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ALGORITHMIC ASPECTS OF MAJORITY DOMINATION∗

Hong-Gwa Yeh and Gerard J. Chang

Abstract. This paper studies algorithmic aspects of majority domina-
tion, which is a variation of domination in graph theory. A majority
dominating function of a graph G = (V, E) is a function g from V to
{−1, 1} such that

∑
u∈N [v] g(u) ≥ 1 for at least half of the vertices v ∈ V .

The majority domination problem is to find a majority dominating func-
tion g of a given graph G = (V,E) such that

∑
v∈V g(v) is minimized.

The concept of majority domination was introduced by Hedetniemi and
studied by Broere et al., who gave exact values for the majority dom-
ination numbers of complete graphs, complete bipartite graphs, paths,
and unions of two complete graphs. They also proved that the major-
ity domination problem is NP-complete for general graphs; and asked if
the problem NP-complete for trees. The main result of this paper is to
give polynomial-time algorithms for the majority domination problem in
trees, cographs, and k-trees with fixed k.

1. Introduction

In this paper we study algorithmic aspects of majority domination, which
is a variation of domination in graph theory.

In a graph G = (V,E), the neighborhood of a vertex v is NG(v) = {u ∈ V :
uv ∈ E} and the closed neighborhood of v is NG[v] = NG(v)∪ {v}. The degree
degG(v) of a vertex v is the size of NG(v). We denote 4(G) as the maximum
degree of a vertex of G. For any real-valued function g on V and S ⊆ V , let
g(S) =

∑
v∈S g(v). For two disjoint graphs G = (V,E) and H = (W,F ), the

union of G and H is the graph G∪H = (V ∪W,E ∪F ) and the join of G and
H is G×H = (V ∪W,E ∪ F ∪ {xy : x ∈ V and y ∈ W}).
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A majority dominating function of G = (V, E) is a function g : V →
{−1, 1} such that g(NG[v]) ≥ 1 for at least half of the vertices v ∈ V . The
majority domination problem involves determining the majority domination
number γmaj(G) of a graph G, where γmaj(G) = min{g(V ) : g is a majority
dominating function of G = (V,E)}.

The concept of majority domination was introduced by Hedetniemi [5] and
studied by Broere et al. [2], who gave exact values for the majority domination
numbers of complete graphs, complete bipartite graphs, paths, and unions of
two complete graphs. They also proved that the majority domination problem
is NP-complete for general graphs. They raised several interesting questions;
e.g., finding a good upper bound on γmaj(G∪H) for connected graphs G and
H, is the majority domination problem NP-complete for trees?

In this paper, we study the majority domination problem from an algo-
rithmic point of view. In particular, we give polynomial-time algorithms for
the majority domination problem in trees, cographs, and k-trees with fixed
k. For technical reasons, we consider several generalizations of the majority
domination problem in the following sections.

2. Majority domination in trees

This section gives a polynomial-time algorithm for the majority domina-
tion problem in trees. For technical reasons, we consider the following gen-
eralization of the majority domination problem. Suppose G = (V,E) is a
graph rooted at x, s ∈ {−1, 1}, t is an integer with |t| ≤ degG(x), and i is
an integer with 0 ≤ i ≤ |V |. An (x, s, t, i)-signed function of G is a function
g : V → {−1, 1} such that g(x) = s and m(G, x, s, t, g) ≥ i, where

m(G, x, s, t, g) = |{v : g(NG[v]) + t ≥ 1 when v = x and g(NG[v]) ≥ 1 when v 6= x}|.

The (x, s, t, i)-domination number of G = (V,E) is

γ(G, x, s, t, i) = min{g(V ) : g is an (x, s, t, i)− signed function of G}.
Note that min ∅ is considered to be +∞.

Lemma 1. If G is a graph rooted at x and with n vertices, then γmaj(G) =
min{γ(G, x,−1, 0, dn/2e), γ(G, x, 1, 0, dn/2e)}.

Proof. The lemma follows from the fact that g is a majority dominating
function of G if and only if g is an (x, s, 0, dn/2e)-signed function of G for some
s ∈ {−1, 1}.

Lemma 2. Suppose G and H are two disjoint graphs rooted at x and
y, respectively. Let F be a graph rooted at x and obtained from the union of
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FIG. 1. Graphs G,H, and F .

G and H by joining a new edge xy (see Figure 1). If s ∈ {−1, 1}, t is an
integer with |t| ≤ degF (x), and i is an integer with 0 ≤ i ≤ |V (F )|, then
γ(F, x, s, t, i) = min{γ(G, x, s, t + s′, i′) + γ(H, y, s′, s, i− i′) : s′ ∈ {−1, 1} and
0 ≤ i′ ≤ i}.

Proof. Suppose f is an (x, s, t, i)-signed function of F such that f(V (F )) =
γ(F, x, s, t, i). Let g (respectively, h) be the function f restricted over the set
V (G) (respectively, V (H)) and s∗ = h(y) = f(y). Note that f(NF [x]) + t =
g(NG[x]) + (t + s∗); f(NF [v]) = g(NG[v]) for v ∈ V (G) − {x}; f(NF [y]) =
h(NH [y]) + s; f(NF [v]) = h(NH [v]) for v ∈ V (H) − {y}. Therefore,
m(F, x, s, t, f) = m(G, x, s, t+s∗, g)+m(H, y, s∗, s, h). Since f is an (x, s, t, i)-
signed function of F, g is an (x, s, t + s∗, i∗)-signed function of G and h is a
(y, s∗, s, i − i∗)-signed function of H for some 0 ≤ i∗ ≤ i. Thus, we have
γ(F, x, s, t, i) = f(V (F )) = g(V (G)) + h(V (H)) ≥ min{γ(G, x, s, t + s′, i′) +
γ(H, y, s′, s, i− i′) : s′ ∈ {−1, 1} and 0 ≤ i′ ≤ i}.

On the other hand, for any s′ ∈ {−1, 1} and i′ any integer with 0 ≤ i′ ≤ i.
Suppose g is an (x, s, t + s′, i′)-signed function of G such that g(V (G)) =
γ(G, x, s, t + s′, i′) and h is a (y, s′, s, i − i′)-signed function of H such that
h(V (H)) = γ(H, y, s′, s, i − i′). Define a function f of F by f(v) = g(v)
if v ∈ V (G) and f(v) = h(v) if v ∈ V (H). Since f(x) = g(x) = s and
m(F, x, s, t, f) = m(G, x, s, t+f(y), g)+m(H, y, f(y), f(x), h) = m(G, x, s, t+
s′, g) + m(H, y, s′, s, h) ≥ i′ + (i− i′) = i, we see that f is an (x, s, t, i)-signed
function of F and hence γ(F, x, s, t, i) ≤ f(V (F )) = g(V (G)) + h(V (H)) =
γ(G, x, s, t+ s′, i′)+γ(H, y, s′, s, i− i′). It follows that γ(F, x, s, t, i) ≤ min{γ
(G, x, s, t + s′, i′) + γ(H, y, s′, s, i− i′) : s′ ∈ {−1, 1} and 0 ≤ i′ ≤ i}.

Theorem 3. There is an O(n2)-time algorithm for computing the majority
domination number of a tree T with n vertices.

Proof. Note that a tree can be obtained from isolated vertices by a sequence
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of graph operations as described in Lemma 2. Using Lemma 2, at any iteration,
γ(F, x, s, t, i) for s ∈ {−1, 1} and |t| ≤ degF (x) and 0 ≤ i ≤ |V (F )| can
be obtained in O(ndeg(x)) time. Once γ(T, x, s, t, i)’s are obtained, we can
compute γmaj(T ) in a constant time with Lemma 1. Thus, the total running
time to compute γmaj(T ) is O(n

∑
x deg(x)) = O(n2).

3. Majority domination in cographs

This section gives a polynomial-time algorithm for the majority domination
in cographs. Recall that cographs are defined by the following rules: K1 is a
cograph; if G and H are cographs, then so are G ∪H and G×H (see [3, 4]).

For an integer p ≥ 0, a signed p-function of G = (V,E) is a function
g : V → {−1, 1} such that there are exactly p vertices v ∈ V with g(v) = 1.
For any integers t and p ≥ 0, define γ(G, t, p) = max{m(G, t, g) : g is a signed
p-function of G}, where m(G, t, g) = |{v ∈ V : g(NG[v]) + t ≥ 1}|. Note that
max ∅ is considered as −∞.

Lemma 4. If G and H are two disjoint graphs, t is an integer, and p is a
nonnegative integer, then γ(G ∪H, t, p) = max0≤p′≤p{γ(G, t, p′) + γ(H, t, p −
p′)}.

Proof. Suppose f is a signed p-function of G∪H such that m(G∪H, t, f) =
γ(G ∪H, t, p). Let g (respectively, h) be the function f restricted on the set
V (G) (respectively, V (H)). Then, g (respectively, h) is a signed p∗-function
(respectively, (p − p∗)-function) of G (respectively, H) for some 0 ≤ p∗ ≤
p. Therefore, γ(G ∪ H, p, t) = m(G ∪ H, t, f) = m(G, t, g) + m(H, t, h) ≤
γ(G, t, p∗) + γ(H, t, p− p∗) ≤ max0≤p′≤p{γ(G, t, p′) + γ(H, t, p− p′)}.

On the other hand, for any integer p′ with 0 ≤ p′ ≤ p, suppose g is a
signed p′-function of G with m(G, t, g) = γ(G, t, p′), and h is a signed (p− p′)-
function of H with m(H, t, h) = γ(H, t, p− p′). Define a function f of G ∪H
as follows: f(x) = g(x) if x ∈ V (G) and f(x) = h(x) if x ∈ V (H). Note that
f is a signed p-function of G∪H. Therefore, γ(G∪H, t, p) ≥ m(G∪H, t, f) =
m(G, t, g) + m(H, t, h) = γ(G, t, p′) + γ(H, t, p − p′) for any integer p′ with
0 ≤ p′ ≤ p. Thus, γ(G ∪H, t, p) ≥ max0≤p′≤p{γ(G, t, p′) + γ(H, t, p− p′)}.

Lemma 5. If G and H are two disjoint graphs with νG and νH vertices
respectively, t is an integer, and p a nonnegative integer, then γ(G×H, t, p) =
max0≤p′≤p{γ(G, t + 2p− 2p′ − νH , p′) + γ(H, t + 2p′ − νG , p− p′)}.

Proof. Suppose f, g, and h are three functions from V (G×H), V (G) and
V (H) to {−1, 1}, respectively, having f(x) = g(x) for all x ∈ V (G) and
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f(x) = h(x) for all x ∈ V (H). Note that f is a signed p-function of G × H
if and only if g (respectively, h) is a signed p′-function (respectively, (p− p′)-
function) of G (respectively, H) for some 0 ≤ p′ ≤ p. Additionally, in this
case we have f(NG×H [v]) + t = g(NG[v]) + t + 2p− 2p′− νH for v ∈ V (G) and
f(NG×H [v]) + t = h(NH [v]) + t + 2p′ − νG for v ∈ V (H). These observations
imply that the lemma can be proved with an argument similar to that used
in the proof of Lemma 4.

Lemma 6. If G = (V, E) is a graph with n vertices, then γmaj(G) =
−n + 2minF , where F = {p : 0 ≤ p ≤ n and γ(G, 0, p) ≥ n/2}.

Proof. Suppose g is a majority dominating function of G with γmaj(G) =
g(V ). Let p∗ be the number of vertices v ∈ V with g(v) = 1. Then, g is a
signed p∗-function of G and γ(G, 0, p∗) ≥ m(G, 0, g) = |{v ∈ V : g(NG[v]) ≥
1}| ≥ n/2. So, p∗ ∈ F and hence γmaj(G) = g(V ) = p∗−(n−p∗) = −n+2p∗ ≥
−n + 2minp∈F p.

On the other hand, let p′ ∈ F with p′ = minp∈F p. Since γ(G, 0, p′) ≥ n/2,
there exists a signed p′-function g of G such that |{v ∈ V : g(NG[v]) ≥ 1}| =
m(G, 0, g) = γ(G, 0, p′) ≥ n/2. Therefore, g is a majority dominating function
of G and hence γmaj(G) ≤ g(V ) = p′− (n−p′) = −n+2p′ = −n+2 minp∈F p.
Thus, γmaj(G) = −n + 2 minp∈F p.

Theorem 7. There is an O(n3)-time algorithm for the majority domina-
tion problem in cographs.

Proof. The theorem follows from Lemmas 4 to 6 and the definition of
cographs. Note that in Lemmas 4 and 5, we only need to consider integers t
for |t| ≤ |V (G)|+ |V (H)|.

4. Majority domination in k-trees

This section gives a polynomial-time algorithm for the majority domination
problem in k-trees for any fixed k. Recall that k-trees are defined recursively
as follows: the complete graph of k vertices is a k-tree; the graph obtained
from a k-tree by adding a new vertex joints to all vertices of a k-clique is
a k-tree, by a k-clique we mean a pairwise adjacent vertex set of size k. A
vertex v is simplicial if N(v) is a clique. An ordering (v1, v2, · · · , vn) of V is
a perfect elimination scheme if each vi is simplicial in the induced subgraph
Gi = G[{vi, vi+1, · · · , vn}]. Note that a graph is a k-tree if and only if G has
a perfect elimination scheme such that |NGi(vi)| = k for 1 ≤ i ≤ n − k. A
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FIG. 2. A 2-tree G.

2-tree is shown in Fig. 2, where the vertex numbering indicates the ordering
of a perfect elimination scheme.

To compute the majority domination number of a k-tree, we generalize
the notation used in Section 2. Suppose G = (V, E) is a graph with specified
set X ⊆ V, s = (sx)x∈X , t = (tx)x∈X , q = (qx)x∈X are vectors with integer
components sx ∈ {−1, 1}, |tx| ≤ degG(x) and |qx| ≤ degG(x) for each x ∈ X,
and i is an integer with 0 ≤ i ≤ |V |. An (X, s, t, q, i)-signed function of G is a
function g : V → {−1, 1} such that g(x) = sx, g(NG(x)) = qx for each x ∈ X
and m(G,X, s, t, q, g) ≥ i, where m(G,X, s, t, q, g) = |{v : g(NG[v]) + tv ≥ 1
when v ∈ X and g(NG[v]) ≥ 1 when v 6∈ X}|. The (X, s, t, q, i)-domination
number of G = (V,E) is γ(G,X, s, t, q, i) = min{g(V ) : g is an (X, s, t, q, i)-
signed function of G}. Note that min ∅ is considered to be +∞.

Lemma 8. If G is a graph of n vertices with a specified k-clique X,
then γmaj(G) = min{γ(G,X, s,~0, q, dn/2e) : s = (sx)x∈X ∈ {−1, 1}k,~0 =
(0)x∈X , q = (qx)x∈X with |qx| ≤ 4(G)}.

Lemma 9. Suppose G1, G2, · · · , Gk+1 are k + 1 disjoint graphs with spec-
ified k-cliques X1, X2, · · · , Xk+1 respectively, where Xi = {xi

1, x
i
2, · · · , xi

k+1} −
{xi

i}. Let F be the graph with specified k-clique X = {x1, x2, · · · , xk}, which is
obtained from the union of G1, G2, · · · , Gk+1 by identifying {x1

j , x
2
j , · · · , xk+1

j }−
{xj

j} as a new vertex xj for 1 ≤ j ≤ k + 1 (see Fig. 3 for k = 2). If
s = (sx)x∈X , t = (tx)x∈X , q = (qx)x∈X are vectors with integer components
sx ∈ {−1, 1}, |tx| ≤ degF (x), and |qx| ≤ degF (x) for each x ∈ X, and I an
integer with 0 ≤ I ≤ |V (F )|, then γ(F, X, s, t, q, I) =
min{∑k+1

i=1 γ(Gi, Xi, (sx)x∈Xi , (tx)x∈Xi , (qx)x∈Xi , Ii)− (k − 1)
∑k+1

j=1 sxj :
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FIG. 3. Graphs G1, G2, G3, and F .

sxk+1
∈ {−1, 1}, txk+1

= 0, |qxi
j
| ≤ 4(Gi) for all i 6= j and qxi

i
= 0 for all i,

sxi
j

= sxj and txi
j

= txj +
∑

l 6=i qxl
j
− (k − 2)

∑
l 6=j sxl

for all i 6= j,
∑k+1

i=1 qxi
j
− (k − 2)

∑
i 6=j sxi = qxj for 1 ≤ j ≤ k + 1, and

∑k+1
i=1 Ii − (k − 1)

∑k+1
j=1 µ(qxj , sxj , txj ) = I},

where µ(z1, z2, z3) = 1 if z1 + z2 + z3 ≥ 1 and µ(z1, z2, z3) = 0 otherwise.

Although the proofs of Lemmas 8 and 9 are complicated, they are similar
to those for Lemmas 1 and 2, therefore we omit the details.

Theorem 10. There is a polynomial-time algorithm for computing the
majority domination number of a k-tree for any fixed k.

Proof. The theorem follows from Lemmas 8 and 9 and the fact that k-trees
can be obtained from complete graphs of k vertices by a sequence of operations
described in Lemma 9.

We conclude this paper by noting that since it is possible to embed a
partial k-tree for any fixed k into a k-tree in polynomial time [1], there is also
a polynomial-time algorithm for computing the majority domination number
of a partial k-tree.

References

1. S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of finding embed-
dings in a k-tree, SIAM J. Alg. Disc. Meth. 8(2), (1987) 277-284.

2. I. Broere, J. H. Hattingh, M. A. Henning, and A. A. McRae, Majority domi-
nation in graphs, Discr. Math. 138, (1995) 125-135.

349



350 Hong-Gwa Yeh and Gerard J. Chang

3. D. G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible
graphs, Discr. Appl. Math. 3, (1981) 163-174.

4. D. G. Corneil, Y. Perl, and L. K. Stewart, A linear recognition algorithm for
cographs, SIAM J. Comput. 14, (1985) 926-934.

5. S. T. Hedetniemi, private communication to Broere et al.

Department of Applied Mathematics, National Chiao Tung University,
Hsinchu 30050, Taiwan
Email: gjchang@math.nctu.edu.tw


