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Algorithmic Aspects of Topology Control Problems 

for Ad hoc Networks 

Abstract 

Topology control problems are concerned with the as- 
signment of power values to nodes of an ad hoc net- 
work so that the power assignment leads to a graph 

topology satisfying some specified properties. This 
paper considers such problems under several opti- 
mization objectives, including minimizing the max- 
imum power and minimizing the total power. A 
general approach leading to a polynomial algorithm 
is presented for minimizing maximum power for a 
class of graph properties, called monotone prop- 
erties. The difficulty of generalizing the approach 
to properties that are not monoione is pointed out. 
Problems involving the minimization of total power 
are known to be NP-complete even for simple graph 

properties. A general approach that leads to an ap- 
proximation algorithm for minimizing the total power 
for some monotone properties is presented. Using 
this approach, a new approximation algorithm for the 
problem of minimizing the total power for obtaining a 
2-node-connected graph is obtained. It is shown that 
this algorithm provides a constant performance guar- 
antee. Experimental results from an implementation 
of the approximation algorithm are also presented. 

1 Introduction 

1.1 Motivation 

An ad hoc network consists of a collection of 
transceivers, All communication among these 

transceivers is based on radio propagation. For each 
ordered pair (u,v) of transceivers, there is a trans- 
mission power threshold, denoted by p(u, w),  with 

the following significance: A signal transmitted by 
the transceiver u can be received by v only when the 
transmission power of u is at least p(u, v). The trans- 
mission power threshold for a pair of transceivers de- 
pends on a number of factors including the distance 

between the transceivers, the direction of the antenna 
at the sender, interference, noise, etc. [RROO]. 

Given the transmission powers of the transceivers, 
an ad hoc network can be represented by a directed 
graph. The nodes of this directed graph are in one-to- 
one correspondence with the transceivers. A directed 
edge (u, w) is in this graph if and only if the trans- 
mission power of u is at least the transmission power 
threshold p(u, w). 

The main goal of topology control is to assign 
transmission powers to the transceivers so that the re- 
sulting directed graph satisfies some specified proper- 
ties. Since the battery power of each transceiver is an 

expensive resource, it is important to achieve the goal 
while minimizing a given function of the transmis- 
sion powers assigned to the transceivers. Examples 
of desirable graph properties are connectivity, small 
diameter, etc. Examples of minimization objectives 
considered in the literature are the maximum power 
assigned to a transceiver and the total power of all 
transceivers (the latter objective is equivalent to min- 

imizing the average power assigned to a transceiver). 

As stated above, the primary motivation to study 
topology control problems is to make efficient use of 
available power at each node. In addition, using mini- 
mum amount of power at each node to achieve a given 
task is also likely to decrease the MAC layer interfer- 
ence between adjacent radios. We refer the reader 

to [LHB+Ol, RMMO1, WL+Ol, RROO, RM99, TK841 
for a thorough discussion of the power control issues 
for ad hoc networks. 

1.2 Formulation of Topology Control 
Problems 

Topology control problems have been studied un- 
der two graph models. The discussion above cor- 

responds to the directed graph model studied in 
[RROO]. The undirected graph model proposed in 
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[KK+97] represents the ad hoc network as an undi- 

rected graph in the following manner. First, the di- 
rected graph model for the network is constructed. 
Then, for any pair of nodes u and w ,  whenever both 
the directed edges (u, w) and (w, u) are present, this 
pair of directed edges is replaced by a single undi- 
rected edge {u,w}. All of the remaining directed 
edges are deleted. Under this model, the goal of a 
topology control problem is to assign transmission 
powers to nodes such that the resulting undirected 
graph has a specified property and a specified func- 
tion of the powers assigned to nodes is minimized. 

Note that the directed graph model allows two-way 
communication between some pairs of nodes and one- 
way communication between other pairs of nodes. In 

contrast, every edge in the undirected graph model 
corresponds to a two-way communication. 

In general, a topology control problem can be spec- 
ified by a triple of the form (M, P, 0). In such a 
specification, M E {DIRECTED, UNDIRECTED} rep- 
resents the graph model, B represents the desired 
graph property and 0 represents the minimization 
objective. For the problems considered in this pa- 

per 0 E {MAX POWER, TOTAL POWER}. For ex- 
ample, consider the (DIRECTED, STRONGLY CON- 

NECTED, MAX POWER) problem. Here, powers must 
be assigned to transceivers so that the resulting di- 
rected graph is strongly connected and the maximum 

power assigned to a transceiver is minimized. Simi- 
larly, the (UNDIRECTED, %NODE CONNECTED, T O -  

TAL POWER) problem seeks to assign powers to the 
transceivers so that the resulting undirected graph 
has a node connectivity of (at least) 2 and the sum of 
the powers assigned to all transceivers is minimized. 

2 Additional Definitions 

This section collects together the definitions of some 

graph theoretic and algorithmic terms used through- 
out this paper. 

Given an undirected graph G(V, E ) ,  an edge sub- 
graph G'(V,E') of G has all of the nodes of G and 
the edge set E' is a subset of E .  Further, if G is an 
edge weighted graph, then the weight of each edge in 
G' is the same as it is in G. 

The node connectivity of an undirected graph is 
the smallest number of nodes that must be deleted 

from the graph so that the resulting graph is discon- 
nected. The edge connectivity of an undirected 

graph is the smallest number of edges that must be 

deleted from the graph so that the resulting graph 
is disconnected. For example, a tree has node and 
edge connectivities equal to 1 while a simple cycle has 
node and edge connectivities equal to 2. When the 
node (edge) connectivity of a graph is k, the graph is 
said to be k-node connected (k-edge connected). 
Given an undirected graph, polynomial algorithms 
are known for finding its node and edge connectivi- 
ties [vago]. 

The main results of this paper use the following 
definition. 

Definition 2.1 A property P of the (directed or 
undirected) graph associated with an ad hoc network 
is monotone the property continues to hold even 
when the powers assigned to some nodes are increased 
while the powers assigned to the other nodes remain 
unchanged, 

Example: For any IC 2 1, the property IC- 
NODE CONNECTED for undirected graphs is mono- 
tone since increasing the powers of some nodes while 
keeping the powers of other nodes unchanged may 
only add edges to the graph. However, properties 
such as ACYCLIC or BIPARTITE are not monotone. 

Some of the topology control problems considered 
in this paper are NP-complete. For such problems, 
we study approximation algorithms. In this con- 

text, an approximation algorithm provides a per- 
formance guarantee of p if for every instance of 
the problem, the solution produced by the approxi- 
mation algorithm is within the multiplicative factor 
of p of the optimal solution. A polynomial time 
approximation scheme (PTAS) is an approxima- 
tion algorithm that, given a problem instance and an 
accuracy requirement e, produces a solution that is 

within a factor 1 + E of the optimal solution. 

3 Previous Work and Summary 

of Results 

3.1 Previous Work 

The form of topology control problems consid- 
ered in this paper was proposed by Ramanathan 
and Rosales-Hain (RROO]. They presented effi- 

cient algorithms for two topology control prob- 
lems, namely (UNDIRECTED,   NODE CON- 
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NECTED, MAX POWER) and (UNDIRECTED, 2- 
NODE CONNECTED, MAX POWER). After deter- 
mining the minimum value for the objective, their 

algorithms also reduce the power assigned to each 
transceiver such that each power level is minimal 
while maintaining the desired graph property. In ad- 
dition, they presented efficient distributed heuristics 
for these problems. 

Several groups of researchers have studied the 
(UNDIRECTED,  NODE CONNECTED, To- 
TAL POWER) problem [CH89, KK+97, CPS99, 
CPSOO]. Reference [CH89] proves that the prob- 
lem is NP-hard and presents an approximation al- 
gorithm with a performance guarantee of 2. The 
other references consider a geometric version of the 

problem along with a symmetry assumption con- 
cerning transmission power thresholds. More pre- 
cisely, these references assume the following: (a) Each 
transceiver is located at some point of &dimensional 
Euclidean space. (b) For any pair of transceivers u 
and w ,  p(u,w) = p(w,u) = the Euclidean distance 
between the locations of 71 and w. For a justifi- 
cation of this model, see Kirousis et a1 [KK+97]. 

They show that the (UNDIRECTED,  NODE CON- 
NECTED, TOTAL POWER) problem is NP-hard when 
transceivers are located in 3-dimensional space. They 

also present an approximation algorithm with a per- 
formance guarantee of 2 for the problem in any met- 
ric space. In addition, they provide some results for 
the l-dimensional version of the (UNDIRECTED, 1- 
NODE CONNECTED, TOTAL POWER) problem where 
there is an additional constraint on the diameter 
of the resulting undirected graph. Clementi et 
a1 [CPS99] show that the 2-dimensional version of 
the (UNDIRECTED,  NODE CONNECTED, To- 
TAL POWER) problem remains NP-hard. They also 
show that the 2-dimensional version with a diameter 
constraint can be efficiently approximated to within 

some constant factor and that the 3-dimensional ver- 
sion does not have a polynomial time approximation 
scheme. 

Researchers have also addressed other versions of 
topology control problems. Hu [Hug31 proposed a 
distributed algorithm based on Delaunay triangula- 
tion to maintain connectivity. However, that paper 
does not address the issue of assigning transmission 
powers to nodes. Radoplu and Meng [RM99] present 
a distributed protocol for maintaining strong connec- 
tivity in a network with mobile nodes. The networks 
generated by their protocol include minimum-energy 

paths (i.e., paths that allow messages to be transmit- 
ted using a minimum amount of energy) from each 
node to a designated master node. Wattenhofer et 
a1 [WL+Ol] discuss a cone-based distributed algo- 

rithm for topology control; their algorithm generates 
a power assignment which ensures that the size of the 
node set that remains connected under this power as- 
signment is the same as the one in which every node 
is assigned the full power. Li and Halpern [LHOl] 
improve upon the protocol of [RM99] by proposing 
another protocol; given a network G, the new pro- 
tocol creates a subnetwork G' such that whenever 
there is a path between a pair of nodes in G, there is 
a minimum-energy path between them in G'. Li et 
a1 [LHB+Ol] provide a more detailed analysis of the 

protocol of [WL+Ol] and establish a precise bound 
on the angle of the cone that ensures connectivity. 
They also establish several properties of the protocol 
in [WL+Ol]. 

3.2 Summary of Main Results 

The main results of this paper are the following. 

1. We show that for any monotone graph prop- 
erty P that can be tested in polynomial 
time for undirected (directed) graphs, the 
problem (UNDIRECTED, P, MAX POWER) 

((DIRECTED, B, MAX POWER)) can be solved 
in polynomial time. This generalizes some 
of the results in [RROO] where efficient algo- 
rithms were presented for two monotone prop- 
erties, namely  NODE CONNECTED and 2- 
NODE CONNECTED. 

2. We show that there are non-monotone and ef- 
ficiently testable properties (e.g. GRAPH IS A 

TREE) for which the problem of minimizing the 
maximum power is NP-complete. This result 
shows that, in general, if the monotonicity con- 
dition is eliminated, then obtaining an efficient 
algorithm for minimizing maximum power may 
not be possible. 

3. As mentioned above, for any monotone and effi- 
ciently testable property IF, a solution that min- 
imizes the maximum power can be obtained in 
polynomial time, However, if we introduce the 
additional requirement that the number of nodes 
that use the maximum power must also be min- 
imized, we show that there are monotone prop- 
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erties for which the resulting problem is NP- 
complete. 

4. We present a general approach for developing 
approximation algorithms for NP-hard topology 
control problems under the TOTAL POWER min- 
imization objective. The approximation results 
of [CH89, KKi-971 are special cases of this gen- 
eral approach. As an illustration of our general 
approach, we present a constant factor approx- 
imation algorithm for the (UNDIRECTED, 2- 
NODE CONNECTED, TOTAL POWER) prob- 
lem. No approximation algorithms was pre- 

viously known for this problem. In analyz- 
ing this approximation algorithm, we use some 
properties of critically 2-node connected graphs 
[Di67, P168, We961. By a minor modification to 
this approximation algorithm, we also obtain a 
constant factor approximation algorithm for pro- 

ducing 2-edge-connected graphs. 

5 .  Finally, we present experimental results obtained 

from an implementation of the above approxi- 
mation algorithm and compare its performance 
with an algorithm discussed in [RROO]. 

4 Results for Minimizing Max- 

imum Power 

In this section, we present our results for the 
MAX POWER objective. We begin with a general al- 
gorithm for the topology control problem where the 
the graph property is both monotone and polynomial 
time testable. Next, we give an example of a non- 
monotone property for which the problem of minimiz- 
ing the maximum power is NP-complete. Finally, we 
show that the additional requirement of minimizing 
the number of nodes that use the maximum power 
also renders the problem NP-complete even for cer- 
tain monotone properties. 

0 .  

4.1 An Algorithm for Monotone and 
Efficiently Testable Properties 

We begin with a simple lemma that points out the 
usefulness of monotonicity. 

Lemma 4.1 For any instance of 
(UNDIRECTED, IF, MAX POWER) and 
(DIRECTED, P, MAX POWER) where the graph 

property IF as monotone, there is an optimal solution 
in which all of the nodes are assigned the same power 
value. 

Proof: Consider an optimal solution to the given 
instance where the nodes don’t necessarily have the 
same power values. Let Q denote the maximum 
power assigned to any node. Since the graph property 
is monotone, for any node whose power value is less 
than Q, we can increase it to Q without destroying 

the property. B 

Theorem 4.1 For any graph property P that is 
monotone and that can be tested in polynomial time, 
the problems (UNDIRECTED, P, MAX POWER) and 
(DIRECTED, P, MAX POWER) can be solved in poly- 

nomial time. 

Proof: We will present the proof for instances of 
(DIRECTED, P, MAX POWER). (The proof for 
(UNDIRECTED, P, MAX POWER) is virtually iden- 
tical.) 

Consider an instance of 

(DIRECTED, P, MAX POWER) .  By Lemma 4.1, 
there is an optimal solution in which every transceiver 
is assigned the same power value. We can estimate 
the number of candidate optimal power values as 
follows. Let T denote the set of all transceivers in 
the system and let IT1 = n. Consider any transceiver 

u E T. The number of different power values that 
need to be considered for u is at most n - 1, since 
at most one new power value is needed for each 
transceiver in T - {u } .  Therefore, for all of the n 
transceivers, the total number of candidate power 

values to be considered is n(n - 1) = O(n2).  

For each candidate power value, the corresponding 
directed graph can be constructed in O(n2)  time. Let 
Fp(n) denote the time needed to test whether prop- 
erty I holds for a directed graph with n nodes. Thus, 
the time needed to test whether property IP holds 
for each candidate solution value is O(n2 + Fp(n)). 
An optimal solution can be obtained by sorting the 

O(n2) candidate solution values and using binary 
search to determine the smallest value for which prop- 

erty IF holds. Since the number of candidate solu- 
tion values is O(n2) ,  the time taken by the sort- 
ing step is O(n210gn). The binary search would 
try O(1ogn) candidate solution values and the time 
spent for testing each candidate is O(n2 + Fp(n)). 
Thus, the total running time of this algorithm is 
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O((n2 + Fp(n)) logn). Since Fp(n) is a polynomial, 

the algorithm runs in polynomial time. w 

As an example to illustrate the above theorem, let 
P denote the property 2-NODE CONNECTED for undi- 
rected graphs. It is known that this property can be 
tested in O(n2) time for a graph with n nodes [va90], 

For this property, the general algorithm outlined in 
the proof of Theorem 4.1 yields an algorithm with 
a running time of O(n210gn). This running time 
matches the time of the algorithm given in [RROO]. 
However, it should be noted that the algorithm in 
[RROO] not only finds an optimal solution but also 
reduces the power of each transceiver so that the 
power levels are minimal. There is no increase in 
their asymptotic running time. 

Instead of requiring the entire graph to be con- 

nected, one may require connectivity only for a spec- 
ified subset of the nodes. Such a requirement arises in 
the context of multicasting (see for example [RPOl]). 
Connectedness of a specified subset of nodes can be 
seen to be a monotone property. So, the general ap- 
proach presented above leads to a polynomial time 

algorithm for this property as) well. 

4.2 Difficulty of Generalizing to Non- 
monotone Properties 

We now show that there is a natural non-monotone 
graph property for which the problem of minimizing 
the maximum power is NP-complete. As mentioned 
earlier, this result points out that if the monotonicity 
requirement is omitted, then an efficient algorithm 
for minimizing maximum power may not be possible. 

The property that we use for this purpose is 
“G IS A TREE”. Surprisingly, we show that this 
property makes the topology control problem NP- 
complete even without any minimization objective. 
The proof of Lemma 4.2 utilizes a reduction from 

the following problem, which is known to be NP- 
complete [GJ79]. 

Exact Cover by $Sets (X3C) 

Instance: A set S = (21,z~ ,..., z,} of elements, 
where n = 3r for some integer r;  a collection C = 
{CI, CZ, . . . , Cm} of subsets of S such that lCjl = 3, 
l s j s m .  

Question: Does C contain an exact cover for S ,  that 
is, is there a subcollection C‘ of C such that the sets 
in C’ are pairwise disjoint and their union is equal to 

S? 

We note that whenever there is a solution to an 
instance of X3C, the number of sets in the solution is 
exactly r (i.e. n/3). 

Lemma 4.2 To find a power assignment such that 
the resulting undirected graph G is a tree is NP- 
complete. 

By abuse of terminology, we use 
(UNDIRECTED, TREE, *) to denote this prob- 
lem. 

Proof: In the (UNDIRECTED, TREE, *) problem, 
we are given a collection of nodes, and a (symmetric) 
power threshold p(u,w)  for each pair of nodes. The 
question is whether there exists a power assignment 
such that the graph induced by the power assignment 

is a tree. 

It is easy to see that (UNDIRECTED, TREE, *) is 
in N P  since one can guess a power assignment and 
verify in polynomial time that the resulting graph is 

a tree. We prove the NP-hardness of the problem by 
a reduction from X3C (defined above). 

Given an instance I of X3C consisting of 
a set S with n elements and a collection 
C of m subsets, we construct an instance I’ 
of the (UNDIRECTED, TREE, *) problem as follows. 
The node set V of I‘ contains a total of n + m + 1 
nodes: There is one node (called an element node) 
ui corresponding to each element zi of S (thus, there 

are totally 3r element nodes), one node (called a 
set node) Vj corresponding to each set Cj of C 
(thus, there are totally m set nodes), and a special 
node (called the root node) denoted by R. The 
power thresholds are chosen as follows. (The reader 
should bear in mind that the power thresholds are 
symmetric; that is, for any pair of nodes u and w ,  

P ( U ,  v) = P ( V l  .).I 

p(R,v j )  = 1 (1 s j  S m ) .  
p(ui,vj) = 2 i f z i E C j , 1 5 i ~ n , 1 5 j 5 m .  

For all other pairs of nodes, the power thresholds are 
set to 3. This completes the construction of the in- 

stance I‘ of (UNDIRECTED, TREE, *). It is easy 
to verify that the construction can be carried out in 
polynomial time. We now argue that there is a solu- 
tion to the (UNDIRECTED, TREE, *) instance if and 
only if there is a solution to the X3C instance. 
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If: Suppose the X3C instance has a solution C'. We 
choose the following power assignment: p(R) = 1, 
p(u5) = 2 (1 5 i 2 n), p(vj) = 2 if Cj is in C' and 
p(wj) = 1 otherwise (1 5 j 5 m). It can be seen that 
the graph G resulting from this power assignment 
contains only the following edges: 

(a) The edge {R,vj},  for each j, 1 f j 5 ma 

(b) For each node vj whose corresponding set Cj is 
in C', there are edges from wj to the three nodes 

corresponding to the elements in Cj . 

By choosing R as the root and using the fact that C' 
is an exact cover, it can be verified that G is a tree: 
The root node R is adjacent to each of the set nodes; 
and, each element node appears as one of the three 
children of a set node corresponding to a subset in 

the collection C'. 

Only if: Now, suppose the 

(UNDIRECTED, TREE, *) instance has a solu- 
tion. Let p ( x )  denote the power assigned to node 3 
and let G denote the graph induced by the power 
assignment. 

We first observe that p(R) 2 1; otherwise, R would 
be an isolated node and thus G cannot be a tree. 
Similarly, p(vj) 2 1 for every set node v j  and ~(ui) 2 
2 for every element node ui. As a consequence, the 
root node R is adjacent to each of the set nodes V I ,  

212, . . ., w,, and the maximum power assigned is at 
least 2. Therefore, there are two cases to consider: 

Case 1. The maximum power assigned is 2. 

Let X = {vj, : p(wj,) = 2). We claim that the 
collection C' = {Cj, : q, E X }  is an exact cover 
for S. We prove this by first showing that each ele- 
ment xi appears in some subset of C'. To see this, 
we note that the graph G is connected (since it is a 
tree). Thus, there is at least one edge from the ele- 
ment node ui (corresponding to element xi) to some 
other node of G. Since the maximum power assigned 
to any node is 2 and the power threshold for the el- 
ement node ui to have an edge to R or an edge to 
any other element node is 3, ui must be adjacent to 
a set node w j ,  Further, because the threshold values 
are symmetric, p(wj) = 2. Thus, wj E X and the cor- 
responding subset Cj is in C'. Hence, each element 
appears in some subset in the collection C'. 

We now show that the subsets in the collection C' 
are pairwise disjoint. Suppose some pair of subsets 
Ca and cb in C' have a common element xi. By our 

choice of C', the power values assigned to the corre- 
sponding set nodes va and Wb are both 2. Further, 
the power assigned to node ui is also 2. Thus, in the 
graph G, ui is adjacent to both Va and V b .  As ob- 
served earlier, the root node R is adjacent to both V a  

and wb. Now, the four edges { R, Va}, {Wa, ui}, {ui, vb} 
and {Ut , ,  R} create a cycle in G. This contradicts the 
assumption that G is a tree. So, the subsets in C' are 
pairwise disjoint, and C' is indeed an exact cover for 

S. 

Case 2. The maximum power assigned is 3. 

First, note that at most two nodes can have power 
3, since if three nodes have power 3, then they are 
mutually adjacent, and thus G is not a tree. 

Second, if the power assignment is as in the fol- 
lowing cases, we argue that there is an equivalent 
assignment in which the maximum power is 2. These 

cases are: only one node has power 3; R and one 
set node vi have power 3; and, one element node ui 
and one set node vj have power 3 where xi E Cj. 
In any of these cases, the resulting graph G has no 
edge with power threshold 3, so an assignment with 
maximum power 2 can be obtained by reducing the 
power level of the nodes with power 3 while keeping 
the assignments to all of the other nodes unchanged. 
The induced graph doesn't change. Thus, the new 
assignment is a solution with maximum power 2 to 
the instance of (UNDIRECTED, TREE, *). Following 
the argument in Case 1, a solution to X3C can be 
constructed. 

Finally, we claim that there are no such valid power 
assignments in the remaining cases (i.e. R and ui 

have power 3; wi and w j  have power 3; u( and uj have 
power 3; or, ui and v j  have power 3 where xi 4 Cj). 
The reasons are the following: 

1. If two set nodes wi and vj have power 3, then 
the edges {R ,  wi}, { R ,  wj} and {wi, vj} form a cycle. 

2. If the root node R and one element node Ui 

have power 3, the edge {R,ui} is in G. Therefore, 
edge{ui,vj}, 1 5 j 5 m, is not in G, otherwise R, 
ui, and v j  form a cycle. Recall that p(ui)  2 2 for 
every element node ui, therefore each w j  with power 
2 is linked with exactly 3 element nodes. No two set 
nodes can linked with the same element node, other- 
wise those three nodes and R form a cycle. Hence, 

totally 3k (where k is the number of set nodes with 
power 2) element nodes are linked to some set node. 

Further, no element nodes can link with each other 
since the power thresholds between such nodes are 



3. This implies that there are 3k -t 1 element nodes. 
There is a contradiction because we know in this in- 
stance of (UNDIRECTED, TREE, *), the number of 

element nodes is a multiple of 3. 

3. If two element nodes ui and uj have power 3, the 
edge {u i ,u j }  is in G. Recall that all set nodes have 
to be linked with R, so one and only one of ui and 
uj is linked with a set node. Suppose it is Ui. We 
know from above that 3k element nodes are linked 
with some set node. So, together with u j ,  there are 
3k f 1 element nodes - a contradiction. 

4. If one element node ui and one set node v j  have 
power 3, where xi 4 Cj, then ui is linked with vj. 
Therefore, there are 4 nodes linked with V j ,  which 

are ut and three element nodes whose corresponding 
elements are in set Cj. Hence, there are totally 3k+1 
element nodes - a contradiction. 

This completes the proof of the case 2 as well as 
that of Lemma, 4.2. 8 

Theorem 4.2 There is a non-monotone property P 
for which (UNDIRECTED, P, MAX POWER) is NP- 
complete. 

Proof: Let P denote the property “G IS A TREE”. 
It is clear that (UNDIRECTED, P, MAX POWER) 
is in N P  because given a power assignment the re- 
quired conditions can be verified in polynomial time. 
Further, the NP-hardness follows from Lemma 4.2. 

4.3 Difficulty of Minimizing the Num- 
ber of Nodes of Maximum Power 

This section explores an extension of the 
(UNDIRECTED, P, MAX POWER) problem for 
monotone graph properties. While such problems 
can be solved efficiently, our algorithm in Section 4.1 
assigns the maximum power value to all of the nodes. 

From a practical point of view, it is important to 
reduce the number of nodes with maximum power 
without affecting the required property. In this 
section, we show that this additional requirement 
renders the problem NP-complete even for certain 
monotone graph properties. A formal statement of 
the problem is as follows. 

Minimizing Max-power Users 

Instance: A positive integer M ;  a positive number P 
(max-power); a node set V; a power threshold func- 

tion p associated with V (Vu,v E V ,  p(u , v )  is the 
power threshold); and a graph property P. 

Question: Dues there exist a power assignment where 
the power assigned to each node is at most P and the 
number of the nodes that are assigned power P is at 
most M ,  such that the resulting undirected graph G 
satisfies IF’? 

Theorem 4.3 There is a monotone property P that 
can be tested an polynomial time for which the problem 
Minimizing Max-power Users is NP-complete. 

Proof: We use a reduction from Set-covering a 
well-knowu NP-complete problem [GJ79]. 

Set-covering 

Instance: A positive integer K ;  a set A = 

{a1,m,.. .,an}; a set F = {f1,f2,...,fm}, where 
fi, 1 5 i 5 m is a subset of A and Vai E A,  3fj E F ,  
such that wi E fj. Without loss of generality, suppose 
all f i ,  1 5 i 5 m are non-empty. 

Question: Does there exist a set S C F ,  with IS[ 5 K ,  
where Qui E A,  3s E S, such that ai E s? 

Let P be the property “THE DIAMETER OF G IS LESS 

THAN OR EQUAL TO 6”. The property implies that 
in G ,  each node is at most 6 hops away from any 
other node. Obviously, P is monotone, and can be 
tested in O ( N 3 )  time by using the Floyd-Warshall 
algorithm, where N is the number of nodes in the 
graph G [CLRSOl]. We now show that Minimizing 
Max-power Users is NP-complete. 

‘It is obvious that Minimizing Max-power 
Users is in N P  since P can be tested in polynomial 
time. To prove the NP-hardness we provide a reduc- 
tion from Set-covering. 

Given an instance I of Set-covering, map each 
element ai of A to a node ui and map each fi of F to 

a node vi. Further, our instance I’ of Minimizing 
Max-power Users also contains four special nodes: 

w, 91, 92, 53. The power threshold function p is de- 
fined as follows (note that the power thresholds are 
symmetric): 

For any other pair of nodes z and y, p(z, y) = P + 1. 
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The value of M is set to K + 1. This completes 
the construction of an instance I' of Minimizing 
Max-power Users. It's clear that the construction 

can be done in polynomial time. Now, we show that 
there is a solution to the Minimizing Max-power 
Users instance if and only if there is a solution to 
Set-covering. 

If: Suppose S is a solution to an instance of Set- 
covering, We construct a power assignment s' as 
follows. 

S'(w) = P 
S'(vi) = P if fi E S 

S'(a) = 1 for any other node 2. 

(there are at most K such nodes) 

We now argue that S' is a solution to the instance 
of Minimizing Max-power Users. Obviously, the 
maximum power assigned is P and at most M (i.0. 
K + 1) nodes have power P. To establish that the 
resulting graph G(V,E) satisfies P we show that w 
is within 3 hops of each other node (hence the graph 
diameter is at most 6). That this is so follows from 
these observations: 

Nodes SI, 8 2 ,  and 93 are (respectively) 1, 2, and 
3 hops away from w. 

Vfi E F ,  if fi E S, then edge{v+, w} E E ,  hence 
node vi is 1 hop away from w. 

Vai E A,  node ui is 2 hops away from w, since 
ui is linked with some vi that has an edge to w, 
otherwise S doesn't cover ai. 

Vfi E F ,  if fi # S, then vi is 3 hops away from 
tu, since vi is linked to some Uj. 

Only if: Suppose we have a power assignment S' 
that is a solution to the instance of Minimizing 
Max-power Users, and that G(V,E) is the result- 
ing graph. If there is an edge between w and vi in E 
(there are at most M - 1 such edges), then place set 
fi into set S. We claim that S is a solution to the 
instance of Set-covering, Since IS1 5 M - 1 (i.e. 
K ) ,  we need only show that S covers A. Since the 

diameter of G(V, E )  5 6, v3 has to be at most 6 hops 
away from any other node. It follows that w must 
be within 3 hops of every other node. For each vi, if 

edge{vi, w} E E ,  vi is one hop away from w. How- 
ever, if edge{vi,w} $4 E, vi is at least 3 hops away 

from w. Now suppose 3ai E A that is not in any set 

f E S. Then, ui is not linked with any node vj that is 
one hop away from w. Thus, ui has to be linked with 

some vj that is at least 3 hops away from W ,  which 
means node ui is at least 4 hops away from w - a 
contradiction. This completes the proof of Theorem 
6.3. 

5 A General Approach for Min- 

imizing Total Power 

5.1 Approximating Minimum Total 
Power 

Topology control problems in which the minimiza- 

tion objective is the total power tend to be compu- 
tationally intractable. For example, the problem is 
NP-hard even for the (simple) property  NODE- 
CONNECTED [KK+97]. A common way of coping 
with such problems is to develop polynomial time 
approximation algorithms for them. In this sec- 
tion, we present a general outline for such an ap- 
proximation algorithm for topology control problems 

of the form (UNDIRECTED, P, TOTAL POWER). 
We observe that this general outline encompasses 
the approximation algorithm for (UNDIRECTED, 1- 
NODE CONNECTED, TOTAL POWER) presented in 
[KI<+97]. Based on the general outline, we also 
develop an approximation algorithm with a con- 
stant performance guarantee for (UNDIRECTED, 2- 
NODE CONNECTED, TOTAL POWER). A slight mod- 
ification of this approximation algorithm yields an 
approximation algorithm for the problem of obtain- 
ing a 2-edge-connected graph while minimizing total 
power. 

In presenting our general scheme, we assume (as 
done in Section 4.1) that the property IP to be satis- 
fied by the graph is monotone and that the property 
can be tested in polynomial time. We also assume 
symmetric power thresholds as in [KK+97, CPS99, 
CPSOO]; that is, for any pair of transceivers u and v, 
the power thresholds p ( u ,  v) and p ( v ,  u) are equal. 

An outline for our general approximation algorithm 
(called Heuristic GEN-TOTAL-POWER) is shown in 
Figure 1. Note that Steps 1 and 3 of the outline can 
be implemented in polynomial time. The time com- 
plexity of Step 2 depends crucially on the property 
lP. For some properties such as  NODE CONNECTED, 
Step 2 can be done in polynomial time. For other 
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Input: An instance I of (UNDIRECTED, P, To- isfies property P. 

TAL POWER) where the property P is monotone and 

polynomial time testable. 

Output: A power value n(u) for each transceiver u 

such that the graph induced by the power assignment 
satisfies property P and the total power assigned to 
all nodes is as small as possible. 

Steps: 

1. From the given problem instance, construct 

the following undirected complete edge weighted 

graph G,(V, Ec) .  The node set V is in one-to- 
one correspondence with the set of transceivers. 

The weight of every edge {u, w} in E, is equal to 
the power threshold value p(u,v) (which is also 
equal to p(w, u) by the symmetry assumption). 

2. Construct an edge subgraph G'(V, E')  of G, such 
that G' satisfies property P and the total weight 
of the edges in E' is minimum among all edge 
subgraphs of G, satisfying property P. 

3. For each node (transceiver) u, assign a power 
value n(u) equal to the weight of the largest edge 
incident on u. 

Figure 1: Outline of Heuristic GEN-TOTAL-POWER 
for Approximating Total Power 

properties such as %NODE CONNECTED, Step 2 can- 
not be done in polynomial time unless P = NP [GJ79]. 
In such cases, an efficient algorithm that produces 
an approximately minimum solution can be used in 
Step 2. The following theorem proves the correctness 
of the general approach and establishes its perfor- 
mance guarantee as a function of some parameters 
that depend on the property P and the approxima- 
tion algorithm used in Step 2 of the general outline. 

Theorem 5.1 Let I be an instance of 
(UNDIRECTED, P, TOTAL POWER) where P 
is a monotone property. Let OPT(I)  and GTP(I )  
denote respectively the total power assigned to the 
nodes in an optimal solution and in a solution 
produced by Heuristic GEN-TOTAL-POWER for the 
instance I .  

(i) The graph G" resulting from the power assign- 
ment produced by  the heuristic (i.e. step 8) sat- 

( 'ai) Consider the complete graph G,(V, E,) con- 
structed an Step 1 of the heuristic. Let H(V,  E H )  
be an edge subgraph of G, with minimum total 
edge weight satisfging property P and let W ( H )  
denote the total edge weight of H .  Let Step 2 of 

the heuristic produce an edge subgraph G'(V, E') 
of G with total edge weight W (G'). Suppose there 
are quantities a! > 0 and /3 > 0 such that 

(a) W ( H )  5 a O P T ( I )  and 

(V W(G')  5 BW(H),  

then GTP(I )  5 2apOPT(I) .  In other words, 
Heuristic GEN-TOTAL-POWER provides a per- 
formance guarantee of 2ap. 

Before proceeding to the proof of this result, 
we illustrate its use by discussing how the 2- 
approximation algorithm presented in [KK+97] for 
the (UNDIRECTED, LNODE CONNECTED, To- 
TAL POWER) problem can be derived from the above 
general outline. In Step 2 they use an efficient algo- 
rithm for constructing a minimum spanning tree of 
G,. They also show that the total power assigned by 
any optimal solution is at least the weight of a min- 
imum spanning tree of G,. Thus, using the notation 
of Theorem 5.1, a! = ,8 = 1 for their approximation 
algorithm. Since ~ - N O D E - ~ O N N E C T E D  is a mono- 
tone property, it follows from Theorem 5.1 that the 
performance guarantee provided by their algorithm 
is 2. 

Proof of Theorem 5.1: 

Part (i): The edge subgraph G'(V, E') constructed 
in Step 2 of the heuristic satisfies property P. We 
show that every edge in E' is also in the subgraph G" 
induced by the power assignment produced in Step 3. 
Then, even if G" has other edges, the monotonicity 
of P allows us to conclude that G" satisfies P. 

Consider an edge {u, w} with weight p(u, w) in E'. 
Recall that p(u,v) is the minimum power threshold 
for the existence of edge {u, w} and that the power 
thresholds are symmetric. Since Step 3 assigns to 

each node the maximum of the weights of edges in- 
cident on that node, we have n ( ~ )  > p(u,w) and 
n(w) 2 p(u,w). Therefore, the graph G" induced by 
the power assignment also contains the edge {u, w} 
and this completes the proof of Part (i). 

Part (ii): By conditions (a) and (b) in the statement 
of the theorem, we have W(G') 5 a p O P T ( I ) .  We 

9 



observe that GTP( I )  5 2W(G'). This is because 
in Step 3 of the heuristic, the weight of any edge is 
assigned to at most two nodes (namely, the endpoints 

of the edge). Combining the two inequalities, we get 
GTP( I )  5 2ap OPT(I ) ,  and this completes the proof 

of Theorem 5.1. m 

5.2 A New Approximation Algorithm 

This section presents an approximation algorithm 
for the (UNDIRECTED, 2 -NODE CONNECTED, To- 
TAL POWER) problem. This algorithm is de- 
rived from the general approach outlined in Fig- 
ure 1. We note that the property %NODE- 

CONNECTED is monotone. The following notation 
is used throughout this section. I denotes the 
given instance of (UNDIRECTED, %NODE CON- 

NECTED, TOTAL POWER) with n transceivers. For 
each transceiver u, T* (u) denotes the power assigned 
to u in an optimal solution. Further, OPT(I )  de- 
notes the sum of the powers assigned to the nodes in 
an optimal solution. 

We obtain an approximation algorithm for the 

TAL POWER) problem from the outline of Figure 1 
by using an approximation algorithm from [KR96] 
for the minimum weight 2-NODE-CONNECTED sub- 
graph problem in Step 2 of the outline. This approx- 
imation algorithm provides a performance guarantee 
of (2 + l /n) .  Using the notation of Theorem 5.1, we 
have 5 (2 + l /n) .  

We also show (see Lemma 5.1 below) that for 
the complete edge weighted graph G,(V,E,) con- 
structed from I in Step 1 of the outline, there is an 
edge subgraph Gl(V,EI)  such that GI is %NODE- 

CONNECTED and the total weight W(G1) of the edges 
in GI is at most (2 - 2/n)OPT(I),  Again, using 
the notation of Theorem 5.1, this result implies that 
cr f (2 - 2 / n ) .  

Thus, once we establish Lemma 5.1, it would fol- 
low from Theorem 5.1 that the performance guar- 
antee of the resulting approximation algorithm for 
the (UNDIRECTED, 2 -NODE CONNECTED, To- 
TAL POWER) problem is 2 ( 2  - 2/n) (2 + l /n),  which 

approaches 8 asymptotically from below. The re- 
mainder of this section is devoted to the formal state- 
ment and proof of Lemma 5.1. 

(UNDIRECTED, %NODE CONNECTED, TO-  

Lemma 5.1 Let I denote an  instance of the 
(UNDIRECTED, %NODE CONNECTED, TO- 

TAL POWER) problem with n transceivers. Let 
OPT(I )  denote the total power assigned to  the 
transceivers in an  optimal solution to  I .  Let 
Gc(V, Ec) denote the complete graph constructed in 
Step 1 of Heuristic GEN-TOTAL-POWER. There is 
an edge subgraph G1(V, El)  of G, such that GI is 2- 

NODE-CONNECTED and the total weight W(G1) of 
the edges in GI  is at most (2 - 2/n)  OPT(I ) .  

Our proof of Lemma 5.1 begins with an optimal 
power assignment to instance I and constructs the 
graph GI satisfying the properties mentioned in the 
above statement. This construction relies on several 
definitions and known results from graph theory. We 
begin with the necessary definitions. 

v4 

Figure 2: A simple cycle (VI, 212,113, v4, 2)5,V6, VI ) with 
two chords { v ~ , ' u g }  and {v~,ws}. 

Definition 5.1 Let G(V,E) be a n  undirected graph. 

Suppose the node sequence ( V I ,  v2, v3) . .) 'uk, 01) 
forms a simple cycle C of length at least 4 in G. An9 
edge {vi,vj} of G (1 5 i # j 5 I C )  which is not in C 
is a chord. 

Figure 2 shows a simple cycle of length 6 with two 
chords. 
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Definition 5.2 An undirected graph G(V, E )  is 

of the following conditions. 

critically 2-NODE-CONNECTED if it satisfies both 

(i) G is 2-NODE-CONNECTED. 

(ii) For every edge e E E ,  the subgraph of G ob- 
tained by deleting the edge e is not %NODE- 

CONNECTED, 

For example, a simple cycle on three or more nodes 
is critically 2-NODE-CONNECTED. This is because 
such a cycle is 2-NODE-CONNECTED, and deleting 
any edge of the cycle yields a simple path which is 

A number of properties of critically %NODE- 

CONNECTED graphs have been established in the lit- 
erature (see for example, [Di67, P168, We961). We 
use the following property in proving Lemma 5.1. 

not 2-NODE-CONNECTED. 

Theorem 5.2 If a graph G is cratically %NODE- 

CONNECTED then no cycle of G has a chord. 

For a proof of the above' theorem, see [Di67, P168]. 

We also use some terminology associated with 
Depth-First-Search (DFS) [CLRSOl]. When DFS 
is carried out on a connected undirected graph 
G(V, E ) ,  a spanning tree T(V, ET) is produced. Each 
edge in T is called a tree edge. Each tree edge joins 
a child to its parent. An ancestor of a node u in 
T is a node which is not the parent of u but which 
is encountered in the path from u to the root of T .  
Each edge in E - ET is called a back edge. Each 

back edge joins a node u to an ancestor of u in T .  
The following lemma establishes a simple property of 
back edges that arise when DFS is carried out on a 
critically 2-NODE-CONNECTED graph. 

Lemma 5.2 Let G(V, E )  be a critically  NODE- 
CONNECTED graph and let T(V, ET) be a spanning 
tree for G produced using DFS. For any node u, there 
is at most one back edge from u to an ancestor of u 
in T .  

Proof: The proof is by contradiction. Suppose a 
node u has two or more back edges. Let w and w 

be two ancestors of u in T such that both {u, w} and 
{u, w} are back edges. Note that these two edges are 

'It should be noted that the graph theoretic terminology 
used in [Di67, PJ68] is different from ours. The statement of 
Theorem 5.2 given above is from [WeSS]. 

in G. Without loss of generality, let w be encountered 

before w in the path in T from the root to u in T .  
The path from w to u in T together with the edge 
{u, w} forms a cycle in G. By our choice of w, this 
cycle also includes the node w. Therefore, the edge 
{u, w} is a chord in the cycle. This contradicts the 
assumption that G is critically 2-NODE-CONNECTED 

since by Theorem 5.2, no cycle in G can have a chord. 
The lemma follows. 

We now prove several additional lemmas that are 

used in our proof of Lemma 5.1. Consider the given 
instance I of the (UNDIRECTED, %NODE CON- 

NECTED, TOTAL POWER) problem and let V de- 
note the set of transceivers. Fix an optimal solution 
to the instance I and let p* denote the maximum 
power value assigned to a node in this optimal solu- 
tion. Let the chosen optimal power assignment in- 
duce the graph G*(V, E * ) .  Note that G* is %NODE- 

CONNECTED. Let Gi(V, E:) be an edge subgraph of 
G* such that Gf is critically 8-NODE-CONNECTED. 

(Such a subgraph can be obtained by starting with G* 

and repeatedly removing edges until no further edge 
deletion is possible without violating the %NODE- 

CONNECTED property.) For each edge {u, w} of GT, 
we assign a weight w~(u, w) as follows. 

1, Let r be a node such that r * ( r )  = p*.  Using r 
as the root, perform a DFS of GT. Let T(V, ET)  
be the resulting spanning tree. Thus, each edge 
of GI is either a tree edge or a back edge. 

2 .  For each tree edge {u ,  w} where w is the parent 
of u, let w~(u, w) = T*(u).  

3. For each back edge {u, w} where w is an ancestor 
of u, let w~(u, w) = T*(u). 

The following lemma bounds the total weight W1 (Gi) 
of all the edges in GT under the edge weight function 

w1 chosen above. 

Lemma 6.3  Wl(Gi) 5 (2 - 2 /n )  OPT(I) .  

Proof: As mentioned above, each edge of GT is either 
a tree edge or a back edge. Consider the tree edges 
first. For each tree edge {u, w}, where w is the parent 
of u, wl(u,w) = r*(u). Thus, the weight T*(u) is 

assigned to at most one tree edge (namely, the edge 
that joins u to the parent of u if any in T )  . The power 
value of the root r in the optimal solution, namely p * ,  

is not assigned to any tree edge (since the root has 
no parent). Thus, the total weight of all of the tree 
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edges under the weight function w1 is bounded by 

Now consider the back edges. For each back edge 

{u,v}, where is an ancestor of u, w1(u,v) = 

by Lemma 5.2,  each node has at most one back edge 

to an ancestor. Thus, the weight r*(u) is assigned 
to at most one back edge. Again, the power value p*  

of the root r in the optimal solution is not assigned 

to any back edge. Thus, the total weight of all of 
the back edges under the weight function w1 is also 
bounded by O P T ( I )  - p*. 

Therefore, the total weight Wl(Gf) of all of the 
edges in Gf under the edge weight function w1 is at 
most 2 OPT(I )  - 2p* .  Since p*  is the largest power 
value assigned to a node in the optimal solution, p* 

is at least OPT(I) /n .  Hence, Wl(Gf) is bounded by 

m 

The following lemma relates the weight 201 (u, v) of 
an edge {u, v} to the power threshold p(u, v) needed 
for the existence of the edge. 

OPT(I )  -p* .  

T*(u). Since Gf is critically 2-NODE-CONNECTED, 

(2 - 2/n)  OPT(I )  as required. 

Lemma 5.4 For any edge { u , ~ }  in Gf,  p(u,v) 5 
w1 (u, v). 

Proof: Consider any edge {u, w} in Gi. Since Gi is 
an edge subgraph of G* (the graph induced by the 
chosen optimal power assignment), {u, v} is also an 
edge in G'. Also, recall that the minimum power 
threshold values are symmetric. Therefore, n*(u) 2 
p(u,v) and n*(v) 2 p(u,v). Hence min{r*(u),n*(v)} 
1 p(u, v). The weight assigned to the edge {u, v} by 
the edge weight function w1 is either n*(u) or n*(v). 
Therefore, w1(u, v) 1 min{r*(u), n*(v)}. It follows 

I 

We are now ready to  complete the proof of 
Lemma 5.1.  

Proof of Lemma 5.1: Starting from an optimal 
power assignment to the instance I ,  construct the 
graph Gf (V, Ef ) as described above. Since the graph 
G, constructed in Step 1 of the heuristic (Figure 1) 
is a complete graph, every edge in Gi  is also in 

G,. Consider the edge subgraph Gl(V,El) of G, 
where & = Ef. Since Gf is 2-NODE-CONNECTED, 

so is GI. By Lemma 5.4, for each edge {u,v}  in 
El,  p(u,v) wl(u,v). Therefore, the total weight 
W(G1) of all of the edges in GI under the edge 
weight function p is at most W1 (Gf). By Lemma 5.3, 
Wl(Gi) is bounded by ( 2  - 2 / n ) O P T ( I ) .  There- 
fore, W(G1) is also bounded by (2 - 2/n)  OPT(1). In 

that 201 (u, v) 1 p(u, w). 

other words, the edge subgraph GI (V, E l )  is %NODE- 

CONNECTED and the total weight of all its edges is at  
most (2 - 2/n) OPT(1). This completes the proof of 

Lemma 5.1.  m 
The following is a direct consequence of the above 

discussion. 

Theorem 6.3 There is a polynomial time approxi- 
mation algorithm with a performance guarantee of 
2 (2 - 2/n)  ( 2  + l / n )  (which approaches 8 asymp- 
totically from below) for the (UNDIRECTED, 2- 
NODE CONNECTED, TOTAL POWER) problem. 

Finally, we complete this section with an analogous 
result for two edge connectivity: 

Theorem 5.4 There is a polynomial time approx- 
imation algorithm with a performance guarantee 
of 8(1 - l / n )  (which approaches 8 asymptotically 
from below) for the (UNDIRECTED, %EDGE CON- 
NECTED, TOTAL POWER) problem. 

The proof (omitted here) is similar to that for The- 
orem 5.3 and utilizes a 2-approximation algorithm of 

SUBGRAPH problem. 
[KV94] for the minimum cost 2-EDGE-CONNECTED 

5.3 Experimental Results 

5.3.1 Overview 

In the preceding sections, we established that 
our algorithm for (UNDIRECTED, 2-NODE CON- 
NECTED, TOTAL POWER) has an approximation ra- 
tio of 8. In this section, we report on the experi- 
mental performance of this algorithm. Since there 

are no existing approximation algorithms specifically 
for (UNDIRECTED, %NODE CONNECTED, To- 
TAL POWER), in the experiments described here 
we compare the performance of our algorithm 
with Ramanathan and Rosales-Hain's algorithm in 
[RROO]. Recall that the algorithm finds an opti- 
mum solution for the (UNDIRECTED, %NODE CON- 

NECTED, MAX POWER) in which the power level of 
each node is minimal. 

5.3.2 Experimental Environment 

Our experiments were conducted using a customized 
implementation with an experimental setup similar to 
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the one described in [RROO]. In these experiments, 

the radio wave propagation model used is the Log- 
distance Path Loss Model: 

a t  1 

where q is the path loss exponent, do is the close-in 
reference distance, X is the radio wavelength, Gt is 
the transmitter antenna gain, Gr is the receiver an- 

tenna gain, and d is the separation distance between 
transmitter and receiver (see [Rag61 for detailed de- 
scriptions of these parameters). All of the parameters 
are chosen to emulate a 2.4 GHz wireless radio, and 
if d is less than a certain threshold, the transmission 
power is set to the minimum transmission power of 1 
dBm. 

The experiments are conducted by varying the den- 

sity of the network and the geographical distribution 
of the nodes. In total there are 22 sets of experiments, 
and 10 trials are run on each set. Each of the results 
we cite is the average over the 10 trials. 

The node density varies from 0.625 node/sq mile 
to 4.06 nodes/sq mile in a 4 mile by 4 mile area. 
The experiments are conducted using two node dis- 
tributions: one uniform and one skewed. Specifi- 
cally, in the uniformly distributed networks, all nodes 
are placed using a random uniform distribution. In 
the networks with a skewed distribution, the network 
area is equally divided into a 2 by 2 grid, with 80% 
of the nodes uniformly distributed in two diagonal 

squares, and the other 20% of the nodes uniformly 
distributed in the other two diagonal squares. 

In each experiment, after generating a placement 
of the nodes, both our Min Total algorithm and the 
Min Max algorithm of [RROO] are run on the network 
consisting of those nodes. Each algorithm assigns 
power to each node such that the resulting network 
is %NODE CONNECTED. For each algorithm we mea- 

sure both the maximum and average power assigned, 
as well as the maximum and average degrees of nodes 
in the resulting network. 

The experimental results are shown in Figures 3,4 ,  
5 ,  and 6. In Figures 3 and 5 ,  MM AVG (MM MAX) 
and MT AVG (MT MAX) are the average (maxi- 
mum) power using the Min Max and the Min Total 
algorithms respectively; likewise in Figures 4 and 6, 

MM AVG (MM MAX) and MT AVG (MM MAX) are 
the average (maximum) degrees using the Min Max 
and the Min Total algorithms respectively. 

5.3.3 Observations 

1 3 0 -  

26 - 

20- 

16 - 

- * - . . x  i t -  
- -  * - - "  

.. 8.--x 

Figure 3: Power in uniformly distributed network 
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2 8  3u 0 6  t 16  2 2.6 3 31 4 4 6  

Nod. dsnlilq (nod.dq mlle) 

Figure 4: Degree in uniformly distributed network 

In this section we discuss the results both in regard 

to the node power assignments and in regard to the 
node degrees. 

First, with respect to power in the cases where 

nodes are uniformly distributed, our Min Total al- 
gorithm consistently outperforms the Min Max algo- 
rithm in [RROO] in regard to average power by 5% 
-15%. In contrast, the maximum power assigned by 
our algorithm is 14% -31% larger than that of [RROO]. 
The average power is about 68% -83% of the maxi- 
mum power using the Min Max algorithm, and about 

44% -70% using our algorithm. Those numbers de- 
crease as the density of the network increases, which 
implies that the average power decreases faster than 
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Figure 6: Degree in skewed network 

the maximum power, and a smaller percentage of 
nodes have the maximum power as the network den- 
sity increases. 

In the skewed placements of nodes, our Min Total 

algorithm outperforms the Min Max algorithm with 
respect to average power by 6% -19%. We observe 
that the difference between average power and Max- 
imum power is larger than in uniform placements. 
The average power is about 50% -76% of the maxi- 
mum power using Min Max algorithm of [RROO], and 
about 35% -64% using our algorithm. In other words, 
for a given average node density, the maximum power 
in a skewed network is higher than that in a uni- 
formly distributed network, while the average power 
in skewed is lower. The reason is that in a skewed 

network the node density varies significantly from re- 
gion to region. With a larger number of nodes in a 
smaller area, the average distance between two nodes 

is less, hence the required power levels are, on the 
average, smaller. 

As a general rule, smaller is better in regard to node 

degrees in the network induced by the power assign- 
ments. In that context, in the case where nodes are 

uniformly distributed, the average (maximum) degree 
of the network with power assigned by our Min To- 
tal algorithm is consistently smaller than the aver- 
age (maximum) degree of the network with power as- 
signed by the Min Max algorithm in [RROO]. When 
using either of the algorithms, the average degree 
doesn’t vary much as the network density changes. 

Specifically, the average degree is around 2.75 using 
our algorithm, which is very close to the smallest de- 

gree possible since in a 2-node-connected graph, the 
degree of each node must be at least 2. 

The results in regard to node degrees under the 
skewed node distribution are similar to those for the 
uniform case, and are omitted due to lack of space. 

6 Current Work 

We are currently working on extending these results 
to other graph properties such as bounded node de- 

gree, bounded diameter, etc. We are also consider- 
ing properties that involve more than one graph pa- 
rameter (e.g. 2-Node-connected and bounded max- 
imum degree). In the case of problems involving 
MAX POWER, we are working on the development of 
efficient algorithms for minimizing the power assigned 
to each transceiver after a solution that minimizes the 
maximum power has been obtained. 
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