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Algorithmic Aspects of Perfect Graphs

by

Martin Charles Golumbic

Consider a collection C = {c.} of courses being offered
1

by a major university. Let T. be the time interval during

which course c is to take place. We would like to assign

courses to classrooms so that no two courses meet in the

same room at the same time.

This problem can be solved by properly coloring the

vertices of the graph G = (C,E) where c . c . e E *> T^ n t. 7^ 0.

We may interpret each color as corresponding to a different

classroom. The graph G is an interval graph, since it is

represented by intersecting time intervals.

This example is especially interesting because efficient,

linear-time algorithms are known for coloring interval graphs

with a minimum number of colors. (The minimum coloring

problem is NP-complete for general graphs.)

In this paper we will survey a number of topics in

algorithmic graph theory which involve classes of perfect

graphs. We will also discuss some recent applications of

perfect graphs to computer science. The intention of this

article is to provide an understanding of the main research

directions which have been investigated and to suggest possible

new areas of research. The sections of this paper are numbered

to correspond with the chapters of the author's book

"Algorithmic Graph Theory and Perfect Graphs". The interested

reader is referred to this book for further study.

-1-



^-



2. The Design of Efficient Algorithms

Algorithmic complexity analysis deals with the quantita-

tive aspects of problem solving. It addresses the issue of

what can be computed within a practical or reasonable amount

of time and space by measuring the resource requirements

exactly or by obtaining upper and lower bounds for them.

Complexity is actually determined at three levels: the problem,

the algorithm, and the implementation. Naturally, we want the

best algorithm which solves our problem, and we want to choose

the best implementation of that algorithm.

Consider the problem of determining whether an undirected

graph G is connected. A mathematically elegant solution is
2 3

the following: G xs connected if and only if I+M + M +M
+ • • • + M has no zero entries where M is the adjacency

matrix of G, I is the identity matrix, and n is the number of

vertices of G. However, using this theorem as an algorithm

would require much more work (matrix multiplication and addi-

tion) than is actually needed to test connectivity. A better

way would be to traverse the edges of the graph. The following

algorithm will test connectivity and find a spanning tree

efficiently.

Standard Spanning Tree Algorithm (SST)

Step I ; Start with a tree T consisting of one arbitrary

vertex and no edges.

Step II : If T contains all the vertices of G, then STOP

[T is a spanning tree]. Otherwise, do step III.

Step III ; Add to T an edge (x,y) which joins a vertex y

not yet in T to a vertex x already in T. If no such edge exists,

then STOP [there is no spanning tree; G is not connected].

Otherwise, go to step II.

In Step III of our algorithm there may be several edges

(x,y) eligible to be added to T. We call such an edge a
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candidate edge. Various priorities can be established to

guide the choice of candidates, and each priority will yield

a slightly different algorithm. If candidates are stored in

a queue, then SST gives a breadth-first search (BFS) of G.

Storing candidates in a stack SST does a depth-first search

(DFS) . If the edges have costs associated with them, and if

the candidate with minimum cost is always chosen, then SST

produces a minimum cost spanning tree (MST) . Similarly,

shortest path algorithms and critical path algorithms can

also be designed by adapting SST with a suitable priority

for choosing candidates.

The complexity of the spanning tree algorithm depends

on how the graph is stored and whether anything special is

done to the candidate edges. The table below summarizes

these complexities.

Complexity of the Standard Spanning Tree Algorithm

Candidates
in
a

Adjacency Matrix
Stored as an

Array

Adjacency Sets
Stored as Lists
or Sequentially

Stack
(DFS)

Queue
(BFS)

Reverse Heap
(MST)

O(n^)

0(n2)

0(n + e log e)

0(n + e)

0(n + e)

0(n + e log e)

A graph problem is said to be linear in the size of the

graph if it has an algorithm which can be implemented to run

in 0(n + e) steps on a graph with n vertices and e edges.

Thus testing connectivity is a linear graph problem. This

is usually the best that one could expect for any nontrivial

graph problem since every vertex and every edge would probably
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have to be examined at least once. A problem is called

polynomial if it has an algorithm which can run in o(p(n))

steps where p is a polynomial function.

The algorithmic graph problems that we will examine in

this survey paper include recognizing various classes of

perfect graphs and finding minimum colorings, minimum clique

covers, maximum cliques, and maximum stable sets. We will

be particularly interested in special purpose polynomial

algorithms designed to solve these problems for particular

classes of perfect graphs. The reason such algorithms

are important is that for arbitrary graphs these last four

problems are NP-complete. That is, they are in a large class

of problems which all currently require an exponential amount

of running time and which are all related in such a way that

if any one of them could be solved in polynomial time, then

so could all problems in this class.

3. Perfect Graphs

An undirected graph G = (V,E) is perfect if it satisfies

any of the following equivalent conditions:

u)(G^) = x(G^) (for all A £ v)

a{G^) = 9(G^) (for all A c v)

w(G^) a(G^) > |Ai (for all A C v)

The equivalence of (P,) - (P ) is known as the Perfect Graph

Theorem.

An open question whose solution has eluded researchers

for two decades is to prove or disprove the following con-

jecture of Claude Berge.

(Pj)
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strong Perfect Graph Conjecture (SPGC) . An undirected

graph G is perfect if and only if in G and in G every odd

cycle of length >^ 5 has a chord.

Although proving the SPGC seems to be a mathematical rather

than an algorithmic problem it does raise an interesting

algorithmic question.

Is there a polynomial algorithm which recognizes whether

or not an undirected graph G has an odd chordless cycle of

length >_ 5?

We have no answer to this question. However, if there is

such an algorithm and if the SPGC is true, then it would

answer another open question.

Is there a polynomial algorithm which recognizes whether

or not an undirected graph G is perfect?

In a very recent paper Grotschel, Lovasz, and Schrijver

[1980] have shown that the ellipsoid method of solving linear

programming problems can be applied to obtain a polynomial

algorithm to find maximum stable sets and minimum colorings

for perfect graphs. Also, since G is perfect if and only if

its complement G is perfect, this same approach can be used

to find maximum cliques and minimum clique covers. The major

importance of this result is that it generalizes what had

been known for certain classes of perfect graphs. Although

the complexity of the algorithm is polynomial, it may not be

practical to implement. As the authors point out, it is not

intended to compete with the special purpose algorithms

designed to solve these problems for interval graphs, compar-

ability graphs, triangulated graphs, and other classes of

perfect graphs which so often arise in applications.
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4. Triangulated Graphs

An undirected graph G is called triangulated if every

cycle of length strictly greater than 3 possesses a chord,

that is, an edge joining two nonconsecutive vertices of the

cycle. In the literature, triangulated graphs have also

been called chordal , rigid-circuit, monotone transitive

and perfect elimination graphs.

A vertex x of G is called simplicial if its adjacency

set Adj (x) induces a complete subgraph of G, i.e., Adj (x)

is a clique (not necessarily maximal). Dirac [1961], and

later Lekkerkerker and Boland [1962] , proved that a

triangulated graph always has a simplicial vertex (in fact

at least two of them) , and using this fact Fulkerson and

Gross [1965] suggested an iterative procedure to recognize

triangulated graphs based on this and the hereditary property,

Namely, repeatedly locate a simplicial vertex and eliminate

it from the graph, until either no vertices remain and the

graph is triangulated or at some stage no simplicial vertex

exists and the graph is not triangulated . The correctness

of this procedure is given in Theorem 4.1. Let us state

things more algebraically.

Let G = (V,E) be an undirected graph and let

o = [v, ,y„,...,v ] be an ordering of the vertices. We say

that a is a perfect vertex elimination scheme (or perfect

scheme) if each v. is a simplicial vertex of the induced

subgraph Gr -..In other words, each set
1 V . , . . . , V /

^i " '^j ^ ^^^ ^^i^ I J > i>

is complete. For example, the graph G, in Figure 4.1 has a

perfect vertex elimination scheme a = [a,g,b, f ,c , e,d]

.

It is not unique; in fact G, has 96 different perfect elimina-

tion schemes. In contrast to this, the graph G^ has no

simplicial vertex, so we cannot even start constructing a

perfect scheme — it has none.
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Algorithm 4.1 . Maximum cardinality search.

Input ; The adjacency sets of an undirected graph G = (V,E)

.

Output ; An ordering a of the vertices.

Method : The vertices are numbered from n to 1 in the order that

they are selected in line 3. This numbering fixes the

positions of an elimination scheme a. For each unnumbered

vertex x, the label of x will consist of the number of

numbered vertices adjacent to x. The vertices can then be

ordered according to their labels. Ties are broken arbitrarily.

The algorithm is as follows:

1. assign the label to each vertex;

2. for i -<- n to 1 by - 1 do

3. select: pick an unnumbered vertex v with largest label;

4. a(i) -^ v; [this assigns to v the number i]

5. update: for each unnumbered vertex w e Adj (v) do

6. add 1 to label (w) ; end

end

The fact that maximum cardinality search can be used to

recognize triangulated graphs is demonstrated by the next

theorem.

Theorem 4.3. An undirected graph G = (V,E) is

triangulated if and only if the ordering a produced by

Algorithm 4.1 is a perfect vertex elimination scheme.

Proof. If G has only 1 vertex, then the proof is trivial.

Assume that the theorem is true for all graphs with fev/er

than n vertices and let a be the ordering produced by

Algorithm 4.1 when applied to a triangulated graph G.

By induction, it is sufficient to show that v = a(l) is

a simplicial vertex of G.
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CLAIM ; G may not contain a chordless path

y = [u, V, , Vj, • • • /V, ,w] with k >_ 1 satisfying the property

o~-^(v.) < a"-'-(u) < a""'-(w) for all i . (1)

Suppose G contains such a path y, and choose y such

that a (u) is largest possible. Since u was numbered

before v, and since v, , but not u, is adjacent to w,-1-1
there must be some vertex x such that a (u) < a (x)

which is adjacent to u but not to v, . Let j be the largest

index such that x is adjacent to v. where we let v„ = u.

Then the path y' = [x,v
.

, . . . , v, ,w] must be chordless,

since its only possible chord xw would give a chordless

cycle of length ^4. If a (x) < a (w) , then y' would

satisfy (1) and contradict the maximality of a (u) since

a" (v,) < a" (u) < a" (x) . So it must be that o~ (v;) < a~ (x)

But this implies that y" = [w,v, . . . , v . ,x] satisfies (1) and

also contradicts the maximality. It follows that no such

path y can exist in G, which proves the claim.

Now let V = a (1) and suppose that v is not simplicial.

Choose u,w s Adj (v) with uw ^ E so that a (u) < a (w)

.

Then the path [u,v,w] satisfies (1), which contradicts

the claim. Therefore, v is simplicial and, by induction,

a is a perfect elimination scheme. The converse follows

from Theorem 4.1. D

The complexity of Algorithm 4.1 is linear in the size

of G. One such efficient implementation is the following.

Let S. be the set of unnumbered vertices whose label is i,

and let S. be represented by a doubly linked list. For each

vertex we store its label i and a pointer to its position in

the set S. . When a vertex v is numbered it is removed

from its set, and we move each adjacent vertex w up by one

set; this can be executed in 0(1 + degree (v) ) steps. Thus,

the entire algorithm will be 0(|v[ + |e|).
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In order to use MCS to recognize triangulated graphs,

we need an efficient method to test whether or not a given

ordering o of the vertices is a perfect elimination scheme.

Such an algorithm is given in Rose, Tarjan, and Lueker [1976]

and has complexity 0(|v| + |e|). (See also Golumbic [198 0,

pp. 88-91].)

Fast Algorithms for the Coloring, Clique, Stable Set

and Clique Cover Problems on Triangulated Graphs

Let G = (V,E) be a triangulated graph, and let a be a

perfect elimination for G . It was first pointed out by

Fulkerson and Gross [1965] that every maximal clique was

of the form {v} u a where

A = {x e Adj (v)
1

o~'^ iv) < o~-^ (x) } .

However, some of these sets {v} u a will not be

maximal, and we would like to filter them out. This can be

accomplished in order to find the chromatic number and

maximal cliques of a triangulated graph in 0(|vl + |e|) time.

The problem of finding the stability number a(G) of

a triangulated graph and a clique cover of size a (G) is

solved by Gavril [1972] . A linear implementation of his algo-

algorithm can be obtained by using techniques of Rose,

Tarjan and Lueker [1976] .

Let a be a perfect elimination scheme for G = (V,E).

We define inductively a sequence of vertices Y-, >Yy i - • ' tYi. in

the following manner: y, = a(l); y. is the first vertex

in a which follows y. , and which is not in
^ 1-1

A u A u . . . u A ; all vertices following y , are in
Yl Yn yi-i t

A^-" u ..f u A^ . Hence, V = (y. ,yn , . . . ,y^. 1 u a^ u ... u a^ ,

^1 . -^t
-L ^ L y^ y^

The following theorem applies.
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Theorem 4.4 (Gavril [1972]). The set (y-, ,72 / • • f Yo.)

is a maximum stable set of G, and the collection of sets

Y. = (y-) ^ Ay (i = l,2,...,t) comprises a minimum

clique cover of G.

Proof. The set iy-, tYy , . . . ,y.} is stable since if

y.y. G E for j < i, then y. G a which cannot be. Thus,

a(G) ^ t. On the other hand, -' each of the sets

Y. = {y-} ^ A is a clique, and so {y, , . . . ,Y } is a
1 1 y^^ i- u

clique cover of G. Thus, a(G) = 9(G) = t, and we have

produced the desired maximum stable set and minimum clique

cover. n
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5. Comparability Graphs

An undirected graph G = (V,E) is a comparabi lity graph

if there exists an orientation (V,F) of G satisfying

F n f""*" = , F + f"""" = E , F^ C F ,

2 —1
where F = {ac

|
ab,bc e F for some vertex b} and F is

the reversal of F. The relation F is a strict partial

ordering of V whose comparability relation is exactly E,

and F is called a transitive orientation of G (or of E)

.

Comparability graphs are also known as transi tively orientable

graphs and partially orderable graphs. Examples of some

comparability graphs can be found in Figure 5.1.

Let us see what happens when we try to assign a transitive

orientation to the 4-cycle (Figure 5.2a). Arbitrarily choos-

ing ab e F forces us to orient the bottom edge toward b and

the top edge toward d (for otherwise transitivity would be

violated) . These in turn force the remaining edge to be

oriented toward d. Applying the same idea to the graph in

in Figure 5.2b we find that a contradiction arises, namely,

choosing ab g f forces successively the orientations

cb,cd,cf ,ef ,bf ,ba. This graph is not a comparability graph.

We now make the notion of forcing more precise.

Define the binary relation V on the edges of an

undirected graph G = (V,E) as follows:

ab r a'b' iff
either a = a' and bb ' ^ E

or b = b' and aa ' ^ E

-13-





The A Graph The Suspension Bridge Graph

Figure 5.1 Transitive Orientations of Two Comparability Graphs

I

(a)

Figure 5.2

(b)

Examples of Forcing. The arbitrary choice of
ab s F forces the other indicated orientations,

Figure 5.3
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We say that ab directly forces a'b' whenever ab T a'b'. Since

E is irreflexive, ab r ab; however, ab / ba. The reader

should not continue until he is convinced of this fact.

The reflexive, transitive closure T* of r is easily-

shown to be an equivalence relation on E and hence partitions

E into what we shall call the implication classes of G. Thus

edges ab and cd are in the same implication class if and only

if there exists a sequence of edges

ab = a^b- r a^b, r ... F a, b, = cd , with k > .11 k k —

Such a sequence is called a T-cbain from ab to cd, and we

say that ab (eventually) forces cd whenever ab T* cd.

Examples . The graph G of Figure 5.3 has 8 implication

classes

:

A, = {ab} , Ap = {cd} , A_. = {ac ,ad, ae} , A. = {be ,bd,be} ,

A^ ={ba}, A_ ={dc}, A^ ={ca,da,ea}, A. = {cb,db,eb}.

On the other hand, the graph in Figure 5.2 b has only

one implication class:

A = {ab, cb, cd, cf ,ef ,bf ,ba ,bc ,dc, fc , fe , fb}

.

Let A be an implication class of an undirected graph,
-1

G, and let A = A u a denote the symmetric closure of A.

It can be shown that if G has a transitive orientation F,

then either F n a = A (F completely agrees with A) or
-1

F n A = A (F completely disagrees with A) and, in either

case, AHA =0. The converse of this is also valid, namely,

if A n A =0 for every implication class A, then G has a

transitive orientation.

-15-





Remark . Many readers may wonder whether an arbitrary union

of implication classes F = u a. satisfying F f^ F =0 and
-1 i """

F + F = E is necessarily a transitive orientation of G.

The answer is no. As a counterexample, consider a triangle

which has 8=2 such orientations two of which fail. to be

transitive.

Methods for determining the exact number of transitive

orientations t(G) of a given undirected graph G have been

developed by Shevrin and Filippov [1970] and Golumbic [1977a]

,

and a characterization of uniquely partially orderable

graphs (i.e., t(G) = 2) is given in Shevrin and Filippov [1970]

and Trotter, Moore and Sumner [1976] . These results and

others are discussed in detail in Golumbic [1980]

.

We shall now describe an algorithm for calculating

transitive orientations and for determining whether or not

a graph is a comparability graph. This technique is a modi-

fication of one first presented by Pnueli, Lempel and Even

[1971] . A discussion of its computational complexity will

follow.

Let G = (V,E) be an undirected graph. A partition of

the edge set E = B, + B„ + . . . + B, is called a G-decomposition

of E if B. is an implication class of B. + ... + B, for all

i = l,2,...,k. A sequence of edges [x-,y-,, x^y^ , ..., ^vYul

is called a decomposition scheme for G if there exists a

G-decomposition E = B-, + Bp + ... + B, satisfying x.y. e B.

for all i = l,2,...,k. In this section the term scheme

will always mean a decomposition scheme.

For a given G-decomposition there will be many correspond-

ing schemes (any set of representatives from the B.). However,

for a given scheme there exists exactly one corresponding

G-decomposition. A scheme and G-decomposition can be constructed

by the following procedure:

-16-





Algorithm 5.1. Decpmposition Algorithm

Let G = (V,E) be an undireced graph. Initially let i = 1

and E, = E.

Step I : Arbitrarily pick an edge e. = x.y. ^ E..

Step II ; Enumerate the implication class B. of E
.'

containing x.y..

Step III: Define E.,, = E. - B..
£- 1+1 1 1

Step IV : If E.^, = 0, then let k = i and STOP;

otherwise, increase i by 1 and go back to step I.

Clearly, the Decomposition Algorithm yields a scheme

[x,y, , . . . ,x, y, ] and corresponding G-decomposition B, + ... + B,

for any undirected graph G. Moreover, if y.x. had been

chosen instead of x.y. for some i, then B. would replace B.
I-' 1 ' 1 ^1

in the G-decomposition. Applying the algorithm to the graph

in Figure 5.3, the scheme [ac,bc,dc] gives the G-decomposi-

tion for which B, = A- , B„ = A. + A, and B-. = A2 • In

this example notice that although ba and be were not F -related

in the original graph, once B, is removed they become F-related

in the remaining subgraph and their implication classes merge.

In general, it can be shown that each implication class of

E. , will be the union of either 1 or 2 implication classes

of E^.

The next theorem legitimizes the use of G-decompositions

as a constructive tool for deciding whether an undirected graph

is a comparability graph, and if so, producing a transitive

orientation. Proofs of this theorem can be found in Golumbic

[1977a] or Golumbic [1980]

.

Theorem 5.1 (The TRO Theorem) Let G = (V,E) be an

undirected graph with G-decomposition E = B, + ... + B, .

The following statements are equivalent:

(i) G = (V,E) is a comparability graph;

(ii) A n A =0 for all implication classes A of E;

(iii) B. n bT =0 for i = l,...,k.
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Furthermore, when these conditions hold, B, + ... + B,Ik
is a transitive orientation of E.

By combining the TRO Theorem with the Decomposition

Algorithm, we obtain an algorithm for recognizing comparability

graphs and assigning a transitive orientation.

Algorithm 5.2. TRO Algorithm

Input ; An undirected graph G = (V,E)

.

Output : A transitive orientation F of edges of G if FLAG

has final value 0, or a message that G is not a comparability

graph if FLAG has final value 1.

Method : The entire algorithm is as follows

:

initialize: i -<- 1 ; E. -^ E; F -<- 0; FLAG -f- 0;

I: arbitrarily pick an edge x.y. G E.;

II: enumerate the implication class B. of E. containing x.y.;'^ 11 ^ i-'i

if B. n bT"*" = then
1 1

'^

else

add B . to F

;

1

FLAG -*- 1 ; [G is not a comparability
graph]

;

III: define E.,, <- E .
- B . ;1+1 1 1

IV: if E. , , =0 then
1+1 ^

k <- i; STOP [F is a transitive
orientation of G]

;

else

i -«- i + 1 ; go to 1;

The sequence of arbitrary choices made in line I of the

algorithm determines which of the many transitive orienta-

tions of G is produced by the algorithm. A different scheme

may give a different transitive orientation. But, when you

try out a few different schemes you will notice a remarkable

-18-





phenomenon: No matter how the arbitrary choices for G are

made, the number of iterations k will always be the same.

This phenomenon is actually true for any graph G. A character-

ization of the underlying mathematical structure which causes

it is given in Golumbic [1977a, 1980].

A more detailed version of Algorithms 5.1 and 5.2 will

suggest how we may construct a G-decomposition and test

transitive orientability of an undirected graph G = (V,E)

in 0(6 |e|) time and 0(|v| + |e|) space where 6 is the maximum

degree of a vertex. Let G = (V,E) be an undirected graph

with vertices v, ,v„,...,v . In the algorithm below we use12' ' n ^

the function

if V. V. ^ EID
_,_,„„,. .. I k if v.v. has been assigned to B,CLASS (x,j) = ] 1 j

^ k
-k if v.v. has been assigned to B,"-'-

undefined if v.v. e E has not yet been

assigned

and |CLASS(i,j)| denotes the absolute value of CLASS(i,j).

Algorithm 5.3. Decomposition Algorithm (detailed version)

Input ; The adjacency sets of an undirected graph G = (V,E)

with vertices v, ,v„,...,v .12' ' n

Output : A G-decomposition of the graph given by the final

value of CLASS, and a variable FLAG which is if the graph

is a comparability graph and 1 otherwise. If the algorithm

terminates with FLAG equal to 0, then a transitive orienta-

tion of G is obtained by combining all edges having positive

CLASS.

Method : The algorithm proceeds until all edges have been

explored. In the kth iteration an unexplored edge is placed

in B, (its CLASS is changed to k) . Whenever an edge is
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placed into B, it is explored using the recursive procedure

of Figure 5.4 by adding to B, those edges F-related to it

in the graph E, . (Notice that v. v. s e, if and only if

either | CLASS (i,j)| equals k or is undefined throughout the

kth iteration.) The variable FLAG is changed from 0' to 1

the first time a B, is found such that B, i^ B, 7^ 0. At that

point it is known that G is not a comparability graph (by

Thoerem 5.1). The algorithm is as follows.

initialize: k -<-
; FLAG -^

;

for each edge v. v. in E do

if CLASS (i,j) is undefined then do

k ^ k + 1;

CLASS (i,j) ^ k; CLASS (j,i) ^ -k

;

EXPLORE (i,j)

;

end ;

end

;
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procedure EXPLORE (i , j )

:

loop 1: for each m e Adj(i) such that [m ^ Adj(j)

or
I

CLASS (j ,m)
\

< k] do

if CLASS(i,m) is undefined then do

CLASS (i,in) ^ k ; CLASS (m,i) -^ -k ;

EXPLORE (i ,m) ; end

else if CLASS{i,m) = -k then do

CLASS (i,m) -^ k; FLAG -t- 1;

EXPLORE (i,m) ; end

end loop 1

loop 2: for each m G Adj(j) such that

[m^Adj(i) or
I

CLASS (i ,m)
|
<k] do

if CLASS(m,j) is undefined then do

CLASS (m,j) -f- k; CLASS (j,m) <- -k;

EXPLORE (m,j) ; end

else if CLASS(m,j) = -k then do

CLASS (m,j) ^ k; FLAG <- 1;

EXPLORE (m,j) ; end

end loop 2

return

end

Figure 5.4
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Complexity analysis : We begin by specifying an appropriate

data structure. The adjacency sets are stored as linked lists

sorted into increasing order. The element of the list Adj (i)

which represents edge v. v. will contain j, CLASS (i,j), a

pointer to CLASS(j,i), and a pointer to the next element on

Adj (i) . The storage requirement for this data structure is

0(|v| + |eI), and the entire initialization of the data

structure can be accomplished in linear time.

The crucial fa ctor in the analysis of our algorithm is

the time required to access or assign the CLASS function.

Consider the first loop of EXPLORE ( i , j ) . Two temporary pointers

simultaneously scan Adj (i) and Adj(j) looking for values of m

which satisfy the condition in the for statement. This loop

can be executed in 0(d.+ d.) steps. The second loop is done

similarly, hence the time complexity of EXPLORE (i,j) is

0(d. +d .) .

In the main program, a pointer scans each adjacency list

successively in the for loop implying a time complexity of

0(|e|). Finally, the algorithm calls EXPLORE once for each

edge or its reversal (both if their implication classes are

not disjoint). Therefore, since

I (d. + d.) = 0(61e|)
v.v.GE ^

it follows that the time complexity for the entire algorithm

(including preprocessing the input) is at most 0(6 |e|).

Coloring and Other Problems on Comparability Graphs

Suppose that G is a comparability graph, and let F be a

transitive orientation of G. A height function h can be

placed on V as follows: h (v) = if v is a sink; otherwise,

h(v) = 1 + max {h(w)
|
vw g F}. The height function can be

assigned in linear time using a recursive depth-first search.
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and it is a proper vertex coloring of G. The number of

colors used will be equal to the number of vertices in the

longest path of F, and since, by transitivity, every path

in F corresponds to a clique of G, the height function will

yield a coloring which uses exactly aj(G) colors which

is the best possible. Therefore, from the transitive

orientation F we can assign a minimum coloring to G using

the height function in 0(|v| + |e|) steps, and, at the same

time, calculate a maximum clique of G. We will illustrate

this by solving the more general problem of finding a maximum

weighted clique of a comparability graph.

(If all vertices have the same weight, then the problem

is reduced to the usual problem of finding a clique of

maximum cardinality.) In general the maximum weighted

clique problem is NP-complete, but when restricted to compar-

ability graphs it becomes tractable.

Algorithm 5.4 Minimum Coloring and Maximum Weighted

Clique of a Comparability Graph.

Input: The adjacency sets of a transitive orientation F

of a comparability graph G - (V,E) and a weight function

w defined on V.

Output : A minimum coloring of G and a clique K of G

whose weight is maximum.

Method: We use a modification of the height calculation

technique employing the recursive depth-first search procedure

SEARCH in Figure 5.5. To each vertex v we associate its COLOR

and its cumulative weight W{v) which equals the weight of

the heaviest path from v to some sink. A pointer is assigned

to v designating its successor on that heaviest path. Once

the cumulative weights are assigned the clique K is calculated

beginning the line labeled retrace. The algorithm is given

in the form of a procedure.
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procedure MAXWEIGHT CLIQUE (V,F)

:

for all V & V do

if V is unsearched then

SEARCH (V)

;

end

retrace: select y g v such that W(y) = max {W(v)
|
v s V}

;

K *- {y}; y <- POINTER(y);

while Y ji^ h do

K -!- K U {y}; y -f- POINTER(y);

end

return K;

end

We conclude with an interesting polynomial- time method

for finding a(G), the size of the largest stable set of a

comparability graph G. We transform a transitive orienta-

tion (V,F) of G into a transportation network by adding two

new vertices s and t and edges sx and yt for each source x

and sink y of F. Assigning a lower capacity of 1 to each

vertex, we initialize a compatible integer-valued flow and

then call a minimum-flow algorithm. The valvie of the

minimum flow will equal the size of the smallest covering

of the vertices by cliques which in turn will equal the

size of the largest independent set since every comparability

graph is perfect. Such a minimum flow algorithm can run in

polynomial time.
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procedure SEARCH (v)

:

if Adj (v) = then do

W(v) = w(v); POINTER(v) ^ A; COLOR(v) *- 0; end

else do

for all X G Adj (v) do

if X is unsearched then

SEARCH ix) ; end

select y e Ad j (v) such that W(y) = inax{W (x)
|
xGAd j (v) } ;

W(v) -<- w(v) + W(y) ; POINTER(v) ^ y;

select z G Adj (v) such that COLOR (z) =max{ COLOR (z)
|

z G Adj (v) };

COLOR(v) ^ 1 + COLOR(z);

end

re turn

end

Figure 5.5
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6. Split Graphs

An undirected graph G - (V,E) is a split graph if there

is a partition V = S + K of its vertex set into a stable

set S and a complete set K. Since a stable set of G is

a complete set of the complement G and vice versa, G is

a split graph if and only if its complement G is a split

graph. Foldes and Hammer [1977] have given the following

characterization of split graphs.

Theorem 6.1. Let G be an undirected graph. The following

conditions are equivalent:

(i) G is a split graph

(ii) G and G are triangulated graphs

(iii) G contains no induced subgraph isomorphic to 2K2, C.

or Cc.

An alternate characterization of split graphs in terms of

degree sequences is the following result of Hammer and Simeone

[1977]

.

Theorem 6.2. Let G = (V,E) be an undirected graph with

degree sequence d, >_ d„ ^ . . . ^ d , and let m = max{ i
|
d . > i-l}

Then, G is a split graph if and only if

m n

I d = m{m - 1) + I d
i=l

^ i=m+l ^

Furthermore, if this is the case, the m vertices of largest

degree will be a maximum complete set of G.

A simple recognition algorithm for split graphs can be

designed by applying Theorem 6.2. If this is done, it can

easily be seen that the complexity of recognizing split

graphs is 0(n log n) . The same complexity applies for the

clique problem and the stable set problem on split graphs.

However, the Hamiltonian circuit problem on split graphs

is NP-complete.
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7. Permutation Graphs

Let TT = [tt ,t: ,
• • • ,Tr ] be a permutation of the numbers

l,2,...,n. We define the undirected graph G[it] = (V,E) as

follows

:

and

V =^^1'^2 ^n^

(V^,Vj) G E iff (i-j) {TT~^ - TT^) < .

Two vertices are joined by an edge if they occur out of

their proper order reading the sequence ir left to right

(see Figure 7.1). v.

Figure 7.1. The Graph G [4, 1,3, 5, 2]

If we reverse the sequence it, each pair of numbers

which occur in the correct order in tt will now be in the

wrong order, and vice versa. Thus, the permutation graph

we obtain will be the complement of G[Tr]. This shows that

the complement of a permutation graph is also a permutation

graph.

Another property of the graph G[7t] is that it is

transitively orientable. If we orient each edge toward

its larger endpoint, then we will obtain a transitive

orientation F. For, suppose (v., v.) ep and (v-;,v, ) g f,
1 -1 1 "1 J JC-1 -1

then i < j < k and tt .

"^ > tt .

"^ > irrl , which implies

that (v. ,v, )
G F. This is only half of the story; we

actually have the following result of Pneuli, Lempel, and

Even [1971]

.
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Theorem 7.1 . An undirected graph G is a permutation

graph if and only if G and G are comparability graphs.

Theorem 7.1 suggests an algorithm for recognizing

permutation graphs, namely, applying the transitive orienta-

tion algorithm to the graph and to its complement. If we

succeed in finding transitive orientations, then the graph

is a permutation graph. To find a suitable permutation we

can follow the construction procedure in the proof of the

theorem, which can be found in Golumbic [1980] . The
3 2

entire method requires 0(n ) time and 0(n ) space.

Permutation graphs are useful in a number of applica-

tions (Even, Pnueli, and Lempel [1972], Tarjan [1972],

Golumbic [1980] ) . Of particular interest in this context

is the following very efficient coloring algorithm for G[7t]

Algorithm 7.1. Coloring a Permtuation Graph

Input : A permutation t: = [ir-, , tt^ , . . . , it ] of the numbers

{1 , 2 , . . . ,n}

.

Output : A coloring of the vertices G [it] and the chromatic

number x of G [tt] .

Method ; The vertices of G[it] are assigned colors in the

order it, , it_ , . . . , ir , although the graph itself is never

actually calculated. A counter k will keep track of the

total number of colors used so far, and an array LAST(c)

will contain the number of the vertex which v;as the last
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to receive color c. During the jth time through the loop

smallest colo]

The entire algorithm is as follows

we color tt . with the smallest color q satisfying it. >_ LAST(q)

1. initialize:

2. loop:

3.

4.

5.

6.

7.

procedure

k -<- 0; for i-f-l to n do LAST(i)

for j -s- 1 to n do

m -f- min {q |
tt . >_ LAST(q)};

COLOR (tt . )
-f- m;

LAST (m) ^ TT . ;

k -<- max{k ,m} ;

end loop

X ^ k;

end

; end

Example . Let us illustrate Algorithm 7.1 on the permuta-

tion TT - [4,1,3,5,2], After the initializations in line 1 the

following assignments will be made in the loop:

J - 1

m -*- 1

COLOR (4) ^

1

LAST(l) ^ 4

k ^ 1

J ^ 2

m -«- 2

COLOR (1) ^ 2

LAST (2) ^ 1

k ^ 2

j ^ 3

m -^ 2

COLOR (3) ^ 2

LAST (2) ^ 3

k ^ 2

j - 4

m -<- 2

COLOR (5) <- 2

LAST (2) ^ 5

k - 2

m

COLOR (2) ^ 3

LAST (3) ^ 2

k ^ 3

Thus the chromatic number of G[tt] is 3 and a 3-coloring has been

assigned.

The complexity of Algorithm 7.1 is 0(n log x) if line 3

is implemented using binary search. A proof of the correct-

ness of this algorithm can be found in Golumbic [1981] . Algo-

rithm 7.1 can be used to color any permutation graph G

in 0(n log n) time provided we are given the permutation tt

and the isomorphism G -^ G[tt] . If we do not have tt, then we

would use Algorithm 5.4.
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8. Interval Graphs

An undirected graph G is called an interval graph if

its vertices can be put into one-to-one correspondence with

a set of intervals I of a linearly ordered set (like the

real line) such that two vertices are connected by an edge

of G if and only if their corresponding intervals have

nonempty intersection. We call I an interval representa-

tion for G. (It is unimportant whether we use open intervals

or closed intervals; the resulting class of graphs will be

the same .

)

The following characterization of interval graphs is

due to Gilmore and Hoffman [1964].

Theorem 8.1. An undirected graph G is an interval graph

if and only if G is a triangulated graph and its complement

G is a comparability graph.

The coloring, clique, stable set, and clique cover

problems can be solved in polynomial time for interval graphs

by using the algorithms of Sections 4 or 5 , and a recognition

algorithm could be obtained by combining the algorithms for

triangulated graphs and comparability graphs. However, the

recognition algorithm presented in Booth and Lueker [1976]

is asymptotically more efficient. They have shown that a

data structure called a PQ-tree can be used to obtain a

linear algorithm.

Interval graphs have become particularly useful mathe-

matical structures for modeling real world problems. The line,

on which the intervals rest, may represent anything that is

normally regarded as one-dimensional. The linearity may be

due to physical restriction such as blemishes on a micro-

organism, speed traps on a highway, or files in sequential

storage in a computer. It may arise from time dependencies

as in the case of the life span of persons or cars, or jobs
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on a fixed time schedule. A cost function may be the reason

as with the approximate worth of some fine wines or the

potential for growth of a portfolio of securities.

The task to be performed on an interval graph will

vary from problem to problem. If what is required is to find

a coloring or a maximum weighted stable set or a large clique,

then fast algorithms are available. If a Hamiltonian circuit

must be found, then there are no known efficient algorithms

(unless the graph has more structure than just being an

interval graph) . Also, the speed with which such a problem

can be solved will depend partially on whether we are given

simply the interval graph G, or, in addition, an interval

representation of G.

We have already seen one application of interval graphs

in the opening paragraph of this article. The interested

reader is referred to Roberts [1976, 1978] and Golumbic [1980]

for numerous other applications. We will discuss here a

recent application of interval graphs to optimal macro substi-

tutions suggested by Golumbic, Goss, and Dewar [1980].

The compiler or interpreter for a microcomputer system

may be regarded as a byte sequence which resides in main

memory. Due to restrictions on the size of main memory, it

is desirable to compact this byte sequence. One technique

is to define a set of macro substitutions which allow occur-

rences of specified byte subsequences to be replaced by

single bytes. The subsequences are restored dynamically at

run time by use of an associated table.

Figure 8.1 shows a sequence of hexidecim.al digits of

length 36. Since the digits E and F do not appear, they may

be used to indicate macros. Choosing E = 6A2 and F = 43B96

the original sequence may be reduced to length 20. Notice

that when two macros overlap, only one can be replaced.

This overlapping phenomenon, therefore, restricts how the

macro table may be applied.

-31-





Original Sequence : 6A2 C4 3B96 0D6 6A2 1C7 8 6A2 4 3B9 6A2 3C6A2 5

Macro Table: E=6A2 F=43B96 V OVERLAP
Abbreviated Sequence: ECF0D60E1C78EFA23CE5

Figure 8 . 1. Macro Substitution.

The problem to be solved is to choose an optimal set of

macro substitutions and an order for performing the substi-

tutions which minimizes the total length of the byte

sequence and associated table. Formally we require the

following

.

Input: A byte sequence B of length n.

Output: A set of m macros each of length <_ k and an order

for performing the substitutions such that the

total length of the abbreviated sequence and macro

table is minimized.

The reason for specifying a bound on the length of the macros

is that in practice we may want them to be very short compared

to the length of the original sequence.

Notice that there are actually two aspects to the problem:

(1) choosing a macro set, and

(2) using the macro set optimally.

Let B = <b, ,bp,...,b > be a sequence of bytes and let

k be a fixed constant. The length of B is denoted by |b| =n.

A subsequence <b.,...,b.> of B is denoted by B[i,j]. Clearly,

|B[i,j]| = j-i+1. The weighted interval graph G = (V,E,w)

that we will associate with B is defined as follows: The vertex

set V consists of all intervals [i,j] satisfying l£j-i<k-l;
two vertices v = [i,j] and u = [i',j'] are connected by an

edge iff they intersect, i.e., either i' <_j ^j' or if.j'£j;
the weight w(v) of a vertex v = [i,j] is equal to j-i which

represents the number of bytes that would be saved by replac-

ing B[i,j] by a single byte.
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It is easy to see that the number of vertices of G is

slightly less than kn and the number of edges is less than
3but on the order of k n. Furthermore, the graph does not

actually have to be calculated and stored since any query

about adjacency of vertices can be answered by a simple

comparison of the indices of their corresponding

subsequences.

Let M be a subset of V and let

B[M] = {B[i,j]
I

[i,j] e M}.

We may think of B [M] as the macro table generated by M. To

perform the macro substitutions we would find all occurrences

of these macros and then choose a subset of the occurrences,

no two of which intersect, to be abbreviated. Such a subset

corresponds precisely to a stable set of the interval graph G.

(Notice that this model does not permit embedding one macro

in another macro.) Moreover, to make the abbreviated sequence

as short as possible, we would like a stable set whose weight

is maximum. (The weight of a subset of vertices is the sum

of the weights of its members.) This method is summarized

in Figure 8.2.

procedure SUBSTITUTION (M)

:

C(M) ^ {[i,j] e V
I

B[i,j]=B[i',j'] for some [i',j']eM};

X(M) -f- MAXIMUM WEIGHTED STABLE SET OF THE

INDUCED SUBGRAPH G.

end

C(M) '

SAVINGS(M) ^ I w(u) -
I w(v)

;

uex(M) vSM

Figure 8.2. Finding an Optimal Macro Substitution
for a Given Set of Macros

The set C (M) consists of all intervals representing

"candidate" subsequences which may be replaced using the

macro table B [M] . Of these candidates only the subsequences
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represented by X(M) will be replaced. The SAVINGS is calcu-

lated by summing the savings obtained for each macro substi-

tution and subtracting the cost of storing the macro table.

Using SUBSTITUTION we obtain the following algorithm

which gives an optimal solution to the general problem.

Algorithm 8.1

loop: for all M c V such that |m| = m do

call SUBSTITUTION (M)

;

end loop

return the M and X(M) whose SAVINGS (M) is maximum;

The number of passes through the loop in Algorithm 8.1

is on the order of f 1 since G has 0(kn) vertices. (In
^ m ^

practice, some of the subsets M may be ruled out due to

other criteria, for example, by requiring that macros begin

with certain designated bytes. This would lower the number

of passes.) The complexity of SUBSTITUTION depends on how

efficiently we are able to find C (M) and X(M) for a given M.

Using a modification of the deterministic pattern matching

algorithm of Morris and Pratt [1970], C(M) can be calculated

in 0(m(k + n)) time. See also Aho , Hopcroft and Ullman [1976,

Chapter 9] . Since a maximum stable set of an interval graph

G = (V,E) may be found in time 0(|v| + |e|), X(M) can be

calculated in 0(k n) time. Hence, we conclude that the
3worst case complexity of SUBSTITUTION is 0(m(k+n)+k n)

and the worst case complexity of Algorithm 8.1 is

m , 3

0(c , n ) where c ,

ra,k m,k
ek
m r=

'
' /2TTm

which is, in terms of the length of the input sequence, a

polynomial whose degree depends on the constant m.
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Notice that our model has not allowed the embedding of

macros in other macros. A reason for this could be that it

is impractical to implement the stack necessary to allow

embedding. In some applications one may choose to allow

embedding. If this is the case, a similar model can be

designed which uses overlap graphs rather than interval

graphs. An overlap graph is the same as an interval graph

in which there are no edges between pairs of vertices whose

corresponding intervals have one properly contained in the

other.

Our Algorithm 8.1 and SUBSTITUTION will also be optimal

using the overlap graph model. Their respective complexities,

in this case, will each be raised by one power of kn . This

follows from the fact that a maximum weighted stable set of

an overlap graph G == (V,E) can be calculated in 0(1v|*|e|)

time, (see Gavril [1973], and Golumbic [1980, Chapter 11].

The problem of macro substitution was recently applied

to MICRO SPITBOL for an Incoterm SPD20/40 supporting 64K

of main memory. The byte sequence for MICRO SPITBOL required

23,110 bytes of storage. There were 176 unused opcodes which

were designated to represent macros. That is, n = 23110

and m = 176 and we set k = 20.

Since the time complexity of Algorithm 8.1 would be

high for this application, an effective technique for finding

a no- optimal solution was needed. A combination of

heuristics and SUBSTITUTE reduced the size of the sequence

to 17,920 bytes and produced a macro table of 962 bytes.

This represents a saving of 4,228 bytes of main storage,

a saving of 20%. It should be pointed out that an increased

cost of obtaining a very good macro substitution may be

justified by the fact that this is done only once per compiler

and machine and the result presumably will be used many,

many times.
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