of interval graphs obtained by Bertossi [25].
He transformed the domatic number problem on interval graphs to a network
flow problem as follows. This is a typical example of the transformation method.

First, Bertossi’s method is described as follows. Suppose G = (V,E) is
an interval graph, whose vertex set V = {1, 2, . . . , n}, with an interval model
{[ai, bi] : 1 ≤ i ≤ n}. Without loss of generality, assume that

no two intervals share a common endpoint and a1 < a2 < . . . < an.

Two “dummy” vertices 0 and n + 1 are added to the graph with b0 < a1 and
bn < an+1. Then an acyclic directed network H is constructed as follows. The
vertex set of H is {0, 1, 2, . . . , n, n+ 1}, and there is a directed edge (i, j) in H
if and only if j ∈ P (i) ∪Q(i), where

P (i) = {k : ai < ak < bi < bk} and

Q(i) = {k : bi < ak and there is no h with bi < ah < bh < ak}.

Figure 8 shows an example of H .

�
�� �
��

�
���
�� �
��
�
��

�
��
6

5

4

3

2

1

0

J
J
J
JĴ

XXXXXXXXXz���

-

HHHHHHj

����������:

2

1 3

4 5

H

���
���

XXXXXXXX

Z
ZZ

SS

���
���

XXXXXXXX

Z
ZZ

SS

���*

XXXXXXXXz

-

-

Z
ZZ~

SSw

Figure 8: The construction of H for an interval graph of domatic number 2.

Bertossi then proved that any path from vertex 0 to vertex n + 1 in H
corresponds to a proper dominating set of G and vice versa. His arguments
have a flaw. In fact this statement is not true as 0, 2, 3, 5, 6 is a path in the
directed network H in Figure 8, but its corresponding dominating set {2, 3, 5}
has a proper subset {2} that is also a dominating set. To be precise, he only
showed that

(P1) a 0-(n+ 1) path in H corresponds to a dominating set of G, and

(P2) a proper dominating set of G corresponds to a 0-(n+ 1) path in H .

26

Besides, the entire arguments can be treated in terms of the interval ordering
as follows. Now assume that [0, 1, 2, . . . , n, n+ 1] is an interval ordering of the
graph G = (V,E) with two isolated vertices 0 and n+1 added. Then construct
a directed network H ′ with

vertex set {0, 1, 2, . . . , n, n+ 1} and

edge set {ij : i < j and (i < h < j imply ih ∈ E or hj ∈ E)}.

Notice that H ′ is not the same asH . However, statements (P1) and (P2) remain
true if H is replaced by H ′. Also, there is a simpler proof using property (IO),
which is different from their original proof using the endpoints of the intervals.
The argument is as follows.

First, a 0-(n + 1) path P : 0 = i0, i1, . . . , ir, ir+1 = n + 1 in H certainly
corresponds to a dominating set D = {i0, i1, . . . , ir, ir+1} of G by the definition
of the edge set of H ′. This proves (P1). Conversely, for a proper dominating
set D of G, consider the corresponding path P . For any 0 ≤ s ≤ r, suppose
is < h < is+1. Since D is a dominating set of G, there exists some ij ∈ D such
that hij ∈ E.

Case 1. j ≤ s. Then ish ∈ E by (IO).
Case 2. j = s+ 1. Then his+1 ∈ E.
Case 3. j > s + 1. If N [is+1] ⊆ N [ij], then D \ {vs+1} is a dominating

set of G, violating that D is a proper dominating set. So, there is some vertex
k ∈ N [is+1] \N [ij]. The case of is+1 < ij < k or h < k < ij implies k ∈ N [ij]
by (IO), a contraction. The case of ij < h < is+1 implies his+1 ∈ E.

In any case, isis+1 is an arc in H . This proves (P2).

Primal-dual approaches were also used in [157, 188] to solve the domatic
number problem in interval graphs. Manacher and Mankus [159] made it pos-
sible to get an O(n) algorithm for the problem. Peng and Chang [169] used the
primal-dual method to get a linear-time algorithm for the problem in strongly
chordal graphs, see Section 6.3.

4.3 Weighted independent domination in interval graphs

There are many algorithms for variants of domination in interval graphs, see
[17, 20, 50, 52, 55, 175, 176]. Among them, Ramalingam and Pandu Ran-
gan [176] gave a unified approach to the weighted independent domination, the
weighted domination, the weighted total domination and the weighted connected
domination problems in interval graphs by using the interval orderings. Their
algorithms are demonstrated in this and the following subsections.

Now, supposeG = (V,E) is an interval graph with vertex set V = {1, 2, . . . , n},
where [1, 2, . . . , n] is an interval ordering of G. Assume that each vertex is as-
sociated with a real number as its weight. Notice that except for independent
domination, according to Lemma 2.1, assume that the weights are nonnegative.
Consider following notation.

27

Vi = {1, 2, . . . , i} and Gi denotes the subgraph G[Vi] induced by Vi.

V0 is the empty set.

low(i) = minimum element in N [i].

maxlow(i) = max{low(j) : low(i) ≤ j ≤ i}.

Li = {maxlow(i),maxlow(i) + 1, . . . , i}.

Mi = {j : j > i and j is adjacent to i}.

For any family X of sets of vertices, min{X} denotes a minimum-weighted
set in X . If X is the empty set, then min{X} denotes a set of infinite weight.

Notice that the vertices in the set {1, 2, . . . , low(i) − 1} are not adjacent to
i and the vertices in {low(i), low(i) + 1, . . . , i} are adjacent to i. The vertices
in Li form a maximal clique in the graph Gi. Let j be the vertex such that
low(i) ≤ j ≤ i and maxlow(i) = low(j). Then, low(i) ≤ low(j) ≤ j ≤ i. It can
easily be seen that N [j] is a subset of Li∪Mi. Furthermore, in Gi, j is adjacent
only to the vertices in Li.

Having all of these, it is ready to establish the solutions to weighted inde-
pendent domination problem in interval graphs.

Let IDi denote an independent dominating set of the graphGi and letMIDi

denote the minimum weighted IDi.
Notice that, in Gi, the set Li is a maximal clique and that there is a vertex in

Li which is not adjacent to any vertex in Vi\Li. Hence, any IDi contains exactly
one vertex j in Li. Furthermore, it is necessary and sufficient that IDi \ {j}
dominates Vlow(j)−1 and contains no vertex adjacent to j. Hence, IDi \ {j} is
an independent dominating set of Glow(j)−1. In other words, a set is an IDi if
and only if it is of the form IDlow(j)−1 ∪ {j} for some j in Li.

These give the following lemma.

Lemma 4.2 (a) MID0 = ∅. (b) For 1 ≤ i ≤ n,

MIDi = min{MIDlow(j)−1 ∪ {j} : j ∈ Li}.

A linear-time algorithm for the weighted independent domination problem
in interval graphs then follows. The detailed description is omitted as it is
easy. Similarly, in the following three subsections, only recursive formulas for
variations of domination in interval graphs are presented.

4.4 Weighted domination in interval graphs

Let Di denote a subset of V that dominates Vi. Unlike independent domination,
it is not necessary to restrict Di as a subset of Vi. Let MDi denote a minimum
weighted Di.

Since there is a vertex in Li whose neighbors are all in Li ∪ Mi, the set
Di contains some vertex j in Li ∪Mi. It is necessary and sufficient that the
remaining set Di \ {j} dominates Vlow(j)−1 since j dominates all vertices in

28

Vi \ Vlow(j)−1 and no vertex in Vlow(j)−1. (Note that if j ∈ Li ∪ Mi, then
low(j) ≤ i.) In other words, a set is a Di if and only if it is of the form
Dlow(j)−1 ∪ {j} for some j in Li ∪Mi.

These give the following lemma.

Lemma 4.3 (a) MD0 = ∅. (b) For 1 ≤ i ≤ n,

MDi = min{MDlow(j)−1 ∪ {j} : j ∈ Li ∪Mi}.

4.5 Weighted total domination in interval graphs

Let TDi denote a subset of V that totally dominates Vi and let MTDi be a
minimum weighted TDi. Let PDi denote a subset of V that totally dominates
{i} ∪ Vlow(i)−1 and let MPDi be a minimum weighted PDi.

As in domination, TDi also includes some vertex j in Li ∪Mi. If j ∈ Li,
then it is necessary and sufficient that the set TDi \ {j} totally dominates
Vlow(j)−1 ∪ {j}. If j ∈ Mi, then it is necessary and sufficient that the set
TDi \ {j} totally dominates Vlow(j)−1.

Similarly, any PDi includes some vertex j adjacent to i. By the definition,
j ≥ low(i). Hence, it is necessary and sufficient that the PDi \ {j} totally
dominates Vmin{low(i)−1,low(j)−1}.

These give the following lemma.

Lemma 4.4 (a) MTD0 = ∅. (b) For 1 ≤ i ≤ n,

MTDi = min
(
{MPDj ∪ {j} : j ∈ Li}

⋃
{MTDlow(j)−1 ∪ {j} : j ∈Mi}

)
.

MPDi = min{MTDmin{low(j)−1,low(i)−1} ∪ {j} : j ∈ N(i)}.

Note that in the original paper by Ramalingam and Pandu Rangan [176],
there is a typo that using j ∈ N [i] rather than j ∈ N(i) in the formula for
MPDi.

4.6 Weighted connected domination in interval graphs

Let CDi denote a connected dominating set of Gi that contains the vertex i
and let MCDi denote a minimum weighted CDi.

If low(i) = 1, then MCDi is {i} since all vertices have nonnegative weights.
If low(i) > 1, then any CDi contains vertices other than i, and hence some
vertex adjacent to i in Gi. Let j be the maximum vertex in CDi \ {i}. Assume
that low(j) < low(i). Otherwise j is removed to get a CDi of the same or lower
weight. If low(j) < low(i), then any other vertex of Gj adjacent to i is also
adjacent to j. Thus, it is necessary and sufficient that CDi \ {i} is a CDj .

These give the following lemma.

29

Lemma 4.5 (a) If low(i) = 1, then MCDi = {i}. (b) For low(i) > 1,

MCDi = min{MIDj ∪ {i} : j ∈ N [i] and j < i and low(j) < low(i)}.

(c) min{MCDn : i ∈ Ln} is a minimum weighted connected dominating set
of the graph G.

5 Chordal graphs and NP-completeness results

5.1 Perfect elimination orderings of chordal graphs

It was seen in previous sections that the domination problem is well solved for
trees and interval graphs. People then try to generalize the results for general
graphs. However, the NP-completeness theory raised by Cook suggests that this
is in general quite impossible. Garey and Johnson, in an unpublished paper (see
[101]), pointed out that the dominating problem is NP-complete by transforming
the vertex cover problem to it.

VERTEX COVER
INSTANCE: A graph G = (V,E) and a positive integer k ≤ |V |.
QUESTION: Is there a subset C ⊆ V of size at most k such that each edge xy
of G has either x ∈ C or y ∈ C?

Their idea can in fact be modified to prove many NP-complete results for
the domination problem and its variations in many classes of graphs. Among
these classes, the class of chordal graphs is most interesting in the study of many
graph optimization problems. Chordal graphs are raised in the theory of perfect
graphs, see [103]. It contains trees, interval graphs, directed path graphs, split
graphs, undirected path graphs, etc., as subclasses.

Recall that a graph is chordal if every cycle of length at least four has a chord.
The following property is an important characterization of chordal graphs. The
proof presented here is from Theorem 4.3 in [104], except that the Maximum
Cardinality Search is not introduced explicitly.

Theorem 5.1 A graph G = (V,E) is chordal if and only if it has a perfect
elimination ordering which is an ordering [v1, v2, . . . , vn] of V such that

i < j < k and vivj , vivk ∈ E imply vjvk ∈ E. (PEO)

Proof. (⇒) For any ordering σ = [v1, v2, . . . , vn], define the vector

d(σ) = (dn, dn−1, . . . , d1),

where each ds = |{t : t > s and vt is adjacent to vs}|. Choose an ordering σ
such that d(σ) is lexicographically largest.

Suppose p < q < r and vr ∈ N(vp) \ N(vq). Consider the ordering σ′

obtained from σ by interchanging vp and vq. Then d′s = ds for all s > q and

|{t : t > q and vt ∈ N(vp)}| = d′q ≤ dq = |{t : t > q and vt ∈ N(vq)}|.

30

However, r is a vertex such that r > q and vr ∈ N(vp) \ N(vq). Then, there
exists some s > q such that vs ∈ N(vq) \N(vp). This gives

p < q < r, vr ∈ N(vp) \N(vq) imply vs ∈ N(vq) \N(vp) for some s > q. (∗)

Next, (∗) is used to prove the following claim.

Claim. There does not exist any chordless path P : vi1 , vi2 , . . . , vix with x ≥ 3
and iy < ix < i1 for 1 < y < x.

(Notice that the claim implies (PEO) as vk, vi, vj is a chordless path with i <
j < k whenever vjvk 6∈ E.) Suppose to the contrary that such a path P exists.
Choose one with a largest ix. Since i2 < ix < i1 and vi1 ∈ N(vi2) \ N(vix),
by (∗), there exists some ix+1 > ix such that vix+1

∈ N(vix) \ N(vi2). Let z
be the minimum index such that z ≥ 2 and vix+1

vz ∈ E. Note that z exists
and z ≥ 3. For the case when vi1vix+1

6∈ E, P ′ : vi1 , vi2 , . . . , viz−1
, viz , vix+1

(or
its inverse) is a chordless path of length at least three with iy < ix+1 < i1 (or
iy < i1 < ix+1) for 1 < y ≤ z. In this case, ix < ix+1 is a contradiction to the
choice of P . For the case when vi1vix+1

∈ E, P ′ together with the edge vi1vix+1

form a chordless cycle of length at least four, a contradiction to the fact that G
is chordal.

(⇐) On the other hand, suppose (PEO) holds. For any cycle of length at
least four, choose the vertex of the cycle with the least index. By (PEO), the
two neighbors of this vertex in the cycle are adjacent.

5.2 NP-completeness for domination

This section first demonstrates Garey and Johnson’s proof that the domination
problem is NP-complete. The proof is adapted for split graphs, which are special
chordal graphs. A split graph is a graph whose vertex set is the disjoint union
of a clique C and a stable set S. Notice that a split graph is chordal as the
ordering with the vertices in S first and the vertices in C next gives a perfect
elimination ordering.

Theorem 5.2 The domination problem is NP-complete for split graphs.

Proof. The proof is given by transforming the vertex cover problem in general
graphs to the domination problem in split graphs. Given a graph G = (V,E),
construct the graph G′ = (V ′, E′) with

vertex set V ′ = V ∪ E and

edge set E′ = {v1v2 : v1 6= v2 in V } ∪ {ve : v ∈ e}.

Notice that G′ is a split graph whose vertex set V ′ is the disjoint union of the
clique V and the stable set E.

If G has a vertex cover C of size at most k, then C is a dominating set of G′

of size at most k, by the definition of G′. On the other hand, suppose G′ has a

31

e
e
e
e

e
e
e
e'

&

�

�

e
e
e

����
XXXX

����
XXXX

XXXX
����

a

b

c

d

e

f

g

d

c

b

e

f

g

a

G G′

�

�

Figure 9: A transformation to a split graph.

dominating set D of size at most k. If D contains any e ∈ E, say e = uv, then
replace e with u to get a new dominating set of size at most k. In this way,
assume that D is a subset of V . It is then clear that D is a vertex cover of G of
size at most k.

Since the vertex cover problem is NP-complete, the domination problem is
also NP-complete for split graphs.

Note that the dominating set of G′ in the proof above in fact induces a
connected subgraph.

Corollary 5.3 The total and the connected domination problems are NP-complete
for split graphs.

In fact, the proof can be modified to get

Theorem 5.4 The domination problem is NP-complete for bipartite graphs.

Proof. The vertex cover problem in general graphs is transformed to the dom-
ination problem in bipartite graphs as follows. Given a graph G = (V,E),
construct the graph G′ = (V ′, E′) with

vertex set V ′ = {x, y} ∪ V ∪ E and

edge set E′ = {xy} ∪ {yv : v ∈ V } ∪ {ve : v ∈ e}.

Notice that G′ is a bipartite graph whose vertex set V ′ is the disjoint union of
two stable sets {x} ∪ V and {y} ∪ E.

If G has a vertex cover C of size at most k, then {y}∪C is a dominating set
of G′ of size at most k + 1. On the other hand, suppose G′ has a dominating
set D of size at most k+1. Since NG′ [x] = {x, y}, D must contain x or y. One
may assume that D contains y but not x, as (D\{x})∪{y} is also a dominating
set of size at most k+1. Since y ∈ D, if D contains any e ∈ E, say e = uv, one
can replace e with u to get a new dominating set of size at most k + 1. In this
way, one may assume that D \ {y} is a subset of V . It is then clear that D \ {y}
is a vertex cover of G of size at most k.

32

e
e
e
e

e
e
e
e e

e
e

����
XXXX

����
XXXX

XXXX
����

a

b

c

d

e

f

g

d

c

b

e

f

g

a

G G′

e��
�
�

@
@
@
@

PPPP
����e

yx

Figure 10: A transformation to a bipartite graph.

Since the vertex cover problem is NP-complete, the domination problem is
NP-complete for bipartite graphs.

Corollary 5.5 The total and the connected domination problems are NP-complete
for bipartite graphs.

There are many other NP-complete results for variations of domination, see
[13, 16, 26, 68, 78, 82, 98, 116, 128, 166, 203, 204] and [101, 133, 134]. Most of
the proofs are more or less similar to the above two. Only very few are proved
by using different methods. As an example, Booth and Johnson [26] proved
that the domination problem is NP-complete for undirected path graphs, which
is another subclass of chordal graphs, by reducing the 3-dimensional matching
problem to it.

Theorem 5.6 The domination problem is NP-complete for undirected path graphs.

Proof. Consider an instance of the 3-dimensional matching problem, in which
there are three disjoint sets W , X and Y each of size q and a subset

M = {mi = (wr, xs, yt) : wr ∈W,xs ∈ X and yt ∈ Y for 1 ≤ i ≤ p}

of W ×X × Y having size p. The problem is to find a subset M ′ of M having
size exactly q such that each wr ∈ W , xs ∈ X and yt ∈ Y occurs in precisely
one triple of M ′.

Given an instance of the 3-dimensional matching problem, construct a tree
T having 6p+3q+1 vertices from which an undirected path graph G is obtained.
The vertices of the tree, which are represented by sets, are explained below.

For each triple mi ∈ M there are six vertices depend only upon the triple
itself and not upon the elements within the triple:

{Ai, Bi, Ci, Di}
{Ai, Bi, Di, Fi}

33

{Ci, Di, Gi}
{Ai, Bi, Ei}
{Ai, Ei, Hi}
{Bi, Ei, Ii} for 1 ≤ i ≤ p.

These six vertices form the subtree of T corresponding tomi, which is illustrated
in Figure 11. Next, there is a vertex for each element of W , X and Y that
depends upon the triples of M to which each respective element belongs:

{Rr} ∪ {Ai : wr ∈ mi} for wr ∈ W ,
{Ss} ∪ {Bi : xs ∈ mi} for xs ∈ X ,
{Tt} ∪ {Ci : yt ∈ mi} for yt ∈ Y .

Finally, {Ai, Bi, Ci : 1 ≤ i ≤ p} is the last vertex of T . The arrangement
of these vertices in the tree T is shown in Figure 11. This then results in an
undirected path graph G with vertex set

{Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi, Ii : 1 ≤ i ≤ p} ∪ {Rj, Sj , Tj : 1 ≤ j ≤ q}

of size 9p+ 3q, where the undirected path in T corresponding to a vertex v of
G consists of those vertices (sets) containing v in the tree T .

�
�� Q

QQ

HHHH

�
�� Q

QQ

������ XXXXXXXXXXX

HHHHHH

{Ai, Bi, Ci : 1 ≤ i ≤ p}

{Ai, Bi, Ci, Di}

{Ai, Bi, Di, Fi} {Ci, Di, Gi}

{Ai, Bi, Ei}

{Ai, Ei,Hi} {Bi, Ei, Ii}

for mi ∈ M

{Rr}
⋃

{Ai : wr ∈ mi} {Bi : xs ∈ mi}

{Ss}
⋃

{Tt}
⋃

{Ci : yt ∈ mi}

for yt ∈ Yfor xs ∈ Xfor wr ∈ W

tree T

.

�
�

�
�

�� �
�� �
�� �
�� �
�� �
�� �

�
�

�
�
�
�

�
�
�
�

�
�

Figure 11: A transformation to an undirected path graph.

The theorem then follows from the claim that G has a dominating set of size
2p+ q if and only if the 3-dimensional matching problem has a solution.

Suppose D is a dominating set of G of size 2p + q. Observe that for any
i, the only way to dominate the vertex set {Ai, Bi, Ci, Ci, Di, Ei, Fi, Gi, Hi, Ii}
corresponding to mi with two vertices is to choose Di and Ei, and that any
larger dominating set might just as well consist of Ai, Bi and Ci, since none of
the other possible vertices dominate any vertex outside of the set. Consequently,

34

D consists of Ai, Bi and Ci for t mi’s, and Di and Ei for p− t other mi’s, and
at least max{3(q − t), 0} Rr, Ss, Tt. Then,

2p+ q = |D| ≥ 3t+ 2(p− t) + 3(q − t) = 2p+ 3q − 2t

and so t ≥ q. Picking q triples mi for which Ai, Bi and Ci are in D form a
matching M ′ of size q.

Conversely, suppose the 3-dimensional matching problem has a solution M ′

of size q. Let

D = {Ai, Bi, Ci : mi ∈M ′} ∪ {Di, Ei : mi ∈M \M ′}.

It is straightforward to check that D is a dominating set of G of size 3q+2(p−
q) = 2p+ q.

5.3 Independent domination in chordal graphs

Farber [93] showed a surprising result that the independent domination problem
is solvable by using a linear programming method. On the other hand, it is
known [66] that the weighted independent domination problem is NP-complete.
The proof has the same spirit of the proof of Theorem 5.2.

Theorem 5.7 The weighted independent domination problem is NP-complete
for chordal graphs.

Proof. The vertex cover problem in general graphs is transformed to the
weighted independent domination problem in chordal graphs as follows. Given
a graph G = (V,E), construct the following chordal graph G′ = (V ′, E′) with

vertex set V ′ = {v′′, v′, v : v ∈ V } ∪ E and

edge set E′ = {v′′v′, v′v : v ∈ V } ∪ {ve : v ∈ e} ∪ {e1e2 : e1 6= e2 in E}.

The weight of each e ∈ E is 2|V |+ 1 and the weight of each vertex in V ′ is 1.
If G has a vertex cover C of size at most k, then {v′′, v : v ∈ C} ∪ {v′ : v ∈

V \C} is an independent dominating set of G′ with weight at most |V |+ k. On
the other hand, suppose G′ has an independent dominating set D of weight at
most |V | + k. As k ≤ |V |, D contains no elements in E. Let C = D ∩ V . It
is clear that C is a vertex cover of G. Also, for each v ∈ V the set D contains
exactly one vertex in {v′′, v′}. Thus C is of size at most k.

Since the vertex cover problem is NP-complete, the weighted independent
domination problem is NP-complete for chordal graphs.

Farber’s algorithm for the independent domination problem in chordal graphs
is by means of a linear programming method. Suppose G = (V,E) is a chordal

35

e
e
e
e

e
e
e
e e

e
e

����
XXXX

����
XXXX

XXXX
����

a

b

c

d

e

f

g

e

f

g

G G′

d

c

b

a

ee
ee
ee
ee

d′d′′

c′c′′

b′b′′

a′a′′

$

%
Figure 12: A transformation to a weighted chordal graph.

graph with a perfect elimination ordering [v1, v2, . . . , vn] and vertex weights
w1, w2, . . . , wn of real numbers. Write

i ∼ j for vi ∈ N [vj],

i<̃j for i ∼ j and i ≤ j,

i>̃j for i ∼ j and i ≥ j.

It follows from the definition of a perfect elimination ordering that each

Cj = {vi : i>̃j}

is a clique. Thus a set S of vertices is independent if and only if each Cj contains
at most one vertex of S. Also, S is a dominating set if and only if for each j, S
contains at least one vertex vi with i ∼ j. Consider the following linear problem:

P1(G,w) : Minimize
∑n

i=1 wixi,

subject to
∑

i∼j xi ≥ 1 for each j,
∑

i>̃j
xi ≤ 1 for each j,

xi ≥ 0 for each i.

It follows from the above comments that there is a one-to-one correspon-
dence between independent dominating sets of G and feasible 0-1 solutions to
P1(G,w). Moreover, an optimal 0-1 solution to P1(G,w) corresponds to a min-
imum weighted independent dominating set in G. Notice that a set of vertices
of G is an independent dominating set in G if and only if it is a maximal inde-
pendent set in G. Consequently, there exist independent dominating sets, and
P1(G,w) is a feasible linear program. It will follow from the algorithm presented
below that if every vertex of G has a weight in {1, 0,−1,−2, . . .} then P1(G,w)
has an optimal 0-1 solution, and that the following dual program has an integer
optimal solution:

36

D1(G,w) : Maximize
∑n

j=1(yj − zj),

subject to
∑

j∼i yj −
∑

j<̃i
zj ≤ wi for each i,

yj , zj ≥ 0 for each j.

If, however, not all vertex weights are in {1, 0,−1,−2, . . .} (even though they
are all integers), then it may be the case that neither P1(G,w) nor D1(G,w) has
an integer solution. For the reminder of this section, assume that each vertex
has a weight in {1, 0,−1,−2, . . .}.

First define two functions which simplify the presentation of the algorithm.
For each i, let

f(i) = wi +
∑

j<̃i
zj −

∑
j∼i

yj ,

g(i) = wi +
∑

j<̃i
zj −

∑
j<̃i

yj .

Note that f(i) is the slack in the dual constraint associated with vertex vi.
The algorithm to locate a minimum weighted dominating set in G has two

stages. Stage 1 finds a feasible solution to D1(G,w) by scanning the vertices
in the order v1, v2, . . . , vn; and stage 2 uses this solution to find a feasible 0–
1 solution to P1(G,w) by scanning the vertices in the order vn, vn−1, . . . , v1.
Initially, each yj = 0, each zj = 0 and each xi = 2. (The interpretation of
xi = 2 is that xi has not yet been assigned a value.) If, at the time vj is
scanned in stage one, the dual constraint associated with vj is violated, i.e.,
if f(j) < 0, then add just enough to zj to bring that constraint into feasible.
Otherwise, add as much as possible to yj without violating the dual constraint
associated with vj or with any previously scanned vertex. In stage two, if xi = 2
and g(i) = 0 when vi is scanned, then let xi = 1 and let xj = 0 for each vj
adjacent to vi.

A formal description of the algorithm is given below.

Algorithm IndDomChordal. Determine γi(G,w) for a chordal graph G with
weights w1, w2, . . . , wn in {1, 0,−1,−2, . . .}.
Input. A chordal graph G with a perfect elimination ordering [v1, v2, . . . , vn]
and vertex weights w1, w2, . . . , wn in {1, 0,−1,−2, . . .}.
Output. Optimal solutions to P1(G,w) and D1(G,w).
Method.

each yj ← 0, each zj ← 0 and each xi ← 2;
Stage 1: for j = 1 to n do

if f(j) < 0 then zj ← −f(j)
else yj ← min{f(k) : k<̃j};

Stage 2: for i = n to 1 by −1 do
if xi = 2 and g(i) = 0 then

xi ← 1;
xj ← 0 for each vj ∈ N(vi);
end if.

37

The validity of the algorithm is established below.

Theorem 5.8 Algorithm IndDomChordal finds a minimum weighted indepen-
dent dominating set of a chordal graph with vertex weights in {1, 0,−1,−2, . . .}.

Several lemmas are needed. Note that since the weights are integral, all
xi, yj , zj, f(i), g(i) are integral at any time.

Lemma 5.9 For each j, f(j) ≥ 0 at all times after scanning vj in stage 1.

Proof. The fact that f(j) ≥ 0 immediately after scanning vj in stage 1 follows
from the choice of zj and yj . The fact that f(j) ≥ 0 after scanning each vk
where k > j follows from the choice of yk.

Lemma 5.10 At the end of stage one, yj ≥ 0 for any j.

Proof. This is an immediate consequence of Lemma 5.9.

Lemma 5.11 At the end of stage 1, 0 ≤ f(j) ≤ g(j) for any j.

Proof. This follows from Lemmas 5.9 and 5.10.

Lemma 5.12 At the end of stage 1, for each i, there is a j<̃i such that g(j) = 0.

Proof. According to Lemma 5.11, g(i) ≥ 0. If g(i) = 0, then the lemma is
true as j can be chosen to be i. Suppose g(i) > 0. Then f(i) was positive
immediately after scanning vi, and so, by the choice of zi and yi, zi = 0 and
yi was chosen to force f(j) to be 0 for some j<̃i. Thus there is some j<̃i such
that ∑

k∼j,k≤i
yk −

∑
k<̃j

zj = wj .

If yk = 0 for each k such that k>̃j and k ≤ i, then g(j) = 0. Otherwise,
choose k such that yk > 0, k>̃j and k ≤ i. Then i ∼ k since i>̃j, k>̃j and
[v1, v2, . . . , vn] is a perfect elimination ordering. Hence k<̃i since i ≥ k and
i ∼ k. Since all vertex weights are integral, yk is an integer. Thus yk ≥ wi,
since wi ∈ {1, 0,−1,−2, . . .}. Now, g(i) > 0, yk ≥ wi and k<̃i, and hence there
is some ℓ<̃i such that zℓ > 0. By the choice of zℓ, it is the case that g(ℓ) = 0.

Note that the proof of Lemma 5.12 relies upon the fact that G has vertex
weights in {1, 0,−1,−2, . . .} to show that if yk > 0 then yk ≥ wi.

Lemma 5.13 At the end of stage 2, for each j, if g(j) = 0 then xk = 1 for
some k>̃j.

38

Proof. It is clear from the instructions in stage two that, for each i, if xi = 1
at any time during the algorithm then xi = 1 at the end of the algorithm.
Suppose g(j) = 0. If xj was 2 just prior to scanning vj in stage two then xj was
assigned the value of 1 when vj was scanned, and hence xj = 1 at the end of
the algorithm. In this case, choose k = j as desired. Otherwise, xj was 0 prior
to scanning vj . In that case, xj = 0 by virtue of the fact that xk = 1 for some
previously scanned neighbor vk of vj , i.e., xk = 1 for some k>̃j.

Proof of Theorem 5.8. It is easy to see that Algorithm IndDomChordal halts
after O(|V |+|E|) operations. Next to show that the final values of x1, x2, . . . , xn

and y1, y2, . . . , yn, z1, z2, . . . zn are feasible solutions to P1(G,w) and D1(G,w)
respectively, and then verify that these solutions satisfy the conditions of com-
plementary slackness. It then follows that they are optimal.

(i) Feasibility of dual solution: Clearly zj ≥ 0 for each j. By Lemmas
5.9 and 5.10, yj ≥ 0 and f(j) ≥ 0 for each j.

(ii) Feasibility of primal solution: The instructions in stage two guar-
antee that if xi = xj = 1 then vivj 6∈ E, and if xi = 0 then xj = 1 for some
j ∼ i. Since a 0–1 primal solution is feasible if and only if the set {vj : xj = 1}
is an independent dominating set in G, it suffices to show that each xi is either
0 or 1. According to Lemma 5.12, for each i, there is a j<̃i such that g(j) = 0.
According to Lemma 5.13, there is a k>̃j such that xk = 1. Since i>̃j, k>̃j and
[v1, v2, . . . , vn] is a perfect elimination ordering, it follows that i ∼ k. If i = k
then xi = 1; otherwise xi = 0.

(iii) Complementary slackness: If xi > 0 then g(i) = 0 by the choice of
xi, and hence f(i) = 0, by Lemma 5.11. Thus

∑
j∼i yj −

∑
j<̃i

zj = wi.

If zj > 0 then g(j) = 0 by the choice of zj , and so xk = 1 for some k>̃j,
by Lemma 5.13. Hence

∑
i>̃j

xi ≥ 1. Equality follows from the fact that the

primal solution is feasible.
Suppose yj > 0 but xi = xk = 1 for i ∼ j and k ∼ j. Since xi = xk = 1,

g(i) = g(k) = 0, and so j ≤ min{i, k} by Lemma 5.9, Lemma 5.11 and the
choice of yj . Thus i>̃j and k>̃j, which imply i ∼ k since [v1, v2, . . . , vn] is a
perfect elimination ordering. On the other hand, vivk 6∈ E since xi = xk = 1.
Consequently i = k. Hence, if yj > 0 then

∑
i∼j xi ≤ 1. Equality follows from

the fact that the primal solution is feasible.

6 Strongly chordal graphs

6.1 Strong elimination orderings of strongly chordal graphs

Strongly chordal graphs were introduced by several people [46, 95, 122] in the
study of domination. In particular, most variations of the domination problem
are solvable in this class of graphs. There are many equivalent ways to define
them. This section adapts the notation from Farber’s paper [95].

39

A graph G = (V,E) is strongly chordal if it admits a strong elimination
ordering which is an ordering [v1, v2, . . . , vn] of V such that the following two
conditions hold.

(a) If i < j < k and vivj , vivk ∈ E, then vjvk ∈ E.

(b) If i < j < k < ℓ and vivk, vivℓ, vjvk ∈ E, then vjvℓ ∈ E.

Notice that an ordering satisfying condition (a) is a perfect elimination or-
dering. Hence, every strong elimination ordering is a perfect elimination order-
ing, and every strongly chordal graph is chordal. The notion i ∼ j stands for
vi ∈ N [vj].

The following equivalent definition of the strong elimination ordering is more
convenient in many arguments for strongly chordal graph.

Lemma 6.1 An ordering [v1, v2, . . . , vn] of the vertices of G is a strong elimi-
nation ordering of G if and only if

i ≤ j, k ≤ ℓ, i ∼ k, i ∼ ℓ and j ∼ k imply j ∼ ℓ. (SEO)

Proof. Suppose [v1, v2, . . . , vn] is a strong elimination ordering of G. Suppose
that i ≤ j, k ≤ ℓ, i ∼ k, i ∼ ℓ and j ∼ k. If i = j or k = ℓ or j = ℓ, then clearly
j ∼ ℓ. Suppose, on the other hand, that i < j, k < ℓ and j 6= ℓ. By symmetry,
assume that i ≤ k. Now consider three cases.

Case 1. Suppose j = k. Then i < j < ℓ and vivj , vivℓ ∈ E, whence
vjvℓ ∈ E, by (a) in the definition of a strong elimination ordering.

Case 2. Suppose j < k. Then i < j < k < ℓ and vivk, vivℓ, vjvk ∈ E,
whence vjvℓ ∈ E, by (b) in the definition of a strong elimination ordering.

Case 3. Suppose k < j. If i = k, then vkvℓ ∈ E. Otherwise, i < k < ℓ
and vivk, vivℓ ∈ E, whence vkvℓ ∈ E. Consequently, vkvℓ, vkvj ∈ E and either
k < ℓ < j or k < j < ℓ. In either case, vjvℓ ∈ E.

This completes the proof of necessity. The proof of sufficiency is trivial and
thus omitted.

6.2 Weighted domination in strongly chordal graphs

There are quite a few algorithms designed for variants of the domination problem
in strongly chordal graphs, see [36, 40, 46, 47, 95, 122, 146, 195]. This section
presents the linear algorithm, given by Fraber [95], for locating a minimum
weighted dominating set in a strongly chordal graph.

Let G = (V,E) be a strongly chordal graph with a strong elimination or-
dering [v1, v2, . . . , vn] and vertex weights w1, w2, . . . , wn. According to Lemma
2.1, assume that these vertex weights are nonnegative. Consider the following
linear problem:

P2(G,w) : Minimize
∑n

i=1 wixi,

subject to
∑

i∼j xi ≥ 1 for each j,

xi ≥ 0 for each i.

40

By definition, a set S of vertices of G is a dominating set if and only if, for
each j, S contains some vertex vi such that i ∼ j. Consequently, there is a
one-to-one correspondence between feasible 0–1 solutions to P2(G,w) and dom-
inating sets in G. Moreover, an optimal 0–1 solution to P2(G,w) corresponds to
a minimum weighted dominating set in G. It follows from the algorithm below
that P2(G,w) has an optimal 0–1 solution and that the following dual program
has an optimal solution:

D2(G,w) : Maximize
∑n

j=1 yj,

subject to
∑

j∼i yj ≤ wi for each i,

yj ≥ 0 for each j.

The algorithm presented below solves the linear programs P2(G,w) and
D2(G,w). To simplify the presentation of the algorithm, define a function h
and a family of sets. For each i, let

h(i) = wi −
∑

j∼i
yj and Ti = {j : i ∼ j and yj > 0}.

Note that h(i) is the slack in the dual constraint associated with vertex vi, and
Ti is the set of constraints in P2(G,w) containing xi which must be at equality
to satisfy the conditions of complementary slackness.

The algorithm has two stages. Stage 1 finds a feasible solution to D2(G,w)
by scanning the vertices in the order v1, v2, . . . , vn; and stage 2 uses this solution
to find a feasible 0–1 solution to P2(G,w) by scanning the vertices in the order
vn, vn−1, . . . , v1. This algorithm uses a set T to assure that the conditions of
complementary slackness are satisfied. Initially, T = {1, 2, . . . , n}, each yj = 0
and each xi = 0. When vj is scanned in stage 1, yj increases as much as possible
without violating the dual constraint. In stage 2, if h(i) = 0 and Ti ⊆ T when
vi is scanned then let xi = 1 and replace T by T \ Ti. Otherwise xi remains 0.
A more formal description of the algorithm follows.

Algorithm WDomSC. Determine γ(G,w) for a strongly chordal graph G
with nonnegative vertex weights w1, w2, . . . , wn.
Input. A strongly chordal graph G with a strong elimination ordering [v1, v2,
. . ., vn] and nonnegative vertex weights w1, w2, . . . , wn.
Output. Optimal solutions to P2(G,w) and D2(G,w).
Method.

T ← {1, 2, . . . , n}; each yj ← 0; each xi ← 0;
Stage 1: for j = 1 to n do

yj ← min{h(k) : k ∼ j};
Stage 2: for i = n to 1 by −1 do

if (h(i) = 0 and Ti ⊆ T) then
xi ← 1;
T ← T \ Ti;
end if.

41

The algorithm is verified as follows.

Theorem 6.2 Algorithm WDomSC finds a minimum weighted dominating set
of a strongly chordal graph with nonnegative vertex weights in linear time pro-
vided that a strong elimination ordering is given.

Proof. It is easy to see that the algorithm halts after O(|V |+|E|) operations. In
order to show that the final values of x1, x2, . . . , xn and y1, y2, . . . , yn, z1, z2, . . . zn
are optimal solutions to P2(G,w) and D2(G,w), respectively, it suffices to show
that these solutions are feasible and that they satisfy the conditions of comple-
mentary slackness.

(i) Feasibility of dual solution: The instructions in stage 1 guarantee
that h(i) ≥ 0 for each i and yj ≥ 0 for each j.

(ii) Feasibility of primal solution: Clearly, each xi is either 0 or 1. Thus
it suffices to show that for each j, xi = 1 for some i ∼ j. By the choice of
yj , there is a k ∼ j such that h(k) = 0 and maxTk ≤ j. If xk = 1, then the
claim holds. Otherwise, by the algorithm, Tk was not contained in T when vk
was scanned in stage 2. Since, in stage 2, the vertices are scanned in the order
vn, vn−1, . . . , v1, there is some ℓ > k such that xℓ = 1 and Tℓ ∩ Tk 6= ∅. Let
i ∈ Tℓ ∩ Tk. Then i ≤ j since maxTk ≤ j. Thus i ≤ j, k < ℓ, i ∼ k, i ∼ ℓ and
j ∼ k, whence ℓ ∼ j by Lemma 6.1, since [v1, v2, . . . , vn] is a strong elimination
ordering. Hence ℓ ∼ j and xℓ = 1. Consequently, the primal solution is feasible.

(iii) Complementary slackness: If xi > 0, then x1 = 1 and so h(i) = 0,
i.e.,

∑
j∼i yj = wi.

Suppose yj > 0. It is clear from the instructions that if xi = xk = 1, then
Ti ∩ Tk = ∅. Thus,

∑
i∼j xi ≤ 1. Equality follows from the feasibility of the

primal solution.

Farber in fact also gave an algorithm for the weighted independent domi-
nation problem with arbitrary real weights for strongly chordal graphs. The
approach is similar to that for chordal graphs (with restricted weights) in Sec-
tion 5.2. The only difference is that the function g(i) is replaced by a set
Si = {j : i ∼ j and yj > 0} which is similar to Ti in this section. The develop-
ment is similar to that in Section 5.2 and thus omitted.

6.3 Domatic partition in strongly chordal graphs

Peng and Chang [170] gave an elegant algorithm for the domatic partition prob-
lem in strongly chordal graphs.

Their algorithm uses a primal-dual approach. Suppose [v1, v2, . . . , vn] is
a strong elimination ordering of G = (V,E) with the minimum degree δ(G).
Choose a vertex x of degree δ(G). As any dominating set Di in a domatic
partition of G contains at least one vertex vi in N [x] and two distinct Di have
different corresponding vi, it is easy to see the following inequality.

Weak Duality Inequality: d(G) ≤ δ(G) + 1.

42

Their algorithm maintains δ(G) + 1 disjoint sets. Initially, these sets are
empty. The algorithm scans the vertices in the reverse order of the strong
elimination ordering. A vertex is included in a set when it is scanned. When
the algorithm terminates, these δ(G) + 1 sets are dominating sets.

A vertex v is completely dominated if v is dominated by all of these δ(G)+ 1
dominating sets.

Algorithm DomaticSC. Determine a domatic partition of a strongly chordal
graph G of size δ(G) + 1.
Input. A strongly chordal graph G = (V,E) with a strong elimination ordering
[v1, v2, . . ., vn].
Output. A partition of V into δ(G) + 1 disjoint dominating sets of G.
Method.

Si ← ∅ for 1 ≤ i ≤ δ(G) + 1;
for i = n to 1 step −1 do

find the largest k ∼ i such that vk is not completely dominated;
let Sℓ be a set that does not dominate vk;
Sℓ ← {vi} ∪ Sℓ;
if no such set exists then include vi to an arbitrary Sℓ;
end do.

Before proving the correctness of the algorithm, two lemmas are needed.

Lemma 6.3 Assume Sℓ ⊆ {vi+1, vi+2, . . . , vn} and k ∼ i, where 1 ≤ i ≤ n. If
Sℓ does not dominate vk, then Sℓ does not dominate vj for all j ≤ k with j ∼ i.

Proof. Suppose to the contrary that Sℓ has a vertex vp dominating vj , i.e.,
i < p and p ∼ j. Then i < p, j ≤ k, i ∼ j, i ∼ k and p ∼ j imply p ∼ k by
(SEO), which contradicts that Sℓ does not dominate vk.

Let r(v) = |{x ∈ N [v]: x is not in any of the δ(G)+ 1 sets}| and ndom(v) be
the number of sets that do not dominate v during the execution of Algorithm
DomaticSC.

Lemma 6.4 Algorithm DomaticSC maintains the following invariant:

r(vj) ≥ ndom(vj) for all j ∈ {1, 2, . . . , n}.

Proof. The lemma is proved by induction. Initially,

r(vj) = deg(vj) + 1 ≥ δ(G) + 1 = ndom(vj)

for all vj ∈ V . During iteration i, only values of r(vj) and ndom(vj), where
j ∼ i, may be altered when vi is included in a set Sℓ. Notice that the algorithm
determines the largest index k ∼ i such that vk is not completely dominated. It
then finds a set Sℓ that does not dominate vk (Sℓ is chosen arbitrarily when vk
does not exist).

43

For any j ∼ i with j ≤ k, by Lemma 6.3, vj was not dominated by Sℓ.
Therefore, r(vj) and ndom(vj) are decremented by one after vi is included in
Sℓ.

On the other hand, for any j ∼ i with j > k (or non-existence of such vk), by
the choice of the vertex vk in the algorithm, vertex vj is completely dominated,
i.e., ndom(vj) = 0. Thus the invariant is maintained.

Theorem 6.5 Algorithm DomaticSC partitions the vertex set of a strongly
chordal graph G = (V,E) into d(G) = δ(G) + 1 disjoint dominating sets in
linear time provided that a strong elimination ordering is given.

Proof. Upon termination of the algorithm, r(vj) = 0 for all j ∈ {1, 2, . . . , n}.
According to Lemma 6.4, ndom(vj) = 0 for all vj in V . That is, these δ(G) + 1
sets are dominating sets of G. The strong duality equality

d(G) = δ(G) + 1

then follows from the weak duality inequality.
To implement that algorithm efficiently, each vertex vi is associated with a

variable ndom(i) and an array L(i) of size δ(G)+1. Initially, ndom(i) = δ(G)+1
and the values of entries in Li are all zero. Thus, for each vertex it takes O(di)
time to test ndom(i) to determine vk, where di is the degree of vi. It then takes
O(δ(G) + 1) time to decide which set vi should go. Finally, for each vj ∈ N [vi],
it takes O(1) time to update ndom(j) and Lj . Therefore, the algorithm takes

O

(
∑n

i=1
(di + δ(G) + 1)

)
= O(|V |+ |E|) time.

7 Permutation graphs

Given a permutation π = (π(1), π(2), . . . , π(n)) on the set In = {1, 2, . . . , n},
the permutation graph of π is the graph G(π) = (In, E(π)) with

E(π) = {jk : (j − k)(π−1(j)− π−1(k)) < 0}.

Note that π−1(j) is the position of j in the permutation π. Figure 13 illustrates
a permutation and its corresponding permutation graph. If a line between each
integer i and its position in π is drown, then n lines are created, each with an
associated integer. In this way, two vertices j and k are adjacent in G(π) if and
only if their corresponding lines cross. That is, G(π) is the intersection graph
of these n lines. Notice that an independent set in G(π) corresponds to an
increasing subsequence of π, and a clique in G(π) corresponds to a decreasing
subsequence of π.

Permutation graphs were first introduced by Pnueli, Lempel and Even in
[172, 89]. Since that time quite a few polynomial time algorithms have been

44

3 6 4 1 8 7 5

87654321

2
�
�
��

HHHHHHH�
�
��

�
�
�
�

��Q
Q
Q
Q
QQ

�
�

��

i
i i i

ii
i i�

�
�

�
�

�

2 1 3

4 6 7

5 8)π = (

G(π)

Figure 13: A permutation and its corresponding permutation graph.

constructed on permutation graphs. For example, Atallah, Manacher and Ur-
rutia [9], Brandstädt and Kratsch [32], Farber and Keil [96] and Tsai and Hsu
[192] have constructed polynomial domination and independent domination al-
gorithms, Brandstädt and Kratsch [32] and Colbourn and Stewart [80] have
constructed polynomial connected domination algorithms, and Brandstädt and
Kratsch [32] and Corneil and Stewart [80] have constructed polynomial total
domination algorithms.

This section presents a simple O(n2)-time algorithm, due to Brandstädt and
Kratsch [33] for finding a minimum weighted independent dominating set in a
permutation graph. Assume that the defining permutation π of the permutation
graph is given as part of the input. Spinrad [187] has shown that π can be
constructed in O(n2) time, given the graph G.

This algorithm takes the advantage of the observation that a set is an in-
dependent dominating set if and only if it is a maximal independent set. Since
maximal independent sets in permutation graphs correspond to maximal in-
creasing subsequences in π, all that is necessary is to search for such a sequence
in π of minimum weight. In particular, it determines, for every j, 1 ≤ j < n, the
minimum weight γi(j, w) of an independent dominating set in the subsequence
π(1), π(2), . . . , π(j), which contains π(j) as the rightmost element. Let w(j)
denote the weight of vertex j.

Algorithm WIndDomPer. Solve the weighted independent domination prob-
lem for permutation graphs.
Input. A permutation graph G with its corresponding permutation π on the
set {1, 2, . . . , n} and vertex weights w(1), w(2), . . . , w(n) of real numbers.
Output. The weighted independent domination number γi(G,w) of G.
Method.

for j = 1 to n do
p(j)← 0;
γi(j) = w(π(j));
end do;

for k = j − 1 to 1 step −1 do

45

if (π(j) > π(k) and p(j) = 0) then
γi(j)← w(π(j)) + γi(k);
p(j)← π(k);
end if;

else if π(j) > π(k) > p(j) > 0 then
γi(j)← min{γi(j), w(π(j)) + γi(k)};
p(j)← π(k);
end if

end do;
m← p(n);
γi(G,w)← γi(n);
for j = n− 1 to 1 step −1 do

if π(j) > m then
γi(G,w)← min{γi(G,w), γi(j)};
m← π(j);
end if.

The algorithm is illustrated by the permutation graph G(π) in Figure 13,
where π = (2 3 6 4 1 8 7 5) and all weights are equal to 1: γi(j) = (1 2 3 3 1 2 2 2),
and thus the minimum size of an independent dominating set is 2, for example
the set {1, 5}.

8 Cocomparability graphs

A graph G = (V,E) is a comparability graph if G has an orientation H = (V, F)
such that xy, yz ∈ F imply xz ∈ F . In other words, G has a comparability
ordering which is an ordering [v1, v2, . . . , vn] of V satisfying

i < j < k and vivj , vjvk ∈ E imply vivk ∈ E. (CO)

A graph G = (V,E) is a cocomparability graph if its complement G is a com-
parability graph, or equivalently, G has a cocomparability ordering which is an
ordering [v1, v2, . . . , vn] of V satisfying

i < j < k and vivk ∈ E imply vivj ∈ E or vjvk ∈ E. (CCO)

There is an O(n2.376)-time recognition algorithm for comparability graphs
and thus for cocomparability graphs [187]. This has been improved by Mc-
Connell and Spinrad who gave an O(n + m)-time algorithm constructing an
orientation of any given graph G such that the orientation is a transitive orien-
tation of G if and only if G has a transitive orientation [161]. Unfortunately,
the best algorithm for testing whether the orientation is indeed transitive has
running time O(n2.376).

The class of cocomparability graphs is a well studied superclass of the classes
of interval graphs, permutation graphs and trapezoid graphs. Domination prob-
lems on cocomparability graphs were considered for the first time by Kratsch

46

and Stewart [149]. They obtained polynomial time algorithms for the domi-
nation/total domination/connected domination and the weighted independent
domination problems in cocomparability graphs. These algorithms are designed
by dynamic programming using cocomparability orderings. Breu and Kirk-
patrick [35] (see [4]) improved this by giving O(nm2)-time algorithms for the
domination and the total domination problems and an O(n2.376)-time algorithm
for the weighted independent domination problem in cocomparability graphs.

On the other hand, the weighted domination, total domination and con-
nected domination problems are NP-complete in cocomparability graphs [51].
Also, the problem “Given a cocomparability graph G, does G have a dominating
clique?” is NP-complete [149].

An O(n3)-time algorithm computing a minimum cardinality connected dom-
inating set of a connected cocomparability graph has been given in [149]. The
following is the algorithm for this problem given by Breu and Kirkpatrick [35]
(see also [4]).

Let [v1, v2, . . . , vn] be a cocomparability ordering of a cocomparability graph
G = (V,E). For vertices u,w ∈ V , write u < w if u appears before w in the
ordering, i.e., u = vi and w = vj implies i < j. For i ≤ j the set {vk : i ≤
k ≤ j} is denoted by [vi, vj]. Then vivj ∈ E implies that every vertex vk with
i < k < j is adjacent to vi or to vj , thus {vi, vj} dominates [vi, vj]. This can be
generalized as follows: let S ⊆ V where G[S] is connected. Then S dominates
[min(S),max(S)] where min(S) (respectively, max(S)) is the vertex of S with
the smallest (respectively, largest) index in the ordering.

The following theorem and lemma are given in [149].

Theorem 8.1 Any connected cocomparability graph G has a minimum con-
nected dominating set S such that the induced subgraph G[S] is a chordless path
p1, p2, . . . , pk.

Lemma 8.2 Suppose S ⊆ V is a minimum connected dominating set of a co-
comparability graph G = (V,E) with a cocomparability ordering [v1, v2, . . . , vn].
If G[S] is a chordless path p1, p2, . . . , pk, then every vertex x < min(S) is dom-
inated by {p1, p2} and every vertex y > max(S) is dominated by {pk−1, pk}.

The following approach enables an elegant way of locating a chordless path
of minimum size that dominates the cocomparability graph. A source vertex is
a vertex vi such that vkvi ∈ E for all k < i and a sink vertex is a vertex vj such
that vjvk ∈ E for all k > j. Then [v1, v2, . . . , vn] is a canonical cocomparability
ordering if [v1, v2, . . . , vr], 1 ≤ r < n, are the source vertices and vs, vs+1, . . . , vn,
1 < s ≤ n, are the sink vertices. Note that every cocomparability graph G has
a canonical cocomparability ordering. Furthermore, given any cocomparability
ordering, a canonical one can be computed in time O(n+m).

From now on, assume that [v1, v2, . . . , vn] is a canonical cocomparability
ordering. Since the source vertices of G form a clique, any source vertex vi

47

dominates [v1, vi]. Analogously, since the sink vertices of G form a clique, any
sink vertex vj dominates [vj , vn]. Therefore the vertex set of every path between
a source vertex and a sink vertex is dominating.

The following theorem given in [35] enlights the key property.

Theorem 8.3 Every connected cocomparability graph G = (V,E) satisfying
γc(G) ≥ 3 has a minimum connected dominating set which is the vertex set
of a shortest path between a source and a sink vertex of G.

Proof. Let [v1, v2, . . . , vn] be a canonical cocomparability ordering of G. Ac-
cording to Theorem 8.1, there is a minimum connected dominating set S of G
such that G[S] is a chordless path P : p1, p2, . . . , pk, k ≥ 3. Construct below a
chordless path P ′′ between a source vertex and a sink vertex of G, that has the
same number of vertices as the path P .

Let p1 = vi and p2 = vj . First observe that p2 = vj cannot be a source
vertex, otherwise N [p2] ⊇ [v1, vj] implying that {p2, p3, . . . , pk} is also a con-
nected dominating set of G, a contradiction. If p1 is a source vertex then P
starts at a source vertex. In this case, proceed with the path P ′ = P (possibly)
rearranging pk−1, pk.

Suppose p1 = vi is not a source vertex. Then there is a source vertex u of G
with up1 6∈ E. Since [v1, v2, . . . , vn] is a canonical cocomparability ordering and
since p1 and p2 are not source vertices, u < p1 and u < p2. Since vivj ∈ E and
by Lemma 8.2, {vi, vj} dominates [1,max{vi, vj}]. Consequently up2 ∈ E.

Consider the set S′ = {u, p2, . . . , pk}. Since {u, p2} dominates [v1, vj], S
′

is a dominating set. Since P : p1, p2, . . . , pk is a chordless path, t ≥ 3 implies
ptu 6∈ E. Thus S′ induces the chordless path P ′ : u, p2, . . . , pk.

Similarly, starting from P ′ the vertex pk can be replaced, if necessary. Vertex
pk−1 is not a sink vertex. If pk is a sink vertex then S′′ = S′ and P ′′ = P ′.
Otherwise, replace pk by a sink vertex v satisfying vpk 6∈ E to obtain S′′ and
P ′′.

G[S′′] induces a chordless path between a sink and a source vertex. The
vertex set of any path between a sink and a source vertex is a dominating set.
By construction S′′ is a minimum connected dominating set. Consequently S′′

is the vertex set of a shortest path between a source vertex and a sink vertex of
G.

According to Theorem 8.3, when γc(G) ≥ 3, computing a minimum con-
nected dominating set of a connected cocomparability graph G reduces to com-
puting a shortest path between a source and a sink vertex of G.

Algorithm ConDomCC. Solve the connected domination problem in cocom-
parabiliy graphs.
Input: A connected cocomparability graph G = (V,E) and a canonical cocom-
parability ordering [v1, v2, . . . , vn] of G.
Output: A minimum connected dominating set of G.
Methods.

48

1. Check whether G has a minimum connected dominating set D of size at
most 2. If so, output D and stop.

2. Construct a new graph G′ by adding two new vertices s and t to G such
that s is adjacent exactly to the source vertices of G and t is adjacent
exactly to the sink vertices of G.

3. Compute a shortest path P : s, p1, p2, . . . , pk, t between s and t in G′ by
the breadth-first-search.

4. Output {p1, p2, . . . , pk}.

The correctness of Algorithm ConDomCC follows immediately from Theo-
rem 8.3. The “almost linear” running time of the algorithm follows from the
well-known fact that breadth-first-search is a linear-time procedure.

Theorem 8.4 For any connected cocomparability graph G = (V,E) with a
canonical cocomparability ordering [v1, v2, . . . , vn], Algorithm ConDomCC out-
puts a minimum connected dominating set of G in O(nm) time. In fact, all
parts of the algorithm except checking for a connected dominating set of size
two can be done in time O(n+m).

It is clearly unsatisfactory that the straightforward test for a connected dom-
inating set of size two dominates the overall running time. The crux is that there
are even permutation graphs for which each minimum connected dominating set
of size two contains neither a source nor a sink vertex (see [129, 143]) It seems
that minimum dominating sets of this type cannot be found by a shortest path
approach. It is an open question whether Step 1 of Algorithm ConDomCC can
be implemented in a more efficient way.

Notice that the O(n)-time algorithms computing a minimum connected dom-
inating set for permutation graphs [129] and trapezoid graphs [143] both rely
on Theorem 8.3.

Corneil, Olariu and Stewart have done a lot of research on asteroidal triple-
free graphs, usually called AT-free graphs [74, 77]. They are defined as those
graphs not containing an asteroidal triple, i.e., a set of three vertices such that
between any two of the vertices there is a path avoiding the neighborhood of
the third.

AT-Free graphs form a superclass of the cocomparability graphs. They are
a “large class of graphs” with nice structural properties and some of them are
related to domination. One of the major theorems on the structure of AT-free
graphs states that every connected AT-free graph has a dominating pair, i.e., a
pair of vertices u, v such that the vertex set of each path between u and v is a
dominating set.

An O(n+m) algorithm computing a dominating pair for a given connected
AT-free graph has been presented in [77]. This can be used to obtain anO(n+m)
algorithm computing a dominating path for connected AT-free graphs (see also
[75]). An O(n3) algorithm computing a minimum connected dominating set for

49

connected AT-free graphs is given in [11]. An O(n+m) algorithm computing a
minimum connected dominating set in connected AT-free graphs with diameter
greater than three is given in [77].

9 Distance-hereditary graphs

9.1 Hangings of distance-hereditary graphs

A graph is distance-hereditary if every two vertices have the same distance in
every connected induced subgraph. Distance-hereditary graphs were introduced
by Howorka [123]. The characterization and recognition of distance-hereditary
graphs have been studied in [12, 83, 84, 107, 123]. Distance-hereditary graphs
are parity graphs [37] and include all cographs [70, 79].

The hanging hu of a connected graph G = (V,E) at a vertex u ∈ V is the
collection of sets L0(u), L1(u), . . . , Lt(u) (or L0, L1, . . . , Lt if there is no
ambiguity), where t = maxv∈V dG(u, v) and

Li(u) = {v ∈ V : dG(u, v) = i}

for 0 ≤ i ≤ t. For any 1 ≤ i ≤ t and any vertex v ∈ Li, let N
′(v) = N(v)∩Li−1.

A vertex v ∈ Li with 1 ≤ i ≤ t is said to have a minimal neighborhood in Li−1 if
N ′(x) is not a proper subset of N ′(v) for any x ∈ Li. Such a vertex v certainly
exists.

Theorem 9.1 [12, 83, 84] A connected graph G = (V,E) is distance-hereditary
if and only if for every hanging hu = (L0, L1, . . . , Lt) of G and every pair of
vertices x, y ∈ Li (1 ≤ i ≤ t) that are in the same component of G− Li−1, we
have N ′(x) = N ′(y).

Theorem 9.2 [12] Suppose hu = (L0, L1, . . . , Lt) is a hanging of a connected
distance-hereditary graph at u. For any two vertices x, y ∈ Li with i ≥ 1,
N ′(x) ∩N ′(y) = ∅ or N ′(x) ⊆ N ′(y) or N ′(x) ⊇ N ′(y).

Theorem 9.3 (Fact 3.4 in [107]) Suppose hu = (L0, L1, . . . , Lt) is a hanging
of a connected distance-hereditary graph at u. If vertex v ∈ Li with 1 ≤ i ≤ t
has a minimal neighborhood in Li−1, then NV \N ′(v)(x) = NV \N ′(v)(y) for every
pair of vertices x and y in N ′(v).

9.2 Weighted connected domination

D’Atri and Moscarini [83] gave O(|V ||E|) algorithms for connected domination
and Steiner tree problems in distance-hereditary graphs. Brandstädt and Dra-
gan [30] presented a linear-time algorithm for the connected r-domination and
Steiner tree problems in distance-hereditary graphs.

50

This section presents a linear-time algorithm given by Yeh and Chang [202]
for finding a minimum weighted connected dominating set of a connected distance-
hereditary graph G = (V,E) in which each vertex v has a weight w(v) that is
a real number. According to Lemma 2.1, assume that the vertex weights are
nonnegative.

Lemma 9.4 Suppose hu = {L0, L1, . . . , Lt} is a hanging of a connected distance-
hereditary graph at u. For any connected dominating set D and v ∈ Li with
2 ≤ i ≤ t, D ∩N ′(v) 6= ∅.

Proof. Choose a vertex y in D that dominates v. Then y ∈ Li−1∪Li∪Li+1. If
y ∈ Li−1, then y ∈ D ∩N ′(v). So, assume that y ∈ Li ∪ Li+1. Choose a vertex
x ∈ D ∩ (L0 ∪ L1) and an x-y path

P : x = v1, v2, . . . , vm = y

using vertices only in D. Let j be the smallest index such that {vj , vj+1, . . . , vm}
⊆ Li ∪ Li+1 ∪ . . . ∪ Lt. Then vj ∈ Li, vj−1 ∈ N ′(vj), and v and vj are in
the same component of G − Li−1. By Theorem 9.1, N ′(v) = N ′(vj) and so
vj−1 ∈ D ∩N ′(v). In any case, D ∩N ′(v) 6= ∅.

Theorem 9.5 Suppose G = (V,E) is a connected distance-hereditary graph
with a non-negative weight function w on its vertices. Let hu = {L0, L1,. . . ,
Lt} be a hanging at a vertex u of minimum weight. Consider the set A =
{N ′(v): v ∈ Li with 2 ≤ i ≤ t and v has a minimal neighborhood in Li−1}.
For each N ′(v) in A, choose one vertex v∗ in N ′(v) of minimum weight, and
let D be the set of all such v∗. Then D or D ∪ {u} or some {v} with v ∈ V is
a minimum weighted connected dominating set of G.

Proof. For any x ∈ Li with 2 ≤ i ≤ t, by Theorem 9.2, N ′(x) includes some
N ′(v) in A. This gives Claim 1.

Claim 1. For any x ∈ Li with 2 ≤ i ≤ t, x ∈ N [Li−1 ∩D].

Claim 2. D ∪ {u} is a connected dominating set of G.
Proof of Claim 2. By Claim 1 and N [u] = L1 ∪ {u}, D ∪ {u} is a dominating
set of G. Also, by Claim 1, for any vertex x in D∪{u} there exists an x-u path
using vertices only in D ∪ {u}, i.e., G[D ∪ {u}] is connected. 2

Suppose M is a minimum weighted connected dominating set of G. Accord-
ing to Lemma 9.4, M ∩ N ′(v) 6= ∅ for each N ′(v) ∈ A, say v∗∗ ∈ M ∩ N ′(v).
Since any two sets in A are disjoint, |M | ≥ |A| = |D|.

Case 1. |M | = 1. The theorem is obvious in this case.
Case 2. |M | > |D|. In this case, there is at least one vertex x in M that is

not a v∗∗. Then

w(M) ≥
∑

v∗∗

w(v∗∗) + w(x) ≥
∑

v∗

w(v∗) + w(u) = w(D ∪ {u}).

51

This together with Claim 2 gives that D∪{u} is a minimum weighted connected
dominating set of G.

Case 3. |M | = |D| ≥ 2. Since A contains pairwise disjoint sets, M = {v∗∗:
N ′(v) ∈ A}. Then w(M) =

∑
v∗∗ w(v∗∗) ≥

∑
v∗ w(v∗) = w(D).

For any two vertices x∗ and y∗ in D, x∗∗ and y∗∗ are in M . Since G[M] is
connected, there is an x∗∗-y∗∗ path in G[M]:

x∗∗ = v∗∗0 , v∗∗1 , . . . , v∗∗n = y∗∗.

For any 1 ≤ i ≤ n, since v∗i and v∗∗i are both in N ′(vi) ∈ A, by Theorem
9.3, NV \N ′(vi)(v

∗
i) = NV \N ′(vi)(v

∗∗
i). But v∗∗i−1 ∈ NV \N ′(vi)(v

∗∗
i). Therefore

v∗∗i−1 ∈ NV \N ′(vi)(v
∗
i) and v∗i ∈ NV \N ′(vi−1)(v

∗∗
i−1). Also, that v∗i−1 and v∗∗i−1 are

both inN ′(vi−1) ∈ A implies thatNV \N ′(vi−1)(v
∗
i−1) =NV \N ′(vi−1)(v

∗∗
i−1). Then

v∗i ∈ NV \N ′(vi−1)(v
∗
i−1). This proves that v∗i−1 is adjacent to v∗i for 1 ≤ i ≤ n

and then
x∗ = v∗0 , v

∗
1 , . . . , v

∗
n = y∗

is an x∗-y∗ path in G[D], i.e., G[D] is connected.
For any x in V , since M is a dominating set, x ∈ N [v∗∗] for some N ′(v) ∈

A. Note that v∗∗ and v∗ are both in N ′(v). According to Theorem 9.3,
NV \N ′(v)(v

∗∗) = NV \N ′(v)(v
∗). In the case of x 6∈ N ′(v), x ∈ N [v∗∗] implies

x ∈ N [v∗], i.e., D dominates x. In the case of x ∈ N ′(v), NV \N ′(v)(v
∗) =

NV \N ′(v)(x). Since G[D] is connected and |D| ≥ 2, v∗ is adjacent to some
y∗ ∈ D \ N ′(v). Then x is also adjacent to y∗, i.e., D dominates x. In any
case, D is a dominating set. Therefore D is a minimum weighted connected
dominating set of G.

Lemma 2.1 and Theorem 9.5 together give an efficient algorithm for the
weighted connected domination problem in distance-hereditary graphs as fol-
lows. To implement the algorithm efficiently, the set A is not actually found.
Instead, the following step is performed for each 2 ≤ i ≤ t. Sort the vertices in
Li such that

|N ′(x1)| ≤ |N
′(x2)| ≤ . . . ≤ |N ′(xj)|.

Then process N ′(xk) for k from 1 to j. At iteration k, if N ′(xk) ∩ D = ∅,
then N ′(xk) is in A and choose a vertex of minimum weight to put it into D;
otherwise N ′(xk) 6∈ A and do nothing.

Algorithm WConDomDH. Find a minimum weighted connected dominating
set of a connected distance-hereditary graph.
Input: A connected distance-hereditary graph G = (V,E) and a weight w(v)
of real number for each v ∈ V .
Output: A minimum weighted connected dominating set D of graph G.
Method.

D ← ∅;
let V ′ = {v ∈ V : w(v) < 0};

52

w(v)← 0 for each v ∈ V ′;
let u be a vertex of minimum weight in V ;
determine the hanging hu = (L0, L1, . . . , Lt) of G at u;
for i = 2 to t do

let Li = {x1, x2, . . . , xj};
sort Li such that |N ′(xi1)| ≤ |N

′(xi2)| ≤ . . . ≤ |N ′(xij)|;
for k = 1 to j do

if N ′(xik) ∩D = ∅ then D ← D ∪ {y} where y is a vertex
of minimum weight in N ′(xik);

end do;
if not (L1 ⊆ N [D] and G[D] is connected) then D ← D ∪ {u};
for v ∈ V that dominates V do

if w(v) < w(D) then D ← {v};
D ← D ∪ V ′.

Theorem 9.6 Algorithm WConDomDH gives a minimum weighted connected
dominating set of a connected distance-hereditary graph in linear time.

Proof. The correctness of the algorithm follows from Lemma 2.1 and Theorem
9.5. For each i, sort Li by using a bucket sort. Then the algorithm runs in
O(|V |+ |E|) time.

References

[1] S. Arnborg. Efficient algorithms for combinatorial problems on graphs
with bounded decomposability–a survey. Bit, 25:2–23, 1985.

[2] S. Arnborg, S. T. Hedetniemi and A. Proskurowski, editors. Efficient
Algorithms and Partial k-trees, Special Issue Discrete Math., volume 54.
1994.

[3] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard
problems restricted to partial k-trees. Discrete Appl. Math., 23:11–24,
1989. (3.6)

[4] K. Arvind, H. Breu, M. S. Chang, D. G. Kirkpatrick, F. Y. Lee, Y.
D. Liang, K. Madhukar, C. Pandu Rangan and A. Srinivasan. Efficient
algorithms in cocomparability and trapezoid graphs. Manuscript, 1996.
(8)

[5] K. Arvind and C. Pandu Rangan. Efficient algorithms for domination
problems on cocomparability graphs. Technical Report TR-TCS-909-18,
Indian Institute of Technology, 1990.

[6] K. Arvind and C. Pandu Rangan. Transitive reduction and efficient
polylog algorithms on permutation graphs. Submitted, 1996.

53

[7] T. Asano. Dynamic programming on intervals. Internat. J. Comput.
Geom. Appl., 3:323–330, 1993.

[8] M. J. Atallah and S. R. Kosaraju. An efficient algorithm for maxdomi-
nance, with applications. Algorithmica, 4:221–236, 1989.

[9] M. J. Atallah, G. K. Manacher and J. Urrutia. Finding a minimum inde-
pendent dominating set in a permutation graph. Discrete Appl. Math.,
21:177–183, 1988. (7)

[10] B. S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. In 24th Annual Symp. on the Foundations of Computer
Science, pages 265–273, 1983.

[11] H. Balakrishnan, A. Rajaraman and C. Pandu Rangan. Connected dom-
ination and Steiner set on asteroidal triple-free graphs. In F. Dehne, J.
R. Sack, N. Santoro and S. Whitesides, editors, Proc. Workshop on Al-
gorithms and Data Structures (WADS’93), volume 709, pages 131–141,
Montreal, Canada, 1993. Springler-Verlag, Berlin. (8)

[12] H. J. Bandelt and H. M. Mulder. Distance-hereditary graphs. J. Comb.
Theory, Series B, 41:182–208, 1986. (9.1)

[13] D. W. Bange, A. E. Barkauskas and P. J. Slater. Efficient dominating
sets in graphs. In R. D. Ringeisen and F. S. Roberts, editors, Applications
of Discrete Mathematics, pages 189–199. SIAM, Philadelphia, PA, 1988.
(3.3, 5.2)

[14] R. Bar-Yehuda and U. Vishkin. Complexity of finding k-path-free dom-
inating sets in graphs. Inform. Process. Lett., 14:228–232, 1982.

[15] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Prince-
ton University Press, 1962. (3.3)

[16] A. A. Bertossi. Dominating sets for split and bipartite graphs. Inform.
Process. Lett., 19:37–40, 1984. (5.2)

[17] A. A. Bertossi. Total domination in interval graphs. Inform. Process.
Lett., 23:131–134, 1986. (4.3)

[18] A. A. Bertossi. On the domatic number of interval graphs. Inform.
Process. Lett., 28:275–280, 1988. (4.2)

[19] A. A. Bertossi and M. A. Bonuccelli. Some parallel algorithms on interval
graphs. Discrete Appl. Math., 16:101–111, 1987.

[20] A. A. Bertossi and A. Gori. Total domination and irredundance in
weighted interval graphs. SIAM J. Discrete Math., 1:317–327, 1988. (4.3)

[21] A. A. Bertossi and S. Moretti. Parallel algorithms on circular-arc graphs.
Inform. Process. Lett., 33:275–281, 1990.

[22] T. A. Beyer, A. Proskurowski, S. T. Hedetniemi and S. Mitchell. Inde-
pendent domination in trees. Congr. Numer., 19:321–328, 1977. (3.3)

54

[23] N. L. Biggs, E. K. Lloyd and R. J. Wilson. Graph Theory 1736–1936.
Clarendon Press, Oxford, 1986. (1)

[24] J. R. S. Blair, W. Goddard, S. T. Hedetniemi, S. Horton, P. Jones and G.
Kubicki. On domination and reinforcement numbers in trees. Discrete
Math., 308(7):1165–1175, 2008.

[25] H. L. Bodlaender. Dynamic programming on graphs with bounded
treewidth. In T. Lepisto and A. Salomaa, editors, Lecture Notes in
Comput. Sci., Proc. 15th Internat. Colloq. on Automata, Languages and
Programming, volume 317, pages 105–118, Heidelberg, 1988. Springer
Verlag.

[26] K. S. Booth and J. H. Johnson. Dominating sets in chordal graphs. SIAM
J. Comput., 11:191–199, 1982. (5.2)

[27] S. Booth and S. Lueker. Testing for the consecutive ones property, inter-
val graphs, and graph planarity using PQ-tree algorithms. J. Comput.
Sys. Sci., 13:335–379, 1976. (4.1)

[28] A. Brandstädt. The computational complexity of feedback vertex set,
Hamiltonian circuit, dominating set, Steiner tree and bandwidth on spe-
cial perfect graphs. J. Inform. Process. Cybernet., 23:471–477, 1987.

[29] A. Brandstädt, V. D. Chepoi and F. F. Dragan. The algorithmic use
of hypertree structure and maximum neighbourhood orderings. In E.
W. Mayr, G. Schmidt and G. Tinhofer, editors, Lecture Notes in Com-
put. Sci., 20th Internat. Workshop Graph-Theoretic Concepts in Com-
puter Science (WG’94), volume 903, pages 65–80, Berlin, 1995. Springer-
Verlag.

[30] A. Brandstädt and F. F. Dragan. A linear-time algorithm for connected
r-domination and Steiner tree on distance-hereditary graphs. Technical
Report SM-DU-261, Univ. Duisburg, 1994. (9.2)

[31] A. Brandstädt, F. F. Dragan, V. D. Chepoi and V. I. Voloshin. Dually
chordal graphs. In Lecture Notes in Comput. Sci., 19th Internat. Work-
shop Graph-Theoretic Concepts in Computer Science (WG’93), volume
790, pages 237–251, Berlin, 1993. Springer-Verlag.

[32] A. Brandstädt and D. Kratsch. On the restriction of some NP-complete
graph problems to permutation graphs. In L. Budach, editor, Lecture
Notes in Comput. Sci., Proc. FCT’85, volume 199, pages 53–62, Berlin,
1985. Springer-Verlag. (7)

[33] A. Brandstädt and D. Kratsch. On domination problems on permutation
and other graphs. Theoret. Comput. Sci., 54:181–198, 1987. (7)

[34] B. Bresar, M. A. Henning and D. F. Rall. Rainbow domination in graphs.
Taiwanese J. Math., 12(1):213–225, 2008.

55

[35] H. Breu and D. G. Kirkpatrick. Algorithms for dominating and Steiner
set problems in cocomparability. Manuscript, 1996. (8)

[36] M. W. Broin and T. J. Lowe. A dynamic programming algorithm for
covering problems with greedy totally balanced contraint matrices. SIAM
J. Algeb. Discrete Methods, 7:348-357, 1986. (6.2)

[37] M. Burlet and J. P. Uhry. Parity graphs. Annals of Discrete Math.,
21:253–277, 1984. (9.1)

[38] D. I. Carson. Computational Aspects of Some Generalized Domination
Parameters. PhD thesis, Univ. Natal, 1995.

[39] D. I. Carson and O. R. Oellermann. Linear time algorithms for capacity-
domination in trees and series parallel graphs. Submitted, 1997.

[40] G. J. Chang. Labeling algorithms for domination problems in sun-free
chordal graphs. Discrete Appl. Math., 22:21–34, 1988/89. (6.2)

[41] G. J. Chang. Total domination in block graphs. Oper. Res. Lett., 8:53–57,
1989. (3.6)

[42] G. J. Chang. The domatic number problem. Discrete Math., 125:115–
122, 1994.

[43] G. J. Chang. The weighted independent domination problem is NP-
complete for chordal graphs. Discrete Appl. Math., 143:351–352, 2004.
(5.3)

[44] G. J. Chang and G. L. Nemhauser. The k-domination and k-stability
problems on graphs. Technical Report TR-540, School Oper. Res. Indus-
trial Eng., Cornell Univ., 1982.

[45] G. J. Chang and G. L. Nemhauser. R-domination of block graphs. Oper.
Res. Lett., 1:214–218, 1982. (3.6)

[46] G. J. Chang and G. L. Nemhauser. The k-domination and k-stability on
sun-free chordal graphs. SIAM J. Algebraic Discrete Methods, 5:332–345,
1984. (6.2)

[47] G. J. Chang and G. L. Nemhauser. Covering, packing and generalized
perfection. SIAM J. Algeb. Discrete Methods, 6:109–132, 1985. (6.2)

[48] G. J. Chang, C. Pandu Rangan and S. R. Coorg. Weighted independent
perfect domination on cocomparability graphs. Discrete Appl. Math.,
63:215–222, 1995.

[49] G. J. Chang, J. Wu and X. Zhu. Rainbow domination on trees. Discrete
Appl. Math., 158(1):8–12, 2010. (3.2)

[50] M.-S. Chang. Efficient algorithms for the domination problems on in-
terval graphs and circular-arc graphs. In IFIP Transactions A-12, Proc.
IFIP 12th World Congress, volume 1, pages 402–408, 1992. (4.3)

56

[51] M.-S. Chang. Weighted domination on cocomparability graphs. In Lec-
ture Notes in Comput. Sci., Proc. ISAAC’95, volume 1004, pages 121–
131, Berlin, 1995. Springer-Verlag. (8)

[52] M.-S. Chang, F.-H. Hsing and S.-L. Peng. Irredundance in weighted in-
terval graphs. In Proc. National Computer Symp., pages 128–137, Taipei,
Taiwan, 1993. (4.3)

[53] M.-S. Chang and C.-C. Hsu. On minimum intersection of two minimum
dominating sets of interval graphs. Discrete Appl. Math., 78(1-3):41–50,
1997.

[54] M.-S. Chang and Y.-C. Liu. Polynomial algorithms for the weighted per-
fect domination problems on chordal and split graphs. Inform. Process.
Lett., 48:205–210, 1993.

[55] M.-S. Chang and Y.-C. Liu. Polynomial algorithms for weighted perfect
domination problems on interval and circular-arc graphs. J. Inform. Sci.
Engineering, 10:549–568, 1994. (4.3)

[56] M.-S. Chang, S. Wu, G. J. Chang and H.-G. Yeh. Domination in distance-
hereditary graphs. Discrete Appl. Math., 116(1-2):103–113, 2002.

[57] G. A. Cheston, G. H. Fricke, S. T. Hedetniemi and D. P. Jacobs. On
the computational complexity of upper fractional domination. Discrete
Appl. Math., 27:195–207, 1990. (3.4)

[58] E. Cockayne, S. Goodman and S. Hedetniemi. A linear algorithm for the
domination number of a tree. Inform. Process. Lett., 4(2):41–44, 1975.
(1, 3.2)

[59] E. J. Cockayne and S. T. Hedetniemi. A linear algorithm for the max-
imum weight of an independent set in a tree. In Proc. Seventh South-
eastern Conf. on Combinatorics, Graph Theory and Computing, pages
217–228, Winnipeg, 1976. Utilitas Math.

[60] E. J. Cockayne, G. MacGillivray and C. M. Mynhardt. A linear algorithm
for 0-1 universal minimal dominating functions of trees. J. Combin.
Math. Combin. Comput., 10:23–31, 1991.

[61] E. J. Cockayne and F. D. K. Roberts. Computation of minimum inde-
pendent dominating sets in graphs. Technical Report DM-76-IR, Dept.
Math., Univ. Victoria, 1974.

[62] E. J. Cockayne and F. D. K. Roberts. Computation of dominating par-
titions. Infor., 15:94–106, 1977.

[63] C. J. Colbourn, J. M. Keil and L. K. Stewart. Finding minimum domi-
nating cycles in permutation graphs. Oper. Res. Lett., 4:13–17, 1985.

[64] C. J. Colbourn and L. K. Stewart. Permutation graphs: connected dom-
ination and Steiner trees. Discrete Math., 86:179–189, 1990. (7)

57

[65] C. Cooper and M. Zito. An analysis of the size of the minimum dom-
inating sets in random recursive trees, using the Cockayne-Goodman-
Hedetniemi algorithm Disctere Appl. Math., 157(9):2010–2014, 2009.

[66] D. G. Corneil. Lexicographic breadth first search–a survey. Lecture Notes
Comput. Sci., 3353:1–19, 2004. (*4.1)

[67] D. G. Corneil. A simple 3-sweep LBFS algorithm for the recognition of
unit interval graphs. Discrete Appl. Math., 138:371–379, 2004. (*4.1)

[68] D. G. Corneil and J. M. Keil. A dynamic programming approach to the
dominating set problem on k-trees. SIAM J. Algeb. Discrete Methods,
8:535–543, 1987. (3.6, 5.2)

[69] D. G. Corneil, E. Kohler and J-M. Lanlignel. On end-vertices of Lexico-
graphic Breadth First Search. Discrete Appl. Math., 158:434–443, 2010.
(*4.1)

[70] D. G. Corneil, H. Lerchs and L. Stewart. Complement reducible graphs.
Discrete Appl. Math., 3:163–174, 1981. (9.1)

[71] D. G. Corneil, S. Olariu and L. Stewart. The ultimate interval graph
recognition algorithm? (extended abstract). in: Proc. Ninth Annual
ACM-SIAM Symp. Discrete Alg., ACM, New York, SIAM, Philadelphia
1998, pp. 175–180. (*4.1)

[72] D. G. Corneil, S. Olariu and L. Stewart. The LBFS structure and recog-
nition of interval graphs. SIAM J. Discrete Math., 23:1905–1953, 2009.
(4.1)

[73] D. G. Corneil, S. Olariu and L. Stewart. A linear time algorithm to
compute a dominating path in an AT-free graph. Inform. Process. Lett.,
54:253–258, 1995. (8)

[74] D. G. Corneil, S. Olariu and L. Stewart. Asteroidal triple-free graphs.
SIAM J. Discrete Math., 790:211–224, 1994. (8)

[75] D. G. Corneil, S. Olariu and L. Stewart. Computing a dominating pair
in an asteroidal triple-free graph in linear time. In Proc. 4th Algorithms
and Data Structures Workshop, LNCS 955, volume 955, pages 358–368.
Springer, 1995.

[76] D. G. Corneil, S. Olariu and L. Stewart. A linear time algorithm to com-
pute dominating pairs in asteroidal triple-free graphs. In Lecture Notes
in Comput. Sci., Proc. 22nd Internat. Colloq. on Automata, Languages
and Programming (ICALP’95), volume 994, pages 292–302, Berlin, 1995.
Springer-Verlag.

[77] D. G. Corneil, S. Olariu and L. Stewart. Linear time algorithms for
dominating pairs in asteroidal triple-free graphs. SIAM J. Comput.,
944:292–302, 1995. (8)

58

[78] D. G. Corneil and Y. Perl. Clustering and domination in perfect graphs.
Discrete Appl. Math., 9:27–39, 1984. (5.2)

[79] D. G. Corneil, Y. Perl and L. Stewart Burlingham. A linear recognition
algorithm for cographs. SIAM J. Comput., 14:926–934, 1985. (9.1)

[80] D. G. Corneil and L. K. Stewart. Dominating sets in perfect graphs.
Discrete Math., 86:145–164, 1990. (7)

[81] J. Dabney, B. C. Dean and S. T. Hedetniemi. A Linear-Time algorithm
for broadcast domination in a tree Networks, 53(2):160–169, 2009.

[82] P. Damaschke, H. Müller and D. Kratsch. Domination in convex and
chordal bipartite graphs. Inform. Process. Lett., 36:231–236, 1990. (5.2)

[83] A. D’Atri and M. Moscarini. Distance-hereditary graphs, Steiner trees,
and connected domination. SIAM J. Comput., 17:521–538, 1988. (9.1,
9.2)

[84] D. P. Day, O. R. Oellermann and H. C. Swart. Steiner distance-hereditary
graphs. SIAM J. Discrete Math. 7:437–442, 1994. (9.1)

[85] C. F. De Jaenisch. Applications de l’Analyse mathematique au Jeu des
Echecs. Petrograd, 1862. (1)

[86] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R.
Markus. Restrained domination in graphs. Discrete Math., 203(1-3):61–
69, 1999.

[87] S. E. Dreyfus and A. M. Law. The Art and Theory of Dynamic Program-
ming. Academic Press, New York, 1977. (3.3)

[88] J. E. Dunbar, W. Goddard, S. Hedetniemi, A. A. McRae. and M. A.
Henning. The algorithmic complexity of minus domination in graphs.
Discrete Appl. Math., 68(1-2):73–84, 1996.

[89] S. Even, A. Pnueli and A. Lempel. Permutation graphs and transitive
graphs. J. Assoc. Comput. Mach., 19(3):400–410, 1972. (7)

[90] L. Euler. Solutio problematis ad geometriam situs pertinentis. Acad. Sci.
Imp. Petropol., 8:128–140, 1736. (1)

[91] M. Farber. Applications of Linear Programming Duality to Problems In-
volving Independence and Domination. PhD thesis, Simon Fraser Univ.,
1981.

[92] M. Farber. Domination and duality in weighted trees. Congr. Numer.,
33:3–13, 1981. (3.4)

[93] M. Farber. Independent domination in chordal graphs. Oper. Res. Lett.,
1:134–138, 1982. (5.3)

[94] M. Farber. Characterizations of strongly chordal graphs. Discrete Math.,
43:173–189, 1983.

59

[95] M. Farber. Domination, independent domination and duality in strongly
chordal graphs. Discrete Appl. Math., 7:115–130, 1984. (6.1, 6.2)

[96] M. Farber and J. M. Keil. Domination in permutation graphs. J. Algo-
rithms, 6:309–321, 1985. (7)

[97] A. M. Farley, S. T. Hedetniemi and A. Proskurowski. Partitioning trees:
matching, domination and maximum diameter. Internat. J. Comput.
Inform. Sci., 10:55–61, 1981. (3.5)

[98] M. R. Fellows and M. N. Hoover. Perfect domination. Australas. J.
Combin., 3:141–150, 1991. (3.3, 5.2)

[99] C. M. H. de Figueiredo, J. Meidanis and C. P. de Mello. A linear-time
algorithm for proper interval graph recognition. Inform. Process. Lett.,
56:179–184, 1995. (*4.1)

[100] G. H. Fricke, M. A. Henning, O. R. Oellermann and H. C. Swart. An
efficient algorithm to compute the sum of two distance domination pa-
rameters. Discrete Appl. Math., 68:85–91, 1996.

[101] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, New York, 1979. (1, 5.1,
5.2)

[102] F. Gavril. Algorithms for minimum colorings, maximum clique, minimum
coverings by cliques and maximum independent set of a chordal graph.
SIAM J. Comput., 1:180–187, 1972.

[103] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Aca-
demic Press, New York, 1980. (2.3,
5.1)

[104] M. C. Golumbic. Algorithmic aspect of perfect graphs. Annals of Discrete
Math., 21:301–323, 1984. (5.1)

[105] J. Guo, R. Niedermeier and D. Raible. Improved algorithms and complex-
ity results for power domination in graphs. Algorithmica, 52(2):177–202,
2008. (3.5)

[106] M. Habib, R. McConnell, C. Paul and L. Viennot. Lex-BFS and parti-
tion refinement, with applications to transitive orientation, interval graph
recognition and consecutive ones testing. Theor. Comput. Sci., 234:, 59–
84, 2000. (4.1)

[107] P. H. Hammer and F. Maffray. Completely separable graphs. Discrete
Appl. Math., 27:85–99, 1990. (9.1)

[108] E. O. Hare and S. T. Hedetniemi. A linear algorithm for computing the
knight’s domination number of a K × N chessboard. Congr. Numer.,
59:115–130, 1987.

[109] J. H. Hattingh and M. A. Henning. The complexity of upper distance
irredundance. Congr. Numer., 91:107–115, 1992.

60

[110] J. H. Hattingh, M. A. Henning and P. J. Slater. On the algorithmic
complexity of signed domination in graphs. Australas. J. Combin., 12,
1995. 101–112.

[111] J. H. Hattingh, M. A. Henning and J. L. Walters. On the computa-
tional complexity of upper distance fractional domination. Australas. J.
Combin., 7:133–144, 1993.

[112] J. H. Hattingh and R. C. Laskar. On weak domination in graphs. Ars
Combin. 49:205–216, 1998.

[113] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi and M. A. Henning.
Domination in graphs applied to electric power networks. SIAM J. Disc.
Math., 15(4):519–529, 2002. (3.5)

[114] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamentals of
Domination in Graphs. Marcel Dekker, Inc., New York, 1997. (1)

[115] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, editors. Domination
in Graphs: Advanced Topics. Marcel Dekker, Inc., New York, 1997.

[116] S. M. Hedetniemi, S. T. Hedetniemi and D. P. Jacobs. Private domina-
tion: theory and algorithms. Congr. Numer., 79:147–157, 1990. (3.3,
5.2)

[117] S. M. Hedetniemi, S. T. Hedetniemi and R. C. Laskar. Domination in
trees: models and algorithms. In Y. Alavi, G. Chartrand, L. Lesniak, D.
R. Lick and C. E. Wall, editors, Graph Theory with Applications to Al-
gorithms and Computer Science, pages 423–442. Wiley, New York, 1985.

[118] S. M. Hedetniemi, A. A. McRae and D. A. Parks. Complexity results.
In T. W. Haynes, S. T. Hedetniemi and P. J. Slater, editors, Domination
in Graphs: Advanced Topics, Chapter 9. Marcel Dekker, Inc., 1997.

[119] S. T. Hedetniemi and R. C. Laskar. Bibliography on domination in
graphs and some basic definitions of domination parameters. Discrete
Math., 86:257–277, 1990.

[120] S. T. Hedetniemi, R. C. Laskar and J. Pfaff. A linear algorithm for
finding a minimum dominating set in a cactus. Discrete Appl. Math.,
13:287–292, 1986. (3.6)

[121] P. Hell and J. Huang. Certifying LexBFS recognition algorithms for
proper interval graphs and proper interval bigraphs. SIAM J. Discrete
Math. 18:55–570, 2005. (*4.1)

[122] A. J. Hoffman, A. W. J. Kolen and M. Sakarovitch. Totally-balanced and
greedy matrices. SIAM J. Algebraic and Discrete Methods, 6:721–730,
1985. (6.1, 6.2)

[123] E. Howorka. A characterization of distance-hereditary graphs. Quart. J.
Math. Oxford Ser. 2, 28:417–420, 1977. (9.1)

61

[124] W. Hsu. The distance-domination numbers of trees. Oper. Res. Lett.,
1:96–100, 1982. (3.3)

[125] W.-L. Hsu. A simple test for interval graphs. Lecture Notes Comput.
Sci., 657:11–16, 1993. (4.1)

[126] W.-L. Hsu and T.-H. Ma. Fast and simple algorithms for recognizing
chordal comparability graphs and interval graphs. SIAM J. Comput.,
28:1004–1020, 1999. (4.1)

[127] W.-L. Hsu and R. M. McConnell. PC trees and circular-ones arrange-
ments. Theor. Comput. Sci., 296:59–74, 2003. (4.1)

[128] S. F. Hwang and G. J. Chang. The k-neighbor domination problem in
block graphs. European J. Oper. Res., 52:373–377, 1991. (3.6, 5.2)

[129] O. H. Ibarra and Q. Zheng. Some efficient algorithms for permutation
graphs. J. Algorithms, 16:453–469, 1994. (8)

[130] R. W. Irving. On approximating the minimum independent dominating
set. Inform. Process. Lett., 37(4):197–200, 1991.

[131] M. S. Jacobson and K. Peters. Complexity questions for n-domination
and related parameters. Congr. Numer., 68:7–22, 1989.

[132] T. S. Jayaram, G. Sri Karishna and C. Pandu Rangan. A unified ap-
proach to solving domination problems on block graphs. Report TR-
TCS-90-09, Dept. of Computer Science and Eng., Indian Inst. of Tech-
nology, 1990. (3.6)

[133] D. S. Johnson. The NP-completeness column: an ongoing guide. J.
Algorithms, 5:147–160, 1984. (5.2)

[134] D. S. Johnson. The NP-completeness column: an ongoing guide. J.
Algorithms, 6:291–305,434–451, 1985. (5.2)

[135] L. Kang, M. Y. Sohn and T. C. E. Cheng. Paired-domination in inflated
graphs. Theorect. Comput. Sci., 320(2-3):485–494, 2004.

[136] O. Kariv and S. L. Hakimi. An algorithmic approach to network location
problems I: the p-centers. SIAM J. Appl. Math., 37:513–538, 1979.

[137] O. Kariv and S. L. Hakimi. An algorithmic approach to network location
problems II: the p-medians. SIAM J. Appl. Math., 37:539–560, 1979.

[138] J. M. Keil. Total domination in interval graphs. Inform. Process. Lett.,
22:171–174, 1986.

[139] J. M. Keil. The complexity of domination problems in circle graphs.
Discrete Appl. Math., 42:51–63, 1993.

[140] J. M. Keil and D. Schaefer. An optimal algorithm for finding dominating
cycles in circular-arc graphs. Discrete Appl. Math., 36:25–34, 1992.

62

[141] T. Kikuno, N. Yoshida and Y. Kakuda. The NP-completeness of the
dominating set problem in cubic planar graphs. Trans. IEEE, pages
443–444, 1980.

[142] T. Kikuno, N. Yoshida and Y. Kakuda. A linear algorithm for the dom-
ination number of a series-parallel graph. Discrete Appl. Math., 5:299–
311, 1983.

[143] E. Köhler. Connected domination on trapezoid graphs in O(n) time.
Manuscript, 1996. (8)

[144] A. Kolen. Solving covering problems and the uncapacitated plant loca-
tion problem on trees. Eropean J. Oper. Res., 12:266-278, 1983 (3.4)

[145] N. Korte and R. H. Mohring. An incremental linear-time algorithm for
recognizing interval graphs. SIAM J. Comput., 18:68–81, 1989. (4.1)

[146] D. Kratsch. Finding dominating cliques efficiently, in strongly chordal
graphs and undirected path graphs. Discrete Math., 86:225–238, 1990.
(6.2)

[147] D. Kratsch. Algorithms. In T. W. Haynes, S. T. Hedetniemi and P.
J. Slater, editors, Domination in Graphs: Advanced Topics, chapter 8.
Marcel Dekker, Inc., 1997.

[148] D. Kratsch, R. M. McConnel, K. Mehlhorn and J. P. Spinrad. Certify-
ing algorithms for recognizing interval graphs and permutation graphs.
SIAM J. Discrete Math., 36:326–353, 2006. (*4.1)

[149] D. Kratsch and L. Stewart. Domination on cocomparability graphs.
SIAM J. Discrete Math., 6(3):400–417, 1993. (8)

[150] R. Laskar, J. Pfaff, S. M. Hedetniemi and S. T. Hedetniemi. On the
algorithmic complexity of total domination. SIAM J. Algebraic Discrete
Methods, 5(3):420–425, 1984. (3.2)

[151] E. L. Lawler and P. J. Slater. A linear time algorithm for finding an op-
timal dominating subforest of a tree. In Graph Theory with Applications
to Algorithms and Computer Science, pages 501–506. Wiley, New York,
1985.

[152] Y. D. Liang, C. Rhee, S. K. Dall and S. Lakshmivarahan. A new approach
for the domination problem on permutation graphs. Inform. Process.
Lett., 37:219–224, 1991.

[153] C.-S. Liao and G. J. Chang. Algorithmic aspect of k-tuple domination
in graphs. Taiwanese J. Math., 6(3):415-420, 2002.

[154] M. Livingston and Q. F. Stout. Constant time computation of minimum
dominating sets. Congr. Numer., 105:116–128, 1994.

[155] P. J. Looges and S. Olariu. Optimal greedy algorithms for indifference
graphs. Comput. Math. Applica., 25:15–25, 1993. (*4.1)

63

[156] E. Loukakis. Two algorithms for determining a minimum independent
dominating set. Internat. J. Comput. Math., 15:213–229, 1984.

[157] T. L. Lu, P. H. Ho and G. J. Chang. The domatic number problem in
interval graphs. SIAM J. Discrete Math., 3:531–536, 1990. (4.2)

[158] K. L. Ma and C. W. H. Lam. Partition algorithm for the dominating set
problem. Congr. Numer., 81:69–80, 1991.

[159] G. K. Manacher and T. A. Mankus. Finding a domatic partition of an
interval graph in time O(n). SIAM J. Discrete Math., 9:167–172, 1996.
(4.2)

[160] M. V. Marathe, H. B. Hunt III and S. S. Ravi. Efficient approxima-
tion algorithms for domatic partition and on-line coloring of circular arc
graphs. Discrete Appl. Math., 64:135–149, 1996.

[161] R. M. McConnell and J. P. Spinrad. Modular decomposition and transi-
tive orientation. Manuscript, 1995. (8)

[162] A. A. McRae and S. T. Hedetniemi. Finding n-independent dominating
sets. Congr. Numer., 85:235–244, 1991.

[163] S. L. Mitchell and S. T. Hedetniemi. Edge domination in trees. Congr.
Numer., 19:489–509, 1977. (3.2)

[164] S. L. Mitchell and S. T. Hedetniemi. Independent domination in trees.
Congr. Numer., 29:639–656, 1979.

[165] S. L. Mitchell, S. T. Hedetniemi and S. Goodman. Some linear algorithms
on trees. Congr. Numer., 14:467–483, 1975.

[166] H. Müller and A. Brandstädt. The NP-completeness of STEINER TREE
and DOMINATING SET for chordal bipartite graphs. Theoret. Comput.
Sci., 53:257–265, 1987. (5.2)

[167] K. S. Natarajan and L. J. White. Optimum domination in weighted
trees. Inform. Process. Lett., 7:261–265, 1978. (3.3)

[168] G. L. Nemhauser. Introduction to Dynamic Programming. John Wiley
& Sons, 1966. (3.3)

[169] S. L. Peng and M. S. Chang. A new approach for domatic number
problem on interval graphs. Proc. National Comp. Symp. R. O. C.,
pages 236–241, 1991. (4.2)

[170] S. L. Peng and M. S. Chang. A simple linear time algorithm for the
domatic partition problem on strongly chordal graphs. Inform. Process.
Lett., 43:297–300, 1992. (4.2, 6.3)

[171] J. Pfaff, R. Laskar and S. T. Hedetniemi. Linear algorithms for indepen-
dent domination and total domination in series-parallel graphs. Congr.
Numer., 45:71–82, 1984.

64

[172] A. Pnueli, A. Lempel and S. Even. Transitive orientation of graphs and
identification of permutation graphs. Canad. J. Math., 23:160–175, 1971.
(7)

[173] A. Proskurowski. Minimum dominating cycles in 2-trees. Internat. J.
Comput. Inform. Sci., 8:405–417, 1979. (3.6)

[174] S. Rajbaum. Improved tree decomposition based algorithms for
domination-like problems. Lecture Notes Compy. Sci., 2286:613-627,
2002.

[175] G. Ramalingam and C. Pandu Rangan. Total domination in interval
graphs revisited. Inform. Process. Lett., 27:17–21, 1988. (4.3)

[176] G. Ramalingam and C. Pandu Rangan. A unified approach to domination
problems in interval graphs. Inform. Process. Lett., 27:271–274, 1988.
(4.1, 4.3–4.6)

[177] A. Raychaudhuri. On powers of interval and unit interval graphs. Cong.
Numer., 59:235–242, 1987. (*4.1)

[178] F. S. Roberts. On the compatibility between a graph and a simple order.
J. Combin. Theory B, 11:28–38, 1971. (*4.1)

[179] J. S. Rohl. A faster lexicographic N queens algorithm. Inform. Process.
Lett., 17:231–233, 1983.

[180] D. J. Rose, R. E. Tarjan and G. S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM J. Discrete Math., 5:266–283, 1976. (*4.1)

[181] P. Scheffler. Linear-time algorithms for NP-complete problems restricted
to partial k-trees. Technical Report 03/87, IMATH, Berlin, 1987. (3.6)

[182] W.-K. Shih and W.-L. Hsu. A new planarity test. Theor. Comput. Sci.,
223:179–191, 1999. (4.1)

[183] K. Simon. A new simple linear algorithm to recognize interval graphs.
Lecture Notes Comput. Sci., 553:289–308, 1991. (*4.1)

[184] P. J. Slater. R-domination in graphs. J. Assoc. Comput. Mach., 23:446–
450, 1976. (3.2)

[185] P. J. Slater. Domination and location in acyclic graphs. Networks, 17:55–
64, 1987. (3.3)

[186] R. Sosic and J. Gu. A polynomial time algorithm for the N -queens
problem. SIGART Bull., 2(2):7–11, 1990.

[187] J. Spinrad. On comparability and permutation graphs. SIAM J. Com-
put., 14:658–670, 1985. (7, 8)

[188] A. Srinivasa Rao and C. Pandu Rangan. Linear algorithm for domatic
number problem on interval graphs. Inform. Process. Lett., 33:29–33,
1989/90. (4.2)

65

[189] A. Srinivasan Rao and C. Pandu Rangan. Efficient algorithms for the
minimum weighted dominating clique problem on permutation graphs.
Theoret. Comput. Sci., 91:1–21, 1991.

[190] J. A. Telle and A. Proskurowski. Efficient sets in partial k-trees. Discrete
Appl. Math., 44:109–117, 1993. (3.6)

[191] J. A. Telle and A. Proskurowski. Practical algorithms on partial k-
trees with an application to domination-type problems. In F. Dehne,
J. R. Sack, N. Santoro and S. Whitesides, editors, Lecture Notes in
Comput. Sci., Proc. Third Workshop on Algorithms and Data Struc-
tures (WADS’93), volume 703, pages 610–621, Montréal, 1993. Springer-
Verlag. (3.6)

[192] K. H. Tsai and W. L. Hsu. Fast algorithms for the dominating set
problem on permutation graphs. Algorithmica, 9:109–117, 1993. (7)

[193] C. Tsouros and M. Satratzemi. Tree search algorithms for the dominating
vertex set problem. Internat. J. Computer Math., 47:127–133, 1993.

[194] D. B. West. Introduction to Graph Theory, 2nd Edition. Prentice Hall,
2001. (3.1)

[195] K. White, M. Farber and W. Pulleyblank. Steiner trees, connected dom-
ination and strongly chordal graphs. Networks, 15:109–124, 1985. (6.2)

[196] T. V. Wimer. Linear algorithms for the dominating cycle problems in
series-parallel graphs, partial k-trees and Halin graphs. Congr. Numer.,
56:289–298, 1986.

[197] T. V. Wimer. An O(n) algorithm for domination in k-chordal graphs.
Manuscript, 1986.

[198] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM J.
Appl. Math., 38(3):364–372, 1980. (3.2)

[199] H. G. Yeh. Distance-Hereditary Graphs: Combinatorial Structures and
Algorithms. PhD thesis, Univ. Taiwan, 1997.

[200] H. G. Yeh and G. J. Chang. Algorithmic aspect of majority domination.
Taiwanese J. Math., 1:343–350, 1997.

[201] H. G. Yeh and G. J. Chang. Linear-time algorithms for bipartite distance-
hereditary graphs. Submitted.

[202] H. G. Yeh and G. J. Chang. Weighted connected domination and Steiner
trees in distance-hereditary graphs. Discrete Appl. Math., 87:245–253,
1998. (9.2)

[203] C. Yen and R. C. T. Lee. The weighted perfect domination problem.
Inform. Process. Lett., 35(6):295–299, 1990. (3.3, 5.2)

[204] C. Yen and R. C. T. Lee. The weighted perfect domination problem and
its variants. Discrete Appl. Math., 66:147–160, 1996. (3.6, 5.2)

66

[205] W. C.-K. Yen. The bottleneck independent domination on the classes of
bipartite graphs and block graphs. Inform. Sci., 157:199–215, 2003.

[206] W. C.-K. Yen. Bottleneck domination and bottleneck independent dom-
ination on graphs. J. Inform. Sci. Engin., 18(2):311–331, 2002.

67

