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Abstract

We show that calculating contact map overlap (a
measure of similarity of protein structures) is NP-
hard, but can be solved in polynomial time for several
interesting and relevant special cases. We identify an
important special case of this problem correspond-
ing to self-avoiding walks, and prove a decomposi-
tion theorem and a corollary approximation result for
this special case. These are the �rst approximation
algorithms with guaranteed error bounds, and NP-
completeness results in the literature in the area of
protein structure alignment/fold recognition for mea-
sures of structure similarity of practical interest.

A Introduction

Protein structure prediction is going through an im-
portant paradigm shift. The Ab initio prediction
method aims to derive from the protein sequence,
using �rst principles, the 3D structure of the pro-
tein. Despite over 30 years of research generating an
immense literature, and considerable progress in un-
derstanding the physics, chemistry and biology of the
folding process, the success of the method on natu-
rally occurring proteins is very limited. A new excit-
ing research direction of proven practical success is
emerging: Protein Fold Assignment[23].
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A.1 A Paradigm-shift

The Brookhaven Protein Database (PDB) records
several thousands of protein structures. Each such
structure gives (basically) the 3D coordinates of all
the atoms of the structure. It has hundreds to thou-
sands such coordinates. Two trends were observed as
the PDB grows every year incorporating new protein
structures. First of all, the structures cluster natu-
rally into "fold families" based on their topological
similarity. Second, the number of "new folds" in-
corporated in the PDB is decreasing "exponentially"
from year to year. As the PDB has today (based on
several classi�cations) about 700 fold-families, it is
conjectured that there will be a total of about 1000
fold-families for the naturally occuring proteins.

These developments induced a paradigm-shift in
structure prediction methods. Instead of basing pre-
diction on �rst principles, the prediction of the struc-
ture of a newly discovered protein can be adequately
"solved" by computationally assigning one of the
1000 folds to it. This new direction, Protein Fold
Assignment, turns out to be the most successful ap-
proach to structure prediction as reported in the re-
cent CASP3: International Protein Folding Compe-
tition, ASILOMAR 98 [23]. Protein fold assignment
methodology is a rich area for combinatorial prob-
lems and algorithms necessary to �netune and ma-
turely and adequately solve its computational chal-
lenges. It requires computational support for sev-
eral basic areas of protein structure analysis includ-
ing: (1) pairwise structure alignment based on vari-
ous measures of structure similarity, (2) fold cluster-
ing/classi�cation and multiple structure alignment,
(3) fold recognition/threading.

A.2 Protein Structure Similarity

Due to the paradigm-shift described above, and as
the sequence and the three-dimensional structure of



more and more proteins are discovered in the labo-
ratory and catalogued in databases, the comparative
study of protein structure has emerged as an impor-
tant and urgent problem in Computational Biology.
Several measures of protein structure similarity have
been proposed and used over the past few years, at-
tempting to assign to each pair of proteins a distance,
presumably capturing the extent to which the two
proteins \resemble" each other in structure, origin,
and function [17, 7, 34, 8, 28, 9, 16, 25, 27, 30, 29,
22, 17, 4, 36, 5, 24, 35, 37, 38, 32, 21, 32, 19, 17, 18].
The most important and popular such measures used
in the Protein Science literature are these:

� The root-mean-square distance (RMSD) of the
two proteins |the two three-dimensional struc-
tures are superposed in such a way that their L2

metric is minimized [28, 9, 11, 12, 13, 16, 25, 27,
30, 29]

� A related measure is the di�erence of the dis-
tance matrices [21, 32, 22].

� In this paper we examine an emerging important
distance measure called contact map overlap. To
compute this distance between two proteins, the
monotonic one-to-one mapping between two sub-
sets of the two sets of monomers is found that
maximizes the number of \nearby" or \contact"
pairs that are mapped to each other [19, 17, 18].

� Various other ad hoc scores based on local sec-
ondary structure, hydrogen bonding pattern,
burial status, or interaction environment [22, 17,
4, 7, 8, 36, 34, 5, 24, 35, 37, 38, 32]

There are many conceptual di�culties associated
with these measures. First, some of them are no-
toriously non-robust [28, 9, 29, 17, 22, 4]. It is
well-known that the mapping from sequence to struc-
ture (\the protein folding problem") is very com-
plex and non-local [10, 3]; this means that there is
very little relationship between the edit distance of
two proteins and their three-dimensional similarity.
Unfortunately, many alignment algorithms introduce
signi�cant biases by disregarding this point. Also,
the hydrophobic/hydrophilic character of the residues
(believed by many to be the single most important
predictor of structure [14]) is often not re
ected in
the distance calculation (this is especially true in the
RMSD distance, and even more serious in the so-
called C-alpha alignments [17]). Further, most mod-
els fail to take into account the \excluded volume"

aspect of protein structure |that is to say, the fact
that protein backbones are self-avoiding walks.

There are also many computational di�culties as-
sociated with such measures, as many of these mea-
sures require the solution of intractable optimiza-
tion problems. The optimization problems draw
their complexity from the non-locality of the scor-
ing function, and the handling of insertions and
deletions. As a consequence all existing structural
alignment algorithms use ad hoc simpli�cations ei-
ther of the scoring function or of the search proce-
dure [17]. They attempt to reduce the dimension-
ality of the problem by performing at least part of
the search at the level of secondary structure ele-
ments. Other methods employ dynamic program-
ming [8] and Monte Carlo simulations [17] or heuris-
tics [17, 28, 9, 22, 4, 36, 5, 24, 35, 37, 32, 21, 19],
without, however, a rigorous analysis.

There is a natural list of desiderata for a structural
similarity measure:

� it should not penalize too heavily insertions and
deletions

� it should be reasonably robust, in that small per-
turbations of the de�nition should not make too
much di�erence in the measure

� it should be easy to compute (or at least rigor-
ously approximated)

� it should be able to discover both local and global
alignments

� it should be able to discover hydrophilic-
hydrophobic alignments

� it should take into account the self-avoiding na-
ture of a protein

� it should be subject to empirical studies on Pro-
tein Data Base (PDB) data to validate its success
in capturing structural similarity

� even if one comes up, from a theoretical stand-
point, with a \perfect" measure, it will be dif-
�cult to displace entrenched measures, used for
years by protein scientists. Acceptance in the
�eld is thus a further desideratum.

For all of these reasons, we chose to concentrate
on contact map overlap, explained next. In our view,
no other measure comes even close to satisfying the
above list of desiderata.



A fundamental concept in protein structure anal-
ysis is that of a \contact" |an instance in which
two amino acids of the protein come very close to
each other, presumably forming some kind of bond.
Understanding the mathematical structure of the set
of contacts of a self-avoiding walk is a long-standing
open problem (in this paper we make signi�cant
progress in this problem, proving a decomposition
theorem for the contact graph of two-dimensional
walks, Theorem 8). The study of two-dimensional
self-avoiding walks on the square lattice, including
the structure of their contact maps, is of basic im-
portance in the statistical mechanics studies of lattice
models of protein folding. A contact map is a useful
graph-theoretic abstraction (and two-dimensional de-
piction) of the structure of a protein. For a protein
of size n, and a given threshold � > 0, the contact
map M� is an n�n 0-1 matrix, whose entryM�(i; j)
equals 1, if the distance between amino acids i and j is
less than or equal to �, and 0 otherwise. The contact
map can be also viewed as a Hamilton path (usually
depicted horizontally), with nodes representing the
amino acids, and with edges added that join pairs
of nodes whose centers of gravity have been found
to be closer to each other than the �xed threshold �

(see Figure 1 for an example). The center of grav-
ity is one of the possible choices for represnting the
amino acid by a central point. Contact maps are
used for secondary structure prediction, fold identi-
�cation, fold classi�cation, fold assignment, protein
structure alignment, and threading [34, 8, 7]. They
are also used extensively for the calculation of statis-
tical potentials, a most popular example being the
Miyazawa-Jernigan matrix [31], a 20 � 20 matrix,
whose entries re
ect the frequency of contact between
pairs of amino acids in a protein database. These po-
tentials are in turn used for simulating protein fold-
ing, judging the quality of proposed protein models,
as well as in protein design.

Contact maps are also used extensively in the study
of RNA structure. The three-dimensional structure of
RNA is also the object of current intense study, and
contact maps have been employed in it [2, 26, 33].
Calculating the contact map overlap distance of two
RNA structures is another fundamental problem. It
had been known that the three-dimensional structure
of RNA is more dominated by its two-dimensional
structure. Our results are powerful enough to give
the �rst rigorous approximation algorithms for the
RNA case in full generality.

{152L} HYDROLASE(O-GLYCOSYL)

Figure 1: The contact map graph of
HYDROLASE(O-GLYCOSYL)

Our Results

In this paper we embark on a theoretical and algorith-
mic study of protein structure similarity, focussing
on the measure of contact map overlap, which, as we
have argued, is the one that appears the most sus-
ceptible and ultimately useful (especially in view of
our positive results explained below).

� We formulate the calculation of the contact map
overlap of two protein structures as a graph-
theoretic optimization problem.

� We prove that this optimization problem is in
fact MAXSNP-hard to solve, and it is NP-hard
even if the underlying contact maps are the
contact maps of two-dimensional self-avoiding
walks.

� We identify two important special cases of con-
tact map graphs, the queue and the stack (previ-
ously studied in the context of VLSI [6, 20]), as
well as the staircase (a special case of the queue)
and the augmented staircase (a staircase with a
stack embedded in it in a restricted way). We
develop polynomial-time dynamic programming



algorithms that solve the contact map overlap
problem for some of these graphs. We point
out that using these algorithms we can approxi-
mately compute the contact map overlap of two
RNA structures.

� We study the contact map graphs of self-avoiding
walks in the two-dimensional grid, and we show
a structural theorem establishing that any such
graph is the union of two augmented staircases
and a stack. (We also show that such graphs are
NP-hard to recognize, and therefore there is little
hope for a more restrictive if-and-only-if charac-
terization.) This is an important �rst step in
identifying positive properties of protein contact
maps by exploiting their self-avoiding nature.

� As a corollary of the results in the two topics
above, we develop a polynomial-time algorithm
that approximates the contact map overlap of
two self-avoiding two-dimensional walks within
a factor of 3.

To our knowledge, this is the �rst theoretical study
of protein structure similarity. An independent for-
mulation of the problem and NP-completeness proof
for a di�erent measure involving RNA can be found
in [15]. Also, a more general measure was used by [1]
to provide hardness results and algorithms for thread-
ing.

B Problem Formulation and

NP-completeness

A contact map (n;E) is an undirected graph G =
(V;E) such that the set of vertices V = f1; 2; : : : ; ng
is linearly ordered (see Figure 2 for an example).
Contact maps are useful representations of proteins,
where the vertices are the amino acids of the protein,
and the edges are pairs of amino acids whose centroids
are closer than a �xed threshold value (typically a few
Angstroms).

The contact map overlap problem is the fol-
lowing optimization problem: Given two contact
maps (n;E) and (m;E0), �nd two subsets S �
f1; : : : ; ng and S0 � f1; : : : ;mg with jSj = jS0j
such that the cardinality jf[u; v] 2 E : u; v 2
S; [f(u); f(v)] 2 E0gj is as large as possible, where
f is an order-preserving bijection between S and
S0. For example, the maximum overlap between
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Figure 2: Contact overlap example

the two contact maps shown in Figure 2 is 4, ob-
tained by taking S = f3; 4; 5; 6; 7; 8; 9; 10g and S0 =
fa; b; c; e; f; g; h; ig.

We next show that this problem is hard to solve
or approximate (proof omitted; an independent and
related NP-completeness proof can be found in [?]):

Theorem 1 The contact map overlap problem
is MAXSNP-complete even if both contact maps have
maximum degree one.

It is intuitively clear and widely accepted that con-
tact maps of real proteins are far from arbitrary col-
lections of edges, since they have a specialized struc-
ture re
ecting the geometry of proteins. We next
introduce a special class of contact maps that seem
to go a long way towards capturing this structure.
A self-avoiding walk on the two-dimensional grid is a
one-to-one mapping f from f1; 2; : : : ; ng to Z2 such
that kf(i) � f(i + 1)k2 = 1 for i = 1; : : : ; n � 1.
Associate with each such walk f its contact map
Gf = (f1; 2; : : : ; ng; E), where E = f[i; j] : ji � jj >
1; kf(i)�f(j)k2 = 1g. That is, Gf is the contact map
that represents all distance-one contacts of the walk
excluding consecutive neighbors. We shall informally
refer to Gf itself as a \self-avoiding walk;" notice that
such graphs have maximum degree two (with the ex-
ception of nodes 1 and n, which may have degree
three). Unfortunately, the problem is hard here as
well:

Theorem 2 The contact map overlap problem
is NP-complete even if both contact maps are self-
avoiding walks.

As we shall see, however, this special case of the



staircasequeuestack
Figure 3: Stack, queue, and staircase examples

problem can be approximated within a factor of three
(see Corollary 9 below).

C Polynomial Algorithms for

Special Cases

De�ne a stack to be a contact map (n;E) such that if
[i; j]; [k; `] 2 E then the intervals [i; j] and [k; `] either
contain one another, are disjoint, or overlap at an
endpoint. De�ne a queue to be a contact map (n;E)
such that if [i; j]; [k; `] 2 E then the intervals [i; j] and
[k; `] do not contain one another unless they share
an endpoint. Stacks and queues have been studied
extensively in [6, 20]. A staircase is a queue which
contains sets of mutually overlapping intervals such
that either no two intervals in di�ering sets meet, or
at most two intervals overlap at an endpoint. (See
Figure 3 for examples.)

Theorem 3 There is an O(n6) algorithm for �nding
the maximum overlap of two degree-2 contact maps,
one of which is either a stack or a staircase.

Sketch: All algorithms are based on dynamic pro-
gramming. In the stack case, for example, let S

be a degree-2 stack containing n vertices labelled 1
through n, and let G be an arbitrary degree-2 graph
containing m vertices labelled 1 through m. We com-
pute the contact overlap of S and G, co(S;G), us-
ing dynamic programming. The subproblems, or ta-
ble entries, have the following form. We compute
the contact overlap of subgraphs of the original two
graphs which consist, given two pairs of positive in-
tegers 1 � a < b � n and 1 � c < d � m, of the set
of all edges (i; j) in S with a � i < j � b and the
set of all edges (k; l) in G with c � k < l � d. We
denote such graphs S(a;b) and G(c;d). For technical

G_(c,d)

a e f b c g h d

S_(a,b)

Figure 4: Stack algorithm example.

reasons, in the case when there are two edges which
meet b (respectively, d), we may omit the edge with
the lower second coordinate, in which case we de-
note the graphs S ^(a;b)

(respectively, G ^(c;d)
). As well,

to compute the answers recursively, we may require
that the contact overlap be computed with the re-
striction that the edge with the lowest endpoint in
one set be mapped to the edge with the lowest end-
point in the other set (it will never be the case that
we make this restriction when there are two edges
with the lowest endpoint), denoted co(S(a;b); G(c;d))

l,
the edges with the highest endpoints be mapped to
each other (in this case if there are two edges to con-
sider we choose the edge with the lower second co-
ordinate), denoted co(S(a;b); G(c;d))

h, or both (in this
case we may assume one edge does not include the
other), denoted co(S(a;b); G(c;d))

lh. The number of
table entries is O(n4). The optimum is given by

co(S;G) = max
2�i�n;2�j�m

fmaxfco(S(1;i); G(1;j))
h;

co(S ^(1;i)
; G(1;j))

h; co(S(1;i); G ^(1;j)
)h;

co(S ^(1;i)
; G ^(1;j)

)hgg:

Suppose we would like to compute the contact over-
lap, co(S(a;b); G(c;d))

lh, of the two graphs pictured in
Figure 4. Then, recursively, the contact overlap is
given by

co(S(a;b); G(c;d))
lh = 2 + co(S(a+1;e�1); G(c+1;g�1))

+maxfco(S(e;f); G(g;h))
l; co(S(e+1;f); G(g+1;h))g

+maxfco(S(f;b�1); G(h;d�1))
l; co(S(f+1;b); G(h+1;d))

h;

co(S(f+1;b�1); G(h+1;d�1))g:

The remaining recursions are similar to those pre-
sented above and are based on a case analysis of the
existence of edges which share an endpoint with re-
stricted edges. The optimum and table entries can
be computed in O(n2) time, completing the proof of
the theorem.

In fact, if the contact maps in the previous theorem
are derived from self-avoiding walks, then the runtime



can be improved to O(n4). We also note that all
our algorithms generalize to constant degree-bounded
graphs, which is a reasonable assumption for protein
contact maps.

The contact maps of all known RNA structures ex-
cept for one are known to be decomposable into two
degree-1 stacks, hence their maximum overlap can
be approximated within a factor of 2 (optimize the
overlap of each stack contained in one contact map
against the other contact map and take the larger
value).

Unfortunately, one cannot extend this result much
further, since we can show that the problem becomes
NP-complete even in the case of two contact maps
which are unions of two degree-1 stacks. We also
conjecture that �nding the maximum overlap of two
queues is NP-complete. However, we have the follow-
ing consolation result:

Theorem 4 Every queue can be decomposed into two
staircases.

Consequently, the maximum overlap of two degree-
2 queues can be approximated within a factor of 2
(decompose one queue into two staircases, optimize
the overlap of each staircase with the second queue,
and choose the larger value).

De�ne now an augmented staircase to be a contact
map which can be decomposed into a staircase and
a stack such that for every stack edge and for ev-
ery staircase edge, the intervals formed by the edges
are disjoint, overlap at an endpoint, or the interval
formed by the staircase edge contains the interval
formed by the stack edge. Our strongest polynomial-
time result is the following:

Theorem 5 There is an O(n6) algorithm for �nding
the maximum overlap of two degree-2 contact maps,
one of which is an augmented staircase.

Sketch: The algorithm is more complicated than
the stack comparison algorithm, and we provide only
a rough sketch here. Let A be a degree-2 augmented
staircase containing n vertices and let G be an arbi-
trary degree-2 graph containing m vertices. We may
assume we are given the decomposition of A into its
staircase, T , and stack, S. Number the edges ofA and
G according to the ascending order of their right end-
points; if two edges share the same right endpoint, the
edge with the lower left endpoint receives the higher
number. As in the stack comparison algorithm, we

compute the contact overlap using a dynamic pro-
gramming algorithm, and we use that algorithm to
compute a table of entries comparing subgraphs of S
to subgraphs of G. In the present algorithm, table
entries are indexed by four items: an edge, e = (i; j),
contained in T , an edge, f = (k; l), contained in G,
and either the next two entries are blank, denoted
\-", or they contain a higher edge, g, of T whose in-
terval overlaps that of e nontrivially (at more than
one point) and a higher edge, h, of G whose inter-
val interacts with f in a similar fashion. The ta-
ble entry contains a constrained contact overlap of
the subgraph of A, A(e;g), which consists of all edges
e0 � e, except for those edges of S contained in the
interval formed by the left endpoints of e and g, and
the subgraph of G, G(f;h), which consists of edges
f 0 � f . The constraints are that e must map to f

under the bijection, and that matched edges of G(f;h)

which overlap f must also overlap h nontrivially. The
constraints ensure consistency under recursion. The
contact overlap of A and G is given by

co(A;G) = maxfco(S;G); max
e2T;f2G

fco(A(e;�); G(f;�)) + s(j; l)gg;

where

s(j; l) =

8>><
>>:

maxfco(S(j;n); G(l;m))
l; co(S(j+1;n); G(l+1;m))g

edges of S, G meet j, l as left endpoints
co(S(j+1;n); G(l+1;m))
otherwise.

The intuition is that in an optimal bijection either
there is a highest edge of T which maps to an edge
of G, or there is no such edge. The recursion for the
subproblems is based on branching on the next lowest
edge of T to be matched, and we may need to look up
at most two entries of the table comparing subgraphs
of S to subgraphs of G. The reason for recording
the additional set of edges, g and h, is that they are
the highest set of edges which have been matched
previously which overlap e and f nontrivially; they
ensure consistency in the recursion. Adding the pre-
processing time, O(n6) to the product of the number
of table entries, O(n4), times the time to compute an
entry, O(n2), we derive an O(n6) algorithm.

D A Decomposition Theorem

The following result, interesting in its own right, is
the basis of our approximation algorithms.

Theorem 6 Any self-avoiding walk can be decom-
posed into 2 stacks and 1 queue.



Proof: For each vertex in the walk, we assign a label
O (for over) or U (for under) to its adjacent edges in
the lattice which are not edges in the walk. Edges in
the lattice will then have multisets of labels consisting
of 0, 1, or 2 members. Labels are assigned inductively
as follows:

� Label non-walk edges adjacent to vertex 1 as fol-
lows:

{ Assign O to one of the edges perpendicular
to edge f1; 2g of the walk and assign U to
the other.

{ If the remaining edge adjacent to vertex 1
is contained in the contact map, assign it
the same label as whichever of the 2 pre-
viously labelled edges is contained in the
closed curve formed by walk edges and the
edge we are considering, else label it arbi-
trarily.

� Label non-walk edges adjacent to vertex i, where
2 � i � n� 1, as follows:

{ If the walk edges adjacent to vertex i are
parallel (i is \straight"), then at least one
non-walk edge adjacent to i must lie in the
same lattice square as an edge labelled by
i�1, say with label L. Assign label L to the
non-walk edge adjacent to i which shares
the square and assign label fO;Ug n fLg to
the other non-walk edge adjacent to i.

{ If i is a corner, then its two adjacent non-
walk edges will share the same label. If one
of the two edges shares a lattice square with
an edge labelled L by i� 1, then we assign
the two edges label L. If neither edge shares
a lattice square with an edge labelled by
i � 1, then i � 1 must be a corner; assign
the edges adjacent to i the opposite of the
label assigned by i� 1.

� Label the non-walk edges adjacent to vertex n as
follows:

{ At least one non-walk edge perpendicular
to fn� 1; ng and adjacent to n must lie in
the same lattice square as an edge labelled
by n � 1, say with label L. Assign label L
to the edge adjacent to n which shares the
square and assign label fO;Ug n fLg to the
other edge perpendicular to fn� 1; ng and
adjacent to n.

1)

i jj

2)

i j

3)

i

Figure 5: Three possible cycle con�gurations.

{ If the remaining edge adjacent to vertex n

is contained in the contact map, assign it
the same label as whichever of the 2 pre-
viously labelled edges is contained in the
closed curve formed by walk edges and the
edge we are considering, else label it arbi-
trarily.

One can check that the labelling is well-de�ned.

Now, the edges of the contact map are exactly those
edges which have been assigned 2 labels. We prove in
the next two claims that the two graphs consisting,
respectively, of edges labelled by fO;Og and fU;Ug
are stacks and the graph consisting of edges labelled
by fO;Ug is a queue.

Claim 1 Let GL, where L = O or L = U , denote
the graph induced by edges labelled by fL;Lg. Then
GL is a stack.

Proof: Let fi; jg be an edge of GL such that i <
j. To show that GL is a stack, it su�ces to prove
that there is no edge fk; lg of GL such that i < k <

j < l or l < i < k < j. For ease of exposition,
assume i 6= 1 and j 6= n; these cases can be handled
separately by an easy case analysis. Without loss of
generality, there are 3 possible con�gurations of the
graph consisting of walk edges and the edge fi; jg
depending on whether the ends of walk are inside
or outside the cycle formed by walk edges between i

and j and the edge fi; jg. The 3 con�gurations are
pictured in Figure 5.

We analyze the 3 cases below.

Case 1: Neither vertex 1 nor vertex n is contained in
the interior of the cycle.

Then inductively we can show that all edges as-
signed the label L by vertices k such that i < k < j

are in the interior of the cycle, whereas all edges as-
signed the label L by vertices l such that l < i or



j < l are outside the cycle. Thus there is no edge
fk; lg of GL such that i < k < j < l or l < i < k < j.

Case 2: Both vertices 1 and n are contained in the
interior of the cycle.

Then inductively we can show that all edges as-
signed the label L by vertices k such that i < k < j

are outside the cycle, whereas all edges assigned the
label L by vertices l such that l < i or j < l are in
the interior of the cycle. Thus there is no edge fk; lg
of GL such that i < k < j < l or l < i < k < j.

Case 3: Exactly one of vertices 1 and n is contained in
the interior of the cycle, say without loss of generality
vertex 1.

This case is, in fact, impossible because inductively
we can show that j must assign the label �L to edge
fi; jg.

Thus, GL is, indeed, a stack.

Claim 2 Let GO;U denote the graph induced by edges
labelled by fO;Ug. Then GO;U is a queue.

Proof: Let fi; jg be an edge of GO;U such that i < j.
To show that GL is a queue, it su�ces to prove that
there is no edge fk; lg of GO;U such that i < k < l <

j. Again, assume i 6= 1 and j 6= n; these cases can be
checked separately. As in the previous claim, we must
consider the 3 possible con�gurations involving fi; jg
and the walk. However, inductively we can show that
cases 1 and 2 are impossible (in those cases i and
j must label fi; jg with the same label). Thus we
consider the third case. Let L be the label vertex i

assigns to edge fi; jg, so vertex j assigns �L. Then, by
induction, a vertex k with i < k < j may only assign
L to edges outside the cycle and may only assign �L
to edges in the interior of the cycle. Thus, as desired,
it is impossible for there to be an edge fk; lg of GO;U

such that i < k < l < j. Consequently, GO;U is a
queue.

Since GO ; GU ; and GO;U form a decomposition of
the walk into 2 stacks and 1 queue, this completes
the proof of the theorem.

There is little hope of �nding a much tighter char-
acterization of self-avoiding walks, since we can show
that it is NP-complete to tell whether a given contact
map is a self-avoiding walk. Using the above decom-
position, we immediately obtain a 1

4 -approximation
algorithm for computing the contact map overlap be-
tween two self-avoiding walks: Decompose one walk
into two stacks and two staircases (which have maxi-
mum degree 2) (by Theorems 6 and 4) and then com-

pute the maximum overlaps with the second contact
map (Theorem 3):

Corollary 7 There is a 1
4 -approximation algorithm

for computing the contact map overlap between two
self-avoiding walks.

A better approximation ratio, however, is obtained
by a more sophisticated decomposition, based on a
much more elaborate case analysis:

Theorem 8 Any contact map of a self-avoiding walk
in the two-dimensional square lattice can be decom-
posed into one stack and two augmented staircases.

Sketch: We provide a rough sketch. Begin by de-
composing the walk into 2 stacks and a queue as in
the previous theorem. There are two important ob-
servations which follow from the proof of the previous
theorem which we make use of here:

1. No queue edge labelled by (O;U) (here order is
important, that is, O is assigned to the lower
numbered coordinate) meets an edge labelled by
(U;O) except possibly at their left and right end-
points (or viceversa).

2. The interval formed by a stack edge labelled by
(L;L) does not intersect the L endpoint of a
queue edge labelled by (L; �L) or (�L;L) except
possibly at one of its endpoints.

Decompose the queue into 2 staircases using the fol-
lowing algorithm. First, as in the proof of Theorem 5,
number the edges in the queue according to the as-
cending order of their right endpoints; if two edges
share an endpoint, the lower number is assigned to
the edge with the lower left endpoint. Repeat the
following step, alternating staircases, until no edges
remain:

Let (i; j) be the lowest numbered unassigned edge.
Assign all edges (k; l) with i < k � j � 1 to the
same staircase. If the new lowest unassigned edge is
labelled di�erently (that is, the order of the labels is
di�erent) from the edge which was assigned last, then
repeat this step using the same staircase.

It follows from observation 1 noted above and by
induction that this algorithm correctly decomposes
the queue into two staircases. Due to observation
1, the staircases contain sets of mutually intersecting
edges which are all labelled in the same way, (O;U)



or (U;O), and only at most two intervals in these sets
intersect at an endpoint.

Next, using observation 2, we can add stack edges
from the fO;Og and fU;Ug stacks to the staircases to
form augmented staircases, and the remaining stack
edges are collected in a �nal stack.

We can now state our strongest approximation re-
sult:

Corollary 9 There is a polynomial-time 1
3 -

approximation algorithm for computing the contact
map overlap between a self-avoiding walk and any
other contact map.

There are examples establishing that this factor is
the best possible without major modi�cations of this
algorithm.

E Discussion and Open Prob-

lems

One immediate open problem is the development of a
better approximation for the contact map overlap of
self-avoiding walks. We do not expect more favorable
decompositions for such graphs, and so a di�erent
approach seems to be required. On lower bounds,
we do not even know whether this special case is
MAXSNP-complete; the planarity of the problem in-
hibits lower bounds, while its subgraph isomorhism
character seems to rule out polynomial approxima-
tion schemes. Finally, we know of no satisfactory
approximation algorithm for the general problem.

It would be interesting to discover favorable
properties of three-dimensional self-avoiding walks.
Our decomposition technique seems inherently two-
dimensional, in that it exploits topological properties
of the plane, such as the dichotomy between \folds"
and \spirals." Finally, we conjecture that it is NP-
hard to maximize the overlap of two queues.

The second author, together with Brian Walenz,
are developing the Tortilla Protein Folding software
system at Sandia National Laboratories. It includes
computational tools related to contact maps and their
use in protein structure analysis and prediction. We
would like to thank Brian Walenz for useful discus-
sions related to this research.
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