ALGORITHMIC ASPECTS OF NEIGHBORHOOD NUMBERS*

GERARD J. CHANG \dagger, MARTIN FARBER \ddagger, AND ZSOLT TUZA§

Abstract

In a graph $G=(V, E), E[v]$ denotes the set of edges in the subgraph induced by $N[v] \equiv$ $\{v\} \cup\{u \in V: u v \in E\}$. The neighborhood-covering problem is to find the minimum cardinality of a set C of vertices such that $E=\cup\{E[v]: v \in C\}$. The neighborhood-independence problem is to find the maximum cardinality of a set of edges in which there are no two distinct edges belonging to the same $E[v]$ for any $v \in V$. Two other related problems are the clique-transversal problem and the clique-independence problem. It is shown that these four problems are NP-complete in split graphs with degree constraints and linear time algorithms for them are given in a strongly chordal graph when a strong elimination order is given.

Key words. neighborhood-covering, neighborhood-independence, clique-transversal, clique-independence, chordal graph, strongly chordal graph, split graph, NP-complete

AMS(MOS) subject classifications. $05 \mathrm{C} 70,68 \mathrm{R} 10$

1. Introduction. The concept of neighborhood number was first introduced by Sampathkumar and Neeralagi [SN]. Suppose that $G=(V, E)$ is a finite undirected graph with vertex set V and edge set E. The (open) neighborhood $N(v)$ of a vertex v is the set of vertices adjacent to v, and the closed neighborhood $N[v]$ is $\{v\} \cup N(v)$. A neighborhoodcovering set C is a set of vertices such that $E=\cup\{E[v]: v \in C\}$, where $E[v]$ is the set of edges in the subgraph induced by $N[v]$. (This definition is slightly different from the original one in [SN]; we follow the terminology in [LT].) The neighborhood-covering number $\rho_{N}(G)$ of G is the minimum cardinality of a neighborhood-covering set in G. A neighborhood-independent set of G is a set of edges in which there are no two distinct edges belonging to the same $E[v]$ for any $v \in V$. The neighborhood-independence number $\alpha_{N}(G)$ of G is the maximum size of a neighborhood-independent set in G. These two parameters are related by a min-max duality inequality: $\alpha_{N}(G) \leqq \rho_{N}(G)$ for any graph G. A graph is called neighborhood-perfect if $\alpha_{N}(H)=\rho_{N}(H)$ for every induced subgraph H of G.

Two other related problems are defined as follows. In a graph $G=(V, E)$, a clique is a set of pairwise adjacent vertices. A maximal clique is a clique of size $\geqq 2$ that is maximal under inclusion. A clique-transversal set of G is a set of vertices that meets all maximal cliques of G. As defined in [T], the clique-transversal number $\tau_{C}(G)$ of G is the minimum cardinality of a clique-transversal set in G. We now introduce the concept of a clique-independent set, which means a collection of pairwise disjoint maximal cliques. The clique-independence number $\alpha_{C}(G)$ of G is the maximum size of a clique-independent set in G. There is also a min-max duality inequality: $\alpha_{C}(G) \leqq \tau_{C}(G)$ for any graph G. Note that the clique-independence number of a triangle-free graph is equal to its matching number and hence can be computed in polynomial time.

Various properties of $\rho_{N}(G), \alpha_{N}(G), \tau_{C}(G)$, and $\alpha_{C}(G)$ have been studied in [SN], [LT], [T], [AST], and [EGT]. The aim of this paper is to investigate some problems concerning the algorithmic complexity of determining these four parameters of a given

[^0]graph. Erdös, Gallai, and Tuza [EGT] proved that the problem of finding the cliquetransversal number is NP-complete over the class of triangle-free graphs, and more generally over the class of graphs with girth at least g for any fixed $g \geqq 4$. Lehel and Tuza [LT] gave an $O(|V|+|E|)$ algorithm for finding $\rho_{N}(G)$ and $\alpha_{N}(G)$ of an interval graph G. Wu [W] gave an $O\left(|V|^{3}\right)$ algorithm for determining $\rho_{N}(G)$ and $\alpha_{N}(G)$ of a strongly chordal graph G.

In § 3 we prove that the problems of finding $\rho_{N}(G), \alpha_{N}(G), \tau_{C}(G)$, and $\alpha_{C}(G)$ are NP-complete over the class of split graphs with degree constraints. Section 4 gives linear time algorithms for determining $\rho_{N}(G), \alpha_{N}(G), \tau_{C}(G)$, and $\alpha_{C}(G)$ of a strongly chordal graph G if a strong elimination order is available.
2. Terminology. The concept of chordal graph was introduced by Hajnal and Surányi [HS] in connection with the theory of perfect graphs; see [Go]. A graph is chordal (or triangulated) if every cycle of length greater than three has a chord (i.e., every induced cycle is a triangle). One of the most important properties of a chordal graph G is that its vertices have a perfect elimination order $v_{1}, v_{2}, \ldots, v_{n}$; i.e., for each $i(1 \leqq i \leqq n)$, $N_{i}\left[v_{i}\right]$ is a clique, where $N_{i}[x]$ is the closed neighborhood of x in the subgraph G_{i} of G induced by $\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}$. Note that any maximal clique of a chordal graph G is equal to some $N_{i}\left[v_{i}\right]$, but $N_{i}\left[v_{i}\right]$ is not necessarily an maximal clique.

Two interesting subclasses of chordal graphs discussed in this paper are strongly chordal graphs and split graphs. An s-sun (or incomplete s-trampoline) is a chordal graph with a Hamiltonian cycle $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{s}, y_{s}, x_{1}$ such that each y_{i} is of degree two. A strongly chordal graph (or sun-free chordal graph) is a chordal graph without any s sun as an induced subgraph for all $s \geqq 3$. It was proved in [F1] that a graph is strongly chordal if and only if its vertices have a strong elimination order $v_{1}, v_{2}, \ldots, v_{n}$; i.e., for each $i(1 \leqq i \leqq n), N_{i}\left[v_{j}\right] \subseteq N_{i}\left[v_{k}\right]$ when $v_{j}, v_{k} \in N_{i}\left[v_{i}\right]$ and $j<k$. Note that a strong elimination order is always a perfect elimination order. Anstee and Farber [AF] gave $O\left(|V|^{3}\right)$ algorithms; Hoffman, Kolen, and Sakarovitch [HKS] gave an $O\left(|V|^{3}\right)$ algorithm; Lubiw [Lu] gave an $O\left(|E| \log ^{2}|E|\right)$ algorithm; Paige and Tarjan [PT] gave an $O(|E| \log |E|)$ algorithm; and Spinrad [S] gave an $O\left(|V|^{2}\right)$ algorithm for recognizing if a graph $G=(V, E)$ is strongly chordal and for finding a strong elimination order when G is strongly chordal.

A graph $G=(V, E)$ is split if its vertex set V can be partitioned into a clique V_{1} and an independent set V_{2}. Every split graph is chordal, and a natural perfect elimination order is given by listing the vertices in V_{2} first and then the vertices in V_{1}. Note that an s-sun in which $\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$ is a clique is a split graph.
3. Split graphs and NP-completeness. Let us recall the following two problems; see [CN1], [CN2], and [F2]. A dominating set D of a graph $G=(V, E)$ is a set of vertices such that every vertex not in D is adjacent to some vertex in D;i.e., $V=\cup\{N[v]$: $v \in D\}$. The domination number $\delta(G)$ of G is the minimum cardinality of a dominating set in G. A 2 -stable set of G is a set of vertices in which any two distinct vertices are of distance greater than 2 . The 2-stability number $\alpha_{2}(G)$ of G is the maximum cardinality of a 2-stable set in G. Note that $\alpha_{2}(G) \leqq \delta(G)$ for any graph G.

Theorem 1. It is NP-complete to determine the neighborhood-covering number, the clique-transversal number, and the domination number of a split graph with only degree- 2 vertices in the independent set.

Proof. Suppose that $G=(V, E)$ is a split graph without isolated vertices such that V is the disjoint union of a clique V_{1} and an independent set V_{2}. Without loss of generality, we may assume that $N[x]$ is a proper subset of V_{1} for any $x \in V_{2}$ (otherwise, we move x from V_{2} to V_{1}). So the only maximal cliques of G are V_{1} and $N[x]$ for all $x \in V_{2}$.

By the fact that $N[x] \subseteq N[y]$ for any $x \in V_{2}$ and $y \in N(x)$, we can always find a minimum neighborhood-covering set $C \subseteq V_{1}$. The same is true for clique-transversal sets and dominating sets. In fact, these three terms are then identical, and so $\rho_{N}(G)=$ $\tau_{C}(G)=\delta(G)$.

Note that split graphs are in one-to-one correspondence to hypergraphs in which multiple edges are allowed. Vertices in the clique V_{1} of a split graph G correspond to vertices of the hypergraph, and a nonisolated vertex y in the independent set V_{2} corresponds to an edge, which is $N_{G}(y)$, of the hypergraph. It is then clear that $\delta(G)$ is equal to the transversal number of the corresponding hypergraph H_{G}, which is the minimum number of vertices meeting all edges. Hence the theorem follows from the fact that determining the transversal number of a 2 -uniform hypergraph (i.e., a graph) is NPcomplete; this problem is called the "vertex cover" problem and also the "hitting set" problem on pp. 190 and 222, respectively, of [GJ].

ThEOREM 2. It is NP-complete to determine the neighborhood-independence number, the clique-independence number, and the 2-stability number of a split graph with only degree- 3 vertices in the independent set.

Proof. A neighborhood-independent set of a split graph G must be of the form $\left\{x^{\prime} x \in E: x \in S\right\}$ for some 2-stable set $S \subseteq V_{2}$. Moreover, a clique-independent set of G is of the form $\{N[x]: x \in S\}$ for some 2 -stable set $S \subseteq V_{2}$. These, together with the fact that any 2-stable set of G is a subset of V_{2}, imply that $\alpha_{N}(G)=\alpha_{C}(G)=\alpha_{2}(G)$.

Also, $\alpha_{2}(G)$ is equal to the matching number, which is the maximum number of pairwise disjoint edges, of the corresponding hypergraph H_{G} as described in the proof of Theorem 1. Hence the theorem follows from the fact that determining the matching number of a 3-uniform hypergraph is NP-complete; a special case of this problem is called "three-dimensional matching" (see [GJ, p. 221]).

Note that Chang and Nemhauser [CN1] proved that it is NP-complete to determine the domination number and the 2 -stability number of a split graph without degree constraints. Moreover, the NP-completeness of the neighborhood-covering/independence problem was first observed by Lehel [L] by a different reduction. Let us note further that Theorems 1 and 2 remain valid under the assumption that the degrees of all vertices in the independent set are equal to k for some $k \geqq 3$.

For any graph $G=(V, E)$, we define the neighborhood-split graph $S(G)$ of G in the following way. The vertex set of $S(G)$ is $V \cup E$. In $S(G)$, any two vertices of V are adjacent, E is an independent vertex set, and an $e \in E$ is adjacent to a $v \in V$ if and only if $e \in E[v]$. Note that $S(G)$ has no isolated vertex if G has at least two vertices. The following statement is immediately seen from the definitions.

Proposition 3. For any graph G with at least one edge, $\rho_{N}(G)=\delta(S(G))$ and $\alpha_{N}(G)=\alpha_{2}(S(G))$.

A structural relation between G and $S(G)$ is given by the following result.
Theorem 4. If G is strongly chordal, then so is $S(G)$.
Proof. Since G is strongly chordal, its vertices have a strong elimination order v_{1}, v_{2}, \ldots, v_{n}. We order the vertices of $S(G)$ as $e_{1}, e_{2}, \ldots, e_{m}, v_{1}, v_{2}, \ldots, v_{n}$ in such a way that, for any $e_{i}=\left(v_{i_{1}}, v_{i_{2}}\right), e_{j}=\left(v_{j_{1}}, v_{j_{2}}\right), i<j, i_{1}<i_{2}, j_{1}<j_{2}$, we have that $i_{1}<j_{1}$ or ($i_{1}=j_{1}$ and $i_{2}<j_{2}$). It is easy to check that this order is a strong elimination order of $S(G)$. Thus $S(G)$ is strongly chordal.

Note that the strong elimination order of $S(G)$ in the proof of Theorem 4 can be obtained in linear time from a strong elimination order of G. By Proposition 3 and Theorem 4, we can use the linear algorithms [F2], [HKS] for the domination number and the 2 -stability number to find the neighborhood-covering number and the neigh-borhood-independence number of a strongly chordal graph. However, $S(G)$ has $|V|+$
$|E|$ vertices and $O(|V||E|)$ edges. So this method gives an $O(|V||E|)$ algorithm. Actually, the algorithm in [W] is just this method without describing $S(G)$.
4. Efficient algorithms in strongly chordal graphs. In this section, we derive efficient algorithms for finding $\rho_{N}(G), \alpha_{N}(G), \tau_{C}(G), \alpha_{C}(G)$, and the corresponding optimum solution sets of a strongly chordal graph G. Suppose that a strong elimination order v_{1}, v_{2}, \ldots, v_{n} of G is given. Note that this is also a perfect elimination order. For technical reasons, we add an isolated vertex v_{0} to G.

Recall that $N_{i}[x]$ (respectively, $N_{i}(x)$) is the closed (respectively, open) neighborhood of vertex x in the subgraph G_{i} of G induced by $\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}$. For simplicity, we call $v_{i}<v_{j}$ if $i<j$. For each $v_{i} \in V$, denote by $v_{m(i)}$ the maximum element in $N\left[v_{i}\right]$; i.e., $m(i)=\max \left\{j: v_{j} \in N\left[v_{i}\right]\right\}$.

Lemma 5. A clique-transversal set is a neighborhood-covering set for any graph.
Proof. The lemma follows from the fact that each edge is contained in a maximal clique.

Lemma 6. In a graph, replacing each edge of a neighborhood-independent set by a maximal clique containing it yields a clique-independent set.

Lemmas 5 and 6 , together with the min-max duality inequalities in § 1 , give that, for any graph G,

$$
\begin{equation*}
\alpha_{N}(G) \leqq \rho_{N}(G) \leqq \tau_{C}(G) \quad \text { and } \quad \alpha_{N}(G) \leqq \alpha_{C}(G) \leqq \tau_{C}(G) . \tag{4.1}
\end{equation*}
$$

The idea of our algorithms is to find a clique-transversal set C, which is also a neighborhood-covering set by Lemma 5, a clique-independent set I_{C}, and a neighborhoodindependent set I_{N} such that $|C|=\left|I_{C}\right|=\left|I_{N}\right|$. If such sets are found, then they are optimum solutions for the four problems, and all inequalities in (4.1) are equalities. This provides an algorithmic proof for a special case of the following result.

Theorem $7($ see [LT] $) . \alpha_{C}(G)=\alpha_{N}(G)=\rho_{N}(G)=\tau_{C}(G)$ for any odd-sun-free chordal graph G.

Algorithm NHD (NHD means NeighborHooD)

1.
```
    \(C \leftarrow \varnothing\);
    \(I_{C} \leftarrow \varnothing ;\)
    \(I_{N} \leftarrow \varnothing ;\)
    identify all \(i\) such that \(N_{i}\left[v_{i}\right]\) is a maximal clique;
    for \(i=1\) to \(n\) do
        if \(N_{i}\left[v_{i}\right]\) is a maximal clique and \(N_{i}\left[v_{i}\right] \cap C=\varnothing\) then do
            \(v_{p} \leftarrow \max \left\{v_{0}\right\} \cup\left(N\left[v_{i}\right] \cap C\right) ;\left\{\right.\) Note that \(v_{p}<v_{i}\) now. \(\}\)
            \(v_{j} \leftarrow \min \left(N_{i}\left(v_{i}\right)-N_{p}\left[v_{p}\right]\right)\);
            \(I_{N} \leftarrow I_{N} \cup\left\{v_{i} v_{j}\right\} ;\)
            \(I_{C} \leftarrow I_{C} \cup\left\{N_{i}\left[v_{i}\right]\right\} ;\)
            \(v_{m(i)} \leftarrow \max N\left[v_{i}\right] ;\)
            \(C \leftarrow C \cup\left\{\boldsymbol{v}_{m(i)}\right\} ;\)
            end if;
            end for.
```

THEOREM 8. Algorithm NHD gives a minimum clique-transversal set C, a maximum clique-independent set I_{C}, and a maximum neighborhood-independent set I_{N} for a strongly chordal graph G in linear time when a strong elimination order is given.

Proof. By steps 6, 11, and 12 of Algorithm NHD, the final C is a clique-transversal set of G.

In step $8, v_{j}$ must exist; otherwise, $N_{i}\left[v_{i}\right] \subseteq N_{p}\left[v_{p}\right]$ would imply that $N_{i}\left[v_{i}\right]$ is not a maximal clique. Suppose that $v_{i} v_{j}$ and $v_{i^{\prime}} v_{j^{\prime}}$ (with $i^{\prime}<i$) are two distinct edges of I_{N} that are both in some $E\left[v_{q}\right]$. Consider the set C at the beginning of iteration i, i.e., when step 8 is just done. For the case of $q \leqq i^{\prime}$, since $q \leqq i^{\prime}<i<j, v_{m\left(i^{\prime}\right)} \in N_{i^{\prime}}\left[v_{i^{\prime}}\right] \subseteq$ $N_{q}\left[v_{i^{\prime}}\right] \subseteq N_{q}\left[v_{i}\right] \subseteq N_{q}\left[v_{j}\right]$; i.e., $v_{i} v_{j}$ and $v_{i^{\prime}} v_{j^{\prime}}$ both are in $E\left[v_{m\left(i^{\prime}\right)}\right]$. For the case of $i^{\prime}<$ q, since $i^{\prime}<q \leqq m\left(i^{\prime}\right), v_{i}, v_{j} \in N_{i^{\prime}}\left[v_{q}\right] \subseteq N_{i^{\prime}}\left[v_{m\left(i^{\prime}\right)}\right]$; i.e., $v_{i} v_{j}$ and $v_{i^{\prime}} v_{j^{\prime}}$ both are in $E\left[v_{m\left(i^{\prime}\right)}\right]$. Note that $v_{m\left(i^{\prime}\right)} \in C$, since, in iteration i^{\prime}, we put $v_{i^{\prime}} v_{j^{\prime}}$ into I_{N} and $v_{m\left(i^{\prime}\right)}$ into C. By the choice of v_{p} and v_{j} (in steps 7 and 8), $v_{p} v_{i} \in E$ and $v_{p} v_{j} \notin E$, and $v_{p} \equiv v_{m\left(i^{\prime \prime}\right)}$ for some $v_{i^{\prime \prime}} v_{j^{\prime \prime}} \in I_{N}$ with $m\left(i^{\prime}\right)<m\left(i^{\prime \prime}\right)<i$. So $v_{p}=v_{m\left(i^{\prime \prime}\right)} \in N_{m\left(i^{\prime}\right)}\left[v_{i}\right] \subseteq N_{m\left(i^{\prime}\right)}\left[v_{j}\right]$, which contradicts $v_{p} v_{j} \notin E$. Therefore I_{N} is a neighborhood-independent set of G.

By Lemma $6, I_{C}$ is a clique-independent set of G. Since $|C|=\left|I_{C}\right|=\left|I_{N}\right|$, these three sets are optimum solutions of these four problems.

Next, we show that Algorithm NHD has running time linear in $|V|+|E|$. First, step 4 can be performed by Gavril's linear algorithm; see [G]. In iteration i, step 6 needs $\left|N_{i}\left[v_{i}\right]\right|$ operations to check if $N_{i}\left[v_{i}\right] \cap C=\varnothing$. This can be done if C is represented by a Boolean function f as follows:

$$
f(i)= \begin{cases}1, & \text { if } i \in C \\ 0, & \text { if } i \notin C\end{cases}
$$

then we check if $f(q)=0$ for all $v_{q} \in N_{i}\left[v_{i}\right]$. Step 7 can also be done in the same way.
For step 8 , we keep an array $g(1: n)$ whose values are all initially zero. At the beginning of iteration $i, g(1: n)$ contains values $<i$. To find v_{j} of step 8 , we first set $g(q) \leftarrow i$ for all $v_{q} \in N_{p}\left[v_{p}\right]$ and then check if $g(q)<i$ for each $v_{q} \in N_{i}\left[v_{i}\right]$ to obtain v_{j}. Note that $v_{p} \in N\left[v_{i}\right]$ and $v_{p}<v_{i}$ imply that $N_{p}\left[v_{p}\right] \subseteq N_{p}\left[v_{i}\right] \subseteq N\left[v_{i}\right]$. So step 8 needs $\left|N_{i}\left(v_{i}\right)\right|+\left|N_{p}\left[v_{p}\right]\right| \leqq 2\left|N\left[v_{i}\right]\right|$ operations.

Finally, steps 9,10 , and 12 need constant time, and step 11 needs $\left|N\left[v_{i}\right]\right|$ time. So the total running time is $O\left(\sum_{i} \operatorname{deg}\left(v_{i}\right)+1\right)=O(|V|+|E|)$.

We can modify Algorithm NHD slightly to get a simpler one as follows. First, we delete step 4 from the algorithm. Then we replace step 6 by step 6 'as follows:
6^{\prime}. if $N_{i}\left[v_{i}\right] \cap C=\varnothing$ then do.
Also, insert step 8.5 between steps 8 and 9 , shown below:

8.5. if v_{j} does not exist then go to 13 .

All results are the same, except that we need not identify all maximal cliques.
Theorem 9. The modified algorithm gives a minimum clique-transversal set C, a maximum clique-independent set I_{C}, and a maximum neighborhood-independent set I_{N} for a strongly chordal graph G in linear time when a strong elimination order is given.

Proof. The argument is the same as in the proof of Theorem 8, except that we must prove that, in iteration $i, N_{i}\left[v_{i}\right]$ is a maximal clique if and only if v_{j} exists.

Note that if v_{j} does not exist, then either $N_{i}\left(v_{i}\right)=\varnothing$, and so $N_{i}\left[v_{i}\right]=\left\{v_{i}\right\}$ is not a maximal clique; else $N_{i}\left[v_{i}\right] \subseteq N_{p}\left[v_{p}\right]$, and so $N_{i}\left[v_{i}\right]$ is not a maximal clique.

On the other hand, suppose that v_{j} exists. Then $N_{i}\left(v_{i}\right) \neq \varnothing$, and so $\left|N_{i}\left[v_{i}\right]\right| \geqq 2$. Suppose that $N_{i}\left[v_{i}\right]$ is not a maximal clique; i.e., $N_{i}\left[v_{i}\right]$ is a subset of some maximal clique $N_{q}\left[v_{q}\right]$, where $v_{q}<v_{i}$. Note that $N_{q}\left[v_{q}\right] \cap C \neq \varnothing$ by the algorithm now, say $v_{m\left(i^{\prime}\right)} \in N_{q}\left[v_{q}\right] \cap C$. Then $v_{i} v_{j^{\prime}}, v_{i} v_{j} \in E\left[v_{m\left(i^{\prime}\right)}\right]$. By a similar argument as in the proof of Theorem 8, to prove that I_{N} is neighborhood-independent, we obtain a contradiction. So $N_{i}\left[v_{i}\right]$ is a maximal clique.
5. Concluding remarks. According to Theorems 1 and 2 , we cannot expect a good characterization for the class of graphs G satisfying $\rho_{N}(G) \leqq k$ (or $\alpha_{N}(G) \leqq k$) if k is large. We must note here that many graphs G contain some induced subgraph G^{\prime} in which $\rho_{N}\left(G^{\prime}\right)$ is much larger than $\rho_{N}(G)$ (and the same holds even for $\alpha_{N}(G)$). The following problems, however, seem to be easier.

1. Let k by a given natural number. Characterize the graphs G in which $\rho_{N}\left(G^{\prime}\right)$ (and/or $\alpha_{N}\left(G^{\prime}\right)$) is at most k for all induced subgraphs G^{\prime}. (For $k=1$, the question is easy; cf. [LT].)
2. Prove that every neighborhood-perfect graph is perfect [LT].
3. Characterize neighborhood-perfect graphs.
4. Determine the algorithmic complexity of finding $\rho_{N}(G)$ and $\alpha_{N}(G)$ for planar graphs.
5. Find similar estimates and characterizations for covering and independence, when $E_{k}[v]$ is defined as the set of edges in the subgraph induced by the vertices of distance at most k from v. (With this notation, $E_{1}[v]=E[v]$.)

Acknowledgment. The authors thank J. Lehel for discussions on the subject.

REFERENCES

[AF] R. P. Anstee and M. Farber, Characterizations of totally balanced matrices, J. Algorithms, 5(1984), pp. 215-230.
[AST] T. ANDREAE, M. SChUGHART, AND Zs. TUZA, Clique-transversal sets of line graphs and complements of line graphs, Discrete Math., 88 (1991), pp. 11-20.
[CN1] G. J. Chang and G. L. Nemhauser, k-domination and k-stability problems in sun-free chordal graphs, SIAM J. Algebraic Discrete Meth., 5 (1984), pp. 332-345.
[CN2] -, Covering, packing and generalized perfection, SIAM J. Algebraic Discrete Meth., 6 (1985), pp. 109-132.
[EGT] P. Erdös, T. Gallai, and Zs. TuZa, Covering the cliques of a graph with vertices, Discrete Math., to appear.
[F1] M. FARBER, Characterization of strongly chordal graphs, Discrete Math., 43 (1983), pp. 173-189.
[F2] - Domination, independent domination and duality in strongly chordal graphs, Discrete Appl. Math., 7 (1984), pp. 115-130.
[G] F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph, SIAM J. Comput., 1 (1972), pp. 180-187.
[GJ] M. R. Garey and D. S. Johnson, Computer and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.
[Go] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[HS] A. Hajnal and J. Surányi, Über die Auflösung von Graphen in Vollständige Teilgraphen, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 1 (1958), pp. 113-121.
[HKS] A. J. Hoffman, A. W. J. Kolen, and M. Sakarovitch, Totally-balanced and greedy matrices, SIAM J. Algebraic Discrete Meth., 6 (1985), pp. 721-730.
[L] J. Lehel, private communication, 1987.
[LT] J. Lehel and Zs. TuZA, Neighborhood perfect graphs, Discrete Math., 61 (1986), pp. 93-101.
[Lu] A. Lubiw, Doubly lexical ordering of matrices, SIAM J. Comput., 16 (1987), pp. 854-879.
[PT] R. Paige and R. E. Tarjan, Tree partition refinement algorithms, SIAM J. Comput., 16 (1987), pp. 973-989.
[SN] E. Sampathkumar and P. S. Neeralagi, The neighborhood number of a graph, Indian J. Pure Appl. Math., 16 (1985), pp. 126-132.
[S] J. P. SpinRad, Doubly lexical ordering of dense 0-1 matrics, preprint.
[T] Zs. TUZA, Covering all cliques of a graph, Discrete Math., 86 (1990), pp. 117-126.
[W] J. Wu, Neighborhood covering and neighborhood independence in strongly chordal graphs, preprint.

[^0]: * Received by the editors May 6, 1991; accepted for publication (in revised form) January 21, 1992.
 \dagger Institute of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan, Republic of China. e-mail: gjchang@cc.nctu.edu.tw. This research was supported in part by National Science Council of the Republic of China grant NSC79-0208-M009-31.
 \ddagger Operations Research Department, AT\&T Bell Laboratories, Holmdel, New Jersey 07733.
 § Computer and Automation Institute, Hungarian Academy of Sciences, Kende U. 13-17, H-1111 Budapest, Hungary.

